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Chapter 1

Events and their probabilities

1.1 Events as sets

Definition 1.1.1. The set of all possible outcomes of an experiment is called the sample space

and is denoted by Ω.

Example 1.1.2. A coin is tossed repeatedly until the first Head turns up; we are concerned

with the number of tosses before this happens. The set of all possible outcomes is the set Ω =

{ω1, ω2, ω3, . . .}, where ωi denotes the outcome when the first i-1 tosses are Tail and the ith toss is

Head. We may seek to assign a probability to the event A, that the first Head occurs after an even

number of tosses, that is, A = {ω2, ω4, ω6, . . .}. This is an infinite countable union of members

of Ω and we require that such a set belong to F in order that we can discuss its probability.

Definition 1.1.3. A collection F of subsets of Ω is called a σ-field if it satisfies the following:

(a) the empty set ∅ belongs to F ;

(b) if A1, A2, . . . ∈ F then
⋃∞
i=1Ai ∈ F ;

(c) if A ∈ F then its complement Ac := F \ {A} is also in F .

Example 1.1.4. The smallest σ-field associated with Ω is the collection F = {∅,Ω}. If A is any

subset of Ω then F = {∅, A,Ac,Ω} is a σ-field.

Exercise 1. Let A and B belongs to some σ-field F . Show that F contains the sets A∩B, A \B,

and A∆B := (B \A) ∪ (A \B).

1.2 Probability

Definition 1.2.1. A probability measure P on (Ω,F) is a function P : F 7→ [0, 1] satisfying
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(a) P(∅) = 0 and P(Ω) = 1;

(b) if A1, A2, . . . is a collection of disjoint members of F , namely Ai ∩Aj = ∅ for all i 6= j, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

The triple (Ω,F ,P), comprising a set Ω, a σ-field F of subsets of Ω, and a probability measure P

on (Ω,F), is called a probability space.

Example 1.2.2. A coin, possibly biased, is tossed once. We can take Ω = {H,T} and F =

{∅, H, T,Ω}, and a possible probability measure P : F 7→ [0, 1] is given by

P(∅) = 0, P(H) = p, P(T ) = 1− p, P(Ω) = 1,

for some fixed p ∈ [0, 1]. If p = 1
2 , then the coin is called fair, or unbiased.

Lemma 1.2.3. Given two events A,B ∈ F , then

(a) P(Ac) = 1− P(A);

(b) if B ⊇ A then P(B) = P(A) + P(B \A) ≥ P(A);

(c) P(A ∪B) = P(A) + P(B)− P(A ∩B);

(d) more generally, if A1, A2, . . . , An are events, then

P

(
n⋃
i=1

Ai

)
=
∑
i

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑
i<j<k

P(Ai ∩Aj ∩Ak)− · · ·

+ (−1)n+1P(A1 ∩A2 ∩ · · · ∩An).

Proof.

(a) A ∪Ac = Ω and A ∩Ac = ∅, so P(A ∪Ac) = P(A) + P(Ac) = 1.

(b) B = A ∪ (B \A), This is the union of disjoint sets and therefore

P(B) = P(A) + P(B \A).

(c) A ∪B = A ∪ (B \A), which is a disjoint union. Therefore, by (b),

P(A ∪B) =P(A) + P(B \A) = P(A) + P(B \ (A ∩B))

=P(A) + P(B)− P(A ∩B).

(d) The proof is by induction on n.



Lemma 1.2.4. For an increasing sequence of events {An}n≥1 (A1 ⊆ A2 ⊆ A3 ⊆ · · · ), denote

A :=

∞⋃
n=1

An := lim
n↑∞

An.

Then P(A) = limn↑∞ P(An).

Similarly, if {Bn}n≥1 is an decreasing sequence of events, then

B :=

∞⋂
n=1

Bn := lim
n↑∞

Bn

satisfies P(B) = limn↑∞ P(Bn).

Proof. Since A can be written as the disjoint union A = A1 ∪ (A2 \A1) ∪ (A3 \A2) ∪ · · · , then

P(A) =P(A1) +

∞∑
i=1

P(Ai+1 \Ai)

=P(A1) + lim
n↑∞

n−1∑
i=1

(
P(Ai+1)− P(Ai)

)
=P(A1) + lim

n↑∞

(
P(An)− P(A1)

)
= lim
n↑∞

P(An).

To show the result for decreasing families of events, take complements and use the first part.

Exercise 2. Let {An}n≥1, be events such that P(An) = 1 for all n. Show that P(
⋂∞
n=1An) = 1.

1.3 Conditional probability

Definition 1.3.1. If P(B) > 0 then the conditional probability that A occurs given that B

occurs is defined as

P(A|B) :=
P(A ∩B)

P(B)
.

We denote this conditional probability by P(A|B), pronounced the probability of A given B, or

sometimes the probability of A conditioned (or conditional) on B.

Example 1.3.2. Two fair dice are thrown. Given that the first shows 3, what is the probability

that the total exceeds 6? The answer is obviously 1
2 , since the second must show 4, 5, or 6.

However, let us labour the point. Cleary Ω = {1, 2, 3, 4, 5, 6}2, the set of all odered pairs (i, j) for

i, j ∈ {1, 2, . . . , 6}, and we can take F to be the set of all subsets of Ω, with P(A) = |A|/36 for any

A ⊆ Ω. Let B be the event that the first die 3, and A be the event that the total exceeds 6. Then

B = {(3, b) : 1 ≤ b ≤ 6}, A = {(a, b) : a+ b > 6}, A ∩B = {(3, 4), (3, 5), (3, 6)},

and

P(A|B) =
P(A ∩B)

P(B)
=
|A ∩B|
|B|

=
3

6
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Lemma 1.3.3. For any events A and B such that 0 < P(B) < 1,

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc).

More generally, let B1, B2, . . . , Bn be a partition of Ω such that P(Bi) > 0 for all i. Then

P(A) =

n∑
i=1

P(A|Bi)P(Bi).

Proof. A = (A ∩B) ∪ (A ∩Bc). This is a disjoint union and so

P(A) = P(A ∩B) + P(A ∩Bc) = P(A|B)P(B) + P(A|Bc)P(Bc).

The second part is similar.

Example 1.3.4 (Prisoners’ paradox). In a dark country, three prisoners have been incarcerated

without trial. Their guard tells them that the country’s dictator has decided arbitrarily to free one

of them and to hang the other two, but he is not permitted to reveal their fate to any prisoner.

Prisoner A knows therefore that his chance of survival is 1
3 . In order to gain information, he asks

the guard in secret the name of some prisoner (but not himself) who will be killed, and the guard

names prisoner B. What is then prisoner A’s assessment of the chance that he will survive?

An alternative formulation of this paradox has become known as the Monty Hall problem, the

controversy associated with which has been provoked by Marilyn vos Savant (and many others) in

Parade magazine in 1990.

Exercise 3 (The Monty Hall problem). Cruel fate has made you a contestant in a game show; you

have to choose one of three doors. One conceals a new car, two conceal old goats. You choose, but

your chosen door is not opened immediately, Instead, the presenter opens another door to reveal

a goat, and he offers you the opportunity to change your choice to the third door (unopened and

so far unchosen). Let p be the (conditional) probability that the third door conceals the car. The

value of p depends on the presenter’s protocol. Devise protocols to yield the values p = 1
2 , p = 2

3 .

Show that, for α ∈ [ 1
2 ,

2
3 ], there exists a protocol such that p = α. Are you well advised to change

your choice to the third door?

1.4 Independence

Definition 1.4.1. Two events A and B are called independent if

P(A ∩B) = P(A)P(B).

A family {Ai, i ∈ I} is called pairwise independent if Ai and Aj are independent for all i 6= j.

The family {Ai, i ∈ I} is called independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai), for all finite subsets J ⊂ I.



Example 1.4.2. Suppose Ω = {abc, acb, cab, cba, bca, bac, aaa, bbb, ccc}, and each of the nine ele-

mentary events in Ω occurs with equal probability 1
9 . Let Ak be the event that the kth letter is a.

The family {A1, A2, A3} is pairwise independent but not independent.

Exercise 4. Let A and B be independent events; show that Ac, B are independent, and deduce

that Ac, Bc are independent.

1.5 Completeness and product spaces

Lemma 1.5.1. If F and G are two σ-fields of subsets of Ω then their intersection F ∩ G is also a

σ-field. More generally, if {Fi : i ∈ I} is a family of σ-fields of subsets of Ω then G =
⋂
i∈I Fi is

also a σ-field.

Definition 1.5.2. Let (Ω,F ,P) be a probability space. Any event A with zero probability is called

null. The probability space (Ω,F ,P) is called complete if all subsets of null sets are events.

Definition 1.5.3. Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces. Ω := Ω1 × Ω2, F

be the smallest σ-field of subsets of Ω which contains F1 × F2. P(A1 × A2) := P1(A1)P2(A2) for

all A1 ∈ F1, A2 ∈ F2. (It can be shown that the domain of P can be extended to F). P is called

the product measure and (Ω,F ,P) is called the product space of (Ω1,F1,P1) and (Ω2,F2,P2).



Chapter 2

Random variables and their

distributions

2.1 Random variables

Definition 2.1.1. A random variable is a function X : Ω→ R with the property that {ω ∈ Ω :

X(ω) ≤ x} ∈ F for each x ∈ R. Such a function is said to be F-measurable.

Definition 2.1.2. The distribution function of a random variable X is the function F : R →

[0, 1] given by F (x) = P(X ≤ x).

Example 2.1.3. A fair coin is tossed twice: Ω = {HH,HT, TH, TT}. For ω ∈ Ω, let X(ω) be

the number of Head, so that

X(HH) = 2, X(HT ) = X(TH) = 1, X(TT ) = 0.

Now suppose that a gambler wagers his fortune of £1 on the result of this experiment. He gambles

cumulatively so that his fortune is doubled each time Head appears, and is annihilated on the

appearance of Tail. His subsequent fortune W is a random variable given by

W (HH) = 4, W (HT ) = W (TH) = W (TT ) = 0.

The distribution function FX of X is given by

FX(x) =



0, if x < 0,

1
4 , if 0 ≤ x < 1,

3
4 , if 1 ≤ x < 2,

1, if x ≥ 2.
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The distribution function FW of W is given by

FW (x) =


0, if x < 0,

3
4 , if 0 ≤ x < 4,

1, if x ≥ 4.

This illustrates that the distribution function of a random variable X tells us about the values

taken by X and their relative likelihoods, rather than about the sample space and the collection

of events.

Lemma 2.1.4. A distribution function F has the following properties:

(a) lim
x↓−∞

F (x) = 0 and lim
x↑∞

F (x) = 1;

(b) if x < y then F (x) ≤ F (y);

(c) F is right-continuous, that is lim
ε↓0

F (x+ ε) = F (x).

Proof.

(a) Let Bn = {ω ∈ Ω : X(ω) ≤ −n} = {X ≤ −n}. The sequence B1, B2, . . . is decreasing with

the empty set as limit. Thus, by Lemma 1.2.4, P (Bn)→ P(∅) = 0. The other part is similar.

(b) Let A(x) = {X ≤ x}, A(x, y) = {x < X ≤ y}. Then A(y) = A(x) ∪ A(x, y) is a disjoint

union, and so by definition 1.2.1,

P(A(y)) = P(A(x)) + P(A(x, y))

giving F (y) = F (x) + P(x < X ≤ y) ≥ F (x).

(c) Apply Lemma 1.2.4.

Example 2.1.5 (Indicator). A particular class of Bernoulli variables is very useful in probability

theory. Let A be an event and let IA,Ω→ R be the indicator function of A that is,

IA(ω) =

 1, if ω ∈ A

0, if ω ∈ Ac.

Then IA is a Bernoulli random variable taking the values 1 and 0 with probabilities P(A) and

P (Ac) respectively. Suppose {Bi : i ∈ I} is a family of disjoint events with A ⊆
⋃
i∈I Bi. Then

IA =
∑
i

IA∩Bl
.

Lemma 2.1.6. Let F be the distribution function of X. Then



(a) P(X > x) = 1− F (x);

(b) P(x < X ≤ y) = F (y)− F (x);

(c) P(X = x) = F (x)− lim
y↑x

F (y).

Proof. (a) and (b) are exercises. (c) Let Bn = {x− 1
n < X ≤ x} and use the proof of Lemma 2.1.4.

Exercise 5. A random variable X has distribution function F . What is the distribution function

of Y = aX + b, where a and b are real constants?

2.2 Almost sureness and convergence of random variables

Definition 2.2.1. Let (Ω,A) be a measurable space, and µ be a measure on this space. We say

that A ∈ A occurs µ-almost everywhere if µ(Ac) = 0.

Remark 2.2.2. We often abbreviate to µ-a.e. or even just a.e. when there is no confusion about

which measure we are referring to.

Example 2.2.3. Let f : R → R such that f(0) = 1 and f(x) = 0 for all x 6= 0, and let µ be the

Lebesgue measure. Then µ({x ∈ R : f(x) = 0}) = 0, namely f = 0 a.e., even though f(0) = 1.

Definition 2.2.4. Let (Ω,F ,P) be a probability space. Then we say that E ∈ F occurs P-almost

surely if P(Ec) = 0, or equivalently if P(E) = 1.

Remark 2.2.5. We often abbreviate to P-a.s. or even just a.s. when there is no confusion about

which probability measure we are referring to.

Example 2.2.6. For a random variable X and A ∈ F on a probability space (Ω,F ,P), we say

that X ∈ A a.s. if P({ω ∈ Ω : X(ω) ∈ E}) = 1. This is often abbreviated as P(X ∈ A).

Definition 2.2.7. Let (Xn)n∈N be a sequence of random variables with distribution functions (Fn)n∈N,

and X be a random variable with distribution functions F .

• We say that Xn converges to X almost surely if P
(

lim
n↑∞

Xn = X

)
= 1.

• We say that Xn converges to X in distribution if Fn(x) converges to F (x) for each x ∈ R

where F is continuous.

• We say that Xn converges to X in probability if, for all ε > 0, P(|Xn−X| > ε) tends to zero.

• For p ≥ 1, we say that Xn converges to X in Lp if E[|n −X|p] tends to zero.

Proposition 2.2.8. The following relations hold between the different notions of convergence.



• Convergence in probability implies convergence in distribution.

• Convergence in distribution implies convergence in probability if the limit is a constant.

• Convergence almost sure implies convergence in probability.

• Convergence in probability implies that there exists a subsequence such that convergence al-

most sure holds.

• For any p ≥ 1, convergence in Lp implies convergence in probability.

2.3 The law of averages

Theorem 2.3.1. The sequence {n−1Sn}n≥1 converges to p as n ↑ ∞ in the sense that

lim
n↑∞

P
(
p− ε < Sn

n
< p+ ε

)
= 1, for any ε > 0.

Proof. Suppose that we toss a coin repeatedly, and Head occurs on each toss with probability p.

The random variable Sn has the same probability distribution as the number Hn of Head which

occur during the first n tosses, which is to say that P(Sn = k) = P(Hn = k) for all k. It follows

that, for small positive values of ε,

P
(
Sn
n
≥ p+ ε

)
=

∑
k≥n(p+ε)

P(Hn = k).

We also have

P (Hn = k) =

 n

k

 pk(1− p)n−k for 0 ≤ k ≤ n,

and hence

P
(
Sn
n
≥ p+ ε

)
=

∞∑
k=m

 n

k

 pk(1− p)n−k

where m = bn(p + ε)c. The following argument is standard in probability theory. Let λ > 0 and

note that eλk ≥ eλn(p+ε) if k ≥ m. Writing q = 1− p, we have

P
(
Sn
n
≥ p+ ε

)
≤

n∑
k=m

eλ[k−n(p+ε)]

(
n

k

)
pkqn−k

≤ e−λnε
n∑
k=0

(
n

k

)(
peλq

)k (
qe−λp

)n−k
= e−λnε

(
pehq + qe−λp

)n
,

by the binomial theorem. Since ex ≤ x+ ex
2

for x ∈ R, we obtain

P
(
Sn
n
≥ p+ ε

)
≤ e−λnε

[
peλ

2q2 + qeλ
2p2
]n



≤ eλ
2n−λnε.

We can pick λ to minimize the right-hand side, namely λ = 1
2ε, giving

P
(
Sn
n
≥ p+ ε

)
≤ e−

1
4nε

2

for ε > 0,

an inequality that is known as Bernstein’s inequality. It follows immediately that P
(
Sn

n ≥ p+ ε
)

tends to zero as n ↑ ∞. An exactly analogous argument shows that P
(
n−1Sn ≤ p− ε

)
tends to

zero as n ↑ ∞, and thus the theorem is proved.

Exercise 6. You wish to ask each of a large number of people a question to which the answer

”yes” is embarrassing. The following procedure is proposed in order to determine the embarrassed

fraction of the population. As the question is asked, a coin is tossed out of sight of the questioner.

If the answer would have been ”no” and the coin shows Head, then the answer ”yes” is given.

Otherwise people respond truthfully. What do you think of this procedure?

2.4 Discrete and continuous variables

Definition 2.4.1. The random variable X is called discrete if it takes values in some countable

subset {x1, x2, . . .}, only, of R. The discrete random variable X has (probability) mass function

f : R→ [0, 1] given by f(x) = P(X = x).

Definition 2.4.2. The random variable X is called continuous if its distribution function can

be expressed as

F (x) =

∫ x

−∞
f(u)du, x ∈ R,

for some integrable function f : R→ [0,∞) called the (probability) density function of X.

Example 2.4.3. The variables X and W of Example 2.1.3 take values in the sets {0, 1, 2} and

{0, 4} respectively; they are both discrete.

Exercise 7. Let X be a random variable and let g : R→ R be continuous and strictly increasing.

Show that Y = g(X) is a random variable.

2.5 Random vectors

Example 2.5.1 (Coin tossing). Suppose that we toss a coin n times, and set Xi equal to 0

or 1 depending on whether the ith toss results in Tail or Head. We think of the vector X =

(X1, X2, . . . , Xn) as describing the result of this composite experiment. The total number of Head

is the sum of the entries in X.



