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The prototype PDEs to be solved

• Systems of linear transport equations with oscillatory forces or initial 
data

• The system is coupled through the force

• Part of the force simulates the (non-adiabatic) phase information;
• The interaction term resembles the Berry connection in quantum 

dynamics 
• Random uncertainty in band-gap, or initial data

• Solutions highly oscillatory in  space, time and uncertainty variables



Computational difficulty

• Nyquist-Shannon sampling theorem:  need a few 
grid points per wave length

• This is a daunting talk for most high frequency 
waves, including quantum dynamics, compuations 
in high dimensions



Goal

develop schemes that can get the correct 
(pointwise) solutions without resolving the 
oscillations and the numerical schemes converge 
uniformly in \epsilon   

-- defies the Nyquist-Shannon sampling restriction in 
certain degree



Motivation: 
Band crossings: non-adiabatic qunatum phenomena

Inter-band transition  is a general quantum mechanical
Phenomenon; it causes difficulties in semi-classical
approximations
• Born-Oppenheimer approximation:  

non-adiabatic surface hopping
• Bloch decomposition in quantum 

dynamic with periodic potentials: crossing of Bloch 
bands or influence of external potentials

• elastic and electromagnetic waves with polarization effect
• Graphene:  coupling of different bands near the Dirac point; effect 

of electric potential
• In this talk we concentrate on surface hopping



The N-body Schrodinger equation

Dimension curse:  75 dimension for CO2; 162 
dimension for benzene



The Born-Oppenheimer approximation

• After non-dimensionlization:

Where             is typically between 0.01 and 0.1
• First solve an electronic eigenvalue problem (DFT, 

etc.)   



The nucleonic Schrodinger equation

• Project to the electronic eigenspace:

• where

describe inter-band transitions which are associated with chemical 
reaction such as  charge transfer, photoisomerization, or 
photodissociation, etc. 



The B-O (or adiabatic) approximation

• Assume                 are well separated (adiabatic):
then one can ignore           to obtain:

Then the classical limit               can be taken easily.
• Mathematical study of  the adiabatic  B-O   approximation and band 

crossing:  Gerard, Hagedorn, Lasser, Spohn, Teufel, Fermanian…
• However, when                  are not well-separated, one cannot ignore                    

s          since the non-adiabatic quantum transition is significant.  Then        

the B-O approximation breaks down and one needs improved  models    



Transition between electronic states

conical crossing                  avoided crossing



The Landau-Zener formula

The Landau–Zener formula is an analytic solution to the 
equations of motion governing the transition dynamics 
of a 2-level quantum mechanical system, with a time-
dependent Hamiltonian varying such that the energy 
separation of the two states is a linear function of time. 
The formula, giving the probability of a diabatic (not 
adiabatic) transition between the two energy states, was 
published separately by Lev Landau, Clarence Zener, Ernst 
Stueckelberg, and Ettore Majorana, in 1932 (from 
Wikipedia)

http://en.wikipedia.org/wiki/Energy_level�
http://en.wikipedia.org/wiki/Quantum_mechanics�
http://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)�
http://en.wikipedia.org/wiki/Diabatic�
http://en.wikipedia.org/wiki/Adiabatic_theorem�
http://en.wikipedia.org/wiki/Lev_Landau�
http://en.wikipedia.org/wiki/Clarence_Zener�
http://en.wikipedia.org/wiki/Ernst_Stueckelberg�
http://en.wikipedia.org/wiki/Ernst_Stueckelberg�
http://en.wikipedia.org/wiki/Ettore_Majorana�
http://en.wikipedia.org/wiki/Ettore_Majorana�
http://en.wikipedia.org/wiki/Ettore_Majorana�


The surface hopping method 
(Tully ‘71)
• Particles follow the classical trajectory determined 

by the classical Hamiltonian; at  crossing region 
they “hop” with transition probability to different 
energy level (Hamiltonian system for different 
potential surfaces)

• A Monte-Carlo procedure; or particle splitting 

• It does not give correct discription of interference
(for example when two particles arrive in the 
hopping points at the same time)



A two-level nucleonic Schrodinger 
system



The Wigner transform



Semiclassical limit (adiabatic case) 

• Lions-Paul, Gerard-Markowich-Mauser-Poupaud, Keller-Papanicolaou-
Ryzhik, …



The Landau Zener transition probability

• This analysis is not valid at hopping point thus 
cannot handle interband transtion. 

