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Suppose we have N independent samples {xi}, each drawn from a gaussian with mean
µ ≡ 〈x〉 and (for simplicity the same) standard deviation σ. What is µ? We can do
this in a Bayesian and Frequentist way, and find very similar-looking answers, but the
interpretations are very different.

Bayesian: What we want is the posterior pdf for µ, given the data {xi} and any prior
information p(µ). i.e. we want p(µ|{xi}). To do this, we use Bayes’ theorem,

p(µ|{xi}) =
p({xi}|µ)p(µ)

p({xi})
.

We assume a flat prior, p(µ) =constant, and so

p(µ|{xi}) ∝ p({xi}|µ) =

N∏
i=1

1√
2πσ

exp
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2σ2

]
.

This is clearly a gaussian in µ:

p(µ|{xi}) ∝ exp
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−Nµ

2

2σ2
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µ

σ2
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]
∝ exp
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]
where

x̄ =
1

N

N∑
i=1

xi

is the data average. So we see that the posterior pdf for µ, assuming a uniform prior, is a
gaussian, centred on the average of the data, with a variance given by σ2/N . It is easily to
generalise to the case where σi varies with i.

Frequentist: The concept of the distribution of µ makes no sense to a frequentist; it
has a value, and we want to estimate it. Here we might as well let σ depend on i. Let us
consider an estimator µ̂ for it, and it makes sense to consider

µ̂ =

N∑
i=1

wixi
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for some weights wi. Now imagine doing the experiment many times. The expected value
of µ̂ will be

〈µ̂〉 = µ
N∑
i=1

wi

so we can make the estimator unbiased (i.e. 〈µ̂〉 = µ) if we choose

N∑
i=1

wi = 1.

Next, we want to minimise the scatter of the estimator from experiment to experiment, so
we minimise the variance of µ̂. Since the samples are independent the variances add, and
the variance of wixi is w2

i σ
2
i , hence

σ2µ̂ =
N∑
i=1

w2
i σ

2
i .

We minimise this subject to the constraint
∑
wi = 1, so introduce a Lagrange multiplier

λ:

∂

∂wj

[
N∑
i=1

w2
i σ

2
i − λ

N∑
i=1

wi

]
= 0

Hence
2wjσ

2
j − λ = 0

i.e.

wj ∝
1

σ2j
and we see that the minimum-variance estimate has inverse-variance weighting. Clearly,
for the case σj = σconstant, we obtain wj = 1/N . The distribution of µ̂ is also a gaussian
(not shown here), with a variance given by the above calculations as

σ2µ̂ =
σ2

N
.

Interpretation: Both methods give a gaussian of the same width. In the Bayesian
interpretation, the gaussian is centred on the data average, and is the posterior pdf for µ,
given the data and a flat prior. In the frequentist approach, the gaussian is the pdf of the
estimator, from repeated trials, given (and centred on) the true value µ1. You can decide
which you think is closer to what we are looking for.

1Note that in this simple case, the estimator is unbiased and has a distribution which is independent of µ
except for being shifted, but one can envisage more complicated cases where, for example, the distribution
of µ̂ is always close to µ = 0, even if the true value is far from 0. This would be much more problematic.