Definition 2.5.2. The joint distribution function of a random vector X = (X1, X2, . . . , Xn)

on the probability space (Ω,F ,P) is the function FX : Rn → [0, 1] given by FX(x) = P(X ≤ x) for

x ∈ Rn.

Lemma 2.5.3. The joint distribution function FX,Y of the random vector (X,Y ) has the following

properties:

(a) limx,y↓−∞ FX,Y (x, y) = 0, limx,y↑∞ FX,Y (x, y) = 1,

(b) if (x1, y1) ≤ (x2, y2) then FX,Y (x1, y1) ≤ FX,Y (x2, y2),

(c) FX,Y is continuous from above, in that

FX,Y (x+ u, y + v)→ FX,Y (x, y) as u, v ↓ 0.

Example 2.5.4. A schoolteacher asks each member of his or her class to flip a fair coin twice and

to record the outcomes. The diligent pupil D does this and records a pair (XD, YD) of outcomes.

The lazy pupil L flips the coin only once and writes down the result twice, recording thus a pair

(XL, YL) where XL = YL . Clearly XD, YD, XL, and YL are random variables with the same

distribution functions. However, the pairs (XD, YD) and (XL, YL) have different joint distribution

functions. In particular, P(XD = YD = Head) = 1
4 since only one of the four possible pairs of

outcomes contains Head only, whereas P(XL = YL = Head) = 1
2 .

Definition 2.5.5. The random variables X and Y on the probability space (Ω,F ,P) are called

(jointly) discrete if the vector (X,Y ) takes values in some countable subset of R2 only. The

jointly discrete random variables X,Y have joint (probability) mass function f : R2 → [0, 1]

given by f(x, y) = P(X = x, Y = y).

Definition 2.5.6. The random variables X and Y on the probability space (Ω,F ,P) are called

(jointly) continuous if their joint distribution function can be expressed as

FX,Y (x, y) =

∫ x

u=−∞

∫ y

v=−∞
f(u, v)dudv x, y ∈ R,

for some integrable function f : R2 → [0,∞) called the joint (probability) density function of

the pair (X,Y ).

Example 2.5.7 (Three-sided coin). We are provided with a special three-sided coin, each toss of

which results in one of the possibilities H (Head), T (Tail), E (Edge), each having probability

1
3 . Let Hn, Tn, and En be the numbers of such outcomes in n tosses of the coin. The vector

(Hn, Tn, En) is a vector of random variables satisfying Hn + Tn + En = n. If the outcomes of

different tosses have no influence on each other, it is not difficult to see that

P ((Hn, Tn, En) = (h, t, e)) =
n!

h!t!e!

(
1

3

)n



for any triple (h, t, e) of non-negative integers with sum n . The random variables Hn, Tn, En are

(jointly) discrete and are said to have (jointly) the trinomial distribution.

Exercise 8. A fair coin is tossed twice. Let X be the number of Head, and let W be the indicator

function of the event {X = 2}. Find P(X = x,W = w) for all appropriate values of x and w.



Chapter 3

Discrete random variables

3.1 Probability mass functions

Definition 3.1.1. The (probability) mass function of a discrete random variable X is the

function f : R→ [0, 1] given by f(x) = P(X = x).

Lemma 3.1.2. The probability mass function f : R→ [0, 1] satisfies:

(a) the set X such that f(x) 6= 0 is countable,

(b)
∑
i f(xi) = 1, where x1, x2, . . . are the values of X such that f(x) 6= 0.

Example 3.1.3 (Poisson distribution). If a random variable X takes values in the set {0, 1, 2, . . .}

with mass function

f(k) =
λk

k!
e−λ, k = 0, 1, 2, . . . ,

where λ > 0, then X is said to have the Poisson distribution with parameter λ.

Exercise 9. We toss n coins, and each one shows Head with probability p, independently of each

of the others. Each coin which shows Head is tossed again. What is the mass function of the

number of Head resulting from the second round of tosses?

3.2 Independence

Definition 3.2.1. Two discrete variables X and Y are independent if the events {X = x} and

{Y = y} are independent for all x and y.

Example 3.2.2 (Poisson flips). A coin is tossed once and Head turns up with probability p = 1−q.

Let X and Y be the numbers of Head and Tail respectively. It is no surprise that X and Y are

not independent. After all,

P(X = Y = 1) = 0, P(X = 1)P(Y = 1) = p(1− p)

16



Suppose now that the coin is tossed a random number N of times, where N has the Poisson

distribution with parameter λ. It is a remarkable fact that the resulting numbers X and Y of Head

and Tail are independent, since

P(X = x, Y = y) = P(X = x, Y = y | N = x+ y)P(N = x+ y)

=

(
x+ y

x

)
pxqy

λx+y

(x+ y)!
e−λ =

(λp)x(λp)y

x!y!
e−λ.

However, by Lemma (1.4.4),

P(X = x) =
∑
n≥x

P(X = x | N = n)P(N = n)

=
∑
n≥x

(
n

x

)
pxqn−x

λn

n!
e−λ =

(λp)x

x!
e−λp;

a similar result holds for Y , and so

P(X = x, Y = y) = P(X = x)P(Y = y)

Theorem 3.2.3. If X and Y are independent and g, h : R → R, then g(X) and h(Y ) are also

independent.

Exercise 10. Let X and Y be independent random variables, each taking the values −1 or 1

with probability 1
2 and let Z = XY . Show that X,Y, and Z are pairwise independent. Are they

independent?

3.3 Expectation

Definition 3.3.1. The mean value, or expectation, or expected value of the random vari-

able X with mass function f is defined as

E[X] =
∑

x:f(x)>0

xf(x)

whenever this sum is absolutely convergent.

Example 3.3.2. The random variables X and W of Example 2.1.3 have mean values 1.

Lemma 3.3.3. If X has mass function f and g : R→ R, then

E[g(X)] =
∑
x

g(x)f(x)

whenever this sum is absolutely convergent.

Example 3.3.4. Suppose that X takes values −2,−1, 1, 3 with probabilities 1
4 ,

1
8 ,

1
4 ,

3
8 respectively.

The random variables Y = X2 takes values 1, 4, 9 with probabilities 3
8 ,

1
4 ,

3
8 respectively and so

E[Y ] = 1 · 3

8
+ 4 · 1

4
+ 9 · 3

8
=

19

4
.



Definition 3.3.5. If k is a positive integer, the kth moment mk of X is defined as mk = E[Xk].

the kth central moment σk is σk = E[(X −m1)k].

Example 3.3.6 (Binomial variables). Let X be bin(n, p). Then

E[X] =

n∑
k=0

kf(k) =

n∑
k=0

k

(
n

k

)
pkqn−k.

To calculate this, differentiate the identity

n∑
k=0

(
n

k

)
xk = (1 + x)n,

multiply by X to obtain
n∑
k=0

k

(
n

k

)
xk = nx(1 + x)n−1,

and substitute x = p/q to obtain E[X] = np. A similar argument shows that the variance of X is

given by V[X] = npq.

Theorem 3.3.7. The expectation operator E has the following properties:

(a) if X ≥ 0 then E[X] ≥ 0;

(b) if a, b ∈ R then E[aX + bY ] = aE[X] + bE[Y ];

(c) the random variable 1, taking the value 1 almost surely, has expectation E[1] = 1.

Proof. (a) and (c) are obvious. (b) Let Ax = {X = x ), By = {Y = y}. Then

aX + bY =
∑
x,y

(ax+ by)IAx
∩By

and hence

E[aX + bY ] =
∑
x,y

(ax+ by)P (Ax ∩By) .

However, ∑
y

P (Ax ∩By) = P

(
Ax ∩

(⋃
y

By

))
= P (Ax ∩ Ω) = P (Ax) ,

and similarly
∑
x P (Ax ∩By) = P (By), which gives

E[aX + bY ] =
∑
x

ax
∑
y

P (Ax ∩By) +
∑
y

by
∑
x

P (Ax ∩By)

= a
∑
x

xP (Ax) + b
∑
y

yP (By)

= aE[X] + bE[Y ].

Lemma 3.3.8. If X and Y are independent then E[XY ] = E[X]E[Y ].



Proof. Let Ax and By be as in the proof of Theorem 3.3.7. Then

XY =
∑
x,y

xyIAx ∩By,

and therefore, by independence

E[XY ] =
∑
x,y

xyP(Ax)P(By) =
∑
x

xP(Ax)
∑
y

yP(By) = E[X]E[Y ].

Definition 3.3.9. X and Y are called uncorrelated if E[XY ] = E[X]E[Y ].

Theorem 3.3.10. Given two random variables X and Y ,

(a) V[aX] = a2V[X] for any a ∈ R;

(b) V(X + Y ) = V[X] + V[Y ] if X and Y are uncorrelated.

Proof. (a) Using the linearity of E,

V[aX] = E
[
(aX − E[aX])2

]
= E

[
a2(X − E[X])2

]
= a2E

[
(X − E[X])2

]
= a2V[X].

(b) We have when X and Y are uncorrelated that

V[X + Y ] = E
[
(X + Y − E[X + Y ])2

]
= E

[(
X − E[X]

)2

+ 2
(
XY − E[X]E[Y ]

)
+
(
Y − E[Y ]

)2
]

= V[X] + 2
(
E[XY ]− E[X]E[Y ]

)
+ V[Y ]

= V[X] + V[Y ].

Example 3.3.11 (Wagers). Historically, there has been confusion amongst probabilists between

the price that an individual may be willing to pay in order to play a game, and her expected return

from this game. For example, I conceal £2 in one hand and nothing in the other, and then invite

a friend to pay a fee which entitles her to choose a hand at random and keep the contents. Other

things being equal (my friend is neither a compulsive gambler, nor particularly busy), it would

seem that £1 would be a fair fee to ask, since £1 is the expected return to the player. That is

to say, faced with a modest (but random) gain, then a fair entrance fee would seem to be the

expected value of the gain. However, suppose that I conceal £210 in one hand and nothing in the

other; what now is a fair fee? Few persons of modest means can be expected to offer £29 for

the privilege of playing. There is confusion here between fairness and reasonableness: we do not

generally treat large payoffs or penalties in the same way as small ones, even though the relative

odds may be unquestionable. The customary resolution of this paradox is to introduce the notion



of utility . Writing u(x) for the utility to an individual of £x, it would be fairer to charge a fee

of 1
2 (u(0) + u(210)) for the above prospect. Of course, different individuals have different utility

functions, although such functions have presumably various features in common: u(0) = 0, u is

non-decreasing, u(x) is near to X for small positive X, and u is concave, so that in particular

u(x) ≤ xu(1) when x ≥ 1.

The use of expectation to assess a fair fee may be convenient but is sometimes inappropriate.

For example, a more suitable criterion in the finance market would be absence of arbitrage. And,

in a rather general model of financial markets, there is a criterion commonly expressed as no free

lunch with vanishing risk.

Exercise 11 (Arbitrage). Suppose you find a warm-hearted bookmaker offering payoff odds of

π(k) against the kth horse in an n-horse race where
∑n
k=1{π(k) + 1}−1 < 1. Show that you can

distribute your bets in such a way as to ensure you win.

3.4 Indicators and matching

Example 3.4.1 (The probabilistic method). Probability may be used to derive non-trivial results

not involving probability. Here is an example. There are 17 fenceposts around the perimeter of a

field, exactly 5 of which are rotten. Show that, irrespective of which these 5 are, there necessarily

exists a run of 7 consecutive posts at least 3 of which are rotten.

Our solution involves probability. We label the posts 1, 2, . . . , 17, and let Ik be the indicator

function that post k is rotten. Let Rk be the number of rotten posts amongst those labelled

k + 1, k + 2, . . . , k + 7, all taken modulo 17. We now pick a random post labelled K, each being

equally likely. We have that

E[RK ] =

17∑
k=1

1

17
(Ik+1 + Ik+2 + · · ·+ Ik+7) =

17∑
j=1

7

17
Ij =

7

17
· 5.

Now 35
17 > 2, implying that P (RK > 2) > 0. since RK is integer valued, it must be the case that

P (RK ≥ 3) > 0, implying that Rk ≥ 3 for some k.

Exercise 12. A biased coin is tossed n times, and Head shows with probability p on each toss . A

run is a sequence of throws which result in the same outcome, so that, for example, the sequence

HHTHTTH contains five runs. Show that the expected number of runs is 1 + 2(n − 1)p(1 − p).

Find the variance of the number of runs.



3.5 Poisson distribution

Example 3.5.1 (Poisson distribution). A Poisson variable is a random variable with the Poisson

mass function

f(k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

for some λ > 0. It can be obtained in practice in the following way. Let Y be a Binomial B(n, p)

variable, and suppose that n is very large and p is very small (an example might be the number Y

of misprints on the front page of the Grauniad, where n is the total number of characters and p

is the probability for each character that the typesetter has made an error). Now, let n ↑ ∞ and

p ↓ 0 in such a way that E[Y ] = np approaches a non-zero constant λ. Then, for k = 0, 1, 2, . . . ,

P(Y = k) =

(
n

k

)
pk(1− p)n−k ∼ 1

k!

(
np

1− p

)k
(1− p)n → λk

k!
e−λ.

Check that both the mean and the variance of this distribution are equal to λ.

Exercise 13. In your pocket is a random number N of coins, where N has the Poisson distribution

with parameter λ. You toss each coin once, with Head showing with probability p each time. Show

that the total number of Head has the Poisson distribution with parameter λp.

3.6 Dependence

Example 3.6.1. Suppose that we back three horses to win as an accumulator. If our stake is £1

and the starting prices are α, β, and γ, then our total profit is

W = (α+ 1)(β + 1)(γ + 1)IiI2I3 − 1,

where Ii denotes the indicator of a win in the ith race by our horse. (In checking this expression

remember that a bet of £B on a horse with starting price a brings a return of £B(α+ 1), should

this horse win.) We lose £1 if some backed horse fails to win. It seems clear that the random

variables W and I1 are not independent. If the races are run independently, then

P(W = −1) = P(I1I2I3 = 0),

but

P(W = −1|I1 = 1) = P(I2I3 = 0)

which are different from each other unless the first backed horse is guaranteed victory.

Definition 3.6.2. The joint distribution function F : R2 → [0, 1] of X and Y , where X and Y

are discrete variables, is given by

F (x, y) = P(X ≤ x and Y ≤ y).



Their joint mass function f : R2 → [0, 1] is given by

f(x, y) = P(X = x and Y = y).

Lemma 3.6.3. The discrete random variables X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y), for all x, y ∈ R. (3.6.1)

More generally, X and Y are independent if and only if fX,Y (x, y) can be factorised as the product

g(x)h(y) of a function of X alone and a function of Y alone.

Example 3.6.4. Let X,Y be random variables with a joint mass function

f(x, y) =
αxβy

x!y!
e−α−β for x, y = 0, 1, 2, . . . ,

where α, β > 0. The marginal mass function of X is

fX(x) =
∑
y

f(x, y) =
αx

x!
e−α

∞∑
y=0

βy

y!
e−β =

αx

x!
e−α,

and so X has the Poisson distribution with parameter α. Similarly Y has the Poisson distribution

with parameter β. It is easy to check that (3.6.1) holds, whence X and Y are independent.

Lemma 3.6.5. E[g(X,Y )] =
∑
x,y

g(x, y)fX,Y (x, y).

Definition 3.6.6. The covariance of X and Y is

Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])] .

The correlation (coefficient) of X and Y is

ρ[X,Y ] =
Cov[X,Y ]√
V[X]V[Y ]

,

as long as the variances are non-zero.

Theorem 3.6.7 (Cauchy-Schwarz inequality). For random variables X and Y ,

{E[X,Y ]}2 ≤ E[X2]E[Y 2],

with equality if and only if P(aX = bY ) = 1 for some real a and b, at least one of which is non-zero.

Proof. We can assume that E[X2] and E[Y 2] are strictly positive. For a, b ∈ R and Z = aX + bY ,

0 ≤ E[Z2] = a2E[X2]− 2abE[XY ] + b2E[Y 2].

Thus the right-hand side is a quadratic in the variable a with at most one real root. Its discriminant

must be non-positive. That is to say, if b 6= 0,

E[XY ]2 − E[X2]E[Y 2] ≤ 0.



This discriminant is zero if and only if the quadratic has a real root. This occurs if and only if

E
[
(aX − bY )2

]
= 0, for some a and b.

Lemma 3.6.8. The correlation coefficient ρ satisfies |ρ[X,Y ]| ≤ 1 with equality if and only if

P(aX + bY = c) = 1 for some a, b, c ∈ R.

Proof. Apply Theorem 3.6.7 to the variables X − E[X] and Y − E[Y ].

Example 3.6.9. Let X and Y take values in {1,2,3} and {-1,0,2} respectively, with joint mass

function f where f(x, y) is the appropriate entry in the following table of the joint mass function

of the random variables X and Y .

y = −1 y = 0 y = 2 fX

x = 1 1
18

3
18

2
18

6
18

x = 2 2
18 0 3

18
5
18

x = 3 0 4
18

3
18

7
18

fY
3
18

7
18

8
18

The row and column sums are the marginal mass functions fX and fY . A quick calculation gives

E[XY ] =
∑
x,y

xyf(x, y) = 29/18,

E[X] =
∑
x

xfX(x) = 37/18, E[Y ] = 13/18,

V[X] = E
[
X2
]
− E[X]2 = 233/324, V[Y ] = 461/324,

Cov[X,Y ] = 41/324, ρ(X,Y ) = 41/
√

107413.

Exercise 14. Let X and Y be discrete random variables with mean 0, variance 1 and covariance ρ.

Show that E
[
max{X2, Y 2}

]
≤ 1 +

√
1− ρ2.

3.7 Conditional distributions and conditional expectation

Definition 3.7.1. The conditional distribution function of Y given X = x, written FY |X(·|x),

is defined by

FY |X(y|x) = P(Y ≤ y|X ≤ x),

for any such X such that P(X = x) > 0. The conditional (probability) mass function of Y

given X = x, written fY |X(·|x), is defined by

fY |X(y|x) = P(Y = y|X = x),

for any such X such that P(X = x) > 0.



