

ICIC Imperial Centre for Inference & Cosmology

Roberto Trotta - <u>www.robertotrotta.com</u> ICIC Data Analysis Workshop, Sept 2013

Imperial College London

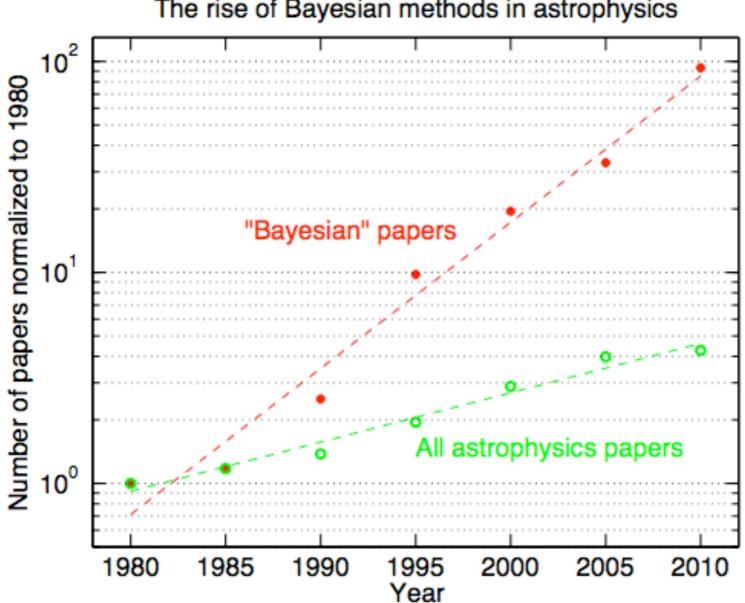
- Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be interpreted as a statement about the probability of the hypothesis!
- Example: to test the null hypothesis H₀: θ = 0, draw *n* normally distributed points (with known variance σ²). The χ² is distributed as a chi-square distribution with (*n*-1) degrees of freedom (dof). Pick a significance level α (or p-value, e.g. α = 0.05). If P(χ² > χ²_{obs}) < α reject the null hypothesis.
- This is a statement about the likelihood of observing data as extreme or more extreme than have been measured assuming the null hypothesis is correct.
- It is not a statement about the probability of the null hypothesis itself and cannot be interpreted as such! (or you'll make gross mistakes)
- The use of p-values implies that a hypothesis that may be true can be rejected because it has not predicted observable results that have not actually occurred. (Jeffreys, 1961)

The significance of significance

- Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the time: at least 29% of 2-sigma results are wrong!
 - Take an equal mixture of H₀, H₁
 - Simulate data, perform hypothesis testing for H₀
 - Select results rejecting H_0 at (or within a small range from) 1- α CL (this is the prescription by Fisher)
 - What fraction of those results did actually come from H₀ ("true nulls", should not have been rejected)?

p-value	sigma	fraction of true nulls	lower bound
$0.05 \\ 0.01 \\ 0.001$	$1.96 \\ 2.58 \\ 3.29$	$\begin{array}{c} 0.51 \\ 0.20 \\ 0.024 \end{array}$	0.29 0.11 0.018

Recommended reading: Sellke, Bayarri & Berger, *The American Statistician*, 55, 1 (2001)

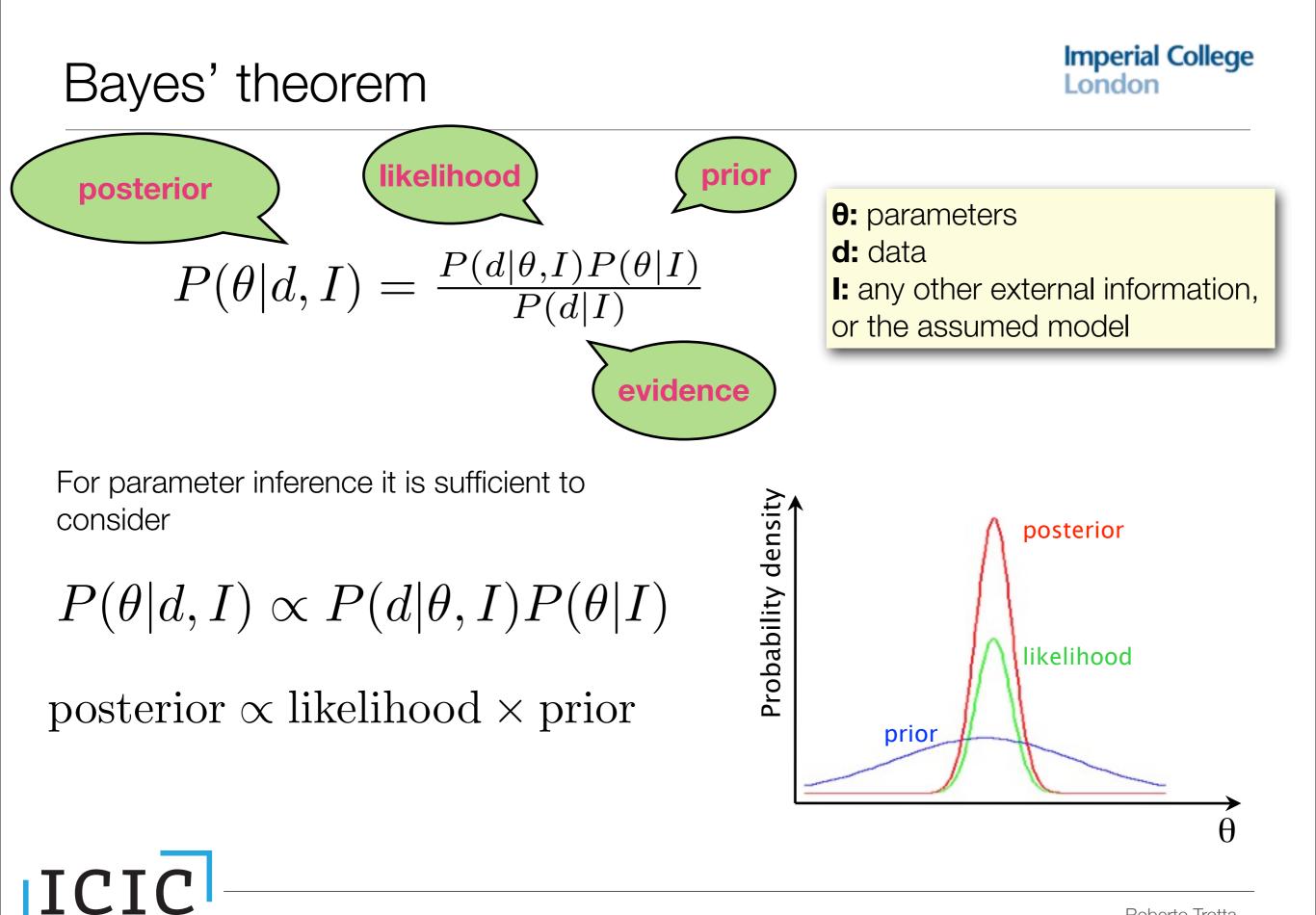


The rise of Bayesian methods in astrophysics

ICIC

Roberto Trotta

Imperial College London



Bayesian model comparison

Bayesian inference chain

- Select a model (parameters + priors)
- Compute observable quantities as a function of parameters
- Compare with available data
 - derive parameters constraints: **PARAMETER INFERENCE**
 - compute relative model probability: **MODEL COMPARISON**
- Go back and start again

Thursday, 12 September 13

The 3 levels of inference

Imperial College London

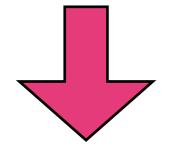
LEVEL 1 I have selected a model M and prior P(θ|M)

LEVEL 2

Actually, there are several possible models: M₀, M₁,...

LEVEL 3

None of the models is clearly the best



 $P(\theta|d, M) = \frac{P(d|\theta, M)P(\theta|M)}{P(d|M)}$

Parameter inference

(assumes M is the true model)

odds =
$$\frac{P(M_0|d)}{P(M_1|d)}$$

Model comparison

What is the relative plausibility of M₀, M₁,... in light of the data?

