Imperial College London

Module Specification (Curriculum Review)

Basic details					
		1		Earliest cohort	Latest cohort
UID			Cohorts covered	2024-25	
Long title	Foundations of Qua	antum Mechanics			
New code	PHYS	60011	New short title	Foundations of Qu	antum Mechs
Brief description	This course will intr	oduce the conceptu	al and mathematica	I foundations of qua	antum mechanics.
of module	Emphasis will be or	n Hilbert Space (bra	-ket) methods, form	al operator method	s and density
(approx. 600 chars.)			ed to topics such as s, and Feynman pat		ar momentum,
	quantum entangien	ient, conerent state	s, and i cynnan pai	in integrais.	
Available a	as a standalone mod	ule/ short course?	N	1	338 characters
				1	
Statutory details		0.170	N 1 11		
Credit value	ECTS 7.5	CATS 15	Non-credit N	HECOS codes	
FHEQ level	Level 6				
Allocation of study	hours				
	Hours	1			
Lectures	26				
Group teaching	10	Incl. seminars, tuto	rials, problem classes		
Lab/ practical	0				
Other scheduled	12		ision, fieldwork, exteri		
Independent study	139.5		practice, follow-up wo		essments, revisions.
Placement	0	Incl. work-based lea	arning and study that	occurs overseas.	
Total hours	187.5				
ECTS ratio	25.00				
Project/placement a	activity				
		• •	1		
Is placement ac	ctivity allowed?	No			
Module delivery					
Module delivery					
Delivery mode	Taught/ Campus	Other			
Delivery term		Other	Term 2, exam in te	rm 3	
Oursershir					
Ownership					
Primary department	Physics			1	
Additional teaching	None				
Auditional teaching	NULLE			1	

departments	
Delivery campus	South Kensington
Collaborative deliv	/ery

	Collaborative delivery?	N
External institution	N/A	
External department	N/A	
External campus	N/A	

Associated staff

Role	CID	Given name	Surname
Module Leader		Jerome	Gauntlett

Learning and teaching Module description

Learning outcomes	 On completing the Foundations of Quantum Mechanics course, students will: (1) Have acquired mathematical techniques (Hilbert spaces) to understand and solve quantum problems (2) Have the conceptual background required to understand the foundations of quantum mechanics and how it is used to compute probabilities. (3) Understand the equivalence and use of different quantum formalisms for dynamical evolution (Heisenberg/Schrodinger/interacting pictures) (4) Have a general understanding of symmetry in quantum mechanics, including rotations, translations, parity. In addition have an understanding of the role of generators of symmetries and, in particular, an understanding of representation theory of angular momentum. 5) Be familiar with solutions for standard problems such as the harmonic oscillator.
Module content	
	•Hilbert Space Formalism: States, linear operators, bra and ket notation, Hilbert spaces, tensor products,
	general uncertainty principle
	•Postulates of quantum mechanics, including the Born rule for computing probabilities of measurements and the Copenhagen interpretation.
	•Position and momentum representations and the recovery of wave mechanics. Momentum operator as the generator of translations.
	•Quantum Dynamics: The propagator and the Hamiltonian as the generator of time translations. Schrodinger and Heisenberg pictures. The interacting picture.
	•The simple harmonic oscillator and coherent states.
	•Angular momentum. Rotations and representation of angular momentum algebra. Spin and spinors. Addition of angular momentum. Parity in quantum mechanics.
	•Density Matrices: Mixed and pure states and density matrices. Reduced density matrices and entanglement. von Neumann entropy. Thermal density matrices.
	•Path Integrals: Derivation of the path integral for free particles. Propagator. Aharonv Bohm effect.
	Canonical quantisation and path integral quantisation.
	•Quantum mechanics in the presence of electromagnetic fields. Gauge invariance. Landau levels.

Learning and Teaching Approach	Students will be taught over one term using a combination of lectures, office hours and directed exercises on theoretical work.
Assessment Strategy	100% summative assessment based on final exam of 2h or more with 3 questions that will evaluate competency in the topics covered in the lectures and in the problem sheets.
Feedback	Problem sheets are provided each week (10 in total) with questions and examples students can practise with. Students will have the opportunity to solve problems real time in interactive Rapid Feedback sessions with assistance and advice provided by several teaching assistants. Solutions will be provided after the rapid feedbacks.
Reading list	Lecture notes are provided to students. The notes (and problem sheets) are designed to be self-contained and there is no designated textbook required for this module. There are however also some excellent textbooks, that are suggested as supplementary or complementary reading for those of wishing to explore further some aspects of the module. J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics R. Shankar, Principles of Quantum Mechanics Other books include Chris Isham, Lectures On Quantum Theory: Mathematical And Structural Foundations P.A.M. Dirac, Principles of Quantum Mechanics Landau-Lifshitz, Quantum Mechanics (Nonrelativistic theory)

Quality assurance

Office use only

Date of first approval Date of last revision Date of this approval		QA Lead Department staff Date of collection	
		Date exported	
Module leader	Jerome Gauntlett	Date imported	
Notes/ comments			

Template version 16/06/2017

Programme structure Associated modules

UID	Legacy code	Module title	Requisite type

Assessment details

Grading method Numeric

Pass mark 40%

Assessments

Assessment type	Assessment description	Weighting	Pass mark	Must pass?
			40%	
final exam	Written exam over 2 hours	100	% 40%	N
			_	
	1	100	0/	