Definition 3.7.2. Let ψ(x) = E[Y |X = x]. Then ψ(X) is called the conditional expectation

of Y given X, written as E[Y |X].

Theorem 3.7.3. The conditional expectation ψ(X) = E[Y |X] satisfies

E[ψ(X)] = E[Y ].

Proof.

E[ψ(X)] =
∑
x

ψ(x)fX(x) =
∑
x,y

yfY |X(y | x)fX(x)

=
∑
x,y

yfX,Y (x, y) =
∑
y

yfY (y) = E[Y ].

Example 3.7.4. A hen lays N eggs, where N has the Poisson distribution with parameter λ. Each

egg hatches with probability p(= 1− q) independently of the other eggs. Let K be the number of

chicks. Find E[K | N ], E[K] and E[N | K].

Solution. We are given that

fN (n) =
λn

n!
e−λ, fK|N (k | n) =

 n

k

 pk(1− p)n−k.

Therefore

ψ(n) = E[K | N = n] =
∑
k

kfK|N (k | n) = pn.

Thus E[K | N ] = ψ(N) = pN and

E[K] = E[ψ(N)] = pE[N ] = pλ.

To find E[N | K] we need to know the conditional mass function fN |K of N given K. However,

fN |K(n | k) = P(N = n | K = k)

=
P(K = k | N = n)P(N = n)

P(K = k)

=

(
n
k

)
pk(1− p)n−k (λn/n!) e−λ∑

m≥k
(
m
k

)
pk(1− p)m−k (λm/m!) e−λ

, if n ≥ k

=
(qλ)n−k

(n− k)!
e−qλ.

Hence

E[N | K = k] =
∑
n≥k

n
(qλ)n−k

(n− k)!
e−qλ = k + qλ,

giving E[N | K] = K + qλ.

Theorem 3.7.5. The conditional expectation ψ(X) = E[Y |X] satisfies

E[ψ(X)g(X)] = E[Y g(X)], (3.7.1)

for any function g for which both expectations exist.



Proof. As in the proof of Theorem 3.7.3,

E[ψ(X)g(X)] =
∑
x

ψ(x)g(x)fX(x) =
∑
x,y

yg(x)fY |X(y | x)fX(x)

=
∑
x,y

yg(x)fX,Y (x, y) = E[(Y g(X)].

Exercise 15. Let X1, X2, . . . be identically distributed random variables with mean µ, and let N

be a random variable taking values in the non-negative integers and independent of the Xi. Let

S = X1 +X2 + . . .+XN . Show that E[S|N ] = µN , and deduce that E[S] = µE[N ].

3.8 Sums of random variables

Theorem 3.8.1. We have that P(X + Y = z) =
∑
x f(x, z − x).

Proof. The union

{X + Y = z} =
⋃
x

({X = x} ∩ {Y = z − x})

is disjoint, and at most countably many of its contributions have non-zero probability. Therefore

P(X + Y = z) =
∑
x

P(X = x, Y = z − x) =
∑
x

f(x, z − x).

Example 3.8.2. Let X1 and X2 be independent geometric variables with common mass function

f(k) = p(1− p)k−1, k = 1, 2, . . .

Then Z = X1 +X2 has mass function

P(Z = z) =
∑
k

P(X1 = k)P(X2 = z − k)

=

z−1∑
k=1

p(1− p)k−1p(1− p)z−k−1

= (z − 1)p2(1− p)z−2, z = 2, 3, . . . .

Exercise 16. Let X and Y be independent variables, X being equally likely to take any value in

{0, 1, . . . ,m}, and Y similarly in {0, 1, . . . , n}. Find the mass function of Z = X+Y . The random

variable Z is said to have the trapezoidal distribution.



3.9 Simple random walk

Lemma 3.9.1. The simple random walk is spatially homogeneous; that is

P(Sn = j|S0 = a) = P(Sn = j + b|S0 = a+ b).

Proof. Both sides equal P(
∑n

1 Xi = j − a).

Lemma 3.9.2. The simple random walk is temporally homogeneous; that is

P(Sn = j|S0 = a) = P(Sm+n = j|Sm = a).

Proof.

P(Sn = j|S0 = a) = P

(
n∑
1

Xi = j − a

)
= P

(
m+n∑
m+1

Xi = j − a

)
= P(Sm+n = j|Sm = a).

Lemma 3.9.3. The simple random walk has the Markov property; that is

P(Sm+n = j|S0, S1, . . . , Sm) = P(Sm+n = j|Sm), n ≥ 0.

Proof. If one knows the value of Sm , then the distribution of Sm+n depends only on the jumps

Xm+1, · · · , Xm+n, and cannot depend on further information concerning the values of S0, Sj , . . . , Sm−1.

Example 3.9.4 (Gambler’s ruin). A man is saving up to buy a new Jaguar at a cost of N units of

money. He starts with k units where 0 < k < N , and tries to win the remainder by the following

gamble with his bank manager. He tosses a fair coin repeatedly; if Head comes up then the manager

pays him one unit, but if Tail comes up, then he pays the manager one unit. He plays this game

repeatedly until one of two events occurs : either he runs out of money and is bankrupted or he

wins enough to buy the Jaguar. What is the probability that he is ultimately bankrupted?

Solution Let A denote the event that he is eventually bankrupted, and let B be the event that

the first toss of the coin shows Head.

Pk(A) = Pk(A|B)P(B) + Pk(A|Bc)P(Bc),

where Pk denotes the probabilities relative to the starting point k. If the first toss is Head then

his capital increases to k+ 1 units and the game starts afresh from a different starting point. Thus

Pk(A|B) = Pk+1(A) and similarly Pk(A|Bc) = Pk−1(A). So, with pk = Pk(A), we obtain

pk =
1

2
(pk+1 + pk−1) if 0 < k < N,

which is a linear difference equation subject to the boundary conditions p0 = 1, pN = 0.

Exercise 17. Let T be the time which elapses before a simple random walk is absorbed at either of

the absorbing barriers at 0 and N , having started at k where 0 ≤ k ≤ N . Show that P(T <∞) = 1

and E[T k] <∞ for all k ≥ 1.



3.10 Random walk: counting sample paths

Theorem 3.10.1 (The reflection principle). Let Nn(a, b) be the number of possible paths from

(0, a) to (n, b), and N0
n(a, b) be the number of such paths which contains some point (k, 0) on the

x-axis. If a, b > 0 then N0
n(a, b) = Nn(−a, b).

Proof. Each path from (0,−a) to (n, b) intersects the X-axis at some earliest point (k, 0). Reflect

the segment of the path with 0 ≤ x ≤ k in the X-axis to obtain a path joining (0, a) to (n, b) which

intersects the X-axis. This operation gives a one-one correspondence between the collections of

such paths, and the theorem is proved.

Lemma 3.10.2. Nn(a, b) =
(

n
1
2 (n+b−a)

)
.

Proof. Choose a path from (0, a) to (n, b) and let α and β be the numbers of positive and negative

steps, respectively, of this path. Then α+ β = n and α− β = b− a, so that α = 1
2 (n+ b− a). The

number of such paths is the number of ways of picking α positive steps from the n available:

Nn(a, b) =

(
n

α

)
=

(
n

1
2 (n+ b− a)

)
.

Corollary 3.10.3 (Ballot theorem). If b > 0 then the number of paths from (0, 0) to (n, b) which

do not revisit the x-axis equals (b/n)Nn(0, b).

Proof. The first step of all such paths is to (1, 1), and so the number of such path is

Nn−1(1, b)−N0
n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

by the reflection principle. We now use Lem. 3.10.2 and an elementary calculation to obtain the

required result.

Theorem 3.10.4. If S0 = 0 then, for n ≥ 1,

P(S1S2 · · ·Sn 6= 0, Sn = b) =
|b|
n
P(Sn = b), (3.10.1)

and therefore

P(S1S2 · · ·Sn 6= 0) =
1

n
E|Sn|. (3.10.2)

Proof. Suppose that S0 = 0 and Sn = b(> 0). The event in question occurs if and only if the

path of the random walk does not visit the X -axis in the time interval [1, n]. The number of such

paths is, by the ballot theorem, (b/n)Nn(0, b), and each such path has 1
2 (n + b) rightward steps

and 1
2 (n− b) leftward steps. Therefore

P(S1S2 · · ·Sn 6= 0, Sn = b) =
b

n
Nn(0, b)p

1
2 (n+b)q

1
2 (n−b) =

b

n
P(Sn = b)

as required. A similar calculation is valid if b < 0.



Theorem 3.10.5. Let Mn = max{Si : 0 ≤ i ≤ n}. Suppose that S0 = 0. Then, for r ≥ 1,

P (Mn ≥ r, Sn = b) =

 P (Sn = b) , if b ≥ r,

(q/p)r−bP (Sn = 2r − b) , if b < r.

It follows that, for r ≥ 1,

P (Mn ≥ r) = P (Sn ≥ r)+
r−1∑
b=−∞

(
q

p

)r−b
P (Sn = 2r − b) = P (Sn = r)+

∞∑
c=r+1

[
1 +

(
q

p

)c−r]
P (Sn = c) ,

yielding in the symmetric case when p = q = 1
2 that

P (Mn ≥ r) = 2P (Sn ≥ r + 1) + P (Sn = r) ,

which is easily expressed in terms of the binomial distribution.

Proof. We may assume that r ≥ 1 and b < r. Let Nr
n(0, b) be the number of paths from (0,0) to

(n, b) which include some point having height r, which is to say some point (i, r) with 0 < i < n;

for such a path π, let (iπ, r) be the earliest such point. We may reflect the segment of the path

with iπ ≤ x ≤ n in the line y = r to obtain a path π′ joining (0,0) to (n, 2r− b). Any such path π′

is obtained thus from a unique path π, and therefore Nr
n(0, b) = Nn(0, 2r− b). It thus follows that

P (Mn ≥ r, Sn = b) = Nr
n(0, b)p

1
2 (n+b)q

1
2 (n−b)

=

(
q

p

)r−b
Nn(0, 2r − b)p 1

2 (n+2r−b)q
1
2 (n−2r+b)

=

(
q

p

)r−b
P (Sn = 2r − b) .

Theorem 3.10.6. If p = 1
2 and S0 = 0, for any b 6= 0 the mean number µb of visits of the walk to

the point b before returning to the origin equals 1.

Proof. Let fb = P(Sn = b for some n ≥ 0). We have, by conditioning on the value of S1, that

fb = 1
2 (fb+1 + fb−1) for b > 0, with boundary condition f0 = 1. The solution of this difference

equation is fb = Ab+B of constants A and B. The unique such solution lying in [0, 1] with f0 = 1

is given by fb = 1 for all b ≥ 0. By symmetry, fb = 1 for b ≤ 0. However, fb = µb for b 6= 0, and

the claim follows.

Theorem 3.10.7 (Arc sine law for last visit to the origin). Suppose that p = 1
2 and S0 = 0. The

probability that the last visit to 0 up to time 2n occurred at time 2k is P(S2k = 0)P(S2n−2k = 0).



Proof. The probability in question is

α2n(2k) = P (S2k = 0)P (S2k+1S2k+2 · · ·S2n 6= 0 | S2k = 0)

= P (S2k = 0)P (S1S2 · · ·S2n−2k 6= 0)

Now, setting m = n− k, we have by (3.10.1) that

P (S1S2 · · ·S2m 6= 0) = 2

m∑
k=1

2k

2m
P (S2m = 2k) = 2

m∑
k=1

2k

2m

(
2m

m+ k

)(
1

2

)2m

= 2

(
1

2

)2m m∑
k=1

[(
2m− 1

m+ k − 1

)
−
(

2m− 1

m+ k

)]

= 2

(
1

2

)2m(
2m− 1

m

)
=

(
2m

m

)(
1

2

)2m

= P (S2m = 0) .

(3.10.3)

Theorem 3.10.8 (Arc sine law for sojourn times). Suppose that p = 1
2 and S0 = 0. The probability

that the walk spends exactly 2k intervals of time, up to time 2n, to the right of the origin equals

P(S2k = 0)P(S2n−2k = 0).

Proof. Let β2n(2k) be the probability in question, and write µ2m = P(S2m = 0) as before. We are

claiming that, for all m ≥ 1,

β2n(2k) = µ2kµ2m−2k if 0 ≤ k ≤ m. (3.10.4)

First,

P (S1S2 · · ·S2m > 0) = P (S1 = 1, S2 ≥ 1, . . . , S2m ≥ 1) =
1

2
P (S1 ≥ 0, S2 ≥ 0, . . . , S2m−1 ≥ 0) ,

where the second line follows by considering the walk S1 − 1, S2 − 1, . . . , S2m − 1. Now S2m−1 is

an odd number, so that S2m−1 ≥ 0 implies that S2m ≥ 0 also. Thus

P (S1S2 · · ·S2m > 0) =
1

2
P (S1 ≥ 0, S2 ≥ 0, . . . , S2m ≥ 0)

yielding by (3.10.3) that

1

2
u2m = P (S1S2 · · ·S2m > 0) =

1

2
β2m(2m)

and (3.10.4) follows for k = m, and therefore for k = 0 also by symmetry. Let n be a positive

integer, and let T be the time of the first return of the walk to the origin. If S2n = 0 then T < 2n;

the probability mass function f2r = P(T = 2r) satisfies

P (S2n = 0) =

n∑
r=1

P (S2n = 0 | T = 2r)P (T = 2r) =

n∑
r=1

P (S2n−2r = 0)P(T = 2r)



which is to say that

u2n =

n∑
r=1

u2n−2rf2r (3.10.5)

Let 1 ≤ k ≤ n− 1, and consider β2n(2k). The corresponding event entails that T = 2r for some r

satisfying 1 ≤ r < n. The time interval (0, T ) is spent entirely either to the right or the left of the

origin, and each possibility has probability 1
2 . Therefore,

β2n(2k) =

k∑
r=1

1

2
P(T = 2r)β2n−2r(2k − 2r) +

n−k∑
r=1

1

2
P (T = 2r)β2n−2r(2k) (3.10.6)

We conclude the proof by using induction. Certainly (3.10.4) is valid for all k if m = 1. As-

sume (3.10.4) is valid for all k and all m < n. From (3.10.6)

β2n(2k) =
1

2

k∑
r=1

f2ru2k−2ru2n−2k +
1

2

n−k∑
r=1

f2ru2ku2n−2k−2r

=
1

2
u2n−2ku2k +

1

2
u2ku2n−2k = u2ku2n−2k

by (3.10.5), as required.

Exercise 18. For a symmetric simple random walk starting at 0, show that the probability that

the first visit to S2n takes place at time 2k equals the product P(S2k = 0)P(S2n−2k = 0), for

0 ≤ k ≤ n.



Chapter 4

Continuous random variables

4.1 Probability density functions

Definition 4.1.1. A random variable X is called continuous if its distribution function F (x) =

P(X ≤ x) can be written as

F (x) =

∫ x

−∞
f(u)du,

for some integrable f : R→ [0,∞). The function f is called the (probability) density function

of the continuous random variable X.

Lemma 4.1.2. If X has density function f then

(a)
∫∞
−∞ f(x)dx = 1,

(b) P(X = x) = 0 for all x ∈ R,

(c) P(a ≤ X ≤ b) =
∫ b
a
f(x)dx.

Example 4.1.3. A straight rod is flung down at random onto a horizontal plane and the angle ω

between the rod and true north is measured. The result is a number in Ω = [0, 2π) . The implicit

symmetry suggests the probability measure P which satisfies P((a, b)) = (b − a)/(2π); that is to

say, the probability that the angle lies in some interval is directly proportional to the length of the

interval. The random variable is X(ω) = ω and the distribution functions of X is

FX(x) =


0, x ≤ 0,

x/(2π), 0 ≤ x ≤ 2π,

1, x ≥ 2π,

and the density of X is

fX(x) =

(2π)−1, 0 ≤ x ≤ 2π,

0, otherwise.
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Exercise 19. Find the density function of Y = aX , where a > 0, in terms of the density function

of X. Show that the continuous random variables X and −X have the same distribution function

if and only if fX(x) = fX(−x) for all x ∈ R.

4.2 Independence

Definition 4.2.1. Random variables X and Y are called independent if

{X ≤ x} and {X ≤ x} are independent events for all x, y ∈ R.

Theorem 4.2.2. If X and Y are independent, then so are g(X) and h(Y ).

Proof. The key lies in the requirement of Def 2.1.1 that random variables be F-measurable, and

in the observation that g(X) is F-measurable if g : R → R is Borel measurable, which is to say

that g−1(B) ∈ B, the Borel σ-field, for all B ∈ B.

Exercise 20. I am selling my house, and have decided to accept the first offer exceeding £K.

Assuming that offers are independent random variables with common distribution function F , find

the expected number of offers received before I sell the house.

4.3 Expectation

Definition 4.3.1. The expectation of a continuous random variable X with density function f

is given by

E[X] =

∫ ∞
−∞

xf(x)dx,

whenever this integral exists.

Example 4.3.2. The random variable X of Example 4.1.3 has mean

E[X] =

∫ 2π

0

x

2π
dx = π.

Lemma 4.3.3. If X has density f with f(x) = 0 for x < 0 and distribution function F , then

E[X] =

∫ ∞
0

[1− F (x)]dx.

Proof. ∫ ∞
0

[1− F (x)]dx =

∫ ∞
0

P(X > x)dx =

∫ ∞
0

∫ ∞
y=x

f(y)dydx.

Now change the order of integration in the last term.

Theorem 4.3.4. If X and g(X) are continuous random variables then

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx.



Proof. We give a simple proof for the case when g takes only non-negative values, and we leave it

to the reader to extend this to the general case. By Lemma 4.3.3,

E[g(X)] =

∫ ∞
0

P(g(X) > x)dx =

∫ ∞
0

(∫
B

fX(y)dy

)
dx,

where B = {y : g(y) > x}. We interchange the order of integration here to obtain

E[g(X)] =

∫ ∞
0

∫ g(y)

0

dxfX(y)dy =

∫ ∞
0

g(y)fX(y)dy.