 $P(\theta|d) = \sum_{i} P(M_i|d) P(\theta|d, M_i)$

Model averaging

What is the inference on the parameters accounting for model uncertainty?

$$P(\theta|d, M) = \frac{P(d|\theta, M)P(\theta|M)}{P(d|M)}$$

Bayesian evidence or model likelihood

The evidence is the integral of the likelihood over the prior:

$$P(d|M) = \int_{\Omega} d\theta P(d|\theta, M) P(\theta|M)$$

Bayes' Theorem delivers the model's posterior:

$$P(M|d) = \frac{P(d|M)P(M)}{P(d)}$$

 $\frac{P(M_0|d)}{P(M_1|d)} = \frac{P(d|M_0)}{P(d|M_1)} \frac{P(M_0)}{P(M_1)}$

When we are comparing two models:

The Bayes factor:

$$B_{01} \equiv \frac{P(d|M_0)}{P(d|M_1)}$$

ICIC

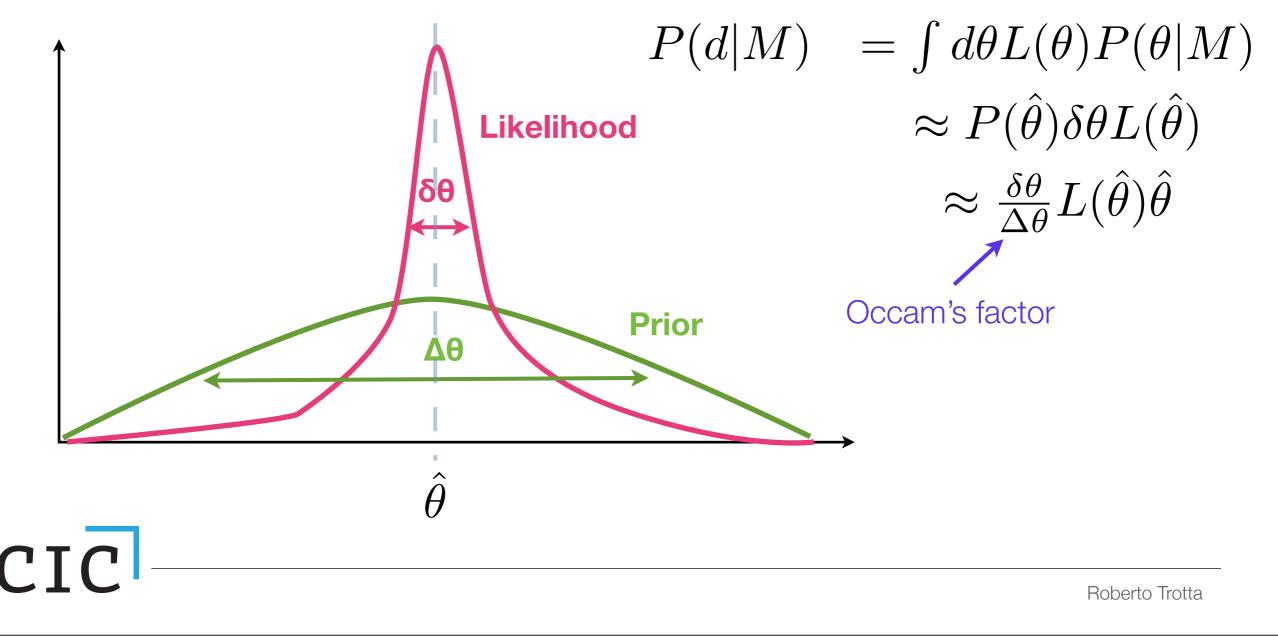
Posterior odds = Bayes factor × prior odds

Scale for the strength of evidence

• A (slightly modified) Jeffreys' scale to assess the strength of evidence (**Notice:** this is empirically calibrated!)

InB	relative odds	favoured model's probability	Interpretation
< 1.0	< 3:1	< 0.750	not worth mentioning
< 2.5	< 12:1	0.923	weak
< 5.0	< 150:1	0.993	moderate
> 5.0	> 150:1	> 0.993	strong

- Bayes factor balances quality of fit vs extra model complexity.
- It rewards highly predictive models, penalizing "wasted" parameter space



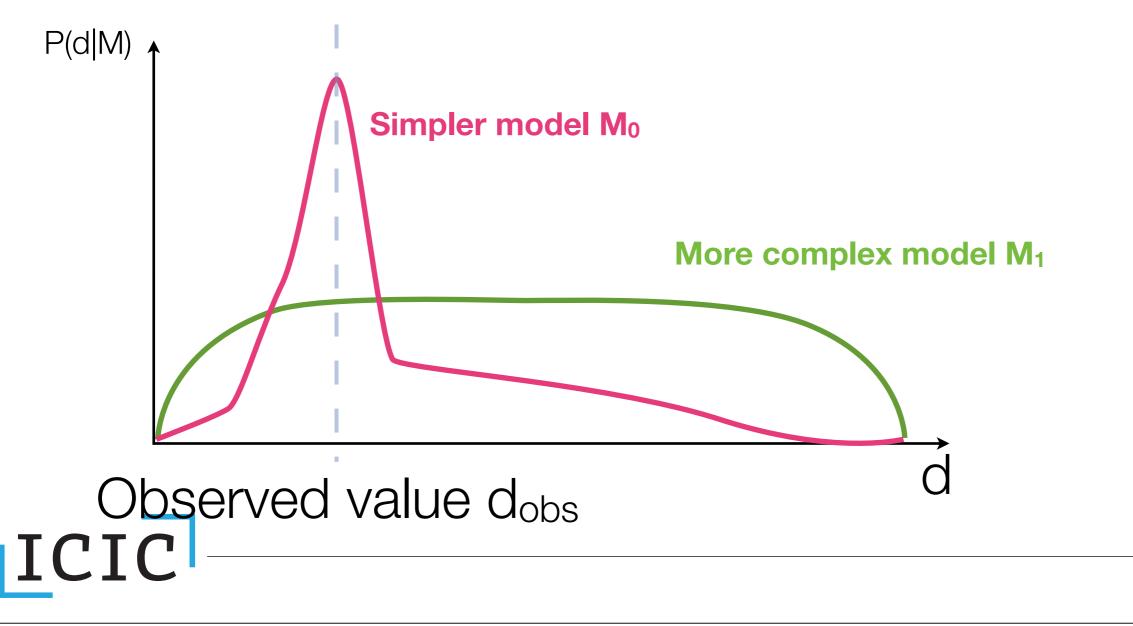
The evidence as predictive probability

• The evidence can be understood as a function of d to give the predictive probability under the model M:

Imperial College

Roberto Trotta

London

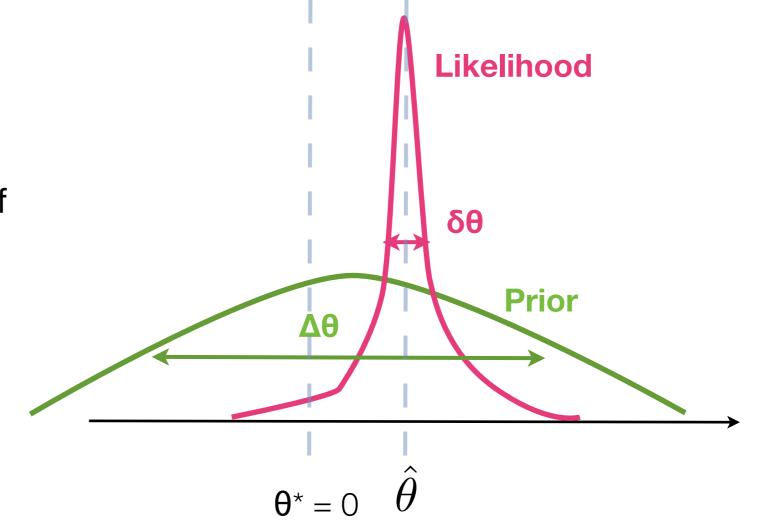


Simple example: nested models

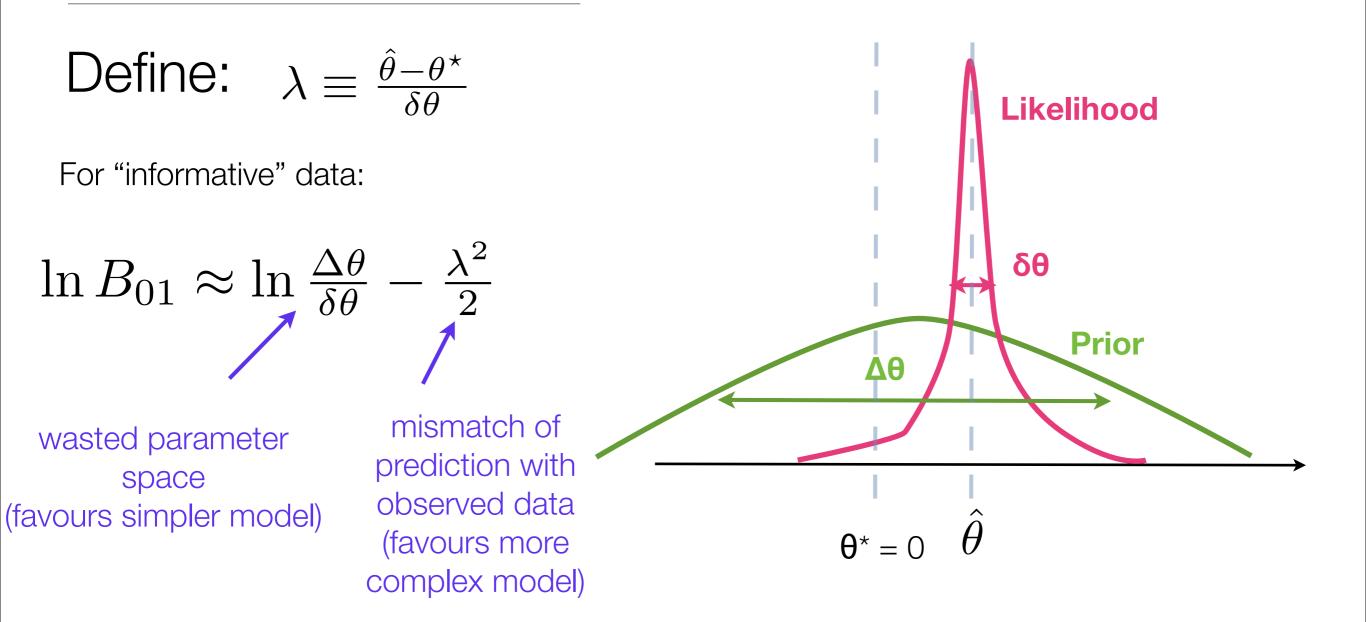
 This happens often in practice: we have a more complex model, M₁ with prior P(θ|M₁), which reduces to a simpler model (M₀) for a certain value of the parameter,

e.g. $\theta = \theta^* = 0$ (nested models)

 Is the extra complexity of M₁ warranted by the data?



Simple example: nested models



Question 1

- You use Bayesian model comparison to compare:
 Model 0: The coin is fair
 Model 1: The coin is biased, with uniform prior between [0,1] for the probability of heads
- Data: 5 heads out of 10 tosses.
- The Bayes factor will:
 - A. Favour model O
 - B. Favour model 1
 - C. Favour neither model

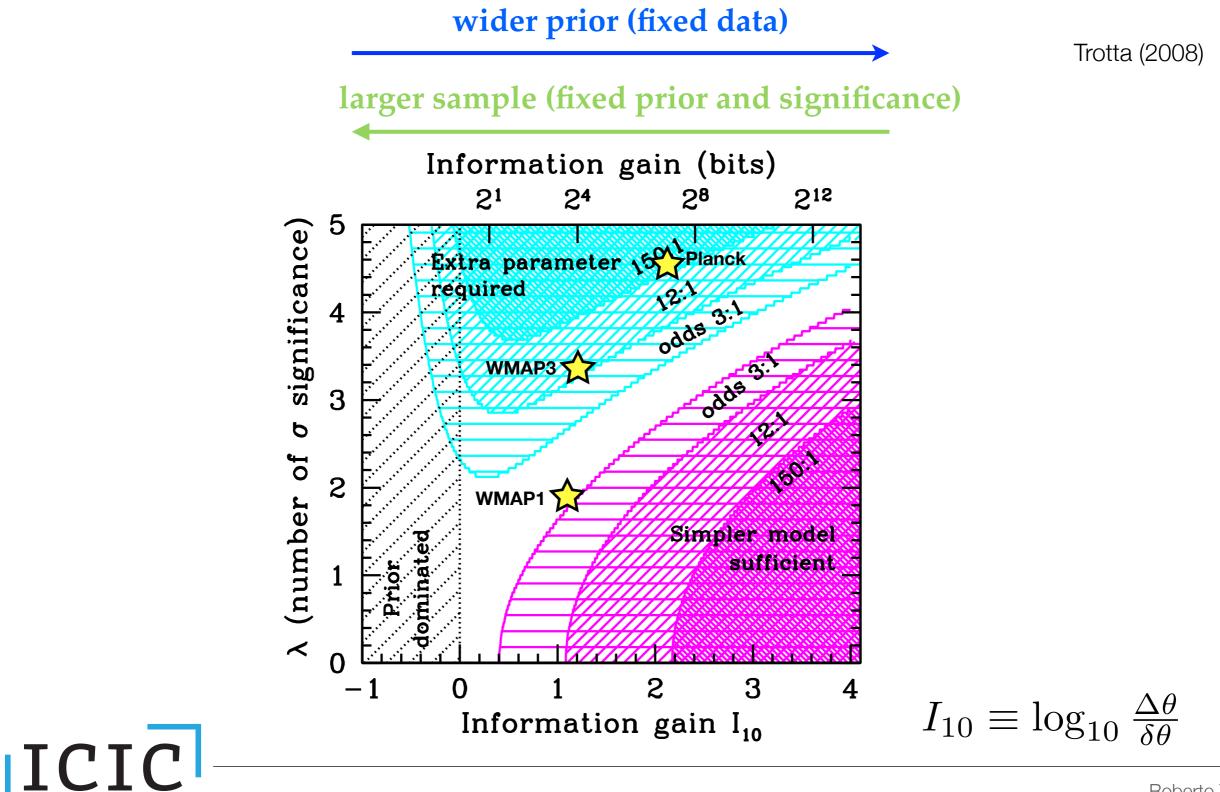
Question 2

- You use Bayesian model comparison to compare:
 Model 0: The coin is fair
 Model 1: The coin has two heads
- Data: 9 heads out of 10 tosses.
- The Bayes factor will:
 - A. Favour model O
 - B. Favour model 1
 - C. Favour neither model

Question 3

- You use Bayesian model comparison to compare:
 Model 0: The coin is fair
 Model 1: The coin is fair, and the height h of the Shard is 326m, with a uniform prior for h in [0,1000] m.
- Data: 5 heads out of 10 tosses.
- The Bayes factor will:
 - A. Favour model O
 - B. Favour model 1
 - C. Favour neither model

The rough guide to model comparison



Roberto Trotta

Imperial College

London

ICIC

Information criteria

- Several information criteria exist for approximate model comparison
 k = number of fitted parameters
 N = number of data points,
 -2 ln(L_{max}) = best-fit chi-squared
- Akaike Information Criterium (AIC):
- Bayesian Information Criterium (BIC):
- Deviance Information Criterium (DIC):

$$AIC \equiv -2\ln \mathcal{L}_{max} + 2k$$

$$BIC \equiv -2\ln \mathcal{L}_{\max} + k\ln N$$

$$\mathrm{DIC} \equiv -2\widehat{D_{\mathrm{KL}}} + 2\mathcal{C}_{b}$$

Imperial College London

Notes on information criteria

- The best model is the one which minimizes the AIC/BIC/DIC
- Warning: AIC and BIC penalize models differently as a function of the number of data points N.
 For N>7 BIC has a more strong penalty for models with a larger number of free parameters k.
- BIC is an approximation to the full Bayesian evidence with a default Gaussian prior equivalent to 1/N-th of the data in the large N limit.
- DIC takes into account whether parameters are measured or not (via the Bayesian complexity, see later).
- When possible, computation of the Bayesian evidence is preferable (with explicit prior specification).

