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Abstract 

A stochastic tropical cyclone event set generated by the IRIS model was applied to attribute the 

contribution of climate change to the case of Typhoon Haiyan in 2013. Compared to a pre-

industrial base line we estimate that a typhoon with a landfall maximum wind speed like Haiyan 

was larger by about + 3 m/s.  This is in good agreement with previous full physics numerical 

model estimates. For the first time we can also quantify the change in probability given our 

100,000-year event set. A Haiyan type of event has a current return period of about 850 years 

and the fractional attributable risk due to climate change is 98%. Without climate change this 

event was very unlikely. The type of information available from the IRIS model could inform 

subsidising of catastrophe bond yield in the context of the loss and damage fund.  

Introduction  

The Philippines is one of the nations most affected by tropical cyclones (TCs) in the world and 

regularly ranks amongst the nations most vulnerable to climate change (Eckstein et al. , 2021). 

On average, it experiences more TCs than any other nation, with approximately 19 TCs in the 

Philippines area of responsibility and 9 landfalls per year (Santos, 2020). The influence of 

climate change on TCs varies by basin, as does the level of scientific evidence on these 

changes (Knutson et al. , 2020 ). On a global scale, recent decades have seen an increase in 

more intense TCs (category 3-5 on the Saffir-Simpson scale) making landfall  (Wang and 

Toumi, 2022).  

Ultimately ‘natural’ hazards such as TCs only become disasters due to the exposure and 

vulnerability of people and property to these hazards. The Philippines has a rapidly growing 

population of nearly 120 million people in 2024, which is increasingly urbanised. The growth of 

urban populations and relatively high rates of poverty has led to the growth of informal 

settlements that are unable to withstand extreme weather conditions, as well as other sources 

of pervasive housing-based vulnerability (Healey et al., 2022).  

 

Typhoon Haiyan (local name Yolanda) has been the most catastrophic tropical cyclone ever to 

land in the western North Pacific Ocean, struck the Philippines on 8 November 2013. Typhoon 

Haiyan killed 6000 people and injured almost 30000. Haiyan led to the widespread destruction 

of infrastructure and housing in coastal areas, displacing 4 million people, destroying or 

damaging over a million homes, and disrupting crucial services for months (Lagmay et al., 

2015).  Baldwin et al. , 2023 applied a stochastic event set based on the CHAZ model to the 

Philippines. Their model included vulnerability function and underestimated the economic loss 

due to Haiyan and point to important role of rain and flood that are not modelled explicitly 

(Lagmay et al., 2015). The IRIS model used here is also a wind only model (Sparks and Toumi, 

2024).  
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Typhoon Haiyan has been studied using a ‘pseudo-global warming’ approach. It made a 

landfall as a strong Category 5 (defined as a minimum wind speed threshold of 70 m/s)  with a 

maximum wind speed of 85 m/s.  Takayabu et al., 2015 modelled wind and surge effects. They 

estimated an in crease in the maximum wind wind speed of 3 m/s compared to pre-industrial 

conditions.  Delfino et al., 2023 showed that the maximum wind during the life-time of Haiyan 

increased by 2 m/s, relative to preindustrial times for the highest resolution model. Increases in 

sea surface temperature provide more energy input to tropical cyclones leading to 

intensification. However, attribution can depend on the specifics of assumed anthropogenic 

change, the storm and the model used.  This can lead to ambiguous results in many cases 

(Patricola and Wehner, 2018). 

Method 

Assessing tropical cyclone risk given the infrequency of landfalling tropical cyclones (TC) and 

the short period of reliable observations remains a challenge. Synthetic tropical cyclone 

datasets can help overcome these problems. We explore this third method here using a new 

global tropical cyclone wind model, IRIS, with several key innovations (Sparks and Toumi, 

2024). It recognises that the key step for estimating landfall wind speed is the location and 

value of the life-time maximum intensity (LMI). It redefines the problem as one of decay only. 

