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The prototype PDEs to be solved
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e Systems of linear transport equations with oscillatory forces or initial
data

 The system is coupled through the force
e Part of the force simulates the (non-adiabatic) phase information;

 The interaction term resembles the Berry connection in quantum
dynamics

e Random uncertainty in band-gap, or initial data

e Solutions highly oscillatory in space, time and uncertainty variables



Computational difficulty

 Nyquist-Shannon sampling theorem: need a few
grid points per wave length
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* This is a daunting talk for most high frequency
waves, including quantum dynamics, compuations
in high dimensions
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Goal

develop schemes that can get the correct
(pointwise) solutions without resolving the
oscillations and the numerical schemes converge

uniformly in \epsilon

-- defies the Nyquist-Shannon sampling restriction in
certain degree



Motivation:
Band crossings: non-adiabatic gunatum phenomena

Inter-band transition is a general quantum mechanical
Phenomenon; it causes difficulties in semi-classical

approximations g
e Born-Oppenheimer approximation: gl /7"{
non-adiabatic surface hopping -

e Bloch decomposition in quantum
dynamic with periodic potentials: crossing of Bloch
bands or influence of external potentials

e elastic and electromagnetic waves with polarization effect

e Graphene: couplinF of different bands near the Dirac point; effect
of electric potentia

 |n this talk we concentrate on surface hopping



The N-body Schrodinger equation

thoy®(t,x,y) = HP(t,x,y),
®(0.x.y) = Po(x,y).
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Dimension curse: 75 dimension for CO2; 162
dimension for benzene



The Born-Oppenheimer approximation

e After non-dimensionlization:

N 0 ‘
icO®(t,x.y) = — Z ‘Ea% O(t,x,y) + He(y. x)®(t. %, y).

j=1
Where < = V7 is typically between 0.01 and 0.1

e First solve an electronic eigenvalue problem (DFT,
etc.) H.(y,x)pr(y:x) = Er(xX)or(y;x) ¥YxeRY, k=1.2,....
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The nucleonic Schrodinger equation

e Project to the electronic eigenspace:

O(t.x.y) = Y\t x)or(y; x).
k
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describe inter-band transitions which are associated with chemical
reaction such as charge transfer, photoisomerization, or
photodissociation, etc.



The B-O (or adiabatic) approximation

e Assume{FE(x)} are well separated (adiabatic):

then one canignore (}; to obtain:
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Then the classical limit £ — 0 can be taken easily.

 Mathematical study of the adiabatic B-O approximation and band
crossing: Gerard, Hagedorn, Lasser, Spohn, Teufel, Fermanian...

* However, when {E(x)} are not well-separated, one cannot ignore
(',; since the ron-adiabatic quantum transition is significant. Then

the B-O approximation breaks down and one needs improved models



ransition between electronic states
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The Landau-Zener formula

The Landau—Zener formula is an analytic solution to the
equations of motion governing the transition dynamics
of a 2-level quantum mechanical system, with a time-
dependent Hamiltonian varying such that the energy
separation of the two states is a linear function of time.
The formula, giving the probability of a diabatic (not
adiabatic) transition between the two energy states, was
published separately by Lev Landau, Clarence Zener, Ernst
Stueckelberg, and Ettore Majorana, in 1932 (from
Wikipedia)
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The surface hopping method
(Tully “71)

* Particles follow the classical trajectory determined
by the classical Hamiltonian; at crossing region
they “hop” with transition probability to different
energy level (Hamiltonian system for different
potential surfaces)

A Monte-Carlo procedure; or particle splitting

* |t does not give correct discription of interference
(for example when two particles arrive in the
hopping points at the same time)



A two-level nucleonic Schrodinger
system
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The Hamiltonian is given by H = —-';—ﬂ + V(x). The dimensionless semiclassical
parameter £ > () is given by = = ‘/_ where m and M are the masses of an electron
and a nucl{ us, respectively. Then, all oscillations are roughly characterized by the
frequency 1/z, which typically ranges between 100 and 1,000, Hereatter, we will treat
¢ as a small parameter and discuss the semiclassical imit of the Schrodinger equations
(12) and (13).