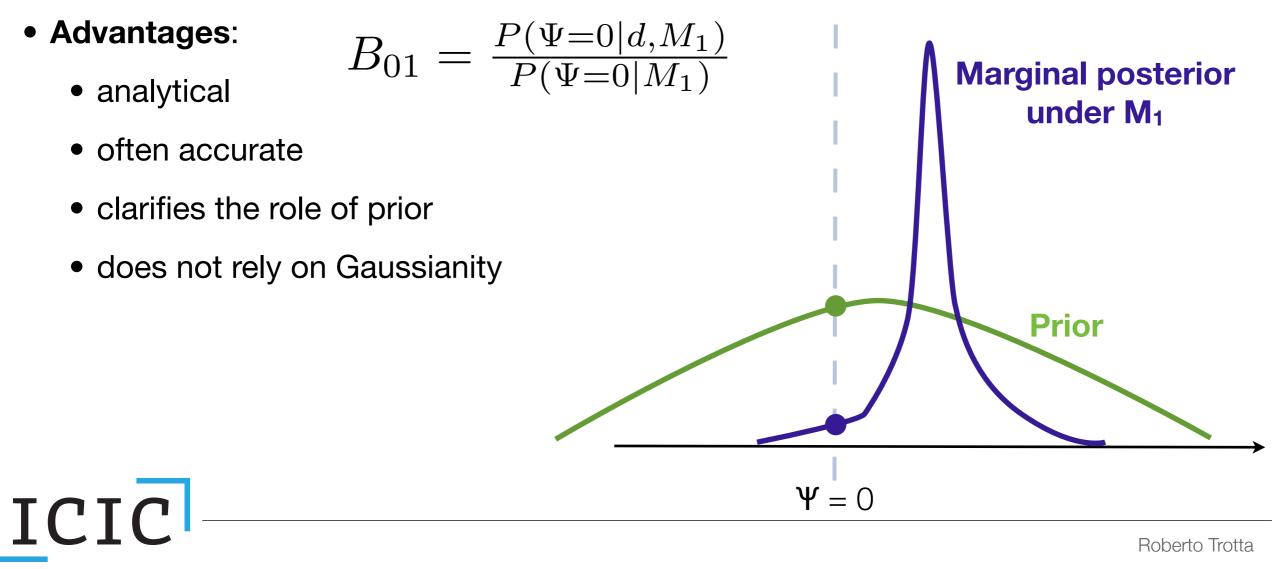
evidence:
$$P(d|M) = \int_{\Omega} d\theta P(d|\theta, M) P(\theta|M)$$

Bayes factor: $B_{01} \equiv \frac{P(d|M_0)}{P(d|M_1)}$

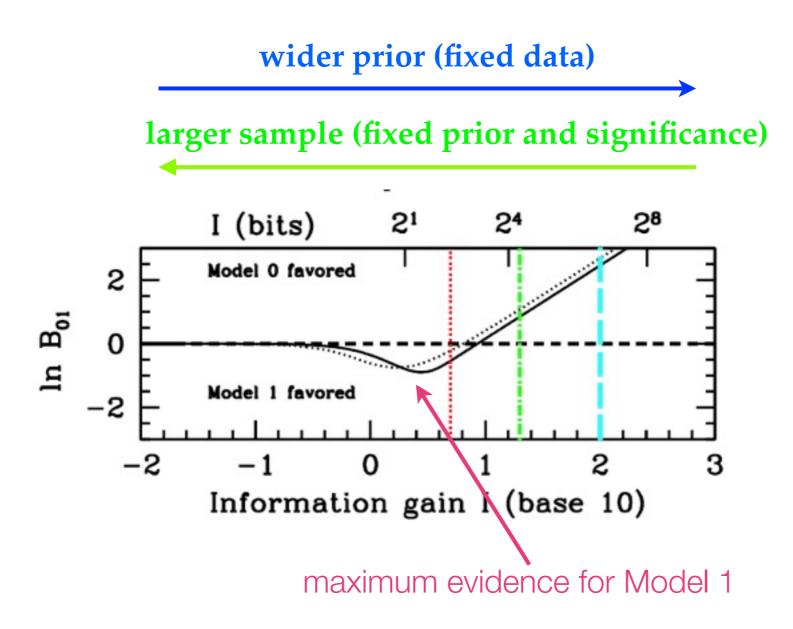
- Usually computational demanding: multi-dimensional integral!
- Several techniques available:
 - Brute force: thermodynamic integration
 - Laplace approximation: approximate the likelihood to second order around maximum gives Gaussian integrals (for normal prior). Can be inaccurate.
 - Savage-Dickey density ratio: good for nested models, gives the Bayes factor
 - Nested sampling: clever & efficient, can be used generally

- This methods works for nested models and gives the Bayes factor analytically.
- Assumptions: nested models (M₁ with parameters θ , Ψ reduces to M₀ for e.g. $\Psi = 0$) and separable priors (i.e. the prior P(θ , Ψ |M₁) is uncorrelated with P(θ |M₀))

• Result:



• What if we do not know how to set the prior? For nested models, we can still choose a prior that will maximise the support for the more complex model:



• The absolute upper bound: put all prior mass for the alternative onto the observed maximum likelihood value. Then

$$B < \exp(-\chi^2/2)$$

• More reasonable class of priors: symmetric and unimodal around Ψ =0, then (α = significance level)

$$B < \frac{-1}{\exp(1)\alpha \ln \alpha}$$

If the upper bound is small, no other choice of prior will make the extra parameter significant.

Sellke, Bayarri & Berger, *The American Statistician*, 55, 1 (2001)

"Reasonable" Absolute bound bound on InB sigma α on InB (B) **(B)** 2.0 0.9 0.05 2.0 (7:1)(3:1)weak undecided 4.5 3.0 0.003 3.0 (90:1) (21:1) moderate moderate 6.48 5.0 0.0003 3.6 (650:1)(150:1)strong strong

ICIC

Roberto Trotta

Imperial College London

Thursday, 12 September 13

A conversion table

p-value	\bar{B}	$\ln \bar{B}$	sigma	category
0.05	2.5	0.9	2.0	
0.04	2.9	1.0	2.1	'weak' at best
0.01	8.0	2.1	2.6	
0.006	12	2.5	2.7	'moderate' at best
0.003	21	3.0	3.0	
0.001	53	4.0	3.3	
0.0003	150	5.0	3.6	'strong' at best
6×10^{-7}	43000	11	5.0	

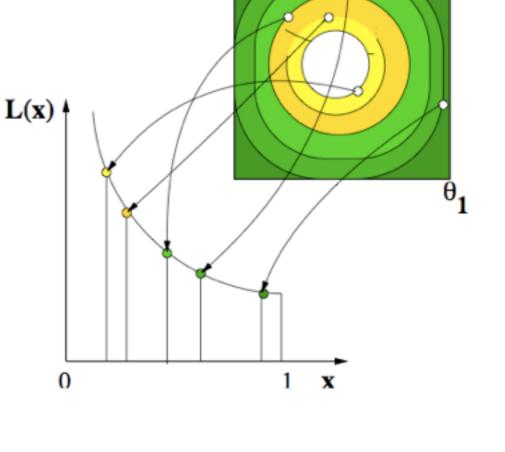
Rule of thumb:

a n-sigma result should be interpreted as a n-1 sigma result

ICIC

Nested sampling

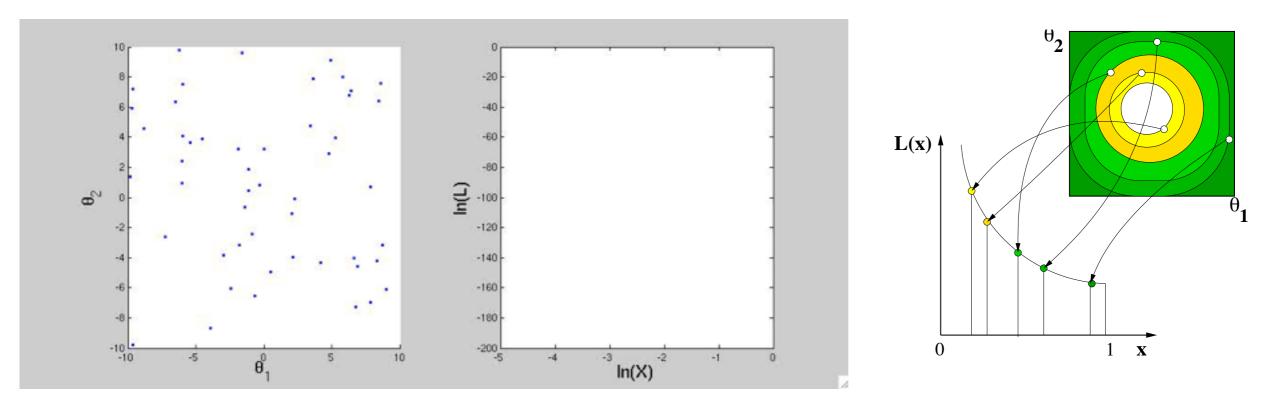
- Perhaps the method to compute the evidence
- At the same time, it delivers samples from the posterior: it is a highly efficient sampler! (much better than MCMC in tricky situations)
- Invented by John Skilling in 2005: the gist is to convert a *n*-dimensional integral in a 1D integral that can be done easily.