The initial intensity, life-time maximum, is assumed physically constrained by the 

thermodynamic state as defined by the potential intensity (PI) . Potential intensity is a well 

established concept in tropical cyclone theory that seeks to define an upper limit of the 

maximum wind speed (Emanuel , 1986). This upper limit can be diagnosed from the sea 

surface temperature and the humidity and temperature vertical profile. Observations show that 

the relative intensity, defined as observed maximum intensity divided by the potential intensity,  

follows a robust uniform distribution. This drives the stochastic model lifetime maximum 

intensity. The landfall intensity is then a fraction of this lifetime maximum depending on the time 

to landfall. Tracks are based on IBTRACS observations. IRIS calculates basin and landfall wind 

speed intensity distributions from the location of LMI and the corresponding potential intensity 

at that location, based on observed tracks between 1980 and 2023.  

 

There has been a recent observed global warming to about 1.2°C in 2023 and about  1.06°C 

above pre-industrial temperature at the time of Haiyan in 2013 (Fig. 1). Regional and local 

prediction of absolute PI by climate models is problematic as they are known to have biases. 

Regional observed changes are difficult to distinguish from natural variability. We therefore 

make the assumption that the anthropogenic trend is the global zonal mean PI trend and use 

the observed PI trend since 1979 from ERA-5. There is some warming from pre-industrial to 

1979 for which we have incomplete potential intensity data. To estimate the pre-industrial 

potential intensity state, we extrapolate backwards the current observed trends. This approach 

avoids the selection of any climate model. The method is simple and robust. Figure 1 shows 

the global mean surface temperature time series we use to scale to the pre-industrial PI. Figure 

2 shows the global zonal mean PI change for the region near the Philippines. The model 

simulates 100,000 years for both the pre-industrial and 2013 climate (PI) state. 
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Figure 1: Global mean surface temperature showing scaling method. The 2013 warming is 

+1.06 above pre-industrial, which is defined as the period 1850-1900. The warming trend 

between 1979-2023(the ERA5 period) is +0.0195 °C/yr. 

 

 

 
Figure 2.: Zonally averaged potential intensity change from the pre-industrial baseline to 2013 

over the western Pacific region in November. 



 

Figure 3.: Observed (black circles) and IRIS (coloured dots) landfall events in the Philippines. 

Observations are IBTrACS (1980-2023). IRIS are from a sample of 440 years. Landfall events 

are categorised by location into North (blue), and South (orange). Black line shows the path of 

Haiyan. 

 

 

We split the Philippines into two zones based on the landfall climatology: North (N) and South 

(S). Haiyan made landfall in the South (Figure 3). The numbers of landfalling events and their 

intensities at landfall are tallied, enabling the construction of return curves (Fig. 4). From this, 

the likelihood of a landfalling event at the intensity of Haiyan (or e.g., Category 5) can be 

estimated in both current and preindustrial conditions. This in turn enables estimation of the 

fractional attributable risk (FAR), given by  

 

𝐹𝐴𝑅 = 1 −  
𝑃0

𝑃1
 ,                                                               (1) 

 

where P1 and P0 are the probabilities of event occurrence in the current (2013) and 

preindustrial climates, respectively.  

 



Results 

 
Figure 4: Return curves for Philippines landfall events. IBTrACS 1980-2013 observations  

(black) and 100,000-year IRIS simulations in pre-industrial (blue) and 2013 (orange) climate 

conditions. Shading shows 2.5 - 97.5 percentile range of ensembles of 34-year samples of IRIS 

output. Dotted lines show return periods of Cat 5 events in IRIS simulations.  

 

Figure 4. shows the all-Philippines return period for the observations and the simulations for a 

pre-industrial and 2013 potential intensity environment. The model and observations are in 

close agreement. For the all-Philippine landfall for a maximum wind speed of at least 85 m/s, 

IRIS estimates a return period of 130 years in the year of Haiyan, 2013, compared to a pre-

industrial value of 9,300 years (Figure 4). This corresponds to a fractional attributable risk of 

about 0.99 (equation 1). Another interpretation is that the wind speed of an equivalent pre-

industrial era typhoon has increased by about +4 m/s. This wind speed increase is close to the 

uncertainty of measurements and would not be detectable through observational analysis 

alone.  