• The Landau-Zener probability of transition between 
the two bands:

• Even by incorporating the Landau-Zener probability 
(surface hopping method) it still does not decribe 
correctly the interference (Berry connection, Berry 
phase, etc.



A semiclassical model  for avoided crossing 
(Chai-Li-Jin-Morandi, MMS 2014)

• The  surface hopping algorithm does not account for phase 
information, thus cannot handle resonance, and dynamic phase 
factor such as Berry phase, Berry connection etc. when two wave 
packets arrive at the crossing points at the same time from 
different bands (related to quantum hall effect)

Sir 
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The main idea: evolve the entire Wigner matrix semiclassically

• The previous model only keeps track of the 
“diagonal terms” of the Wigner matrix 
corresponding to the projection onto the two 
eigenspaces of the Hamiltonian

• But the off-diagonal term contains important inter-
band transition information that should not be 
ignored 



The semiclassical model

• Via the Wigner transform and the Weyl quantization,  we 
expand the Wigner equation  in     to obtain the following 
asymptotic model after ignoring             terms 

• It is a system of Liouville equations (thus hyperbolic) with 
oscillatory forcing terms that describe inter-band transitions

• The coefficients of     : 
are exactly the time derivative of the Berry phase



Classical approaches for oscillations

• No known numerical methods that can defy Shanon’s Sampling 
System for both time and space oscillations

• Classical appraoches:

geometric optics/WKB: not good after caustics
multivalued solution (Sparber-Markowich-Mauser) :  cannot 
handle quantum interference
Gaussian beam/wavepackets

these methods also don not work for large 

Review:  Jin-Markowich-Sparber, Mathematical and Computational 
Methods for Semiclassical Schrodinger equations, Acta Numerica, 
2011



Our idea

• Consider a toy problem

• Use a nonlinear geometric optics (NGO) ansatz

Keller, Diperna, Majda, Rauch, Joyt, etc. 80-90): 
Mathematical theory, no one uses it for computation





• Unlike in geometric optics, no caustics, phase 
equation is linear, do not throw away terms: 
uniformly accurate in epsilon

• Choose initial data such that (Kreiss ‘80, Croseilles-
Lemou-Mehat ‘13) (for time oscillations)

• 1) match the initial data of f
• 2) solution is smooth (up to second order in 

epsilon)



• Using Chapman-Enskog expansion for the equation:

• Ignore the           term and  then match the initial 
condition



• Spectral approximation in    (due to periodicity of 
solution  in    ) and upwind type finite difference 
approximations

• Interpolation to get u from U
• We can prove that U and u has the same limit  and 

the method converges strongly in maximum norm 
(first order in space and time) uniformly in 

• Same strategy applied to the two band 
semiclassical model for surface hopping



Numerical examples
• Underresolved time oscillations



Underresolved spatial oscillations

• We are defying Shanon’s Sampling Theorem in 
both time and space!



Uncertainty in oscillatory coefficients

• a(x,z) arises in potential energy surface which are 
obtained by empirical laws or numerical 
approximations thus usually are uncertain

• z random variable with a given PDF
• Solving directly: for constant c, analytic solution is



Generalized polynomial chaos (gPC) approach











Our new idea











Some comments
• All numerical parameters (mesh size, time step, polynomial degrees) 

made independent of the wave length
• The method works for oscillatory source term or oscillatory initial data, 

not both

• If one needs more details of quantum transition near the crossing zone 
one should use smaller mesh size near the crossing zone: local mesh 
refinement.  Since the scheme is uniformly accurate  in      ,  this can be 
done quite easily

• To recover the oscillations, one can use different coarse mesh points in 
different—but parallel—runs and then rebuild the oscillatory curve—
this makes highly oscillatory computations possible

• Same approach works for crossing of Bloch band for Schrodinger 
equation with periodic potentials and graphene modeling

• More theoretical study and numerical experiments are needed but so 
far the preliminary results look very promising
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