 θ_2

Liddle et al (2006)

Nested sampling



(animation courtesy of David Parkinson)

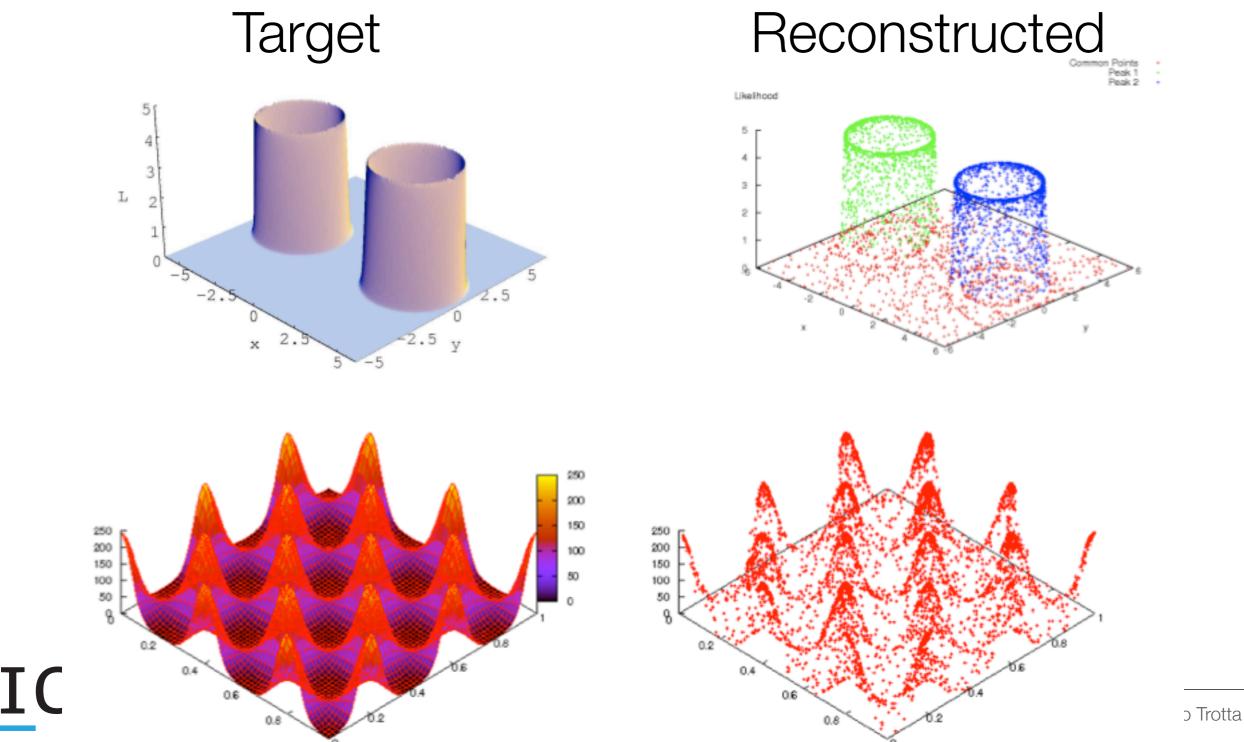
An algorithm originally aimed primarily at the Bayesian evidence computation (Skilling, 2006):

$$X(\lambda) = \int_{\mathcal{L}(\theta) > \lambda} P(\theta) d\theta$$
$$P(d) = \int d\theta L(\theta) P(\theta) = \int_0^1 L(X) dX$$

Thursday, 12 September 13

The MultiNest algorithm

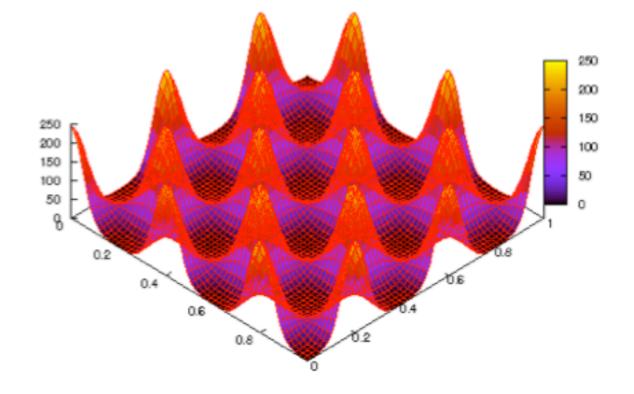
• Feroz & Hobson (2007)

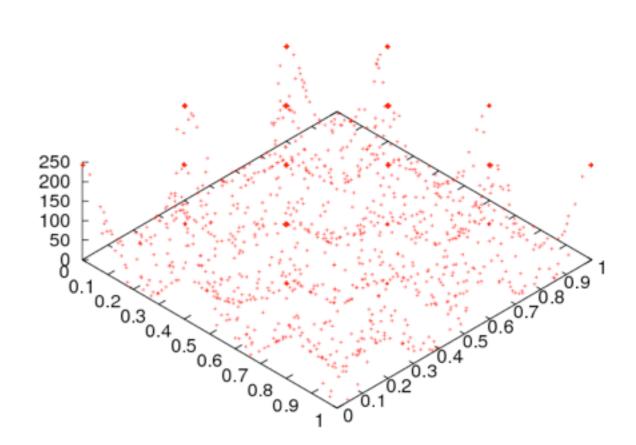


Imperial College London

The egg-box example

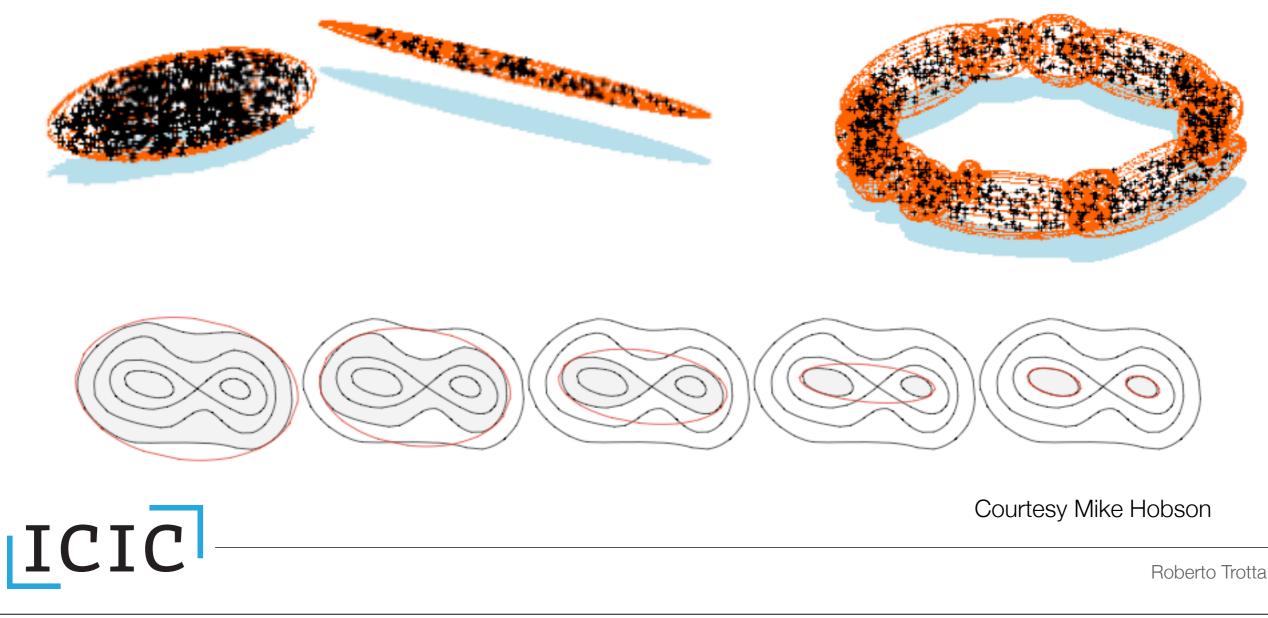
• MultiNest reconstruction of the egg-box posterior:





Ellipsoidal decomposition

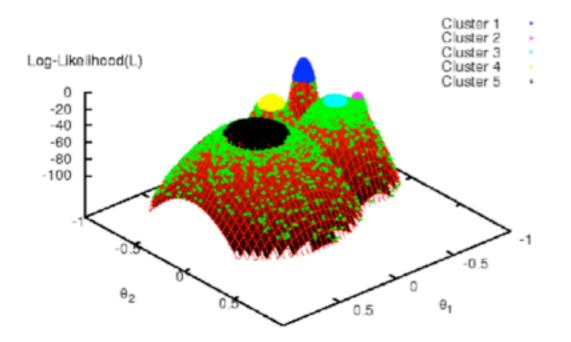
Unimodal distribution Multimodal distribution



Thursday, 12 September 13

Multinest: Efficiency

Imperial College London



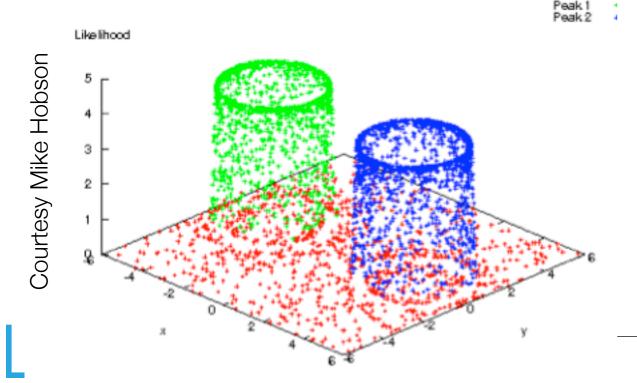
Gaussian mixture model:

True evidence: log(E) = -5.27 **Multinest:**

Reconstruction: $log(E) = -5.33 \pm 0.11$ Likelihood evaluations ~ 10^4

Thermodynamic integration:

Reconstruction: $log(E) = -5.24 \pm 0.12$ Likelihood evaluations ~ 10^{6}



D	Nlike	efficiency	likes per dimension
2	7000	70%	83
5	18000	51%	7
10	53000	34%	3
20	255000	15%	1.8
30	753000	8%	1.6

ICT

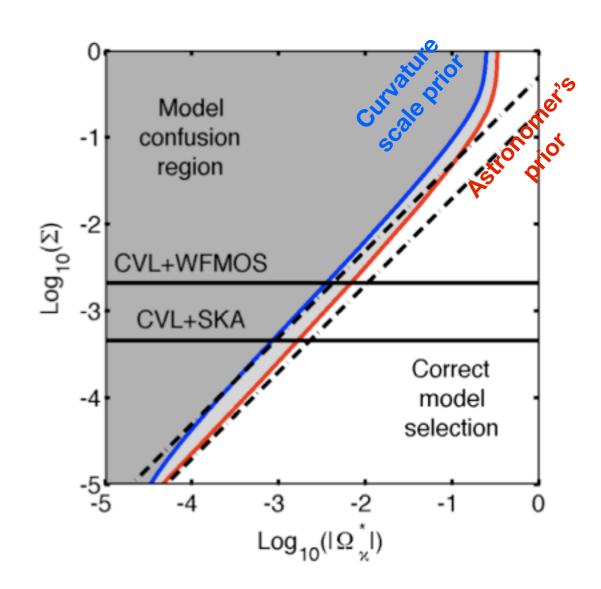
Roberto Trotta

Imperial College

London

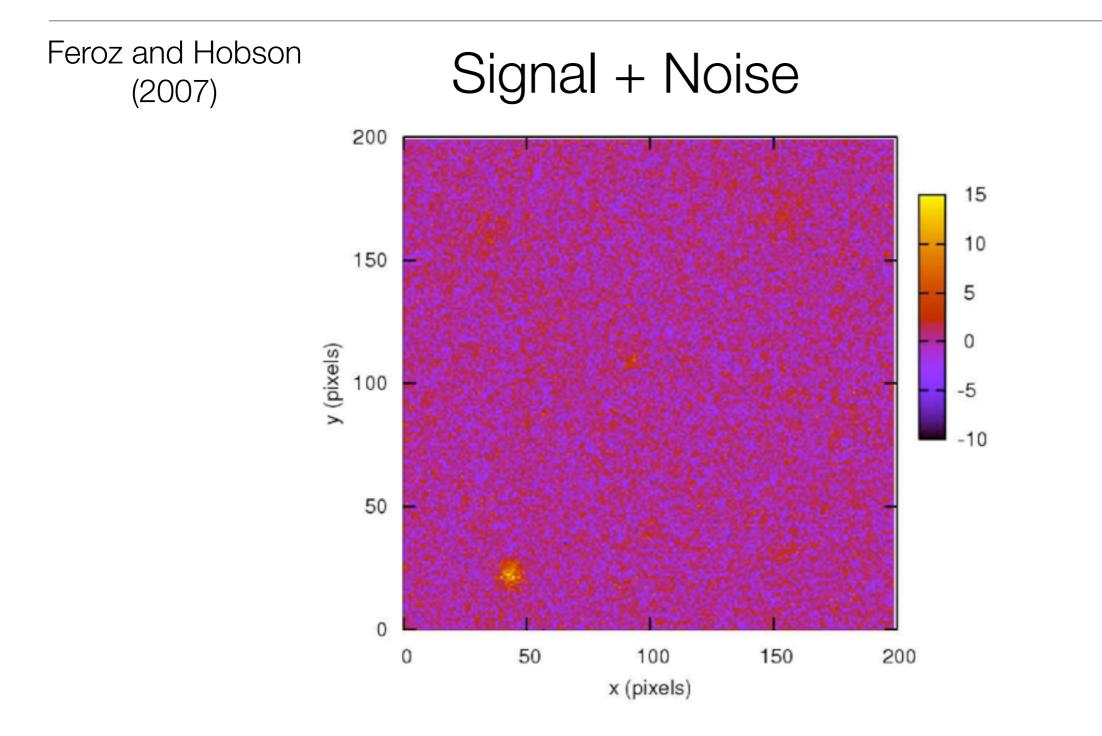
Application: the spatial curvature

- Is the Universe spatially flat? (Vardanyan, Trotta and Silk, 2009)
- A three-way model comparison: Ω_k = 0 vs Ω_k < 0 vs Ω_k > 0
 (with either the Astronomer's prior or Curvature scale prior)
- Result: odds range from moderate evidence (InB = 4) for flatness to undecided (InB = 0.4) depending on the choice of prior
- Probability(infinite Universe) = 98% (Astronomer's prior) Probability(infinite Universe) = 45% (Curvature scale prior)
- Upper bound: odds of 49:1 at best for n ≠ 1 (Gordon and Trotta 2007)



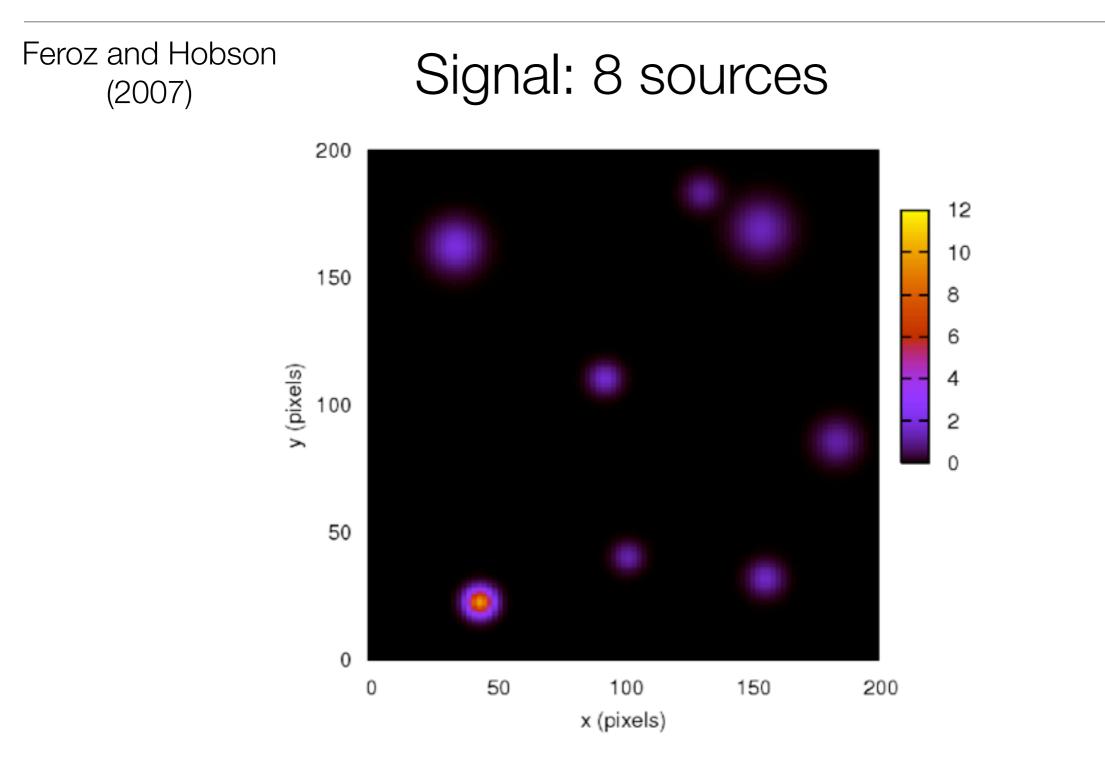
A "simple" example: how many sources?

