Imperial College London

Module Specification (Curriculum Review)

Basic details UID			Cohorts covered	Earliest cohort	Latest cohort
Long title	Mathematical Metho	ds for Physicists			
			_		
New code	PHYS	70051	New short title		
Brief description of module (approx. 600 chars.)	across physics and necessary for a proper formulation of its foundations. This includes vector				
Available	as a standalone mod	ulo/ short courso?	N	1	500 characters
Available			IN IN	1	
Statutory details	ECTO	CATE	Non aradit		
Credit value	ECTS 7.5	CATS 15	Non-credit	HECOS codes	
FHEQ level	Level 7				
FREQIEVE	Lever				
Allocation of study ho	ours Hours				
Lectures	30				
Group teaching	8	Incl. seminars, tutor	ials, problem classes.		
Lab/ practical					
Other scheduled	Incl. project supervision, fieldwork, external visits.				
Independent study	149.5	Incl. wider reading/ µ	practice, follow-up work	, completion of asses	sments, revisions.
Placement		Incl. work-based lea	rning and study that o	ccurs overseas.	
Total hours	187.5				
ECTS ratio	25.00				
Project/placement activity					
Is placement activity allowed? No					
Module delivery					
Delivery mode	Taught/ Campus	Other			
Delivery term	Term 1	Other			
Ownership					
Primary department	Physics				
Additional teaching	None			1	
departments]	

Delivery campus	South Kensington

Collaborative delivery

	Collaborative delivery?	Ν
External institution	N/A	
External department	N/A	
External campus	N/A	

Associated staff

Role	CID	Given name	Surname
Role Module Leader		Fay	Dowker

Learning and teaching Module description

Learning outcomes	On completion of the module you will be able to:
	- Define the nomenclature of vector spaces and apply vector and tensor techniques to problems of physical
	interest
	- Solve boundary value problems using the techniques of Green's functions
	- Apply and evaluate integral transforms to ordinary differential equations and other problems of physical
	interest
	- Define poles and residues and be able to solve problems of complex functions using them
	- Apply variational calculus to physical problems
Module content	Definition of a vector space; dimensionality, orthogonality, linear dependence.
	Reminder of eigenvectors, eigenvalues and normal modes.
	Tensor algebra, suffix notation, rank. Transformation law. Tensor fields. Representation of grad, div and curl.
	Principal axes and diagonalisation. Representation quadric. Stationary property of eigenvalues. Neumann's
	principle.
	Dirac delta function. Variation of parameters method for inhomogeneous ODEs. Green's functions for initial
	value and boundary value problems.
	Definition of a Hilbert space; dimensionality, orthogonality, linear dependence, Wronskian.
	Sturm-Liouville Theory; self-adjoint operators, eigenfunctions, eigenvalues, weight function. Eigenfunction
	expansions, completeness. Examples of orthogonal functions to include Bessel functions, spherical harmonics
	and Legendre polynomials, including solution of Laplace's equation in spherical polar coordinates by separation
	of variables and series solution of Legendre's equation.
	Continuous Fourier transforms: Parseval's theorem and convolution theorem; bandwidth theorem and
	connection to quantum mechanics; application to Fraunhofer diffraction and heat diffusion.
	Laplace transforms: convolution theorem; application to ordinary differential equations.
	Functions of a complex variable. Cauchy-Riemann relations, analytic functions, Cauchy's theorem, Laurent's
	theorem. Order of poles. Residue theorem. Principal values and the Kramers-Kronig relation. Jordan's lemma.
	Contour integration. Inverse integral transforms, Bromwich integral.
	Lagrange multipliers. Functionals and their differentiation. Local, non-local, and semi-local functionals. Euler-
	Lagrange equations. Application to classical mechanics. Euler-Lagrange equations for multiple
	dependent/independent variables. Variational principles. Rayleigh-Ritz methods; connection to Sturm-Liouville
	problems and constrained minimisation. Application to solving the Schroedinger equation. Symmetry and
	Noether's theorem.
Learning and	Students will be taught over a term using a combination of lectures, office hours and directed exercises on
Teaching Approach	theoretical work.

Assessment Strategy			0%) and a final 2 hour	written examination
Feedback	Problem sheets are provided weekly (8 in total) with questions and examples students can get practice with. Questions are then reviewed during a problem class / feedback session with a teaching assistant.			
Reading list	 Mathematical Methods for Physics and Engineering: A Comprehensive Guide, K.F. Riley, M.P. Hobson, and S.J. Bence, Cambridge University Press, 3rd edition, 2006 Mathematical Methods for Physicists: A Comprehensive Guide, George B. Arfken, Academic Press, 7th edition, 2012 Mathematical Methods in the Physical Sciences Mary L. Boas. Wiley. 3rd edition. 2005 			
Quality assurance		Office use only		
Date of first approval		QA Lead		
Date of last revision		Department staff		
Date of this approval		Date of collection		
		Date exported		
Module leader	Fay Dowker	Date imported		
Notes/ comments				

Template version 16/06/2017