Bayesian Model Comparison

ICIC

Imperial Centre
for Inference \& Cosmology

Roberto Trotta - www.robertotrotta.com ICIC Data Analysis Workshop, Sept 2013

Imperial College
London

Frequentist hypothesis testing

- Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be interpreted as a statement about the probability of the hypothesis!
- Example: to test the null hypothesis $\mathrm{H}_{0}: \theta=0$, draw n normally distributed points (with known variance σ^{2}). The x^{2} is distributed as a chi-square distribution with ($n-1$) degrees of freedom (dof). Pick a significance level a (or p-value, e.g. $a=0.05$). If $P\left(x^{2}\right.$ $>X^{2}$ obs) < a reject the null hypothesis.
- This is a statement about the likelihood of observing data as extreme or more extreme than have been measured assuming the null hypothesis is correct.
- It is not a statement about the probability of the null hypothesis itself and cannot be interpreted as such! (or you'll make gross mistakes)
- The use of p-values implies that a hypothesis that may be true can be rejected because it has not predicted observable results that have not actually occurred. (Jeffreys, 1961)

The significance of significance

- Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the time: at least 29\% of 2-sigma results are wrong!
- Take an equal mixture of $\mathrm{H}_{0}, \mathrm{H}_{1}$
- Simulate data, perform hypothesis testing for H_{0}
- Select results rejecting H_{0} at (or within a small range from) 1-a CL (this is the prescription by Fisher)
- What fraction of those results did actually come from H_{0} ("true nulls", should not have been rejected)?

p -value	sigma	fraction of true nulls	lower bound
0.05	1.96	0.51	0.29
0.01	2.58	0.20	0.11
0.001	3.29	0.024	0.018

Recommended reading:
Sellke, Bayarri \& Berger, The American Statistician, 55, 1 (2001)

Bayesian methods on the rise

The rise of Bayesian methods in astrophysics

Bayes' theorem

$$
P(\theta \mid d, I)=\frac{P(d \mid \theta, I) P(\theta \mid I)}{P(d \mid I)}
$$

Ө: parameters
d: data
l: any other external information, or the assumed model

For parameter inference it is sufficient to consider
$P(\theta \mid d, I) \propto P(d \mid \theta, I) P(\theta \mid I)$ posterior \propto likelihood \times prior

Bayesian model comparison

Bayesian inference chain

- Select a model (parameters + priors)
- Compute observable quantities as a function of parameters
- Compare with available data
- derive parameters constraints: PARAMETER INFERENCE
- compute relative model probability: MODEL COMPARISON
- Go back and start again

LEVEL 1
I have selected a model M and prior $\mathrm{P}(\theta \mid \mathrm{M})$

$P(\theta \mid d, M)=\frac{P(d \mid \theta, M) P(\theta \mid M)}{P(d \mid M)}$
Parameter inference (assumes M is the true model)

LEVEL 2

Actually, there are several possible models: M_{0}, M_{1}, \ldots

LEVEL 3

None of the models is clearly the best

$P(\theta \mid d)=\sum_{i} P\left(M_{i} \mid d\right) P\left(\theta \mid d, M_{i}\right)$

Model comparison
What is the relative plausibility of $\mathrm{M}_{0}, \mathrm{M}_{1}, \ldots$ in light of the data?

Model averaging

What is the inference on
the parameters
accounting for model uncertainty?

$$
P(\theta \mid d, M)=\frac{P(d \mid \theta, M) P(\theta \mid M)}{P(d \mid M)}
$$

The evidence is the integral of the likelihood over the prior:

$$
P(d \mid M)=\int_{\Omega} d \theta P(d \mid \theta, M) P(\theta \mid M)
$$

Bayes' Theorem delivers the model's posterior:

$$
P(M \mid d)=\frac{P(d \mid M) P(M)}{P(d)}
$$

When we are comparing two models:
The Bayes factor:

$$
\frac{P\left(M_{0} \mid d\right)}{P\left(M_{1} \mid d\right)}=\frac{P\left(d \mid M_{0}\right)}{P\left(d \mid M_{1}\right)} \frac{P\left(M_{0}\right)}{P\left(M_{1}\right)} \quad B_{01} \equiv \frac{P\left(d \mid M_{0}\right)}{P\left(d \mid M_{1}\right)}
$$

Scale for the strength of evidence

- A (slightly modified) Jeffreys' scale to assess the strength of evidence (Notice: this is empirically calibrated!)