Example 4.3.5. If Y = X2, where X is the random variable of Example 4.1.3, we can apply

Lemma 4.3.3 to find E[Y ] without calculating fY , for

E[Y ] = E[X2] =

∫ 2π

0

x2fX(x)dx =

∫ 2π

0

x2

2π
dx =

4

3
π2.

Exercise 21. Let X1, X2, . . . , Xn be independent identically distributed random variables for

which E[X−1
1 ] exists. Show that, if m ≤ n, then E[Sm/Sn] = m/n, where Sm = X1+X2+. . .+Xm.

4.4 Normal distribution

Example 4.4.1 (Normal distribution). Arguably the most important continuous distribution is

the Normal (or Gaussian) distribution, which has two parameters µ and σ2 and density function

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, −∞ < x <∞. (4.4.1)

It is denoted by N (µ, σ2). If µ = 0 and σ2 = 1 then

f(x) =
1√
2π

e−
1
2x

2

, −∞ < x <∞, (4.4.2)

is the density of the standard Normal distribution. It is an exercise in analysis to show that f

satisfies Lemma 4.1.2(a), and is indeed therefore a density function.

The Normal distribution arises in many ways. In particular it can be obtained as a continuous

limit of the binomial distribution B(n, p) as n→∞ (this is the de Moivre-Laplace limit theorem).

This result is a special case of the central limit theorem to be discussed in Chapter 5; it transpires

that in many cases the sum of a large number of independent (or at least not too dependent)

random variables is approximately normally distributed. The binomial random variable has this

property because it is the sum of Bernoulli variables.

Let X be N (µ, σ2), where σ > 0, and let

Y =
X − µ
σ

. (4.4.3)

For the distribution of Y ,



P(Y ≤ y) = P((X − µ)/σ ≤ y) = P(X ≤ yσ + µ)

=
1

σ
√

2π

∫ yσ+µ

−∞
exp

(
− (x− µ)2

2σ2

)
dx

=
1√
2π

∫ y

−∞
e−

1
2 v

2

dv, by substituting x = vσ + µ.

Thus Y is N (0, 1). Routine integrations show that E[Y ] = 0,V[Y ] = 1 and it follows immediately

from (4.4.3) and Theorem 3.3.7, Theorem 3.3.10 that the mean and variance of the N
(
µ, σ2

)
distribution are µ and σ2 respectively, thus explaining the notation. Traditionally we denote the

density and distribution functions of Y by φ and Φ :

φ(v) =
1√
2π

e−
1
2v

2

, Φ(y) = P(Y ≤ y) =

∫ y

−∞
φ(v)dv.

Exercise 22 (Log-Normal distribution). Let Y = eX where X has the N (0, 1) distribution. Find

the density function of Y .

4.5 Dependence

Definition 4.5.1. The joint distribution function of X and Y is the function F : R2 → [0, 1]

given by

F (x, y) = P(X ≤ x, Y ≤ y).

Definition 4.5.2. The random varaibles X and Y are(jointly) continuous with joint (prob-

ability) density function f : R2 → [0,∞) if

F (x, y) =

∫ y

v=−∞

∫ x

u=−∞
f(u, v)dudv, for each x, y ∈ R.

Example 4.5.3 (Bivariate normal). Let f : R2 → R be given by

f(x, y) =
1

2π
√

1− ρ2
exp

(
− 1

2 (1− ρ2)

(
x2 − 2ρxy + y2

))
, (4.5.1)

where ρ ∈ (−1, 1). Check that f is a joint density function by verifying that

f(x, y) ≥ 0,

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy = 1.

It is called the standard bivariate Normal density function of some pair X and Y . Calculation of

its marginals shows that X and Y are N (0, 1) variables. Furthermore, the covariance.

Cov[X,Y ] = E[XY ]− E[X]E[Y ]

is given by

Cov[X,Y ] =

∫ ∞
−∞

∫ ∞
−∞

xyf(x, y)dxdy = ρ.



Remember that independent variables are uncorrelated, but the converse is not true in general. In

this case, however, if ρ = 0 then

f(x, y) =

(
1√
2π

e−
1
2x

2

)(
1√
2π

e−
1
2y

2

)
= fX(x)fY (y),

and so X and Y are independent. We reach the following important conclusion. Standard bivariate

Normal variables are independent if and only if they are uncorrelated. The general bivariate Normal

distribution is more complicated. We say that the pair X,Y has the bivariate Normal distribution

with means µ1 and µ2, variances σ2
1 and σ2

2 , and correlation ρ if their joint density function is

f(x, y) =
1

2πσ1σ2

√
1− ρ2

exp

[
−1

2
Q(x, y)

]
,

where σ1, σ2 > 0 and Q is the following quadratic form

Q(x, y) =
1

(1− ρ2)

[(
x− µ1

σ1

)2

− 2ρ

(
x− µ1

σ1

)(
y − µ2

σ2

)
+

(
y − µ2

σ2

)2
]
.

Routine integrations show that:

(a) X is N
(
µ1, σ

2
1

)
and Y is N

(
µ2, σ

2
2

)
;

(b) the correlation between X and Y is ρ;

(c) X and Y are independent if and only if ρ = 0.

Finally, here is a hint about calculating integrals associated with Normal density functions. It is

an analytical exercise to show that ∫
R

e−
1
2x

2

dx =
√

2π,

and hence that

f(x) =
1√
2π

e−
1
2x

2

is indeed a density function. Similarly, a change of variables in the integral shows that the more

general function

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

is itself a density function. This knowledge can often be used to shorten calculations. For example,

let X and Y have joint density function given by (4.5.1). By completing the square in the exponent

of the integrand, we see that

Cov[X,Y ] =

∫∫
R2

xyf(x, y)dxdy =

∫
R
y

1√
2π

e−
1
2y

2

(∫
R
xg(x, y)dx

)
dy,

where

g(x, y) =
1√

2π (1− ρ2)
exp

(
−1

2

(x− ρy)2

(1− ρ2)

)



is the density function of the N
(
ρy, 1− ρ2

)
distribution. Therefore

∫
xg(x, y)dx is the mean, ρy,

of this distribution, giving

Cov[X,Y ] = ρ

∫
R
y2 1√

2π
e−

1
2y

2

dy

However, the integral here is, in turn, the variance of the N (0, 1) distribution, and we deduce that

Cov[X,Y ] = ρ, as was asserted previously.

Theorem 4.5.4 (Cauchy-Schwarz). For any pair X,Y of jointly continuous variables,

E[XY ]2 ≤ E[X2]E[Y 2],

with equality if and only if P(aX = bY ) = 1 for some a, b ∈ R, at least one of which is non-zero.

Proof. Exactly as for Theorem 3.6.7.

Exercise 23. Let X and Y be independent random variables with finite variances, and let U =

X + Y and V = XY . Under what condition are U and V uncorrelated?

4.6 Conditional distributions and conditional expectation

Definition 4.6.1. The conditional distribution function of Y given X = x is the function

FY |X(·|x) given by

FY |X(y|x) =

∫ y

−∞

f(x, v)

fX(x)
dv,

for any x such that fX(x) > 0. It is sometimes denoted P(Y ≤ y|X = x).

Definition 4.6.2. The conditional density function of FY |X , written fY |X , is given by

fY |X(y|x) =
f(x, y)

fX(x)
,

for any x such that fX(x) > 0.

Example 4.6.3. Let X and Y have joint density function

fX,Y (x, y) =
1

x
, 0 ≤ y ≤ x ≤ 1.

Show that

fX(x) = 1 if 0 ≤ x ≤ 1, fY |X(y | x) =
1

x
if 0 ≤ y ≤ x ≤ 1,

which is to say that X is uniformly distributed on [0,1] and, conditional on the event {X = x},

Y is uniform on [0, x]. In order to calculate probabilities such as P
(
X2 + Y 2 ≤ 1 | X = x

)
say, we

proceed a s follows. If x > 0, define

A(x) =
{
y ∈ R : 0 ≤ y ≤ x, x2 + y2 ≤ 1

}
.



Clearly A(x) =
[
0,min

{
x,
√

1− x2
}]
. Also,

P
(
X2 + Y 2 ≤ 1 | X = x

)
=

∫
A(x)

fY |X(y | x)dy

=
1

x
min

{
x,
√

1− x2
}

= min
{

1,
√
x−2 − 1

}
.

Next, let us calculate P
(
X2 + Y 2 ≤ 1 ). Let A =

{
(x, y) : 0 ≤ y ≤ x ≤ 1, x2 + y2 ≤ 1

}
Then

P
(
X2 + Y 2 ≤ 1

)
=

∫∫
A

fX,Y (x, y)dxdy

=

∫ 1

x=0

fX(x)

∫
y∈A(x)

fY |X(y | x)dydx

=

∫ 1

0

min
{

1,
√
x−2 − 1

}
dx = log(1 +

√
2).

Theorem 4.6.4. The conditional expectation ψ(X) = E[Y |X] satisfies

E[ψ(X)] = E[Y ].

Proof. See proof of Theorem 3.7.3.

Example 4.6.5. Let X and Y have the standard bivariate Normal distribution of Example 4.5.3.

Then

fY |X(y | x) = fX,Y (x, y)/fX(x) =
1√

2π (1− ρ2)
exp

(
− (y − ρx)2

2 (1− ρ2)

)
is the density function of the N

(
ρx, 1− ρ2

)
distribution. Thus E[Y | X = x] = ρx, giving that

E[Y | X] = ρX.

Theorem 4.6.6. The conditional expectation ψ(X) = E[Y |X] satisfies

E[ψ(X)g(X)] = E[Y g(X)],

for any function g for which both expectations exists.

Exercise 24. Construct an example of two random variables X and Y for which E[Y ] = ∞ but

such that E[Y |X] <∞ almost surely.

4.7 Functions of random variables

Example 4.7.1. Let g(x) = ax+ b for fixed a, b ∈ R. Then Y = g(X) = aX + b has distribution

function

P(Y ≤ y) = P(aX + b ≤ y) =

 P(X ≤ (y − b)/a), if a > 0,

P(X ≥ (y − b)/a), if a < 0.

Differentiate to obtain fY (y) = |a|−1fX((y − b)/a).



Theorem 4.7.2. If g : R2 → R, and T maps the set A ⊆ D onto the set B ⊆ R then∫ ∫
A

g(x1, x2)dx1dx2 =

∫ ∫
B

g (x1(y1, y2), x2(y1, y2)) |J(y1, y2)|dy1dy2,

where J is the Jacobian of T−1.

Corollary 4.7.3. If X1, X2 have joint density f , then the pair Y1, Y2 given by (Y1, Y2) = T (X1, X2)

has joint density function

fY1,Y2
(y1, y2) =

f (x1(y1, y2), x2(y1, y2)) |J(y1, y2)|, if (y1, y2) is in the range of T ,

0, otherwise.

Proof. Let A ⊆ D,B ⊆ R be typical sets such that T (A) = B. Then (X1, X2) ∈ A if and only if

(Y1, Y2) ∈ B. Thus

P (Y1, Y2) ∈ B) = P (X1, X2) ∈ A) =

∫ ∫
A

f(x1, x2)dx1dx2

=

∫ ∫
B

f (x1(y1, y2), x2(y1, y2)) |J(y1, y2)|dy1dy2

by Theorem 4.7.2. Compare this with the definition of the joint density function of Y1 and Y2,

P (Y1, Y2) ∈ B) =

∫ ∫
B

fY1,Y2
(y1, y2)dy1dy2 for suitable sets B ⊆ R2,

to obtain the result.

Example 4.7.4. Suppose that

X1 = aY1 + bY2, X2 = cY1 + dY2,

where ad− bc 6= 0. Check that

fY1,Y2
(y1, y2) = |ad− bc|fX1,X2

(ay1 + by2, cy1 + dy2).

Exercise 25. Let X be uniformly distributed on [0, 1
2π] . Find the density function of Y = sinX.

4.8 Sums of random variables

Theorem 4.8.1. If X and Y have joint density function f then X + Y has density

fX+Y (z) =

∫ ∞
−∞

f(x, z − x)dx.

Proof. Let A = {(x, y) : x+ y ≤ z}. Then

P(X + Y ≤ z) =

∫∫
A

f(u, v)dudv =

∫ ∞
u=−∞

∫ z−u

v=−∞
dvdu

=

∫ ∞
x=−∞

∫ z

y=−∞
f(x, y − x)dydx

by the substitution x = u, y = v + u. Reverse the order of integration to obtain the result.



Example 4.8.2. Let X and Y be independent N (0, 1) variables. Then Z = X + Y has density

fZ(z) =
1

2π

∫ ∞
−∞

exp

[
−1

2
x2 − 1

2
(z − x)2

]
dx

=
1

2
√
π

e−
1
4 z

2

∫ ∞
−∞

1√
2π

e−
1
2 v

2

dv,

by the substitution v =
(
x− 1

2z
)√

2. Therefore,

fZ(z) =
1

2
√
π

e−
1
4 z

2

,

showing that Z is N (0, 2). More generally, if X is N
(
µ1, σ

2
1

)
and Y is N

(
µ2, σ

2
2

)
, and X and Y

are independent, then Z = X + Y is N
(
µ1 + µ2, σ

2
1 + σ2

2

)
. You should check this.

Exercise 26. Let X and Y be independent N (0, 1) random variables, and let Z = X + Y . Find

the distribution and density of Z given that X > 0 and Y > 0. Show that

E[Z|X > 0, Y > 0] = 2
√

2/π.

4.9 Multivariate Normal distribution

Definition 4.9.1. The vector X = (X1, X2, . . . , Xn) has the multivariate Normal distribution

(or multinormal distribution), written N (µ,V), if its joint density function is

f(x) =
1√

(2π)n|V|
exp

[
−1

2
(x− µ)V−1(x− µ)′

]
, x ∈ Rn

where V is a positive definite symmetric matrix.

Theorem 4.9.2. If X is N (µ,V) then

(a) E[X] = µ, which is to say that E[Xi] = µi for all i,

(b) V = (vij) is called the covariance matrix, because vij = cov (Xi, Xj).

Proof. Part (a) follows by Z = X − µ is multivariate Normal with zero means. Part (b) may be

proved by performing an elementary integration, and more elegantly by the forthcoming method

of characteristic functions.

Theorem 4.9.3. If X = (X1, X2, . . . , Xn) is N (0,V) and Y = (Y1, Y2, . . . , Ym) is given by

Y = XD for some matrix D of rank m ≤ n, then Y is N (0,D′VD).

Proof. Proof when m = n. The mapping T : x 7→ y = xD is non-singular and can be inverted as

T−1 : y 7→ x = yD−1. Use this change of variables in Theorem 4.7.2 to show that, if A B ⊆ Rn

and B = T (A), then

PY ∈ B) =

∫
A

f(x)dx =

∫
A

1√
(2π)n|V|

exp

(
−1

2
xV−1x′

)
dx

=

∫
B

1√
(2π)n|W|

exp

(
−1

2
yW−1y′

)
dy,



where W = D′VD as required. The proof for values of m strictly smaller than n is more difficult

and is omitted (but see Kingman and Taylor 1966, p. 372).

Definition 4.9.4. The vector X = (X1, X2, . . . , Xn) of random variables is said to have the

multivariate Normal distribution whenever, for all a ∈ Rn, the linear combination Xa′ =

a1X1 + a2X2 + · · ·+ anXn has a Normal distribution.

Exercise 27. A symmetric matrix is called non-negative (respectively positive) definite if its

eigenvalues are non-negative (respectively strictly positive). Show that a non-negative definite

symmetric matrix V has a square root, in that there exists a symmetric matrix W satisfying

W2 = V. Show further that W is non-singular if and only if V is positive definite.

4.10 Distributions arising from the Normal distribution

Theorem 4.10.1. If X1, X2,. . . are independent N (µ, σ2) variables then X̄ and S2 are indepen-

dent. We have that X̄ is N (µ, σ2/n) and (n− 1)S2/σ2 is χ2(n− 1).

Proof. Define Yi = (Xi − µ)/σ, and

Ȳ =
1

n

n∑
1

Yi =
X̄ − µ
σ

.

From Example 4.4.3, Yi is N (0, 1), and clearly

n∑
1

(
Yi − Ȳ

)2
=

(n− 1)S2

σ2
.

The joint density function of Y1, Y2, . . . , Yn is

f(y) =
1√

(2π)n
exp

(
−1

2

n∑
1

y2
i

)
.

This function f has spherical symmetry, i.e. if A = (aij) is an orthogonal rotation of Rn and

Yi =

n∑
j=1

Zjaji and

n∑
1

Y 2
i =

n∑
1

Z2
i , (4.10.1)

then Z1, Z2, . . . , Zn are independent N (0, 1) variables also. Now choose

Z1 =
1√
n

n∑
1

Yi =
√
nȲ . (4.10.2)

It is left to the reader to check that Z1 is N (0, 1). Then let Z2, Z3, . . . , Zn be any collection of



variables such that (4.10.1) holds, where A is orthogonal. From (4.10.1) and (4.10.2),

n∑
2

Z2
i =

n∑
1

Y 2
i −

1

n

(
n∑
1

Yi

)2

=

n∑
1

Y 2
i −

2

n

n∑
i=1

n∑
j=1

YiYj +
1

n2

n∑
i=1

 n∑
j=1

Yj

2

=

n∑
i=1

(
Yi −

1

n

n∑
1

Yj

)2

=
(n− 1)S2

σ2
.

(4.10.3)

Now, Z1 is independent of Z2, . . . , Zn, and so by (4.10.2)-(4.10.3), Ȳ is independent of the random

variable (n − 1)S2/σ2. By (4.10.2) and Example 4.4.1, Ȳ ∼ N (0, 1/n) and so X̄ ∼ N
(
µ, σ2/n

)
.

Finally, (n− 1)S2/σ2 is the sum of the squares of n− 1 independent N (0, 1) variables.

