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Outline

� Introduction to FX options: vanillas and liquid exotics

� Heston’s stochastic volatility model in FX

� Developing market intuition about Heston

� Fast semianalytic techniques: characteristic functions

� Basic calibration of the model to the market smile

� Pricing using Monte Carlo

� Pricing using numerical finite differences in 2D



2

Introduction: liquid FX exotics and deviation from B-S prices

� Short dated FX options (out to 3Y or so):
– ~90% vanillas

– ~9% binaries/barriers [continuously monitored]

– ~1% other complex exotics

� Vanillas
– Almost solely OTC – not exchange traded

– European, not American style. Value depends only on ST

� Binaries/Barriers:
– Common criticism of options is that they appear quite expensive to

the buyer. Leads to demand for cheaper alternatives –
e.g. knock-out options.
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Vanillas in FX

� B-S inadequate – a single σ will not match all vanillas in market

– Structural deviation from B-S prices: volatility smile

� Benchmark FX instruments:  5 strikes per tenor

– 10-delta put strike K chosen so that ∆p = -0.10

– 25-delta put strike K chosen so that ∆p = -0.25

– ATM option either* ATMF (K=F) or D-N (∆p+∆c=0)

– 25-delta call strike K chosen so that ∆c = +0.25

– 10 delta call strike K chosen so that ∆c = +0.10

� Smiles are generally (JPY and EMs aside) reasonably symmetric

* depends on market convention.

Reference: Malz, Allan M. (1997), Estimating the Probability Distribution of the Future 
Exchange Rate from Option Prices, J. Derivatives, 18-36.
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Barriers in FX

� Introducing path dependency can make a vanilla option
substantially cheaper

� European call:

� mT and MT denote the minimum and maximum (resp.) of St over

the time interval [0,T]
� Cheaper alternatives:

– Regular KO

– Reverse KO

– Double KO
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Binaries in FX

� Distant OTs (TV < 20%) typically trade above TV

� Nearer OTs typically trade below TV
– Structural deviation from B-S prices: binary moustache
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Flow exotics – depend on which processes?

� All the flow exotics have value functions VT which depend at most 
on three of the following processes:

� Ideally obtain market implied joint pdf of { ST, mT,  MT}

Product ST mT MT 

European vanilla YES   

OT or NT [downside]  YES  

OT or NT [upside]   YES 

KI or KO [downside] YES YES  

KI or KO [upside] YES  YES 

DNT or DT  YES YES 

DKI or DKO YES YES YES 
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Heston’s Stochastic Volatility Model in FX

� In practice: seek a model that accurately describes (a) volatility
smile, (b) binary moustaches [i.e. marginals for ST, mT and MT ]
and (c) DNT prices.

� The Heston model is a model for stochastic variance

� What intuition should we attach to the model parameters?

tttttt VdWVdtVmdV =+−= σακ       ,)( )2(

fdttttt rrdWSdtSdS −=+= µσµ    ,)1(

dtdWdW tt ρ= , )2()1(

Reference: Heston, S.L. (1993), A Closed-Form Solution for Options with Stochastic 
Volatility with Applications to Bond and Currency Options, Rev. Financ. Stud., 6 (2), 
327-343.
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Stochastic volatility and vol convexity

� All stochastic volatility/variance models generate smiles, by 
correctly pricing in vol convexity

� Hull/White analysis: if processes driving spot and variance are 

uncorrelated

where               is the pdf of average variance

over time interval [0,T] and TV|σ is the Black-Scholes price with 

constant volatility σ.
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Stochastic Volatilities, J. Finance, 42, 281-300.
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Intuition: implied ATM vol structure

� TV of the ATMF option is

� Consider a driftless stochastic variance process.

� In that case the expectation of        is just

� Concavity of square root function means that PV decreases as the
volatility becomes increasingly dispersed around

� ATMF price under a driftless

stochastic variance process

decreases as volatility of
variance increases.

� Implied ATMF vol is      

adjusted downwards for this

vovariance effect
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Intuition: implied wing structure

� ATMF options are linear in volatility but wing options are convex.