$\|\operatorname{lnB}\|$	relative odds	favoured model's probability	Interpretation
<1.0	$<3: 1$	<0.750	not worth mentioning
<2.5	$<12: 1$	0.923	weak
<5.0	$<150: 1$	0.993	moderate
>5.0	$>150: 1$	>0.993	strong

- Bayes factor balances quality of fit vs extra model complexity.
- It rewards highly predictive models, penalizing "wasted" parameter space

The evidence as predictive probability

- The evidence can be understood as a function of d to give the predictive probability under the model M :

Simple example: nested models

- This happens often in practice: we have a more complex model, M_{1} with prior $\mathrm{P}\left(\theta \mid \mathrm{M}_{1}\right)$, which reduces to a simpler model (M_{0}) for a certain value of the parameter, e.g. $\theta=\theta^{*}=0$ (nested models)
- Is the extra complexity of M_{1} warranted by the data?

Simple example: nested models

Define: $\quad \lambda \equiv \frac{\hat{\theta}-\theta^{*}}{\delta \theta}$
For "informative" data:

wasted parameter
space
(favours simpler model)

Question 1

- You use Bayesian model comparison to compare:

Model 0 : The coin is fair
Model 1: The coin is biased, with uniform prior between $[0,1]$ for the probability of heads

- Data: 5 heads out of 10 tosses.
- The Bayes factor will:
A. Favour model 0
B. Favour model 1
C. Favour neither model

Question 2

- You use Bayesian model comparison to compare:

Model 0: The coin is fair
Model 1: The coin has two heads

- Data: 9 heads out of 10 tosses.
- The Bayes factor will:
A. Favour model 0
B. Favour model 1
C. Favour neither model

Question 3

- You use Bayesian model comparison to compare:

Model 0 : The coin is fair
Model 1: The coin is fair, and the height h of the Shard is 326 m , with a uniform prior for h in $[0,1000] \mathrm{m}$.

- Data: 5 heads out of 10 tosses.
- The Bayes factor will:
A. Favour model 0
B. Favour model 1
C. Favour neither model

The rough guide to model comparison

$$
I_{10} \equiv \log _{10} \frac{\Delta \theta}{\delta \theta}
$$

Information criteria

- Several information criteria exist for approximate model comparison $\mathrm{k}=$ number of fitted parameters $\mathrm{N}=$ number of data points, $-2 \ln \left(L_{\text {max }}\right)=$ best-fit chi-squared
- Akaike Information Criterium (AIC):

$$
\mathrm{AIC} \equiv-2 \ln \mathcal{L}_{\max }+2 k
$$

- Bayesian Information Criterium (BIC): $\quad \mathrm{BIC} \equiv-2 \ln \mathcal{L}_{\max }+k \ln N$
- Deviance Information Criterium (DIC): $\quad \mathrm{DIC} \equiv-2 \widehat{D_{\mathrm{KL}}}+2 \mathcal{C}_{b}$.

Notes on information criteria

- The best model is the one which minimizes the AIC/BIC/DIC
- Warning: AIC and BIC penalize models differently as a function of the number of data points N .
For $\mathrm{N}>7$ BIC has a more strong penalty for models with a larger number of free parameters k.
- BIC is an approximation to the full Bayesian evidence with a default Gaussian prior equivalent to $1 / \mathrm{N}$-th of the data in the large N limit.
- DIC takes into account whether parameters are measured or not (via the Bayesian complexity, see later).
- When possible, computation of the Bayesian evidence is preferable (with explicit prior specification).