Exercise 28. Let X1 and X2 be independent variables with the χ2(m) and χ2(n) distributions

respectively. Show that X1 +X2 has the χ2(m+ n) distribution.

4.11 Sampling from a distribution

Theorem 4.11.1 (Inverse transform technique). Let F be a distribution function, and let U be

uniformly distributed on the interval [0, 1].

(a) If F is a continuous function, the random variable X = F−1(U) has distribution function F .

(b) Let F be the distribution function of a random variable taking non-negative integer values.

The random variable X given by

X = k if and only if F (k − 1) < U < F (k)

has distribution function F .

Proof. (a) is left as an exercise. Part (b) follows from P (F (k − 1) < U ≤ F (k)) = F (k) − F (k −

1).

Example 4.11.2 (Binomial sampling). Let Ul, U2, . . . , Un, . . . be independent random variables

with the uniform distribution on [0, 1] . The sequence Xk = I{Uk≤p} of indicator variables contains

random variables having the Bernoulli distribution with parameter p. The sum S =
∑n
k=1Xk has

the B(n, p) distribution.

Exercise 29. If U is uniformly distributed on [0, 1] , what is the distribution of X = bnUc+ 1?



4.12 Coupling and Poisson approximation

Example 4.12.1 (Stochastic ordering). Let X and Y be random variables whose distribution

functions satisfy

FX(x) ≤ FY (x), for all x ∈ R.

In this case, we say that X dominates Y stochastically and we write X ≥st Y . Note that X and Y

need not be defined on the same probability space.

Theorem 4.12.2. Suppose that X ≥st Y . There exists a probability space (Ω,F ,P) and two

random variable X ′ and Y ′ on this space such that:

(a) X ′ and X have the same distribution,

(b) Y ′ and Y have the same distribution,

(c) P (X ′ ≥ Y ′) = 1.

Proof. Take Ω = [0, 1],F the Borel σ -field of Ω, and let P be Lebesgue measure, which is to say

that, for any sub-interval I of Ω,P(I) is defined to be the length of I.

For any distribution function F, we may define a random variable ZF on (Ω,F ,P) by

ZF (ω) = inf{z : ω ≤ F (z)}, ω ∈ Ω.

Note that

ω ≤ F (z) if and only if ZF (ω) ≤ z. (4.12.1)

It follows that

P (ZF ≤ z) = P([0, F (z)]) = F (z),

whence ZF has distribution function F . Suppose now that X ≥st Y and write G and H for

the distribution functions of X and Y since G(x) ≤ H(x) for all x, we have from (4.12.1) that

ZH ≤ ZG. We set X ′ = ZG and Y ′ = ZH .

Theorem 4.12.3. Let {Xr : 1 ≤ r ≤ n} be independent Bernoulli random variables with respective

parameters {pr : 1 ≤ r ≤ n} , and let S =
∑n
r=1Xr. Then

dTV(S, P ) ≤ 2

n∑
r=1

p2
r,

where P is a random variable having the Poisson distribution with parameter λ =
∑n
r=1 pr.

Proof. The trick is to find a suitable coupling of S and P, and we do this as follows. Let

(Xr, Yr) , 1 ≤ r ≤ n, be a sequence of independent pairs, where the pair (Xr, Yr) takes values



in the set {0, 1} × {0, 1, 2, . . .} with mass function

P (Xr = x, Yr = y) =


1− pr, if x = y = 0,

e−pr − 1 + pr, if x = 1, y = 0,

pyr
y! e−p, if x = 1, y ≥ 1.

It is easy to check that Xr is Bernoulli with parameter pr, and Yr has the Poisson distribution

with parameter pr We set

S =

n∑
r=1

Xr, P =

n∑
r=1

Yr,

noting that P has the Poisson distribution with parameter λ =
∑n
r=1 pr. Now,

|P(S = k)− P(P = k)| = |P(S = k, P 6= k)− P(S 6= k, P = k)|

≤ P(S = k, S 6= P ) + P(P = k, S 6= P ),

whence

dTV(S, P ) =
∑
k

|P(S = k)− P(P = k)| ≤ 2P(S 6= P ).

We have as required that

P(S 6= P ) ≤ P (Xr 6= Yr for some r) ≤
n∑
r=1

P (Xr 6= Yr)

=

n∑
r=1

{
e−pr − 1 + pr + P (Yr ≥ 2)

}
=

n∑
r=1

pr
(
1− e−pr

)
≤

n∑
r=1

p2
r.

.

Example 4.12.4. Set pr = λ/n for 1 ≤ r ≤ n to obtain the inequality dTV(S, P ) ≤ 2λ2/n, which

provides a rate of convergence in the binomial-Poisson limit theorem of Example 3.5.1.

Theorem 4.12.5 (Stein-Chen). Let P be a random variable having the Poisson distribution with

parameter λ =
∑n
r=1 pr. The total variation distance between S and P satisfies

dTV(S, P ) ≤ 2
(
1 ∧ λ−1

) n∑
r=1

prE|S − Vr|.

Proof. Let g : {0, 1, 2, . . .} → R be bounded, and define

∆g = sup
r
{|g(r + 1)− g(r)|},

so that

|g(l)− g(k)| ≤ |l − k|∆g.



We have that

|E{λg(S + 1)− Sg(S)}| =

∣∣∣∣∣
n∑
r=1

(
prE[g(S + 1)]− E[Xrg(S)]

)∣∣∣∣∣
=

∣∣∣∣∣
n∑
r=1

prE {g(S + 1)− g (Vr + 1)}

∣∣∣∣∣
≤ ∆g

n∑
r=1

prE |S − Vr| .

Let A be a set of non-negative integers. We choose the function g = gA such that gA(0) = 0 and

λgA(r + 1)− rgA(r) = IA(r)− P(P ∈ A), r ≥ 0. (4.12.2)

One may check that gA is given explicitly by

gA(r + 1) =
r!eλ

λr+1
{P({P ≤ r} ∩ {P ∈ A})− P(P ≤ r)P(P ∈ A)}, r ≥ 0. (4.12.3)

A bound for ∆gA appears in the next lemma, the proof of which is given later.

Lemma 4.12.6. The inequality ∆gA ≤ 1 ∧ λ−1 holds.

We now substitute r = S in (4.12.2), take expectations and apply Lemma 4.12.6 to obtain

dTV(S, P ) = 2 sup
A
|P(S ∈ A)− P(P ∈ A)| ≤ 2

(
1 ∧ λ−1

) n∑
r=1

prE |S − Vr| .

Proof of Lemma 4.12.6. Let gj = g(j) for j ≥ 0. From (4.12.3),

gj(r + 1) =


− r!e

λ

λr+1
P(P = j)

r∑
k=0

λke−λ

k!
, if r < j,

r!eλ

λr+1
P(P = j)

∞∑
k=r+1

λke−λ

k!
, if r ≥ j,

implying that gj(r+ 1) is negative and decreasing when r < j, and is positive and decreasing when

r ≥ j. There ore the only positive value of gj(r + 1)− gj(r) is when r = j, for which

gj(j + 1)− gj(j) =
e−λ

λ


∞∑

k=j+1

λk

k!
+

j∑
k=1

λk

k!

k

j


≤ e−λ

λ

(
eλ − 1

)
=

1− e−λ

λ
,

when j ≥ 1. If j = 0, we have that gj(r+1)−gj(r) ≤ 0 for all r. Since gA(r+1) =
∑
j∈A gj(r+1),

it follows from the above remarks that

gA(r + 1)− gA(r) ≤ 1− e−λ

λ
, for all r ≥ 1.

Finally, −gA = gAc , and therefore ∆gA ≤ λ−1
(
1− e−λ

)
. The claim follows on noting that

λ−1
(
1− e−λ

)
≤ 1 ∧ λ−1.



Exercise 30. Show that X is stochastically larger than Y if and only if E[u(X)] ≥ E[u(Y )] for

any nondecreasing function u for which the expectations exist.

4.13 Geometrical probability

Example 4.13.1 (Area of a random triangle). Three points P, Q, R are picked independently at

random in the triangle ABC. Show that

E|PQR| = 1

2
|ABC|. (4.13.1)

Solution. We proceed via a sequence of lemmas which you may illustrate with diagrams.

Lemma 4.13.2. Let G1 and G2 be the centres of gravity of ABM and AMC, where M is the

midpoint of BC. Choose P at random in the triangle ABM, and Q at random (independently of P

) in the triangle AMC. Then

E|APQ| = E |AG1G2| =
2

9
|ABC|. (4.13.2)

Lemma 4.13.3. Choose P and Q independently at random in the triangle ABC. Then

E|APQ| = 4

27
|ABC|. (4.13.3)

Proof. By the property of affine transformations discussed above, there exists a real number α,

independent of the choice of ABC, such that

E|APQ| = α|ABC|. (4.13.4)

Denote ABM by T1 and AMC by T2, and let Cij be the event that {P ∈ Ti, Q ∈ Tj} , for i, j ∈

{1, 2}. Using conditional expectation and the fact that P (Cij) = 1
4 for each pair i, j,

E|APQ| =
∑
i,j

E [|APQ| | Cij ]P (Cij)

= α|ABM|P (C11) + α|AMC|P (C22) +
2

9
|ABC| (P (C12) + P (C21))

=
1

4
α|ABC|+ 1

2

2

9
|ABC|.

We use (4.13.4) and divide by |ABC| to obtain α = 4
27 , as required.

Lemma 4.13.4. Let P and Q be chosen independently at random in the triangle ABC, and R be

chosen independently of P and Q at random on the side BC. Then

E|PQR| = 1

9
|ABC|.

Proof. If the length of BC is a, then |BR| is uniformly distributed on the interval (0, a). Denote

the triangles ABR and ARC by S1 and S2, and let Dij = {P ∈ Si,Q ∈ Sj} for i, j ∈ {1, 2}. Let



x ≥ 0, and let Px and Ex denote probability and expectation conditional on the event {|BR| = x}.

We have that

Px (D11) =
x2

a2
, Px (D22) =

(
a− x
a

)2

, Px (D12) = Px (D21) =
x(a− x)

a2
.

By conditional expectation,

Ex|PQR| =
∑
i,j

Ex (|PQR| | Dij)P (Dij) .

By Lemma 4.13.3,

Ex (|PQR| | D11) =
4

27
Ex|ABR| = 4

27

x

a
|ABC|,

and so on, whence

Ex|PQR| =

{
4

27

(x
a

)3

+
4

27

(
a− x
a

)3

+
2

9

x(a− x)

a2

}
|ABC|.

Averaging over |BR| we deduce that

E|PQR| = 1

a

∫ a

0

Ex|PQR|dx =
1

9
|ABC|.

Proof of (4.13.1). By the property of affine transformations mentioned above, it is sufficient

to show that E|PQR| = 1
12 |ABC| for any single given triangle ABC. Consider the special choice

A = (0, 0),B = (x, 0),C = (0, x), and denote by Px the appropriate probability measure when

three points P,Q,R are picked from ABC. We write A(x) for the mean area Ex|PQR|. We shall

use Crofton’s method, with x as the parameter to be varied. Let ∆ be the trapezium with vertices

(0, x), (0, x+ δx), (x+ δx, 0), (x, 0). Then

Px+δx(P,Q,R ∈ ABC) =

{
x2

(x+ δx)2

}3

= 1− 6δx

x
+ o(δx),

and

Px+δx({P,Q ∈ ABC} ∩ {R ∈ ∆}) =
2δx

x
+ o(δx).

Hence, by conditional expectation and Lemma 4.13.4,

A(x+ δx) = A(x)

(
1− 6δx

x

)
+

1

9
· 1

2
x2 · 6δx

x
+ o(δx),

leading, in the limit as δx→ 0, to the equation

dA

dx
= −6A

x
+

1

3
x,

with boundary condition A(0) = 0, with solution A(x) = x2

24 . Since |ABC| = x2

2 , the proof follows.

Exercise 31. A triangle is formed by A, B, and a point P picked at random in a set S with centre

of gravity G. Show that E|ABP| = |ABG|.



Chapter 5

Generating functions and their

applications

5.1 Generating functions

Example 5.1.1. Let X and Y be independent random variables having the Poisson distribution

with parameters λ and µ respectively. What is the distribution of Z = X + Y ?

Solution. The mass function of Z is the convolution of the mass functions of X and Y , i.e.

fZ = fX ∗ fY . The generating function of the sequence {fX(i) : i ≥ 0} is

GX(s) =

∞∑
i=0

λie−λ

i!
si = eλ(s−1), (5.1.1)

and similarly GY (s) = eµ(s−1). Hence the generating function GZ of {fZ(i) : i ≥ 0} satisfies

GZ(s) = GX(s)GY (s) = exp[(λ + µ)(s − 1)], which we recognize from (5.1.1) as the generating

function of the Poisson mass function with parameter λ+ µ.

Definition 5.1.2. The (probability) generating function of the random variable X is defined

to be the generating function G(s) = E[sX ] of its probability mass function.

Example 5.1.3 (Poisson distribution). If X is Poisson distributed with parameter λ then

G(s) = E
[
sX
]

=

∞∑
k=0

sk
λk

k!
e−λ = eλ(s−1).

Theorem 5.1.4. If X has generating function G(s) then

(a) E[X] = G′(1),

(b) more generally, E [X(X − 1) · · · (X − k + 1)] = G(k)(1).
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Proof. Take s < 1 and calculate the kth derivative of G to obtain

G(k)(S) =
∑
i

si−ki(i− 1) · · · (i− k + 1)f(i) = E
[
sX−kX(X − 1) · · · (X − k + 1)

]
.

Let s ↑ 1 and use Abel’s theorem to obtain

G(k)(S)→
∑
i

i(i− 1) · · · (i− k + 1)f(i) = E [X(X − 1) · · · (X − k + 1)] .

Example 5.1.5. We have from Example 5.1.3 that the moment generating function of the Poisson

distribution with parameter λ is M(t) = exp[λ(et − 1)].

Theorem 5.1.6. If X and Y are independent then GX+Y (s) = GX(s)GY (s).

Proof. The direct way of doing this is to use fZ = fX ∗ fY , so that the generating function of

{fZ(i) : i ≥ 0} is the product of the generating functions of {fX(i) : i ≥ 0} and {fY (i) : i ≥ 0} . Al-

ternatively, g(X) = sX and h(Y ) = sY are independent, by Theorem 3.2.3, and so E[g(X)h(Y )] =

E[g(X)]E[h(Y )], as required.

Example 5.1.7 (Binomial). Binomial distribution. Let X1, X2, . . . , Xn be independent Bernoulli

variables, parameter p, with sum S = X1 + X2 + · · · + Xn. Each Xi has generating function

G(s) = qs0 + ps1 = q + ps, where q = 1 − p. Apply Theorem 5.1.6 repeatedly to find that the

B(n, p) variable S has generating function

GS(s) = [G(s)]n = (q + ps)n.

The sum S1 + S2 of t two independent variables, B(n, p) and B(m, p) respectively, has generating

function

GS1+S2
(s) = GS1

(s)GS2
(s) = (q + ps)m+n,

and is thus B(m+ n, p).

Theorem 5.1.8. If X1, X2, . . . is a sequence of independent identically distributed random vari-

ables with common generating function GX , and N(≥ 0) a random variable independent of the Xi

and has generating function GN , then S = X1 +X2 + · · ·+XN has generating function

GS(s) = GN (GX(s)) . (5.1.2)

Proof. Use conditional expectation and Theorem 3.7.3 to find that

GS(s) = E
[
sS
]

= E
[
E
[
sS | N

]]
=
∑
n

E
[
sS | N = n

]
P(N = n)

=
∑
n

E
[
sX1+···+Xn

]
P(N = n)

=
∑
n

E
[
sX1
]
· · ·E

[
sXn

]
P(N = n) by independence

=
∑
n

GX(s)nP(N = n) = GN (GX(s)) .



.

Example 5.1.9. A hen lays N eggs, where N is Poisson distributed with parameter λ Each egg

hatches with probability p, independently of all other eggs. Let K be the number of chicks. Then

K = X1 +X2 + · · ·+XN where X1, X2, . . . are independent Bernoulli variables with parameter p.

How is K distributed? Clearly

GN (s) =

∞∑
n=0

sn
λn

n!
e−λ = eλ(s−1), GX(s) = q + ps,

and so GK(s) = GN (GX(s)) = eλp(s−1), which, by comparison with GN , we see to be the gener-

ating function of a Poisson variable with parameter λp.

Definition 5.1.10. The joint (probability) generating function of variablesX1 andX2 taking

values in the non-negative integers is defined by

GX1,X2
(s1, s2) = E

[
sX1

1 sX2
2

]
.

Theorem 5.1.11. Random variables X1 and X2 are independent if and only if

GX1,X2 (s1, s2) = GX1 (s1)GX2 (s2) , for all s1 and s2.

Proof. If X1 and X2 are independent then so are g (X1) = sX1
1 and h (X2) = sX2

2 ; then proceed as

in the proof of Theorem 5.1.6. To prove the converse, equate the coefficients of terms such as si1s
j
2

to deduce after some manipulation that P (X1 = i,X2 = j) = P (X1 = i)P (X2 = j).

Exercise 32. Let X have the binomial distribution B(n,U), where U is uniform on (0, 1). Show

that X is uniformly distributed on {0, 1, 2, . . . , n}.

5.2 Some applications

Example 5.2.1 (Recurrent events). Meteorites fall from the sky, your car runs out of fuel, there

is a power failure, you fall ill. Each such event recurs at regular or irregular intervals; one cannot

generally predict just when such an event will happen next, but one may be prepared to hazard

guesses. A simplistic mathematical model is the following. We call the happening in question H,

and suppose that, at each time point 1, 2, . . ., either H occurs or H does not occur. We write X1

for the first time at which H occurs, X1 = min{n : H occurs at time n}, and Xm for the time

which elapses between the (m − 1)th and mth occurrence of H. Thus the mth occurrence of H

takes place at time

Tm = X1 +X2 + · · ·+Xm. (5.2.1)

Here are our main assumptions. We assume that the inter-occurrence times X1, X2, . . . are indepen-

dent random variables taking values in {1, 2, . . .}, and furthermore that X2, X3, . . . are identically



distributed. That is to say, whilst we assume that inter-occurrence times are independent and

identically distributed, we allow the time to the first occurrence to have a special distribution.