The potential V(x) has eigenvalues A=) = trV/(x) £ /vy(x)? + w(x)2. Two
energy levels are called crossing at a point x, € R* if At [x,.} = A7 (x,). Suchac I'CIHHil'lg
is called conical if the vectors Vyxvi(x,) and Vyva(x,) are linearly independent. If
all the crossings are conical, the crossing set § = {x € R*|A\*(x) = A (x)} s a
submanifold of codimension two in R [11].




The Wigner transform

We(°)(x. k) = (2m) 72 / e EYf (X N _y) Ut (x + 3y)dy
R2 2 2

lim We(t, x, k) — u(t,x, k),

e—0
which is called the Wigner measure or semiclassical measure. We now precisely de-
scribe this limit.
First, for the Schrodinger equation (12), the complex 2 x 2 matrix-valued symbol
is given by

P(x.k) \kF + iV (%),

where k is the conjugate variable to the position variable x. The two eigenvalues of
—1P(x.k) are

A(x,k) = % +trV (%) + 1 (x)2 + v2(x)2,

and

Ao (x. k) = ¥+t11 — Vv1(x)? + va(x)2.



Semiclassical limit (adiabatic case)

For (x.k) € Q, we denote by y-(x, k) the column eigenvector corresponding to the
cigenvalue A\ (x.k) and the matrix IT-(x. k) = xr(x.k)(xr(x.k))7T is the orthogonal
projection onto the eigenspace associated to A (x, k).

By Theorem 6.1 of [8]. outside the crossing set S, the Wigner measure u(t,-)
commutes with the projectors 1L, and thus can be decomposed as

u(t, ) = Tyu(t, )T + Mau(t, - )Ts.
Since the eigenspaces are one-dimensional, the decomposition is simplified to be
u(f.. ) = uq(t, )Ty + us(t, ),
where the scalar function u,(¢,x, k), determined by projection

ur(t,x, k) = tr(Il;u(t, x. k))
(-)t“T T vaT : VXIU'T - VX)\T : Vk'uq’ — O

e Lions-Paul, Gerard-Markowich-Mauser-Poupaud, Keller-Papanicolaou-
Ryzhik, ...



The Landau Zener transition probability

* This analysis is not valid at hopping point thus
cannot handle interband transtion.

 The Landau-Zener probability of transition between
the two bands:

7 (v(xo) A Viv(x0)ko)?

T(x0.ko) = exp [ -~
(X0, ko) Lkp( £ IV v(x0)kol3 )

e Even by incorporating the Landau-Zener probability
(surface hopping method) it still does not decribe
correctly the interference (Berry connection, Berry
phase, etc.



A semiclassical model for avoided crossing
(Chai-Li-Jin-Morandi, MMS 2014)

e The surface hopping algorithm does not account for phase
information, thus cannot handle resonance, and dynamic phase
factor such as Berry phase, Berry connection etc. when two wave
packets arrive at the crossing points at the same time from
different bands (related to quantum hall effect)

Abb. 1: Der "klassische"” Mensch. Abb. 2: Der "quantenmechanische" Mensch.
http://www.teilchen.at/kdm/45 Sir Michael Berry
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The main idea: evolve the entire Wigner matrix semiclassically

* The previous model only keeps track of the
“diagonal terms” of the Wigner matrix
corresponding to the projection onto the two
eigenspaces of the Hamiltonian

e But the off-diagonal term contains important inter-
band transition information that should not be
ignored



The semiclassical model

e Via the Wigner transform and the Weyl quantization, we
expand the Wigner equation in £ to obtain the following

asymptotic model after ignoring o(:2) terms
9 f+ o
% = —p - Vaf +Ve(U+E) -VpfT +bf +bf,
af ] o
j—t = —p Vaf +Va(U—-E) -Vpf~ —b'f —bf,
2F .

a . . _ .
S Vaf £ VUV f B (T f7) 4 (67 b f 4 f

* It is a system of Liouville equations (thus hyperbolic) with
oscillatory forcing terms that describe inter-band transitions

* The coefficients of /*: (b (1)) — b (a(1))) — = Eax(1)
are exactly the time derivative of the Berry phase