– Hence increasing vovariance increases the implied smile
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Intuition: effects of Heston model parameters

� Five parameters have quite different effects on the shape of implied
volatility surface generated

Parameter Effect  

Initial variance V0 Fixes overall level of implied ATM vol 

Vovariance α Generates volatility smile as α increases 

Spot/Variance correlation ρ Generates volatility skew for nonzero ρ     

Mean reversion rate κ 

Mean reversion level m 

Combined effect: increasing κ , term 
structure of implied ATM vol shifts in 
direction of m1/2 & smile flattens 
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Risk neutral pricing

� Let asset have price process

� Black-Scholes formula for European call option

– take discounted expectation of payout under domestic RN measure
– use Girsanov to change from domestic RN to foreign RN measure
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Risk neutral pricing

� Express in terms of asset log-returns

–St constrained to [0, ∞) but Xt defined on (−∞, ∞)

–Xt in BS world follows an ABM and has normally distributed 
marginals (easier to compute characteristic functions)

� Call price is given by
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Pricing in Fourier space

� Denote pdfs in foreign and domestic risk-neutral measures by                  

and               respectively.            is the payout function.

� Parseval’s theorem: inner products preserved under Fourier transforms
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Pricing in Fourier space

� Clearly, expectations can be computed in φ – space

� Now we can calculate the cdf’s – which take the form

� The Fourier transform of                            is given by

� Issues:
– The limit as                of         isn’t formally defined
– Complex pole at the origin (φ = 0)
– No major impediment
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Pricing in Fourier space

� Fourier inversion formula results (Heston; Bates; Bakshi et al.)

� Need to compute the c.f.                   of the log-return asset process.

– This is where things get interesting because it can be calculated 
analytically – e.g. for spot processes driven by Heston stochastic 
volatility process.

� First, we work through Black-Scholes case, then look at Heston.
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References: Bates, D.S. (1996), Jumps and Stochastic Volatility: Exchange Rate 
Processes Implicit in Deutsche Mark Options, Rev. Financ. Stud., 9, 69-107.

Bakshi, G., Cao, C. and Z. Chen (1997), Empirical Performance of Alternative Option 
Pricing Models, J. Finance, 52, 2003-2049.
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Pricing in Fourier space – Black-Scholes case

� Assume volatility constant. Spot follows
and the log-returns therefore follow

with solution

� This is normal with mean                                        and variance

� For a N(µ,σ 2) r.v., with pdf

the c.f. is given by (complete the square)
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Pricing in Fourier space – Black-Scholes case

� We now have all we need to price any European option using Fourier 
integration in Black-Scholes. For example, a call is priced at

� where

� For Black-Scholes:

� Questions: What do the integrands look like?   
For stochastic volatility models, how might we obtain the
required characteristic functions?
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Examination of integrands – Black-Scholes case

� ATMF:   S0=1,  σ = 10%,  rd=0,  rf=0,  K=1,  T=1

� The symmetry reminds us of d1 = -d2 for the ATMF case
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Examination of integrands – Black-Scholes case

� Market:   S0=1,  σ = 10%,  rd=0,  rf=0

� ITM:   K=0.8,  T=1

� RN probabilities of exceeding 0.8 at
expiry > 0.5 : integrals are positive

� OTM:   K=1.2,  T=1

� RN probabilities of exceeding 1.2 at 
expiry <  0.5 : integrals are negative
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Examination of integrands – Black-Scholes case

� ATMS: K=1,  T=1, S0=1
� Market: σ=10%,  rd=8%,  rf=8%

� Unaffected by changes in rates
which maintain same IR differential

� Market: σ=10%,  rd=8%,  rf=0% 

� Affected by changes in IR differential

– forward rate moves, affects RN 
probs.
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Examination of integrands – Black-Scholes case

� Following is a sensible choice:

Makes sense as            is dimensionless.

� In fact you can see this analytically from

� Choice of Q – somewhere between 2 and 5 is generally sufficient

� Simple trapezoidal integration on [0, φmax] is OK in practice.
� Backtest against exact Black-Scholes price to make sure integration is OK
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Examination of integrands – Black-Scholes case

� How oscillatory can these integrals get?

