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Backstory. Dynamical systems typically admit (infinitely) many invariant measures. To identify the relevant invariant measure (i.e. the one we would expect to see performing a naive experiment) the theory of stochastic stability considers random perturbations of the original system and studies whether the
unique stationary measure of the induced Markov process converges to an invariant measure as the strength of the perturbation vanishes. The limiting object is a stochastically stable invariant measure.
Fact I. Stochastic stability has only been studied in the setting of attractors and for a single type of potential, giving rise to SRB and physical measures.
Fact II. Long transients also exhibit shared statistics but classical stochastic stability tools are not applicable. In some sense, “there is nothing to study in the limit when everything eventually escapes”.
Abstract. We propose a notion of conditioned stochastic stability of invariant measures on repellers: we consider whether quasi-ergodic measures of absorbing Markov processes, generated by random perturbations of the deterministic dynamics and conditioned upon survival in a neighbourhood of a repeller,
converge to an invariant measure in the zero-noise limit. Under suitable choices of the random perturbation, we find that equilibrium states on uniformly expanding repellers are conditioned stochastically stable.

CONDITIONED RANDOM DYNAMICS 1
Let {Xn}n∈N be a Markov process evolving on M. We may stop or kill this
process in two different ways:

i) Hard killing: The process enters a cemetery state ∂ ⊂ M.
ii) Soft killing: For a given weight function ϕ : M \ ∂ → R−, at every

state Xn the process is killed with probability eϕ(Xn).

The process: We denote this (ϕ-weighted) process by Xϕn , where

Xϕn+1 =

{
Xn+1, with prob eϕ(Xn),

∂, with prob 1 − eϕ(Xn).

Eventually, Xn ∈ ∂ so the stationary measure of the process is δ∂, so...
Question: What is the statistical behaviour of Xϕn before being absorbed
by the cemetery state ∂?

Set τϕ := min{n : Xϕn ∈ ∂}, the (random) time the process is killed.
We can ask two different questions about the statistics of Xϕn :

i) For a measurable subsets A ⊂ M, how does

Px
[
Xϕn ∈ A | τϕ > n

]
:=

Pϕx [X
ϕ
n ∈ A ]

Pϕx [X
ϕ
n /∈ ∂ ]

behave as n → ∞? This is the so-called Yaglom limit.
ii) For a measurable observable f : M \ ∂ → R, how does

Eϕx

1
n

n−1∑
i=0

f ◦ Xϕi

∣∣∣∣ τϕ > n


behave as n → ∞? These are conditioned Birkhoff averages.

QUASI-STATIONARY AND QUASI-ERGODIC MEASURES 2
Consider Xn evolving in S ⊂ M and let ∂ = M \ S be the cemetery state. We pay attention to these two measures:

i) (QSM) A Borel probability measure µ on S is a quasi-stationary measure of the weighted Markov process Xϕn if∫
S

eϕ(y)P(y, dx)µ(dx) = λϕµ(dx)

and λϕ =
∫

S eϕ(x)P(x, S)µ(dx) > 0 is the growth rate of µ for Xϕn on S. Under suitable conditions, quasi-stationary
measures provide the Yaglom limit [1].

ii) (QEM) A probability measure ν on S is a quasi-ergodic measure of the ϕ-weighted Markov process Xϕn if for
any bounded measurable function f : S → R it holds that

Eϕx

1
n

n−1∑
i=0

f ◦ Xϕi

∣∣∣∣ τϕ > n

 :=
1

Ex[eSnϕ1{τ>n}]
Ex

eSnϕ1{τ>n}
1
n

n−1∑
i=0

f ◦ Xi

 n→∞−−−−→
∫

S
f (y)ν(dy), ν-a.s.

How are they different? If a system allows for escape (killing) it is no longer true that the probability of being in
a subset equals the frequency of entering that set. Conditioned upon not dying, QSMs provide the probability and
are “agnostic of the past” while QEDs provide the frequency, which depends on the surviving paths.
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TRANSIENT DYNAMICS 3
The theory of transient dynamics aims to understand a system’s behaviour before stabilising, say by entering an attractor A.
If a transient is long enough (“sticky”) then there is a chance that transient orbits exhibit shared statistics, e.g. expected time to jump into the attractor,
distribution of the path before escape, etc.
Transient behaviour is usually governed by repelling invariant sets. These are subsets R1, . . . ,Rk of Λ =