Classical approaches for oscillations

* No known numerical methods that can defy Shanon’s Sampling
System for both time and space oscillations

e Classical appraoches:
geometric optics/WKB: not good after caustics

multivalued solution (Sparber-Markowich-Mauser) : cannot
handle quantum interference

Gaussian beam/wavepackets Az, At = O(\/E}_

-

=

Review: Jin-Markowich-Sparber, Mathematical and Computational
Methods for Semiclassical Schrodinger equations, Acta Numerica,
2011



Our idea

e Consider a toy problem

iE(t, )

~

e

([ a(x) 0 (0 0 _( € Chia
A(‘E)_( 0 (Lg(:lﬁ))’ D_(O —1)’ C_(Cm Cao

e Use a nonlinear geometric optics (NGO) ansatz

Ou+ A(x)0,u+ R(u) =

Du+ Cu, u(t=0,2)=uy(x)

Ut,z,S(t,x)/c) =ul(t, x).

Keller, Diperna, Majda, Rauch, Joyt, etc. 80-90):
Mathematical theory, no one uses it for computation



S + asd, S = E, S(0,x) =0,

@Jfl + a,lc‘?xUl -+ 1[((1/1 — ag)(‘?mS + E}d-,-le + Bl((]l (]2) = 011(]1 + 012(]2:
€
E

athQ + (Lgaxljg -+ B’Q((]]_g (]2) — —?

[GTUQ + ZUQ] + Co1U1 + CyoUs.
Setting Vo = €'"Us, we finally obtain

| _. |
[ 0.U, + a,0,U,+ Ry(Uy, e~ V) — Ol U,y — Croe™ ™V = = [E+ (a1 = 22),5)0- Uy,

| OVa+a20, Vo + e Ro(Uy, e7 " Va) = Coye" Uy — CoaVo = _?aTVQ.




e Unlike in geometric optics, no caustics, phase
equation is linear, do not throw away terms:
uniformly accurate in epsilon

e Choose initial data such that (Kreiss ‘80, Croseilles-
Lemou-Mehat ‘13) (for time oscillations)

* 1) match the initial data of f

e 2) solution is smooth (up to second order in
epsilon)



e Using Chapman-Enskog expansion for the equation:

Up(t,z,7) = Ud(t, x) +

Us(t,z,7) = Vo (t.z)e™ '™ —

"ifcjlgﬁ_ﬁ-

VI (t, x O(c?
E(t,x) + (ay(x) — ax(x))0,.S(t,z) ~ (t,2) + O(e7)

e~
ey

E(t,x)

U(t, )+ O(c?).

e Ignore theO(c?) term and then match the initial

condition

(

Uy (0,2, 7)

\

Us(0,2,7) =

KR \
__rin ick C"lQ (e—?'.'r 1) in
— J1 ‘ oYal Y ’ o 2 >
E? — 22050y,

(e—"i‘!‘ o 1) ir'.-n. + e—i‘r 2333

E? — 221509



e Spectral approximation in 7 (due to periodicity of
solution in 7) and upwind type finite difference
approximations

e Interpolation to get u from U

 We can prove that U and u has the same limit and
the method converges strongly in maximum norm
(first order in space and time) uniformly in

]

.-\—'

e Same strategy applied to the two band
semiclassical model for surface hopping

E)ff+—l—p-vmf+— ({ +E)-Vuft=bf+ biTi,_
O f +p-V,f — _E)- pf_——bf*—b?.
Of' +p- Vf+V( Vf——e—f + 0 (f = f)+ (b —b)



Numerical examples

* Underresolved time oscillations
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Figure 8: Time history of R. Comparison between a reference solution and the
solution of the new method (with initial correction and exact computation for
S), for e =5-107%, t; = 1. The right part is a zoom of the left part.
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* We are defying Shanon’s Sampling Theorem in
both time and space!



Uncertainty in oscillatory coefficients

Oru+ c(x)0ru + r(u) = u, w(0,x,2) = uin(z, 2)

* a(x,z) arises in potential energy surface which are
obtained by empirical laws or numerical
approximations thus usually are uncertain

e zrandom variable with a given PDF
e Solving directly: for constant c, analytic solution is

ia(z)

w(t,z,z) =e = ‘win(x — ct,z)

Oyu = O(1/e?)