Imperial College London



A "simple" example: how many sources?

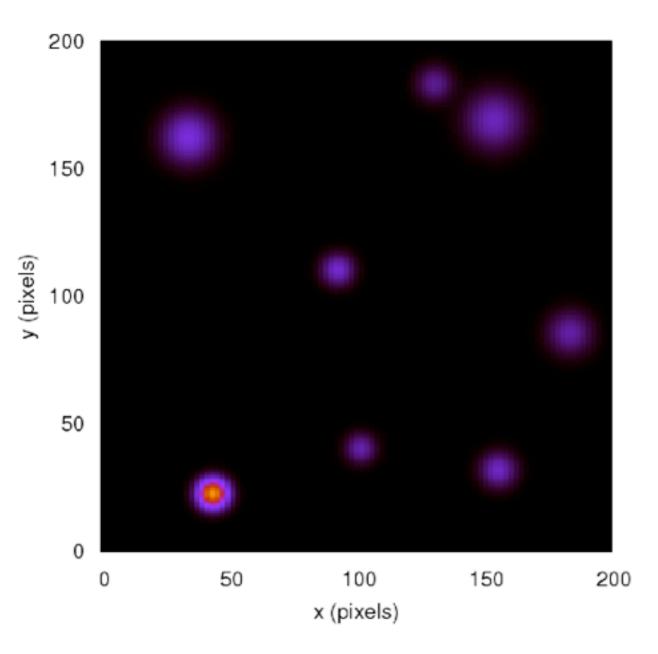
Imperial College London



A "simple" example: how many sources?

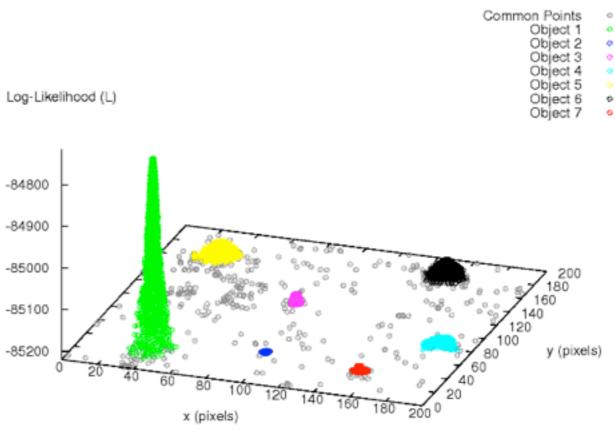
Imperial College London

Feroz and Hobson (2007)

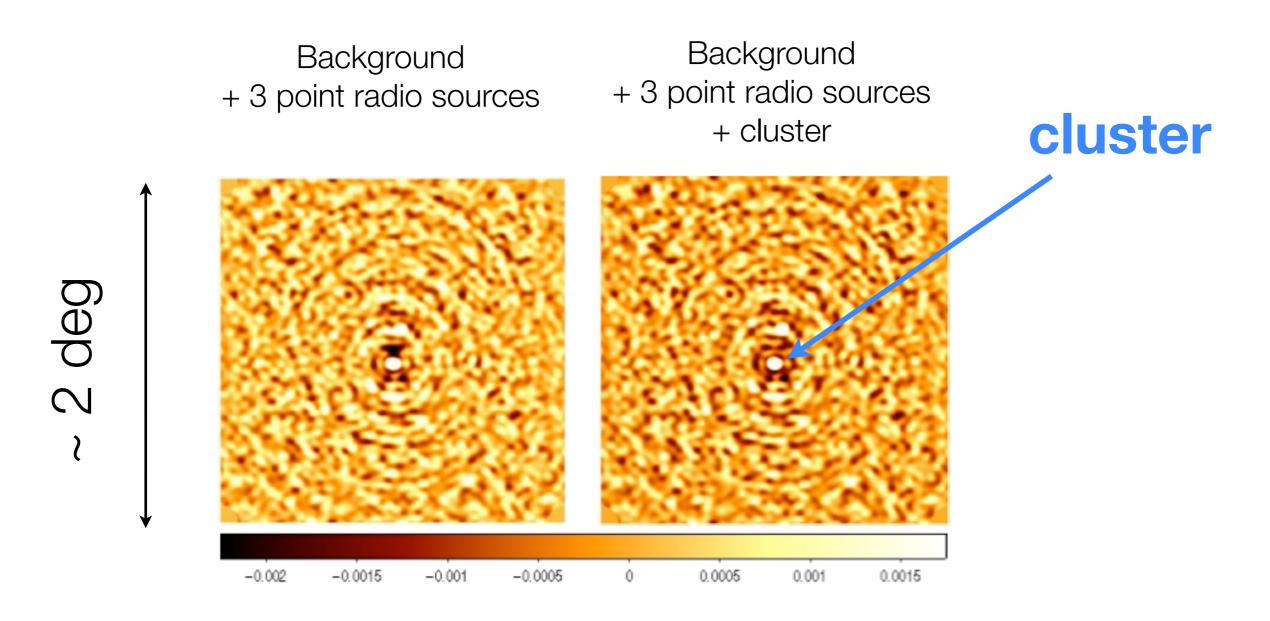


Bayesian reconstruction

7 out of 8 objects correctly identified. Mistake happens because 2 objects very close.

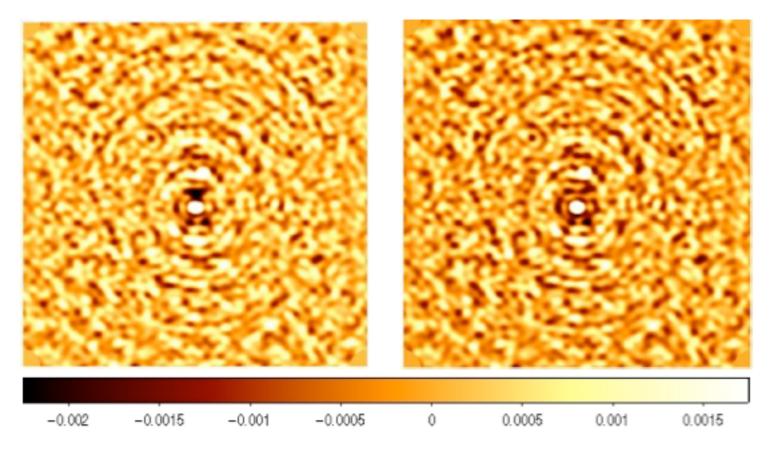


Cluster detection from Sunyaev-Zeldovich effect in cosmic microwave background maps