⋂
n≥0 T−n(M \ ∂), where

i) Local transient. ∂ = M \ Ri
δ, Ri

δ ⊃ Ri

A

R
1

R
1

δ

ii) Global transient. ∂ = U ⊃ A

A

U

A

R
1

Hypothesis: We assume that the set Λ is uniformly expanding, i.e. there exist C, r > 0 such that for all x ∈ Λ, ∥ dTn(x)−1∥ < C(1 + r)−n for every
n ≥ 1 and that there exists a neighbourhood V of Λ in M such that T−1(Λ) ∩ V = Λ.
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THERMODYNAMIC FORMALISM 4
Consider a map T : M → M and a potential ψ ∈ Cα, ψ : M → R.
Let Λ ⊂ M be T-invariant, i.e. T(Λ) = Λ.
We define the topological pressure of the triple (T,Λ, ψ) as

Ptop(T,Λ, ψ) = sup
µ∈I(T,Λ)

Pµ(T,Λ, ψ) = sup
µ∈I(T,Λ)

hµ(T) +
∫
ψdµ,

with hµ the Kolmogorov-Sinai (metric) entropy and I(T,Λ) the set of
invariant measures of T on Λ.
We call ν an equilibrium state if Ptop(T,Λ, ψ) = Pν(T,Λ, ψ). These are
the main objects of study in the theory of thermodynamic formalism [2].
Note: Equilibrium states are physically relevant in the sense that they
minimise the free energy of the system [3].

Stochastic stability meets Thermodynamic formalism:
Often it holds that the stochastically stable measure µ0 is the equilibrium
state associated with the potential ψ = − log | det dT|.
This also aligns with physical and SRB measures in some settings but
stochastic stability has never considered potentials.

STOCHASTIC STABILITY 5
A map T may admit many invariant measures. Can we identify a relevant
invariant measure? Or in particular...
Are there measures that are “stable” if we add some noise to the system?
Consider the Markov process generated by random perturbations of T:

T : M → M

xn+1 = T(xn)

Tω : M → M

Xn+1 = Tω(Xn)

with distC2(T,Tω) < ε.
Noise “washes out” isolated invariant sets and “spreads” the dynamics
and, typically, the random process Xn admits a unique stationary
measure µε.

If µε
ε→0−−−→ µ0 (in weak∗), then µ0 is a stochastically stable invariant

measure of T [4]:

stationary measure µε
ε→0−−−→
w∗

µ0 invariant measure

Important: Stochastically stable measures are always supported on
topological attractors.

EQUILIBRIUM STATES ON REPELLERS 6

Theorem. (Ruelle [5]) Let R1, . . . ,Rk ⊂ Λ be as in 3 . On each Ri, for
every α-Hölder potential ψ : Ri → R, there exist unique T-invariant
equilibrium state νψ for the potential ψ on Ri.

Note: These are the measures we end up approximating although this is
not our motivation.

CONDITIONED STOCHASTIC STABILITY 7
Instead of stationary measures, we consider convergence of
quasi-ergodic measures of (ϕ-weighted) absorbing Markov processes:

quasi-ergodic measure ν
ϕ
ε

ε→0−−−→
w∗

ν
ϕ
0 invariant measure

If so, we say that νϕ0 is conditioned stochastically stable.

RESULTS 8

Standing Hypothesis: We assume that on each Ri, for each potential ψ, there exists a unique equilibrium state νψ as in 6 .
Theorem A1. (Local hard-killing) There exists a unique T-invariant measure ν0 on R which is conditioned stochastically stable on every sufficiently
small neighbourhood of R.
Theorem A2. (Local hard-killing + soft-killing ) Given a Hölder weight function ϕ, there exists a unique T-invariant measure νψ on R which is
conditioned ϕ-weighted stochastically stable on every sufficiently small neighbourhood of R. Moreover, νψ is the unique equilibrium state associated with
the potential ψ = ϕ− log | det dT| on R, i.e. νψ = ν

ϕ
0 .

Theorem B. (global hard-killing + soft-killing) Given a C2 map T, a Hölder weight function ϕ, and a suitable open set ∂ ⊂ M, assume that
i) T|Λ : Λ → Λ is uniformly expanding, with Λ as in 3 ,
ii) Λ ⊂ Int(M \ ∂), and
iii) T : Λ → Λ admits a unique equilibrium state νψ associated with the potential ψ = ϕ− log | det dT|, which is mixing.

Then νψ is conditioned ϕ-weighted stochastically stable on M \ ∂, i.e. νψ = ν
ϕ
0 .

NEXT STEPS 9
i) We can extend these results to systems with hyperbolic repellers and not only uniformly expanding. The machinery needed is significantly more

convoluted (we use anisotropic spaces from [6]).
ii) How do these techniques generalise non-uniformly hyperbolic systems or uniformly hyperbolic maps with singularities?
iii) Can we find an example where the thermodynamic formalism does not provide equilibrium states but conditioned stochastic stability does?
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