Generalized polynomial chaos (gPC) approach

* The PCor generalized PC (gPC) approach first introduced by
Wiener, followed by Cameron-Martin, and generalized by
Ghanem and Spanos, Xiu and Karniadakis etc. has been
shown to be very efficient in many UQ applications when the
solution has enough regularity in the random variable

* Letzbe arandom variable with pdf p(_g] > ()

* Let ®,,(2) be the orthonormal polynomials of degree m
corresponding to the weight p(z) > 0

/ B;(2)®;(2)p(2) dz = &



The Wiener-Askey polynomial chaos for random variables
(table from Xiu-Karniadakis SISC 2002)

Random variables ¢ | Wiener-Askey chaos {®(()} Support
Continuous Gaussian Hermite-Chaos (=00, o)
Gamma Laguerre-Chaos 0, )
Beta Jacobi-Chaos a, bl
Uniform Legendre-Chaos [a, b]
Discrete Poisson Charlier-Chaos {0,1,2,...}
Binomial Krawtchouk-Chaos 10,1, ..., N}
Negative Binomial Meixner-Chaos 10,1,2,...}
Hypergeometric Hahn-Chaos 10,1, ..., \'
TABLE 4.1

The correspondence of the type of Wiener-Askey polynomial chaos and their underlying random
variables (N = 0 is a finite integer).



Generalized polynomial chaos
stochastic Galerkin (gPC-sG) methods

Take an orthonormal polynomial basis {®;(z)} in the
random space

Expand functions into Fourier series and truncate:
o K
= 504(2) % 3 fle) = 1)

Substitute into system, Galerkin projection. Then

one gets a deterministic system of the gPC
coefficients (fo,..., fx)



Accuracy and efficiency

* We will consider the gPC-stochastic Galerkin
(gPC-SG) method

* Under suitable regularity assumptions this
method has a spectral accuracy

* Much more efficient than Monte-Carlo
samplings (halfth-order)



How about NGO-gPC?

WV + c(x)o,V + e Ty ( V)= — nr, % AV

* The I-th derivative in z satisfies almost the
sameequation as the I-th derivative in x, so the z-
regularity is the same as the x-regularity (smooth
only to second order)

=» no spectral accuracy!



Our new idea

Vit,z,z,7) = W(S(t,z,2),x,2,7), (2.33)

where S solves (2.20). Then, W is the solution to the following problem:

AW+ ——a.W + ! e (W) = —EBTWI,
a(zx, z) a(zr,z) €
r _ o = , o )
W(0,z,z,7) =V(0,2,2,7) = tin(x,2) + a(z.2) [Q(U: Uin,Z) — G(T, Win, z)} :

with G(7,tin,z) = L~ (T — M)[e” " r(e win(z,2))] . (2.34)



Uniform regularity in x and z!

Proposition 2.1 Let W be the solution of (2.34) on [0, T], T > 0, with periodic boundary
condition in x and 7. Then, up to the second order derivative in s, and arbitrary order in x

and z derivatives of W are bounded uniformly in = € [0,1], that is, 3C > 0 independent of =
such that, ¥s € [0,T)

||d£dgd:‘4r(8)||I47’:‘:$(I¢2(Tf{z)dz)} < C* fOT P = U! 11 21 and q,T € N.

* This implies we can get a scheme of arbitrary high
order accuracy in x and z, uniformly in «

L

K
||W — Z ﬁ:, :;j|\L2(w[z)dz) < ﬁ—q Vq positive integer,

J=1
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Some comments

e All numerical parameters (mesh size, time step, polynomial degrees)
made independent of the wave length

 The method works for oscillatory source term or oscillatory initial data,
not both

* If one needs more details of quantum transition near the crossing zone
one should use smaller mesh size near the crossing zone: local mesh
refinement. Since the scheme is uniformly accurate in £, this can be
done quite easily

e To recover the oscillations, one can use different coarse mesh points in
different—but parallel—runs and then rebuild the oscillatory curve—
this makes highly oscillatory computations possible

e Same approach works for crossing of Bloch band for Schrodinger
equation with periodic potentials and graphene modeling

 More theoretical study and numerical experiments are needed but so
far the preliminary results look very promising
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