� Difficult cases: K={0.5, 0.66, 0.75},  S0=1,  σ = 3%,  rd=0,  rf=0, 
T=1/12

-0.2

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

dom, K=0.50
dom, K=0.67
dom, K=0.75

Deeply OTM options with small 
are hard to handle – but they’re not worth much

Tσ

Re[φ]



24

Computing price with just one Fourier integral

� Wanted to show how the domestic and foreign risk-neutral
probabilities can be calculated using Fourier methods and related
back to N(d1) and N(d2). Easy to visualise.

� In fact, for European calls and puts, the computation can be
performed using a single Fourier integral along a contour in the
complex plane – see Lewis, p.37 for details

� This is more efficient as only one integral to compute.
� Need to use inversion formula (2.5) in Lewis.

� Recommend starting with the 2 integral technique, then implement
the single integral technique as a companion scheme.
Ensure results agree.

Reference: Lewis, A.L. (2000), Option Valuation Under Stochastic Volatility with 
Mathematica Code, Finance Press.

Out of print but Chapters 1 and 2 available at www.optioncity.net



25

Computing price with just one Fourier integral

� Integrals are less singular for Europeans using the 1-integral technique

� Difficult cases again: S0=1,  σ = 3%,  rd=0, rf=0, T=1/12.
Horizontal axis is log(φ) – hence integral on positive half-line OK
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� Single integration should recover Black-Scholes price accurately
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Pricing in Fourier space – Heston stochastic volatility model

� This seems like a lot of extra work when we can just go directly to Black-
Scholes closed form formulae. What’s the point?

� Key point: this method extends to stochastic volatility models.

� How? Go back to the definition of characteristic function

� Following Section 2.2.2 of Zhu (2000), compute in risk neutral measures
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References: Zhu, J. (2000), Modular Pricing of Options: An Application of Fourier 
Analysis, Springer, Berlin-Heidelberg.

Schöbel, R. & Zhu, J. (1999), Stochastic Volatility with an Ornstein-Uhlenbeck
Process: An Extension, Eur. Fin. Rev. 3, 23-46.
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Pricing in Fourier space – Heston stochastic volatility model

� Clearly we need to compute

� Consider by way of example the Heston model. 

� Log-returns:

� Integrate the log-return process to get
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Pricing in Fourier space – Heston stochastic volatility model

� A few pages to show how Girsanov works here. Substituting  XT in: 

� Several terms cancel out, leaving the c.f.s (j=0 for d, j=1 for f)

� Apply Cholesky decomposition

to obtain
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Pricing in Fourier space – Heston stochastic volatility model

� This can be simplified by some Girsanov sleight of hand

� We can find a Radon-Nikodym derivative
so put 
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Pricing in Fourier space – Heston stochastic volatility model

� Integrating the Heston process we obtain

� So obviously

� We obtain
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Pricing in Fourier space – Heston stochastic volatility model

� Zhu (2000) computes this expectation, obtaining the following 
characteristic functions (j=0 for d, j=1 for f) – note I use µ = rd - rf
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Examination of integrands – stochastic volatility models

� ATMF: K=1.0, S0=1,  σ = 10%,  rd=0,  rf=0, T=1 
Heston with vovol α= 5%, 10% or 20%
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Examination of integrands – stochastic volatility models

� Wings: K=0.94, S0=1,  σ = 10%,  rd=0,  rf=0, T=1 
Heston with vovol α= 5%, 10% or 20%
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Examination of integrands – stochastic volatility models

� Distant wings: K=0.80, S0=1,  σ = 10%,  rd=0,  rf=0, T=1   
Heston with vovol α= 5%, 10% or 20%
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Examination of implied pdfs – stochastic volatility models

� Implied pdfs behave as expected – chart generated by pricing up a 
strip of Arrow-Debrue securities – see Lewis, p. 37 for details

� S0=1,  σ = 10%,  rd=0,  rf=0, T=1 
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Examination of integrands – stochastic volatility models