Given the distributions of the Xi, how may we calculate the probability that H occurs at some

given time? Define un = P(H occurs at time n). We have by conditioning on X1 that

un =

n∑
i=1

P (Hn | X1 = i)P (X1 = i) , (5.2.2)

where Hn is the event that H occurs at time n. Now

P (Hn | X1 = i) = P (Hn−i+1 | X1 = 1) = P (Hn−i+1 | H1) ,

using the translation invariance entailed by the assumption that the Xi, i ≥ 2, are independent

and identically distributed. A similar conditioning on X2 yields

P (Hm | H1) =
m−1∑
j=1

P (Hm | H1, X2 = j)P (X2 = j) =

m−1∑
j=1

P (Hm−j | H1)P (X2 = j) , (5.2.3)

for m ≥ 2, by translation invariance once again. Multiplying through (5.2.3) by xm−1 and summing

over m, we obtain

∞∑
m=2

xm−1P (Hm | H1) = E
[
xX2

] ∞∑
n=1

xn−1P (Hn | H1) , (5.2.4)

so that GH(x) =
∑∞
m=1 x

m−1P (Hm | H1) satisfies GH(x) − 1 = F (x)GH(x), where F (x) is the

common probability generating function of the inter-occurrence times, and hence (20)

GH(x) =
1

1− F (x)
.

Returning to (5.2.2), we obtain similarly that U(x) =
∑∞
n=1 x

nun satisfies

U(x) = D(x)GH(x) =
D(x)

1− F (x)
, (5.2.5)

where D(x) is the probability generating function of X1. Equation (5.2.5) contains much of the

information relevant to the process, since it relates the occurrences of H to the generating functions

of the elements of the sequence X1, X2, . . .. We should like to extract information out of (5.2.5)

about Un = P(Hn), the coefficient of xn in U(x) , particularly for large values of n.

In principle, one may expand D(x)/[1−F (x)] as a polynomial in x in order to find un but this

is difficult in practice. There is one special situation in which this may be done with ease, and this

is the situation when D(x) is the function D = D∗ given by

D∗(x) =
1− F (x)

µ(1− x)
, for |x| < 1, (5.2.6)

and µ = E [X2] is the mean inter-occurrence time. Let us first check that D∗ is indeed a suitable

probability generating function. The coefficient of xn in D∗ is easily seen to be 1−f1−f2−···−fn
µ ,



where fi = P (X2 = i) . This coefficient is non-negative since the fi form a mass function; further-

more, by L’Hôpital ’s rule,

D∗(1) = lim
x↑1

1− F (x)

µ(1− x)
= lim

x↑1

−F ′(x)

−µ
= 1,

since F ′(1) = µ, the mean inter-occurrence time. Hence D∗(x) is indeed a probability generating

function, and with this choice for D we obtain that U = U∗ where

U∗(x) =
1

µ(1− x)
, (5.2.7)

from (5.2.5). Writing U∗(x) =
∑
n u
∗
nx

n we find that u∗n = µ−1 for all n. That is to say, for

the special choice of D∗, the corresponding sequence of the u∗n is constant, so that the density of

occurrences of H is constant as time passes. This special process is called a stationary recurrent-

event process.

How relevant is the choice of D to the behaviour of un for large n ? Intuitively speaking, the

choice of distribution of X1 should not affect greatly the behaviour of the process over long time

periods, and so one might expect that un → µ−1 as n ↑ ∞, irrespective of the choice of D. This is

indeed the case, so long as we rule out the possibility that there is periodicity in the process. We call

the process non-arithmetic if ged [n : P (X2 = n) > 0} = 1; certainly the process is non-arithmetic

if, for example, P (X2 = 1) > 0. Note that ged stands for greatest common divisor.

Theorem 5.2.2 (Renewal). If the mean inter-occurrence time µ is finite and the process is non-

arithmetic, then un = P(Hn) satisfies un → µ−1 as n ↑ ∞.

Sketch of proof. The classical proof of this theorem is a purely analytical approach to the equa-

tion (5.2.5) (see Feller 1968, pp. 335-8). There is a much neater probabilistic proof using the

technique of coupling. We do not give a complete proof at this stage, but merely a sketch. The

main idea is to introduce a second recurrent-event process, which is stationary and independent

of the first. Let X = {Xi : i ≥ 1} be the first and inter- occurrence times of the original process,

and let X∗ = {X∗i : i ≥ 1} be another sequence of independent random variables, independent

of X, such that X∗2 , X
∗
3 , . . . have the common distribution of X2, X3, . . . , and X∗1 has probability

generating function D∗. Let Hn and H∗n be the events that H occurs at time n in the first and

second process (respectively), and let T = min {n : Hn ∩H∗n occurs be the earliest time at which H

occurs simultaneously in both processes. It may be shown that T < ∞ with probability 1, using

the assumptions that µ < ∞ and that the processes are non-arithmetic; it is intuitively natural

that a coincidence occurs sooner or later, but this is not quite so easy to prove, and we omit a

rigorous proof at this point. The point is that, once the time T has passed, the non-stationary

and stationary recurrent-event processes are indistinguishable from each other, since they have had



simultaneous occurrences of H. That is to say, we have that

un = P (Hn | T ≤ n)P(T ≤ n) + P (Hn | T > n)P(T > n)

= P (H∗n | T ≤ n)P(T ≤ n) + P (Hn | T > n)P(T > n),

since, if T ≤ n, then the two processes have already coincided and the (conditional) probability

of Hn equals that of H∗n. Similarly

u∗n = P (H∗n | T ≤ n)P(T ≤ n) + P (H∗n | T > n)P(T > n),

so that |un−u∗n| ≤ P(T > n)→ 0 as n ↑ ∞. However, u∗n = µ−1 for all n, hence lim
n↑∞

un = µ−1.

Exercise 33. Let X have a Poisson distribution with parameter Λ , where Λ is exponential with

parameter µ. Show that X has a geometric distribution.

5.3 Expectation revisited

Lemma 5.3.1. If (Xn) is a sequence of variables with Xn(ω)→ X(ω) for all ω ∈ Ω then

(a) (monotone convergence) if Xn(ω) ≥ 0 and Xn(ω) ≤ Xn+1(ω) for all n and ω, then E[Xn] →

E[X];

(b) (dominated convergence) if |Xn(ω)| ≤ Y (ω) for all n and ω, and E|Y | <∞, then E[Xn]→ E[X];

(c) (bounded convergence) if |Xn(ω)| ≤ c for some constant c and all n and ω then E[Xn]→ E[X].

Exercise 34. Let {Xn} be a sequence of random variables satisfying Xn ≤ Y a.s. for some Y

with E|Y | <∞. Show that

E

[
lim sup
n↑∞

Xn

]
≥ lim sup

n↑∞
E[Xn].

5.4 Characteristic functions

Definition 5.4.1. The moment generating function of a variable X is the function M : R→

[0,∞) given by M(t) = E
[
etX
]
.

Definition 5.4.2. The characteristic function of X is the function φ : R→ C defined by

φ(t) = E
[
eitX

]
.

Theorem 5.4.3. The characteristic function φ satisfies:

(a) φ(0) = 1, |φ(t)| ≤ 1 for all t

(b) φ is uniformly continuous on R,

(c) φ is non-negative definite, which is to say that
∑
j,k φ (tj − tk) zj z̄k ≥ 0 for all real t1, t2, . . . , tn

and complex z1, z2, . . . , zn.



Proof. ( a ) Clearly φ(0) = E[1] = 1. Furthermore

|φ(t)| ≤
∫ ∣∣eitx∣∣dF =

∫
dF = 1.

(b) We have that

|φ(t+ h)− φ(t)| =
∣∣∣E [ei(t+h)X − eitX

]∣∣∣ ≤ E
∣∣eitX (eihX − 1

)∣∣ ≤ E[Y (h)],

where Y (h) =
∣∣eihX − 1

∣∣ . However, |Y (h)| ≤ 2 and Y (h) → 0 as h → 0, and so E[Y (h)] → 0 by

bounded convergence Lem. 5.3.1.

(c) We have that

∑
j,k

φ (tj − tk) zj z̄k =
∑
j,k

∫ [
zje

itjx
] [
z̄ke−itkx

]
dF = E


∣∣∣∣∣∣
∑
j

zje
itjX

∣∣∣∣∣∣
2
 ≥ 0.

Theorem 5.4.4.

(a) If φ(k)(0) exists then

 E
∣∣Xk

∣∣ <∞, if k is even,

E
∣∣Xk−1

∣∣ <∞, if k is odd.

(b) If E
∣∣Xk

∣∣ <∞ then

φ(t) =

k∑
j=0

E
[
Xj
]

j!
(it)j + o

(
tk
)
,

and so φ(k)(0) = ikE
[
Xk
]
.

Proof. This is essentially Taylor’s theorem for a function of a complex variable. For the proof, see

Moran (1968) or Kingman and Taylor (1966).

Theorem 5.4.5. If X and Y are independent then φX+Y (t) = φX(t)φY (t).

Proof. We have that

φX+Y (t) = E
[
eit(X+γ)

]
= E

[
eitXeitY

]
.

Expand each exponential term into cosines and sines, multiply out, use independence, and put

back together to obtain the result.

Theorem 5.4.6. If a, b ∈ R and Y = aX + b then φY (t) = eitbφX(at).

Proof. We have

φY (t) = E
[
eit(aX+b)

]
= E

[
eitbei(at)X

]
= eitbE

[
ei(at)X

]
= eitbφX(at).

Definition 5.4.7. The joint characteristic function of X and Y is the function φX,Y : R2 → R

given by φX,Y (s, t) = E[eisXeitY ].



Theorem 5.4.8. Random variables X and Y are independent if and only if

φX,Y (s, t) = φX(s)φY (t) for all s and t.

Proof. If X and Y are independent then the conclusion follows by the argument of Theorem 5.4.5.

The converse is proved by extending the inversion theorem of the next section to deal with joint

distributions and showing that the joint distribution function factorizes.

Theorem 5.4.9. Let M(t) = E
[
etX
]

for t ∈ R, and φ(t) = E
[
eitX

]
, for t ∈ C be the moment

generating function and characteristic function, respectively, of a random variable X. For any

a> 0, the following three statements are equivalent:

(a) |M(t)| <∞ for |t| < a,

(b) φ is analytic on the strip | Im(z) |< a,

(c) The moments mk = E
[
Xk
]

exist for k = 1, 2, . . . and satisfy lim supk↑∞ {|mk| /k!}1/k ≤ a−1.

Exercise 35. Find two dependent random variables X and Y such that φX,Y (t) = φX(t)φY (t)

for all t.

5.5 Examples of characteristic functions

Example 5.5.1 (Normal). If X is N (0, 1) then

φ(t) = E
[
eitX

]
=

∫ ∞
−∞

1√
2π

exp

(
itx− 1

2
x2

)
dx.

Again, do not treat i as a real number. Consider instead the moment generating function of X

M(s) = E
[
esX
]

=

∫ ∞
−∞

1√
2π

exp

(
sx− 1

2
x2

)
dx.

Complete the square in the integrand to obtain M(s) = e
1
2 s

2

. We may not substitute s = it

without justification. In this particular instance the theory of analytic continuation of functions

of a complex variable provides this justification, and we deduce that

φ(t) = e−
1
2 t

2

.

By Theorem 5.4.6, the characteristic function of the N
(
µ, σ2

)
variable Y = σX + µ is

φY (t) = eitµφX(σt) = exp

(
iµt− 1

2
σ2t2

)
.

Example 5.5.2 (Multivariate normal). Multivariate normal distribution. If X1, X2, . . . , Xn has

the multivariate normal distribution N(0,V) then its joint density function is

f(x) =
1√

(2π)n|V|
exp

(
−1

2
xV−1x′

)
.



The joint characteristic function of X1, X2, . . . , Xn is the function φ(t) = E
[
eitX

′
]

where t =

(t1, t2, . . . , tn) and X = (X1, X2, . . . , Xn) . One way to proceed is to use the fact that tX′ is

univariate normal. Alternatively,

φ(t) =

∫
Rn

1√
(2π)n|V|

exp

(
itx′ − 1

2
xV−1x′

)
dx. (5.5.1)

There is a linear transformation y = xB such that

xV−1x′ =
∑
j

λjy
2
j .

Make this transformation in (5.5.1) to see that the integrand factorizes into the product of functions

of the single variables y1, y2, . . . , yn. Then use Example 5.5.1 to obtain

φ(t) = exp

(
−1

2
tVt′

)
.

Exercise 36. Find the joint characteristic function of two random variables having a bivariate

normal distribution with zero means.

5.6 Inversion and continuity theorems

Theorem 5.6.1. If X is continuous with density function f and characteristic function φ then

f(x) =
1

2π

∫ ∞
−∞

e−itxφ(t)dt,

at every point x at which f is differentiable.

Proof. This is the Fourier inversion theorem and can be found in any introduction to Fourier

transforms. If the integral fails to converge absolutely then we interpret it as its principal value

(see Apostol 1974, p. 277 ).

Theorem 5.6.2 (Inversion). Let X have distribution function F and characteristic function φ.

Define F : R→ [0, 1] by

F̄ (x) =
1

2

{
F (x) + lim

y↑x
F (y)

}
.

Then

F̄ (b)− F̄ (a) = lim
N↑∞

∫ N

−N

e−iat − e−ibt

2πit
φ(t)dt.

Proof. See Kingman and Taylor (1966).

Corollary 5.6.3. Random variables X and Y have the same characteristic function if and only

if they have the same distribution function.



Proof. If φX = φY then, by Theorem 5.6.2,

F̄X(b)− F̄X(a) = F̄Y (b)− F̄Y (a).

Let a→ −∞ to obtain F̄X(b) = F̄Y (b); now, for any fixed x ∈ R, let b ↓ x and use right-continuity

and Lem. 2.1.4c to obtain FX(x) = FY (x).

Definition 5.6.4. We say that the sequence F1, F2, . . . of distribution functions converges to the

distribution function F, written Fn → F, if F (x) = limn↑∞ Fn(x) at each point x where F is

continuous.

Theorem 5.6.5 (Continuity). Suppose that F1, F2, . . . is a sequence of distribution functions with

corres ponding characteristic functions φ1, φ2, . . .

(a) If Fn → F for one distribution function F with characteristic function φ, then φn(t) → φ(t)

for all t.

(b) Conversely, if φ(t) = limn↑∞ φn(t) exists and is continuous at t = 0, then φ is the characteristic

function of some distribution function F, and Fn → F .

Proof. As for Theorem 5.6.2.

Example 5.6.6 (Stirling’s). This well-known formula states that n! ∼ nne−n
√

2πn as n ↑ ∞,

which is to say that
n!

nne−n
√

2πn
→ 1 as n ↑ ∞.

A more general form of this relation states that

Γ(t)

tt−1e−t
√

2πt
→ 1 as t ↑ ∞ (5.6.1)

where Γ is the gamma function, Γ(t) =
∫∞

0
xt−1e−xdx. Remember that Γ(t) = (t − 1)! if is a

positive integer. To prove (5.6.1) is an elementary exercise in analysis, but it is perhaps amusing

to see how simply (5.6.1) follows from the Fourier inversion theorem 5.6.1.

Let Y be a random variable with the Γ(1, t) distribution. Then X = (Y − t)/
√
t has density

function

ft(x) =
1

Γ(t)

√
t(x
√
t+ t)t−1 exp[−(x

√
t+ t)], −

√
t ≤ x <∞, (5.6.2)

and characteristic function

φt(u) = E
[
eiuX

]
= exp(−iu

√
t)

(
1− iu√

t

)−t
.

Now ft(x) is differentiable with respect to x on (−
√
t,∞), we apply Theorem 5.6.1 at x = 0

and

ft(0) =
1

2π

∫ ∞
−∞

φt(u)du. (5.6.3)



However, ft(0) = tt−
1
2 e−t/Γ(t) from (5.6.2); also

φt(u) = exp

[
−iu
√
t− t log

(
1− iu√

t

)]
= exp

[
−iu
√
t− t

(
− iu√

t
+
u2

2t
+O

(
u3t−

3
2

))]
= exp

[
−1

2
u2 +O

(
u3t−

1
2

)]
→ e−

1
2u

2

, as t ↑ ∞.

Taking the limit in (5.6.3) as t ↑ ∞, we find that

lim
t↑∞

1

Γ(t)
tt−

1
2 e−t = lim

t↑∞

1

2π

∫ ∞
−∞

φt(u)du

=
1

2π

∫ ∞
−∞

(
lim
t↑∞

φt(u)

)
du

=
1

2π

∫ ∞
−∞

e−
1
2u

2

du =
1√
2π
,

as required for (5.6.1). A spot of rigour is needed to justify the interchange of the limit and the

integral sign above, and this may be provided by the dominated convergence theorem.

Exercise 37. Let X1, X2 have a bivariate normal distribution with zero means, unit variances,

and correlation ρ. Use the inversion theorem to show that

∂

∂ρ
P (X1 > 0, X2 > 0) =

1

2π
√

1− ρ2
.

Hence find P (X1 > 0, X2 > 0) .

5.7 Two limit theorems

Definition 5.7.1. If X,X1, X2, . . . is a sequence of random variables with respective distribution

functions F, F1, F2, . . . , we say that Xn converges in distribution to X, written Xn
D→ X, if

Fn → F as n ↑ ∞.

Theorem 5.7.2 (Law of large numbers). Let X1, X2, . . . be a sequence of independent identically

distributed random variables with finite means µ. Their partial sums Sn = X1 + X2 + · · · + Xn

satisfy
1

n
Sn

D→ µ as n ↑ ∞.

Proof. The theorem asserts that, as n ↑ ∞

P
(
n−1Sn ≤ x

)
→

 0, if x < µ,

1, if x > µ.