Feroz et al 2009

Background + 3 point radio sources Background + 3 point radio sources + cluster

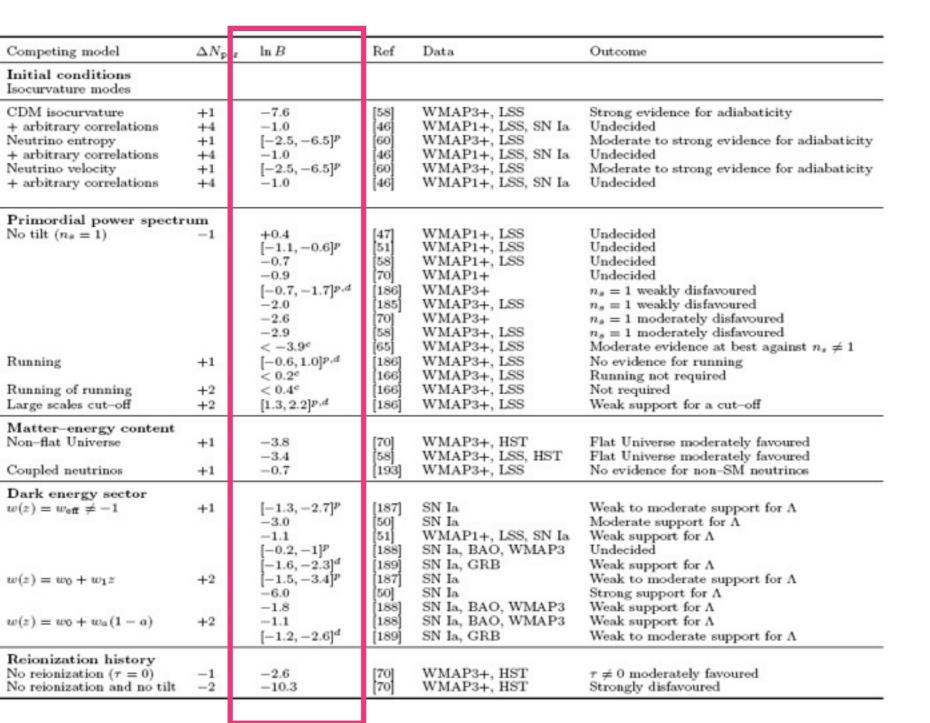


Bayesian model comparison: **R = P(cluster | data)/P(no cluster | data)**

 $R = 0.35 \pm 0.05$ $R \sim 10^{33}$

Cluster parameters also recovered (position, temperature, profile, etc)

The cosmological concordance model



from Trotta (2008)

InB < 0: favours ACDM

Imperial College London

Model complexity

- "Number of free parameters" is a relative concept. The relevant scale is set by the prior range
- How many parameters can the data support, regardless of whether their detection is significant?
- **Bayesian complexity** or effective number of parameters:

$$C_b = \overline{\chi^2(\theta)} - \chi^2(\widehat{\theta})$$
$$= \sum_i \frac{1}{1 + (\sigma_i / \Sigma_i)^2}$$

Kunz, RT & Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006) Following Spiegelhalter et al (2002)

Polynomial fitting

• Data generated from a model with n = 6:

GOOD DATA Max supported complexity ~ 9

15 15 n 0 -log(-log(model likelihood)) -log(-log(model likelihood)) -1 0 complexity 0 complexity 0 2 2 -3 ·3 5 5 •4 0 0 15 5 10 0 5 10 15 0 number of parameters number of parameters ICIC

Roberto Trotta

Imperial College

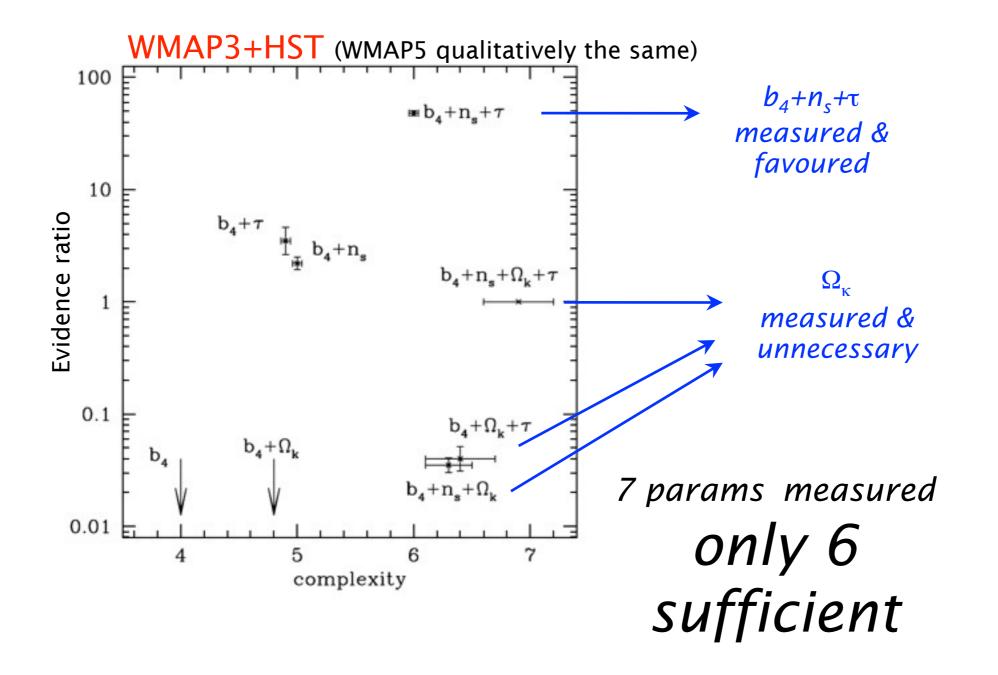
London

INSUFFICIENT DATA

Max supported complexity ~ 4

Thursday, 12 September 13

How many parameters does the CMB need?



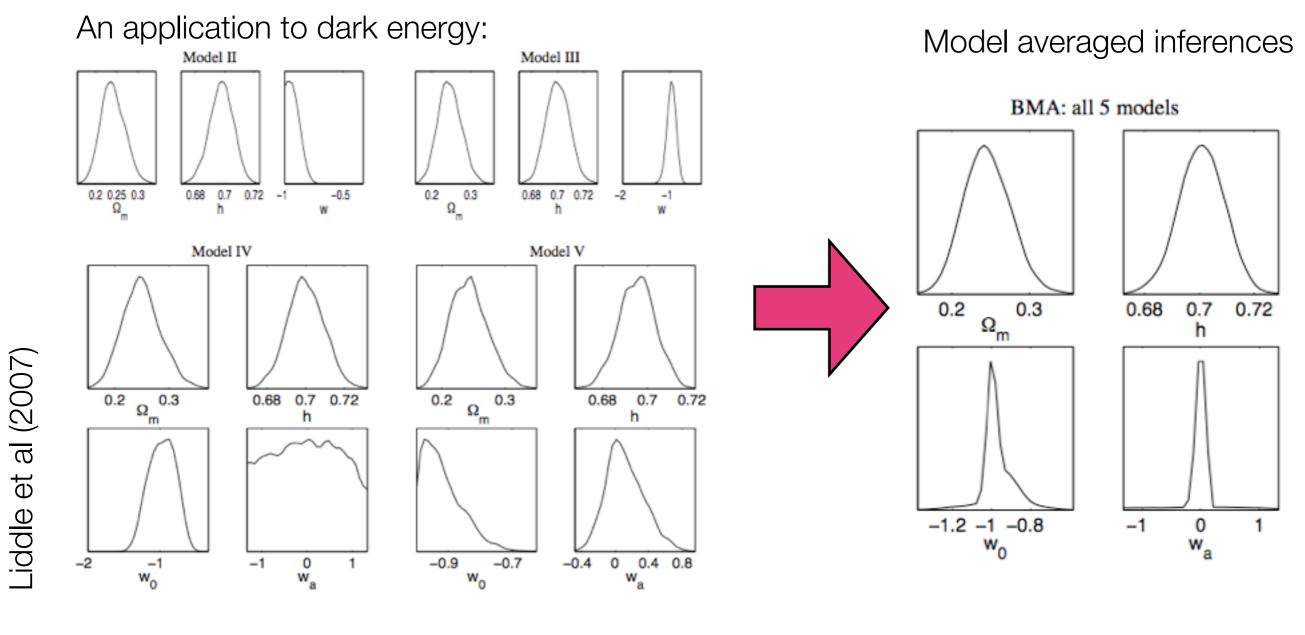
Roberto Trotta

Imperial College

London

Thursday, 12 September 13

$P(\boldsymbol{\theta}|d) = \sum_{i} P(\boldsymbol{\theta}|d, M_{i})P(M_{i}|d)$



ICIC

Key points

- Bayesian model comparison extends parameter inference to the space of models
- The Bayesian evidence (model likelihood) represents the change in the degree of belief in the model after we have seen the data
- Models are rewarded for their predictivity (automatic Occam's razor)
- Prior specification is for model comparison a key ingredient of the model building step. If the prior cannot be meaningfully set, then the physics in the model is probably not good enough.
- Bayesian model complexity can help (together with the Bayesian evidence) in assessing model performance.