 

The return periods vary with regions. If we consider the return periods of hypothetical landfall of 

a Haiyan type event in the two regions, North and South, then the fractional attributable risk is 

0.99 and 0.98 respectively (Figure 5). The increased risk with increased latitude can be 

understood by the similar latitude pattern of PI change (Fig. 2). For the more specific location at 

Haiyan’s actual landfall location (South zone), The model current return period is about 850 

years and 38,000 years for the pre-industrial climate. Therefore, IRIS suggests that a fractional 

attributable risk of about 0.98may be reasonably considered for the Haiyan event. The increase 

of the maximum wind speed is about 3 m/s compared to pre-industrial climate for this region.  

Given the limited observed data set used here of 34 years, Haiyan is the maximum or 34-year 

event. This observational estimate of return period is therefore a lower limit and observations 

on their own cannot be used to estimate the return period.  For the 100,000-year simulation we 

can sample independent 10,000 year samples to determine the probability distribution of 

fractional attributable risk (Fig. 6). This gives a 95% confidence interval of 0.95 and 1.00. The 

standard error of the best estimate mean, 0.98, is 0.015, or less than 4%. Figure 4 shows that 

the fractional attributable risk decreases substantially with lower wind threshold.  In the case of 

typhoons above Category 5 or a maximum wind speed greater than 70 m/s the FAR is about 

37% and for Category 3+ the FAR is only 12%. 

 



 

Figure 5: As in Figure 4 but for regions of Philippines shown in Figure 3.  

 

 

Figure. 6: Probability distribution of 10,000-year samples of the fractional attributable risk in the 

100,000 year simulation, including the 95% confidence intervals on the best estimate FAR 

value.  



Discussion and Conclusion 

The IRIS model has been applied to the problem of attribution to climate change. The model 

predicts that the Haiyan maximum wind speed was enhanced by about +3 m/s compared to the 

pre-industrial base case. This is remarkably close to previous studies of +2-3 m/s that have 

used full physics ensemble and physical downscaling model simulations with a pseudo global 

warming approaches (Takayabu et al., 2015, Delfino et al., 2023). IRIS is a very different 

model. It is much simpler model by construction and has comparatively negligible 

computational requirements so the similarity in results between IRIS and full physics models is 

encouraging. Unlike the full physics models, we can readily calculate changes in probability 

and FAR for this and other events. IRIS could be used for rapid climate change attribution 

assessments. 

The IRIS model suggests that Haiyan was a 850 year event. Such a large return period can not 

be estimated from the observations alone. Using the CHAZ model Baldwin et al. , 2023 

estimated a Haiyan return period of several thousand years. They used a different baseline and 

applied a landfall bias correction. The synthetic track set also allows us to estimate for the first 

time the change in probability or frequency of this type of event in 2013 compared to pre-

industrial conditions. We estimate that the fractional attributable risk (FAR) due to climate 

change is about 98% for a strong Category 5 Haiyan type event in 2013. The significance of 

such a large FAR is that such the Haiyan disaster is very unlikely to have occurred without the 

increase in potential intensity driven by global warming. 

The ability to calculate the FAR  maybe useful in applications to parametric insurance and the  

proposed loss and damage fund (UNFCC, 2024) set up  to enhance resilience to climate 

change.  Parametric insurance or a catastrophe bond could play an important role in the toolkit 

for this fund. The IRIS simulations suggest that the FAR for all-Philippine landfall due to climate 

change for storms of at least Category 5 was about 37% in 2013. This opens the interesting 

proposition that the loss and damage fund or a development bank could subsidise a fraction of 

the parametric insurance premium or the yield of a typhoon bond. There are many factors 

determining the premium or bond yield, but the amount of subsidy could be based on the FAR 

or about 37% in this case. This subsidy would account for the enhanced climate risk incurred 

by the historic anthropogenic emissions of the developed world. Global warming has continued 

since 2013 so this subsidy for Category 5+ events would be much larger now and increase 

going forward.  

Another approach could be to use the FAR to distinguish between fair needs of different 

countries/regions within a multinational or multi-regional insurance pool. The demand for 

premium or yield subsidy by countries/regions typically exceeds the supply.  Those countries or 

regions with a larger FAR could be given preference in the loss and damage fund allocation 

(Paul Wilson. private communication). A model such as IRIS could play an important role in 

informing parametric insurance and the allocation of the loss and damage fund.  
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