� Heston implied pdfs [vovar=10%] become skewed with correlation

� S0=1,  σ = 10%,  rd=0,  rf=0, T=1 
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Examination of implied smiles – stochastic volatility models

� It is quite clear that smiles are generated by increasing vovariance

� S0=1,  σ = 10%,  rd=0,  rf=0, T=1 
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Examination of implied smiles – stochastic volatility models

� Skews are generated by nonzero values for the correlation between spot 
and variance
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Basic calibration of the model to market smile

� Heston model has no problem generating smiles and skews
� SV calibration is a fairly simple optimisation exercise using semianalytic 

methods discussed in this talk.
� Terminal calibration: take as inputs the volatilities at three strikes

(25-d-P, ATM, 25-d-C), at one expiry time T. Lock down κ and m.
Attempt to minimise objective function which measures the sum of squares 
of the errors in the vol by varying V0, ρ, α. The objective function calculates 
Heston prices using the characteristic function method and backs out 
implied volatilities.

� Term structure calibration: With suitably chosen mean reversion 

parameters κ and m, possible to generate upward sloping or downward 
sloping ATM volatility surfaces. Increasing mean reversion causes smiles to 
flatten and diminish as the mean reversion of variance takes effect.
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Pricing in Heston using Monte Carlo

� Monte Carlo is always a useful check for testing other algorithms against. 

– Draw samples ∆∆∆∆W from a standardised 2D bivariate normal distribution 

at timepoints { 0, ∆∆∆∆t, 2∆∆∆∆t, … T-∆∆∆∆t}

– Compute drift vector µµµµt and volatility vector ΣΣΣΣt at time ti (see below)

– Integrate the factor from its initial value X0=(log(S0), V0) out to time T

– Evaluate payoff (function of XT) at time T. Integrate over all simulations.

tt ttttt ∆∆+∆+=∆+ )WXX         ΣΣΣΣ((((µµµµ
])[,( 2

1
ttfdt VmVrr −−−= κµµµµ










−
=

2/122/1

2/1

1

0

tt

t
t

VV

V

ρααρ
ΣΣΣΣ



41

Numerical solution of the Heston PDE by finite differences

� Characteristic function technique can be used for any option that
has value at T as a function of ST. Europeans, digitals, etc…

� Rules out all path dependent options (barriers and binaries) and
early exercisable options.

� Heston model can be solved using 2D PDE for these products with
suitable boundary conditions
– Approximate spatial & temporal differences with mesh differences
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Black-Scholes volatility (constant)

– Imagine a solution diffusing through the gaps in the following uniform 
mesh
Note: not a representation of a finite difference mesh.
Schematic illustration of diffusion.

– B-S solution obtained by diffusing the source
solution backwards on the mesh

– Analogous to tree methods

Source solution e.g.(ST - K)+

S

t
S0 Back

wards in
ductio

n
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Stochastic volatility (or variance)

� Stochastic volatility:  extend from one “spatial” to two “spatial” dimensions

� Source solution diffuses more rapidly where volatility/variance is larger

S

V

t
Less diffusion 
through gaps in 
mesh where V is 
small

More diffusion through gaps
in mesh where V is large

Source solution e.g.(ST - K)+

independent of V

}
Diffusion independent of  S
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Solution of 2D Heston PDE using finite differences

� Easiest to start with a 2D explicit PDE scheme. Simple to code up.

– However this will be far too slow for anything except development

– 2D EFD prices should converge (slowly) to Fourier & MC prices

� The standard method for these problems is the ADI [alternating
direction implicit] scheme. References given below.
– Quite useful to set up PDE engines so that the mesh can be output 

to files – makes it quite easy to see when there are problems with 
boundary conditions, or stability.

� Also helps to compare with output from 1D PDE engines (B-S)

References: Clewlow, L. and C. Strickland (1996), Implementing Derivatives Models, 
Wiley, Berlin-Heidelberg.

Craig, I.J.D. & A. D. Sneyd (1988), An Alternating Direction Implicit Scheme for 
Parabolic Equations with Mixed Derivatives, Comput. Math. App. 16 (4),  341-350.