The method of proof is clear. By the continuity theorem 5.6.5 we need to show that the character-

istic function of n−1Sn approaches the characteristic function of the constant random variable µ.



Let φ be the common characteristic function of the Xi, and let φn be the characteristic function

of n−1Sn. By Theorem 5.4.5 and 5.4.5

φn(t) = {φX(t/n)}n . (5.7.1)

The behaviour of φX(t/n) for large n is given by Theorem 5.4.4 as φX(t) = 1+itµ+o(t) Substitute

into (5.7.1) to obtain

φn(t) =

{
1 +

iµt

n
+ o

(
t

n

)}n
→ eitµ as n ↑ ∞.

However, this limit is the characteristic function of the constant µ, and the result follows.

Theorem 5.7.3 (Central limit). Let X1, X2, . . . be a sequence of independent identically dis-

tributed random variables with finite mean µ and finite non-zero variance σ2, and let Sn = X1 +

X2 + · · ·+Xn, Then
Sn − nµ√

nσ2

D→ N (0, 1) as n ↑ ∞.

Proof. First, write Yi = (Xi − µ) /σ, and let φY be the characteristic function of the Yi. We have

by Theorem 5.4.4 that φY (t) = 1− 1
2 t

2 + o
(
t2
)
. Also, the characteristic function ψn of

Un =
Sn − nµ√

nσ2
=

1√
n

n∑
i=1

Yi

satisfies, by Theorems 5.4.5 and 5.4.6

ψn(t) =
{
φY (t/

√
n)
}n

=

{
1− t2

2n
+ o

(
t2

n

)}n
→ e−

1
2 t

2

as n ↑ ∞,

The last function is the characteristic function of the N (0, 1) distribution, and an application of

the continuity Theorem 5.6.5 completes the proof.

Theorem 5.7.4. Let X1, X2, . . . be independent variables satisfying

E[Xj ] = 0, V (Xj) = σ2
j , E

[∣∣X3
j

∣∣] <∞,
and such that

1

σ(n)3

n∑
j=1

E
∣∣X3

j

∣∣→ 0 as n ↑ ∞,

where σ(n)2 = V
(∑n

j=1Xj

)
=
∑n
j=1 σ

2
j . Then

1

σ(n)

n∑
j=1

Xj
D→ N (0, 1).

Proof. See Loève (1977, p. 287).



Theorem 5.7.5 (Local central limit). Let X1, X2, . . . be independent identically distributed random

variables with zero mean and unit variance, and suppose further that their common characteristic

function φ satisfies ∫ ∞
−∞
|φ(t)|rdt <∞, (5.7.2)

for some integer r ≥ 1. The density function gn of Un = (X1 +X2 + · · ·+Xn) /
√
n exists for

n ≥ r, and furthermore

gn(x)→ 1√
2π

e−
1
2x

2

as n ↑ ∞, uniformly in x ∈ R. (5.7.3)

Proof. A certain amount of analysis is inevitable here. First, the assumption that |φ|r is integrable

for some r ≥ 1 implies that |φ|n is integrable for n ≥ r, since |φ(t)| ≤ 1; hence gn exists and is

given by the Fourier inversion formula

gn(x) =
1

2π

∫ ∞
−∞

e−itxψn(t)dt, (5.7.4)

where ψn(t) = φ(t/
√
n)n is the characteristic function of Un. The Fourier inversion theorem is

valid for the normal distribution, and therefore∣∣∣∣gn(x)− 1√
2π

e−
1
2x

2

∣∣∣∣ ≤ 1

2π

∣∣∣∣∫ ∞
−∞

e−itx
[
φ(t/
√
n)n − e−

1
2 t

2
]

dt

∣∣∣∣ ≤ In, (5.7.5)

where

In =
1

2π

∫ ∞
−∞

∣∣∣φ(t
√
n)n − e−

1
2 t

2
∣∣∣dt.

It suffices to show that In → 0 as n ↑ ∞. We have from Theorem 5.4.4 that φ(t) = 1− 1
2 t

2 + o
(
t2
)

as t→ 0, and therefore there exists δ(> 0) such that

|φ(t)| ≤ e−
1
4 t

2

if |t| ≤ δ. (5.7.6)

Now, for any a > 0, φ(t/
√
n)n → e−

1
2 t

2

as n ↑ ∞ uniformly in t ∈ [−a, a] (to see this, investigate

the proof of Theorem 5.7.3 slightly more carefully), so that∫ a

−a

∣∣∣φ(t/
√
n)n − e−

1
2 t

2
∣∣∣dt→ 0, as n ↑ ∞, (5.7.7)

for any a. Also, by (5.7.6),∫
a<|t|≤δ

√
n

∣∣∣φ(t/
√
n)n − e−

1
2 t

2
∣∣∣dt ≤ 2

∫ ∞
a

2e−
1
4 t

2

dt, (5.7.8)

which tends to zero as a ↑ ∞.

It remains to deal with the contribution to In arising from |t| > δ
√
n. From the fact that g1

exists for n ≥ r, we have |φ(t)r| < 1 for t 6= 0 ahd |φ(t)r| → 0 as t → ±∞. Hence |φ(t)| < 1 for

t 6= 0, and |φ(t)| → 0 as t→ ±∞, and therefore η = sup{|φ(t)| : |t| ≥ δ} satisfies η < 1. For n ≥ r,∫
|t|>δ

√
n

∣∣∣φ(t/
√
n)n − e−

1
2 t

2
∣∣∣dt ≤ ηn−r ∫ ∞

−∞
|φ(t/

√
n)|rdt+ 2

∫ ∞
δ
√
n

e−
1
2 t

2

dt (5.7.9)



= ηn−r
√
n
∫∞
−∞ |φ(u)|rdu+ 2

∫∞
δ
√
n

e−
1
2 t

2

dt→ 0 as n ↑ ∞.

Combining (5.7.7)− (5.7.7), we deduce that

lim
n↑∞

In ≤ 4

∫ ∞
a

e−
1
4 t

2

dt→ 0 as a ↑ ∞,

so that In → 0 as n ↑ ∞ as required.

Example 5.7.6 (Random walks). Here is an application of the law of large numbers to the

persistence of random walks. A simple random walk performs steps of size 1 , to the right or left

with probability p and 1 − p. A simple random walk is persistent (that is, returns to its starting

point with probability 1 ) if and only if it is symmetric. Think of this as saying that the walk is

persistent if and only if the mean value of a typical step X satisfies E[X] = 0, that is, each step is

unbiased. This conclusion is valid in much greater generality.

Let X1, X2, ... be independent identically distributed integer-valued random variables, and let

Sn = Xl + X2 + ... + Xn. We think of Xi as being the ith jump of a random walk, so that Sn

is the position of the random walker after n jumps, having started at S0 = 0. We call the walk

persistent (or recurrent) if P(Sn = 0 for some n ≥ 1) = 1 and transient otherwise.

Theorem 5.7.7. The random walk is persistent if the mean size of jumps is 0.

Proof. Assume E[Xi] = 0 and let Vi denote the mean number of visits of the walk to the point i,

Vi = E |{n ≥ 0 : Sn = i}| = E

[ ∞∑
n=0

I{Sn=i}

]
=

∞∑
n=0

P (Sn = i) ,

where IA is the indicator function of the event A. We shall prove first that V0 =∞, and from this

we shall deduce the persistence of the walk. Let T be the time of the first visit of the walk to i,

with the convention that T =∞ if i is never visited. Then

Vi =

∞∑
n=0

P (Sn = i) =

∞∑
n=0

∞∑
t=0

P (Sn = i | T = t)P(T = t)

=

∞∑
t=0

∞∑
n=t

P (Sn = i | T = t)P(T = t),

since Sn 6= i for n < T. Now we use the spatial homogeneity of the walk to deduce that

Vi =

∞∑
t=0

V0P(T = t) = V0P(T <∞) ≤ V0. (5.7.10)

The mean number of time points n for which |Sn| ≤ K satisfies

∞∑
n=0

P (|Sn| ≤ K) =

K∑
i=−K

Vi ≤ (2K + 1)V0,

by (5.7.10), and hence

V0 ≥
1

2K + 1

∞∑
n=0

P (|Sn| ≤ K) . (5.7.11)



Now we use the law of large numbers. For ε > 0, it is the case that P (|Sn| ≤ nε) → 1 as n ↑ ∞,

so that there exists m such that P (|Sn| ≤ nε) > 1
2 for n ≥ m. If n ∈≤ K then P (|Sn| ≤ nε) ≤

P (|Sn| ≤ K) , so that

P (|Sn| ≤ K) >
1

2
for m ≤ n ≤ K/ε. (5.7.12)

Substituting (5.7.12) into ((5.7.11)), we obtain

V0 ≥
1

2K + 1

∑
m≤n≤K/ε

P (|Sn| ≤ K) >
1

2(2K + 1)

(
K

ε
−m− 1

)
.

This is valid for all large K, and we may therefore let K ↑ ∞ and ε ↓ 0 in that order, finding that

V0 =∞ as claimed.

It is now fairly straightforward to deduce that the walk is persistent. Let T (1) be the time

of the first return to 0, with the convention that T (1) = ∞ if this never occurs. If T (1) < ∞

we write T (2) for the subsequent time which elapses until the next visit to 0. It is clear from

the homogeneity of the process that, conditional on {T (1) < ∞}, the random variable T (2) has

the same distribution as T (1). Continuing likewise, we see that the times of returns to 0 are

distributed in the same way as the sequence T1, T1 + T2, . . . , where T1, T2, . . . are independent

identically distributed random variables having the same distribution as T (1). We wish to exclude

the possibility that P(T (1) =∞) > 0. There are several ways of doing this, one of which is to make

use of the recurrent-event analysis of Example 5.2.1. We shall take a slightly more direct route

here. Suppose that β = P(T (1) =∞) satisfies β > 0, and let I = min {i : Ti =∞} be the earliest

i for which Ti is infinite. The event {I = i} corresponds to exactly i − 1 returns to the origin.

Thus, the mean number of returns is
∑∞
i=1(i− 1)P(I = i) However, I = i if and only if Tj <∞ for

1 ≤ j < i and Ti =∞, an event with probability (1− β)i−1β. Hence the mean number of returns

to 0 is
∑∞
i=1(i− 1)(1− β)i−1β = (1− β)/β which is finite, This contradicts the infiniteness of V0,

and hence β = 0

We have proved that a walk whose jumps have zero mean must (with probability 1) return to

its starting point. It follows that it must return infinitely often, since otherwise there exists some

Ti which equals infinity, an event having zero probability.

Exercise 38. A sequence of biased coins is flipped; the chance that the rth coin shows a head is

Θr, where Θr is a random variable taking values in (0, 1). Let Xn be the number of heads after n

flips. Does Xn obey the central limit theorem when:

(a) the Θr are independent and identically distributed?

(b) Θr = Θ for all r, where Θ is a random variable taking values in (0, 1)?



5.8 Large deviations

Theorem 5.8.1 (Large deviation). Let X1, X2, . . . be independent identically distributed random

variables with mean µ, and suppose that their moment generating function M(t) = E
[
etX
]

is finite

in some neighbourhood of the origin t = 0. Define Λ(t) = logM(t) and

Λ∗(s) = sup
t∈R
{st− Λ(t)}, s ∈ R. (5.8.1)

Let a be such that a > µ and P(X > a) > 0. Then Λ∗(a) > 0 and

1

n
logP (Sn > na)→ −Λ∗(a) as n ↑ ∞. (5.8.2)

Proof. We may assume without loss of generality that µ = 0; if µ 6= 0, we replace Xi by Xi − µ,

noting in the obvious notation that ΛX(t) = ΛX−µ(t) + µt and Λ∗X(a) = Λ∗X−µ(a − µ). Assume

henceforth that µ = 0

We prove first that Λ∗(a) > 0 under the assumptions of the theorem. Since

at− Λ(t) = log

(
eat

M(t)

)
= log

(
1 + at+ o(t)

1 + 1
2σ

2t2 + o (t2)

)
,

for small positive t, where σ2 = V(X); we used the assumption that M(t) < ∞ near the origin.

For sufficiently small positive t, 1 + at+ o(t) > 1 + 1
2σ

2t2 + o
(
t2
)
, whence Λ∗(a) > 0 by (5.8.1).

Remark 5.8.2. Since Λ is convex with Λ′(0) = E[X] = 0, and since a > 0, the supremum of

at− Λ(t) over t ∈ R is unchanged by the restriction t > 0 which is to say that

Λ∗(a) = sup
t>0
{at− Λ(t)}, a > 0. (5.8.3)

Furthermore,

Λ is strictly convex wherever the second derivative Λ′′ exists. (5.8.4)

To see this, note that V(X) > 0 under the hypotheses of the theorem, implying that Λ′′(t) > 0.

The upper bound for P (Sn > na) is derived in much the same way as was Bernstein’s inequality

(2.2.4). For t > 0, we have that etSn > enatI{Sn>na}, so that

P (Sn > na) ≤ e−natE
[
etSn

]
=
{

e−atM(t)
}n

= e−n(at−Λ(t)).

This is valid for all t > 0, whence, by (5.8.3)

1

n
logP (Sn > na) ≤ − sup

t>0
{at− Λ(t)} = −Λ∗(a). (5.8.5)

More work is needed for the lower bound, and there are two cases which we term the regular

and non-regular cases. The regular case covers most cases of practical interest, and concerns the

situation when the supremum defining Λ∗(a) in (5.8.3) is achieved strictly within the domain of

convergence of the moment generating function M. Under this condition, the required argument



is interesting but fairly straightforward. Let T = sup{t : M(t) < ∞} noting that 0 < T ≤ ∞.

Assume that we are in the regular case, which is to say that there exists τ ∈ (0, T ) such that the

supremum in (5.8.3) is achieved at τ ; that is,

Λ∗(a) = aτ − Λ(τ). (5.8.6)

Since at−Λ(t) has a maximum at τ, and since Λ is infinitely differentiable on (0, T ), the derivative

of at− Λ(t) equals 0 at t = τ, and therefore

Λ′(τ) = a. (5.8.7)

Let F be the common distribution function of the Xi. We introduce an ancillary distribution

function F̃ , sometimes called an exponential change of distribution or a tilted distribution by

dF̃ (u) =
eτu

M(τ)
dF (u), (5.8.8)

which some may prefer to interpret as

F̃ (y) =
1

M(τ)

∫ y

−∞
eτudF (u).

Let X̃1, X̃2, . . . be independent random variables having distribution function F̃ , and write

S̃n = X̃1 + X̃2 + · · · + X̃n. We note the following properties of the X̃i. The moment generating

function of the X̃i is

M̃(t) =

∫ ∞
−∞

e|udF̃ (u) =

∫ ∞
−∞

e(t+τ)u

M(τ)
dF (u) =

M(t+ τ)

M(τ)
. (5.8.9)

The first two moments of the X̃i satisfy

E
[
X̃i

]
= M̃ ′(0) =

M ′(τ)

M(τ)
= Λ′(τ) = a by (5.8.7)

V
[
X̃i

]
= E

[
X̃2
i

]
− E

[
X̃i

]2
= M̃ ′′(0)− M̃ ′(0)2

= Λ′′(τ) ∈ (0,∞) by (5.8.4)

(5.8.10)

since S̃n is the sum of n independent variables, it has moment generating function(
M(t+ τ)

M(τ)

)n
=
E
(
e(t+τ)Sn

)
M(τ)n

=
1

M(τ)n

∫ ∞
−∞

e(t+τ)udFn(u)

where Fn is the distribution function of Sn. Therefore, the distribution function F̃n of S̃n satisfies

dF̃n(u) =
eτu

M(τ)n
dFn(u). (5.8.11)

Let b > a. We have that

P (Sn > na) =

∫ ∞
na

dFn(u)

=

∫ ∞
na

M(τ)ne−τudF̃n(u) by (5.8.11).



≥M(τ)ne−τnb
∫ nb
na
dF̃n(u)

≥ e−n(τb−Λ(τ))P
(
na < S̃n < nb

)
,

since the X̃i have mean a and non-zero variance, we have by the central limit theorem applied to

the X̃i that P
(
S̃n > na

)
→ 1

2 as n ↑ ∞, and by the law of large numbers that P
(
S̃n < nb

)
→ 1.

Therefore,

1

n
logP (Sn > na) ≥ −(τb− Λ(τ)) +

1

n
logP

(
na < S̃n < nb

)
→ −(τb− Λ(τ)) as n ↑ ∞

→ −(τa− Λ(τ)) = −Λ∗(a) as b ↓ a, by 5.8.6.

This completes the proof in the regular case.

Finally, we consider the non-regular case. Let c be a real number satisfing c > a, and write

Zc = min{Z, c}, the truncation of the random variable Z at level c. since P (Xc ≤ c) = 1 we

have that M c(t) = E
[
etX

c] ≤ etc for t > 0, and therefore M(t) < ∞ for all t > 0. Note that

E [Xc] ≤ E[X] = 0, and E [Xc] → 0 as c ↑ ∞, by the monotone convergence theorem. since

P(X > a) > 0, there exists b ∈ (a, c) such that P(X > b) > 0. It follows that Λc(t) = logM c(t)

satisfies

at− Λc(t) ≤ at− log
{

etbP(X > b)
}
→ −∞ as t ↑ ∞

We deduce that the supremum of at− Λc(t) over values t > 0 is attained at some point τ = τ c ∈

(0,∞). The random sequence Xc
1 , X

c
2 , . . . is therefore a regular case of the large deviation problem,

and a > E [Xc] , whence

1

n
logP

(
n∑
i=1

Xc
i > na

)
→ −Λc∗(a) as n ↑ ∞, (5.8.12)

by the previous part of this proof, where

Λc∗(a) = sup
t>0
{at− Λc(t)} = aτ − Λc(τ). (5.8.13)

Now Λc(t) = E
[
etX

c]
is non-decreasing in c when t > 0, implying that Λc∗ is non-increasing.