Computing the evidence

$$
\begin{aligned}
\text { evidence: } & P(d \mid M)=\int_{\Omega} d \theta P(d \mid \theta, M) P(\theta \mid M) \\
\text { Bayes factor: } & B_{01} \equiv \frac{P\left(d \mid M_{0}\right)}{P\left(d \mid M_{1}\right)}
\end{aligned}
$$

- Usually computational demanding: multi-dimensional integral!
- Several techniques available:
- Brute force: thermodynamic integration
- Laplace approximation: approximate the likelihood to second order around maximum gives Gaussian integrals (for normal prior). Can be inaccurate.
- Savage-Dickey density ratio: good for nested models, gives the Bayes factor
- Nested sampling: clever \& efficient, can be used generally

The Savage-Dickey density ratio

- This methods works for nested models and gives the Bayes factor analytically.
- Assumptions: nested models (M_{1} with parameters θ, Ψ reduces to M_{0} for e.g. $\Psi=0$) and separable priors (i.e. the prior $\mathrm{P}\left(\theta, \Psi \mid \mathrm{M}_{1}\right)$ is uncorrelated with $\mathrm{P}\left(\theta \mid \mathrm{M}_{0}\right)$)
- Result:
- Advantages:
- analytical

$$
B_{01}=\frac{P\left(\Psi=0 \mid d, M_{1}\right)}{P\left(\Psi=0 \mid M_{1}\right)}
$$

Marginal posterior under $\mathbf{M}_{\mathbf{1}}$

- often accurate
- clarifies the role of prior
- does not rely on Gaussianity
$\psi=0$

"Prior-free" evidence bounds

- What if we do not know how to set the prior? For nested models, we can still choose a prior that will maximise the support for the more complex model:

Maximum evidence for a detection

- The absolute upper bound: put all prior mass for the alternative onto the observed maximum likelihood value. Then

$$
B<\exp \left(-\chi^{2} / 2\right)
$$

- More reasonable class of priors: symmetric and unimodal around $\Psi=0$, then ($\alpha=$ significance level)

$$
B<\frac{-1}{\exp (1) \alpha \ln \alpha}
$$

If the upper bound is small, no other choice of prior will make the extra parameter significant.

Sellke, Bayarri \& Berger, The American Statistician, 55, 1 (2001)

How to interpret the "number of sigma's" $\begin{aligned} & \text { Imperial College } \\ & \text { Londor }\end{aligned}$

a sigma	Absolute bound on InB (B)	"Reasonable" bound on InB (B)	
0.05	2.0	2.0 $(7: 1)$ weak	0.9 $(3: 1)$ undecided
0.003	3.0	4.5 $(90: 1)$ moderate	3.0 $(21: 1)$ moderate
0.0003	3.6	6.48 $(650: 1)$ strong	5.0 $(150: 1)$ strong

A conversion table

p-value	\bar{B}	$\ln \bar{B}$	sigma	category
0.05	2.5	0.9	2.0	
0.04	2.9	1.0	2.1	'weak' at best
0.01	8.0	2.1	2.6	
0.006	12	2.5	2.7	'moderate' at best
0.003	21	3.0	3.0	
0.001	53	4.0	3.3	
0.0003	150	5.0	3.6	'strong' at best
6×10^{-7}	43000	11	5.0	

Rule of thumb:
a n-sigma result should be interpreted as a n-1 sigma result
\qquad

- Perhaps the method to compute the evidence
- At the same time, it delivers samples from the posterior: it is a highly efficient sampler! (much better than MCMC in tricky situations)
- Invented by John Skilling in 2005: the gist is to convert a n-dimensional integral in a 1D integral that can be done easily.