45

PDE implementation

� Standard PDE schemes:

– 1D:  (i) fully explicit, (ii) fully implicit, (iii) Crank-Nicolson

– 2D:  (i) fully explicit, (ii) ADI

� Consider dimensionless pde:

– transform Heston pde (slide 43) to log-spot x=log(S) and read off 
convection & diffusion coefficients

� In 1D:

� Apply x and τ discretisation 
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PDE implementation

� Time derivative is given by:

� (Central) spatial derivatives can either be taken at          

� …or at 

� …or in between

ττ ∆
−=

∂
∂ + j

i
j

i UUU 1

jτ

1+jτ
x

UU

x

U j
i

j
i

∆
−=

∂
∂ −+

2
11

x

UU

x

U j
i

j
i

∆
−=

∂
∂ +

−
+

+

2

1
1

1
1

2
11

2

2 2

x

UUU

x

U j
i

j
i

j
i

∆
+−=

∂
∂ −+

2

1
1

11
1

2

2 2

x

UUU

x

U j
i

j
i

j
i

∆
+−=

∂
∂ +

−
++

+

x

UUUU

x

U j
i

j
i

j
i

j
i

∆
−−+−=

∂
∂ −+

+
−

+
+

2

])[1(][ 11
1

1
1

1 θθ

2
11

1
1

11
1

2

2 ]2)[1(]2[

x

UUUUUU

x

U j
i

j
i

j
i

j
i

j
i

j
i

∆
+−−++−=

∂
∂ −+

+
−

++
+ θθ



47

PDE implementation

� …leading to the fully explicit scheme

� … the fully implicit scheme

� …or the Crank-Nicolson scheme (θ = 1/2)
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Handling boundary conditions

� Extinguishing options (NT, DNT, KO, DKO) are easily handled by
placing a Dirichlet boundary condition at the barrier level.

� Without KO barriers (e.g. Europeans without barriers), common
technique is to assume 2nd derivative vanishes on the boundaries.
Hence solution is linear.

� Suffices therefore to use one-sided differences (neglect
diffusion terms), to time-step the solution on the boundary

– This is for explicit finite differences; use j+1 for IFD

Reference: Tavella, D. and C. Randall. (2000) Pricing Financial Instruments: The 
Finite Difference Method, Wiley, New York.
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PDE implementation

� Algebra of Crank-Nicolson can be simplified introducing a node at half-time

� Can be seen as equivalent to an explicit step over time interval
followed by an implicit step over time interval

� The ADI [alternating direction implicit] scheme, which we use for problems 
with two spatial variables, works similarly by applying an explicit step in one 
spatial direction, followed by an implicit step in the other spatial direction.

� Since each diffusion & convection term is only applied over half of the time 
stepping, we have to double the effective contribution of these terms when 
they are in fact applied. Correlation handled in the explicit steps.

� Boundary conditions handled similarly to1D PDEs (no variance barriers).
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PDE implementation

� In 2D (correlation neglected) with discretisation

� Explicit in X, then implicit in Y

� …then explicit in Y, and implicit in X
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� Best-of 2 call option

Explicit x

Implicit y

Explicit yImplicit x

ADI cycles between
x and y directions
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� x direction is log-spot

� y direction is variance

� Solution has diffused out most where
variance is large
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Examination of binary moustache – Heston model

� The binary moustache generated by Heston model broadly exhibits 
correct qualitative features (priced using 2D ADI)

� Model: S0=1, V0=0.01,  rd=0,  rf=0, strip of binaries with T=1 
vovol α= 5%
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Summary

� Heston stochastic volatility model: 

– capable of generating realistic smiles and skews for vanillas

– generates sensible deviations from B-S prices for binaries

– able to admit very fast calibration scheme via semianalytic pricing

� Monte Carlo is easy to implement and provides useful “reality 
check” for other pricing algorithms

� When 2D finite difference engine such as ADI implemented, fast 
pricing of flow exotics in FX is quite straightforward

– pricing requres solution of 2D convection-diffusion problem where 
diffusion is anisotropic in variance direction

– compare with 2-factor Black-Scholes: isotropic in both log-spots