Therefore there exists a real number Λ∞∗ such that

Λc∗(a) ↓ Λ∞∗ as c ↑ ∞. (5.8.14)

Since Λc∗(a) < ∞ and Λc∗(a) ≥ −Λc(0) = 0, we have that 0 ≤ Λ∞∗ < ∞. Evidently

Sn ≥
∑n
i=1X

c
i , whence

1

n
logP (Sn > na) ≥ 1

n
logP

(
n∑
i=1

Xc
i > na

)
,

and it therefore suffices by (5.8.12)-(5.8.14) to prove that

Λ∞∗ ≤ Λ∗(a). (5.8.15)



Since Λ∞∗ ≤ Λc∗(a), the set Ic = {t ≥ 0 : at− Λc(t) ≥ Λ∞∗} is non-empty. Using the smoothness

of Λc, we see that Ic is a non-empty closed interval. since Λc(t) is non-decreasing in c, the sets

Ic are non-increasing. since the intersection of nested compact sets is non-empty, the intersection⋂
c>a Ic contains at least one real number ζ. By the monotone convergence theorem, Λc(ζ)→ Λ(ζ)

as c ↑ ∞ whence

aζ − Λ(ζ) = lim
c↑∞
{aζ − Λc(ζ)} ≥ Λ∞∗,

so that

Λ∗(a) = sup
t>0
{at− Λ(t)} ≥ Λ∞∗,

as required in (5.8.15).

Exercise 39. Show that the moment generating function of X is finite in a neighbourhood of

the origin if and only if X has exponentially decaying tails, in the sense that there exist positive

constants λ and µ such that P(|X| ≥ a) ≤ µe−λa for a > 0.



Chapter 6

Solutions

6.1 Chapter 1

Solution (1). (i) A ∩B = (Ac ∪Bc)
c
,

(ii) A\B = A ∩Bc = (Ac ∪B)
c
,

(iii) A∆B = (A\B) ∪ (B\A) = (Ac ∪B)
c ∪ (A ∪Bc)

c
.

Now F is closed under the operations of countable unions and complements, and therefore each of

these sets lies in F .

Solution (2). By the continuity of P,

P

( ∞⋂
r=1

Ar

)
= lim
n↑∞

P

(
n⋂
r=1

Ar

)
= lim
n↑∞

[
1− P

((
n⋂
r=1

Ar

)c)]

= 1− lim
n↑∞

P

(
n⋃
r=1

Acr

)
≥ 1− lim

n↑∞

n∑
r=1

P (Acr) = 1.

Solution (3).

One cannot compute probabilities without knowing the rules governing the conditional probabilities.

If the first door chosen conceals a goat, then the presenter has no choice in the door to be opened,

since exactly one of the remaining doors conceals a goat. If the first door conceals the car, then a

choice is necessary, and this is governed by the protocol of the presenter. Consider two ’extremal’

protocols for this latter situation.

(i) The presenter opens a door chosen at random from the two available.

(ii) There is some ordering of the doors (left to right, perhaps) and the presenter opens the earlier

door in this ordering which conceals a goat.

Analysis of the two situations yields p = 2
3 under (i), and p = 1

2 under (ii).

Let α ∈
[

1
2 ,

2
3

]
, and suppose the presenter possesses a coin which falls with heads upwards with

probability β = 6α − 3. He flips the coin before the show, and adopts strategy (i) if and only if
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the coin shows heads. The probability in question is now 2
3β + 1

2 (1 − β) = α You never lose by

swapping, but whether you gain depends on the presenter’s protocol.

Solution (4). Clearly

P (Ac ∩B) = P(B\{A ∩B}) = P(B)− P(A ∩B)

= P(B)− P(A)P(B) = P (Ac)P(B)

For the final part, apply the first part to the pair B,Ac.

6.2 Chapter 2

Solution (5). Set Y = aX + b. We have that

P(Y ≤ y) =

 P
(
X ≤ y−b

a

)
= F

(
y−b
a

)
if a > 0,

P
(
X ≥ y−b

a

)
= 1− limx↑ y−b

a
F (x) if a < 0.

Finally, if a = 0, then Y = b, so that P(Y ≤ y) equals 0 if b > y and 1 if b ≤ y.

Solution (6). Let p be the potentially embarrassed fraction of the population, and suppose that

each sampled individual would truthfully answer ”yes” with probability p independently of all other

individuals. In the modified procedure, the chance that someone says yes is p+ 1
2 (1−p) = 1

2 (1+p).

If the proportion of yes’s is now φ, then 2φ− 1 is a decent estimate of p.

The advantage of the given procedure is that it allows individuals to answer ”yes” without their

being identified with certainty as having the embarrassing property.

Solution (7). For y lying in the range of g, {Y ≤ y} = {X ≤ g−1(y)} ∈ F .

Solution (8). Write fxw = P(X = x,W = w). Then f00 = f21 = 1
4 , f10 = 1

2 , and fxw = 0 for

other pairs x,w.

6.3 Chapter 3

Solution (9). The number X of heads on the second round is the same asif we toss all the coins

twice and count the number which show heads on both occasions. Each coin shows heads twice with

probability p2, so P(X = k) =
(
n
k

)
p2k
(
1− p2

)n−k
.

Solution (10). We have that

P(X = 1, Z = 1) = P(X = 1, Y = 1) =
1

4
= P(X = 1)P(Z = 1).

This, together with three similar equations, shows that X and Z are independent. Likewise, Y and

Z are independent. However

P(X = 1, Y = 1, Z = −1) = 0 6= 1

8
= P(X = 1)P(Y = 1)P(Z = −1)



so that X,Y, and Z are not independent.

Solution (11). For each r, bet {1 + π(r)}−1 on horse r. If the rth horse wins, your payoff is

{π(r) + 1}{1 + π(r)}−1 = 1, which is in excess of your total stake
∑
k{π(k) + 1}−1.

Solution (12). Let Ij be the indicator function of the event that the outcome of the (j + 1)th

toss is different from the outcome of the jth toss. The number R of distinct runs is given by

R = 1 +
∑n−1
j=1 Ij . Hence

E[R] = 1 + (n− 1)E[I1] = 1 + (n− 1)2pq

where q = 1− p. Now remark that Ij and Ik are independent if |j − k| > 1, so that

E
{

(R− 1)2
}

= E


n−1∑
j=1

Ij

2
 = (n− 1)E[I1] + 2(n− 2)E[I1I2]

+
{

(n− 1)2 − (n− 1)− 2(n− 2)
}
E[I1]2.

Now E[I1] = 2pq and E[I1I2] = p2q + pq2 = pq, and therefore

V[R] = V[R− 1] = (n− 1)E[I1] + 2(n− 2)E[I1I2]− {(n− 1) + 2(n− 2)}E[I1]2

= 2pq(2n− 3− 2pq(3n− 5)).

Solution (13). The total number H of heads satisfies

P(H = x) =

∞∑
n=x

P(H = x | N = n)P(N = n) =

∞∑
n=x

 n

x

 px(1− p)n−xλ
ne−λ

n!

=
(λp)xe−λp

x!

∞∑
n=x

{λ(1− p)}n−xe−λ(1−p)

(n− x)!
.

The last summation equals 1, since it is the sum of the values of the Poisson mass function with

parameter λ(1− p).

Solution (14). max{u, v} = 1
2 (u+ v) + 1

2 |u− v|, and therefore

E
[
max

{
X2, Y 2

}]
=

1

2
E
[
X2 + Y 2

]
+

1

2
E|(X − Y )(X + Y )|

≤ 1 +
1

2

√
E [(X − Y )2]E [(X + Y )2]

= 1 +
1

2

√
(2− 2ρ)(2 + 2ρ) = 1 +

√
1− ρ2,

where we have used Cauchy-Schwarz inequality.

Solution (15). Clearly

E[S | N = n] = E

[
n∑
i=1

Xi

]
= µn,

and hence E[S | N ] = µN. It follows that E[S] = E[E[S | N ]] = E[µN ].



Solution (16). By the convolution theorem,

P(X + Y = z) =
∑
k

P(X = k)P(Y = z − k)(
k + 1

(m+ 1)(n+ 1)
if 0 ≤ k ≤ m ∧ n

=


(m∧n)+1

(m+1)(n+1) if m ∧ n < k < m ∨ n
m+n+1−k

(m+1)(n+1) if m ∨ n ≤ k ≤ m+ n

where m ∧ n = min{m,n} and m ∨ n = max{m,n}.

Solution (17). Consider an infinite sequence of tosses of a coin, any one of which turns up heads

with probability p. With probability one there will appear a run of N heads sooner or later. If the

coin tosses are ’driving’ the random walk, then absorption occurs no later than this run, so that

ultimate absorption is (almost surely) certain. Let S be the number of tosses before the first run of

N heads. Certainly P(S > Nr) ≤
(
1− pN

)r
, since Nr tosses may be divided into r blocks of N

tosses, each of which is such a run with probability pN . Hence P(S = s) ≤
(
1− pN

)bs/Nc
, and in

particular E
[
Sk
]
<∞ for all k ≥ 1. By the above argument, E

[
T k
]
<∞ also.

Solution (18). By considering the random walk reversed, we see that the probability of a first visit

to S2n at time 2k is the same as the probability of a last visit to S0 at time 2n− 2k. The result is

then immediate from the arc sine law for the last visit to the origin.

6.4 Chapter 4

Solution (19).

(i) The distribution function FY of Y is

FY (y) = P(Y ≤ y) = P(aX ≤ y) = P(X ≤ y/a) = FX(y/a)

So, differentiating, fY (y) = a−1fX(y/a).

(ii) Certainly

F−X(x) = P(−X ≤ x) = P(X ≥ −x) = 1− P(X ≤ −x)

since P(X = −x) = 0. Hence f−X(x) = fX(−x). If X and −X have the same distribution function

then f−X(x) = fX(x), whence the claim follows. Conversely, if fX(−x) = fX(x) for all x, then by

substituting u = −x,

P(−X ≤ y) = P(X ≥ −y) =

∫ ∞
−y

fX(x)dx =

∫ y

−∞
fX(−u)du =

∫ y

−∞
fX(u)du = P(X ≤ y),

whence X and −X have the same distribution function.

Solution (20). Let N be the required number. Then P(N = n) = F (K)n−1[1− F (K)] for n ≥ 1,

the geometric distribution with mean [1− F (K)]−1.



Solution (21). We have that

1 = E
[∑n

1 Xi

Sn

]
=

n∑
i=1

E [Xi/Sn] .

By symmetry, E [Xi/Sn] = E [X1/Sn] for all i, and hence 1 = nE [X1/Sn] . Therefore

E [Sm/Sn] =

m∑
i=1

E [Xi/Sn] = mE [X1/Sn] = m/n.

Solution (22). Writing Φ for the N (0, 1) distribution function, P(Y ≤ y) = P(X ≤ log y) =

Φ(log y). Hence

fY (y) =
1

y
fX(log y) =

1

y
√

2π
e−

1
2 (log y)2 , 0 < y <∞.

Solution (23). The condition is that E[Y ]V[X] + E[X]V[Y ] = 0.

Solution (24). Take Y to be a random variable with mean ∞, say fY (y) = y−2 for 1 ≤ y < ∞,

and let X = Y Then E[Y | X] = X which is (almost surely) finite.

Solution (25). Arguing directly,

P(sinX ≤ y) = P
(
X ≤ sin−1 y

)
=

2

π
sin−1 y, 0 ≤ y ≤ 1,

so that fY (y) = 2/
(
π
√

1− y2
)

, for 0 ≤ y ≤ 1. Alternatively, make a one-dimensional change of

variables.

Solution (26). First recall that P(|X| ≤ y) = 2Φ(y)−1. We shall use the fact that U = (X+Y )/
√

2,

V = (X−Y )/
√

2 are independent and N (0, 1) distributed. Let ∆ be the triangle of R2 with vertices

(0, 0), (0, Z), (Z, 0). Then

P(Z ≤ z | X > 0, Y > 0) = 4P((X,Y ) ∈ ∆) = P
(
|U | ≤ z√

2
, |V | ≤ z√

2

)
by symmetry

= 2

(
2Φ

(
z√
2

)
− 1

)2

,

whence the conditional density function is

f(z) = 2
√

2

(
2Φ

(
z√
2

)
− 1

)
φ

(
z√
2

)
.

Finally,

E[Z | X > 0, Y > 0] = 2E[X | X > 0, Y > 0]

= 2E[X | X > 0] = 4E
[
XI{X>0}

]
= 4

∫ ∞
0

x√
2π

e−
1
2x

2

dx.

Solution (27). Since V is symmetric, there exists a non-singular matrix M such that M′ =

M−1 and V = MΛM−1, where Λ is the diagonal matrix with diagonal entries the eigenvalues



λ1, λ2, . . . , λn of V. Let Λ
1
2 be the diagonal matrix with diagonal entries

√
λ1,
√
λ2, . . . ,

√
λn; Λ

1
2

is well defined since V is non-negative definite. Writing W = MΛ
1
2 M′, we have W = W′ and

W2 =
(
MΛ

1
2 M−1

)(
MΛ

1
2 M−1

)
= MΛM−1 = V

as required. Clearly W is non-singular if and only if Λ
1
2 is non-singular. This happens if and only

if λi > 0 for all i, which is to say that V is positive definite.

Solution (28). If m and n are integral, the following argument is neat. Let Z1, Z2, . . . , Zm+n be

independent N (0, 1) variables. Then X1 has the same distribution as Z2
1 +Z2

2 + · · ·+Z2
m, and X2

the same distribution as Z2
m+1 +Z2

m+2 + · · ·+Z2
m+n. Hence X1 +X2 has the same distribution as

Z2
1 + · · ·+ Z2

m+n, i.e., the χ2(m+ n) distribution.

Solution (29). Uniform on the set {1, 2, ..., n}.

Solution (30). Suppose that E[u(X)] ≥ E[u(Y )] for any increasing function u. Let c ∈ R and set

u = Ic where

Ic(x) =

 1 if x > c,

0 if x ≤ c,

to find that P(X > c) = E[Ic(X)] ≥ E[Ic(Y )] = P(Y > c). Conversely, suppose that X ≥st Y .

We may assume by Thm. 4.12.2 that X and Y are defined on the same sample space, and that

P(X ≥ Y ) = 1. Let u be an increasing function. Then P(u(X) ≥ u(Y )) ≥ P(X ≥ Y ) = 1, whence

E[u(X)− u(Y )] ≥ 0 whenever this expectation exists.

Solution (31). Choose the x -axis along AB. With P = (X,Y ) and G = (γ1, γ2) ,

E[|ABP|] =
1

2
|AB|E[Y ] =

1

2
|AB|γ2 = |ABG|.

6.5 Chapter 5

Solution (32). We have that

E
[
sX
]

= E
[
E
[
sX | U

]]
=

∫ 1

0

{1 + u(s− 1)}ndu =
1

n+ 1

1− sn+1

1− s
,

the probability generating function of the uniform distribution.

Solution (33). We have for |s| < µ+ 1 that

E
[
sX
]

= E
[
E
[
sX | Λ

]]
= E

[
eΛ(s−1)

]
=

µ

µ− (s− 1)
=

µ

µ+ 1

∞∑
k=0

(
s

µ+ 1

)k
.

Solution (35). Let X have the Cauchy distribution, with characteristic function φ(s) = e−|s|.

Setting Y = X, we have that φX+Y (t) = φ(2t) = e−2|t| = φX(t)φY (t). However, X and Y are

certainly dependent.



Solution (36). We have that

φX,Y (s, t) = E
[
eisX+itY

]
= φsX+tY (1).

Now sX + tY is N
(
0, s2σ2 + 2stστρ+ τ2

)
, where σ2 = V[X], τ2 = V[Y ], ρ = corr(X,Y ), and

therefore

φX,Y (s, t) = exp

{
−1

2

(
s2σ2 + 2stστρ+ t2τ2

)}
.

The fact that φX,Y may be expressed in terms of the characteristic function of a single normal

variable is sometimes referred to as the Cramér-Wold device.

Solution (37). By a two-dimensional version of the inversion Theorem 5.6.1 applied to E
[
eitX

′
]
, t =

(t1, t2),

∂

∂ρ
P (X1 > 0, X2 > 0) =

∂

∂ρ

∫ ∞
0

∫ ∞
0

{
1

4π2

∫∫
R2

exp

(
−itx′ − 1

2
tVt′

)
dt

}
dx

=
∂

∂ρ

1

4π2

∫∫
R2

exp
(
− 1

2tVt′
)

(it1) (it2)
dt

=
1

4π2

∫∫
R2

exp

(
−1

2
tVt′

)
dt =

2π
√
|V−1|

4π2
=

1

2π
√

1− ρ2
.

We integrate with respect to ρ to find that,

P (X1 > 0, X2 > 0) =
1

4
+

1

2π
sin−1(ρ).

Solution (38). (a) Yes, because Xn is the sum of independent identically distributed random

variables with non-zero variance.

(b) It cannot in general obey what we have called the central limit theorem, because V[Xn] =(
n2 − n

)
V[Θ] + nE[Θ](1− E[Θ)] and nV[X1] = nE[Θ](1− E[Θ]) are different whenever V[Θ] 6= 0.

Indeed the right ”normalization’ involves dividing by n rather than
√
n. It may be shown when

V[Θ] 6= 0 that the distribution of Xn/n converges to that of the random variable Θ.

Solution (39). Suppose that M(t) = E
[
etX
]

is finite on the interval [−δ, δ]. Now, for a >

0,M(δ) ≥ eδaP(X > a), so that P(X > a) ≤ M(δ)e−δa. Similarly, P(X < −a) ≤ M(−δ)e−δa

Suppose conversely that such λ, µ exist. Then

M(t) ≤ E
[
e|tX|

]
=

∫
[0,∞)

e|t|xdF (x),

where F is the distribution function of |X|. Integrate by parts to obtain

M(t) ≤ 1 +
[
−e|t|x[1− F (x)]

]∞
0

+

∫ ∞
0

|t|e|t|x[1− F (x)]dx

(the term ’1’ takes care of possible atoms at 0). However 1− F (x) ≤ µe−λx, so that M(t) <∞ if

|t| is sufficiently small.
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