Liddle et al (2006)

(animation courtesy of David Parkinson)
An algorithm originally aimed primarily at the Bayesian evidence computation (Skilling, 2006):

The MultiNest algorithm

- Feroz \& Hobson (2007)

Target

Reconstructed

The egg-box example

- MultiNest reconstruction of the egg-box posterior:

Ellipsoidal decomposition

Unimodal distribution Multimodal distribution

ICI \bar{C}
Courtesy Mike Hobson

Multinest: Efficiency

Gaussian mixture model:

True evidence: $\log (E)=-5.27$
Multinest:
Reconstruction: $\log (E)=-5.33 \pm 0.11$
Likelihood evaluations ~ 10^{4}

Thermodynamic integration:

Reconstruction: $\log (E)=-5.24 \pm 0.12$
Likelihood evaluations ~ 10^{6}

Peak 1
Peak2

D	Nlike	efficiency	likes per dimension
2	7000	70%	83
5	18000	51%	7
10	53000	34%	3
20	255000	15%	1.8
30	753000	8%	1.6

Application: the spatial curvature

- Is the Universe spatially flat? (Vardanyan, Trotta and Silk, 2009)
- A three-way model comparison:
$\Omega_{\mathrm{k}}=0$ vs $\Omega_{\mathrm{k}}<0$ vs $\Omega_{\mathrm{k}}>0$
(with either the Astronomer's prior or Curvature scale prior)
- Result: odds range from moderate evidence $(\operatorname{lnB}=4)$ for flatness to undecided $(\operatorname{lnB}=0.4)$ depending on the choice of prior
- Probability(infinite Universe) $=98 \%$ (Astronomer's prior)
Probability(infinite Universe) $=45 \%$
(Curvature scale prior)
- Upper bound: odds of 49:1 at best for $n \neq 1$ (Gordon and Trotta 2007)

A "simple" example: how many sources?
Feroz and Hobson (2007)

Signal + Noise

A "simple" example: how many sources?

Feroz and Hobson (2007)

Signal: 8 sources

A "simple" example: how many sources?

Feroz and Hobson (2007)

Bayesian reconstruction

7 out of 8 objects correctly identified. Mistake happens because 2 objects very close.

Cluster detection from Sunyaev-Zeldovich effect in cosmic microwave background maps

Feroz et al 2009

Bayesian model comparison:

R = P(cluster | data)/P(no cluster | data)

$$
R=0.35 \pm 0.05 \quad R \sim 10^{33}
$$

Cluster parameters also recovered (position, temperature, profile, etc)

The cosmological concordance model

InB < 0: favours ^CDM

Model complexity

- "Number of free parameters" is a relative concept. The relevant scale is set by the prior range
- How many parameters can the data support, regardless of whether their detection is significant?
- Bayesian complexity or effective number of parameters:

$$
\begin{aligned}
\mathcal{C}_{b} & =\overline{\chi^{2}(\theta)}-\chi^{2}(\widehat{\theta}) \\
& =\sum_{i} \frac{1}{1+\left(\sigma_{i} / \Sigma_{i}\right)^{2}}
\end{aligned}
$$

Kunz, RT \& Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006)
Following Spiegelhalter et al (2002)

- Data generated from a model with $\mathrm{n}=6$:

GOOD DATA
Max supported complexity ~9

INSUFFICIENT DATA
Max supported complexity ~ 4 need?

$$
P(\theta \mid d)=\sum_{i} P\left(\theta \mid d, M_{i}\right) P\left(M_{i} \mid d\right)
$$

An application to dark energy:
 Liddle et al (2007)

Model IV

Model V

Model averaged inferences

- Bayesian model comparison extends parameter inference to the space of models
- The Bayesian evidence (model likelihood) represents the change in the degree of belief in the model after we have seen the data
- Models are rewarded for their predictivity (automatic Occam's razor)
- Prior specification is for model comparison a key ingredient of the model building step. If the prior cannot be meaningfully set, then the physics in the model is probably not good enough.
- Bayesian model complexity can help (together with the Bayesian evidence) in assessing model performance.

