ICIC DATA ANALYSIS WORKSHOP

DAY 1 PROBLEMS

Simple problems:

1. Solve the 'Monty Hall' problem given in the lectures, using Bayes' theorem.

2. The distribution of flux densities of extragalactic radio sources is a power-law with slope $-\alpha$, say, so the likelihood to measure a source flux S is $p(S|\alpha) \propto S^{-\alpha}$, above some (known) instrumental limiting flux density of S_0 . In a non-evolving Euclidean universe $\alpha = 3/2$ and departure of α from the value 3/2 is evidence for cosmological evolution of radio sources (we assume measurement errors are negligible). This was the most telling argument against the steady-state cosmology in the early 1960s (even though they got the value of a wrong by quite a long way).

- Given observations of radio sources with flux densities S, what is the most probable value of α , assuming a uniform prior? (Hint: in this case you will have to normalise $p(S|\alpha)$).
- Show that if a single source is observed, and the flux is $2S_0$, that the most probable value of α is 2.44.
- By examining the second derivative of the posterior, estimate the error on α to be 1.44.
- Plot out the posterior of *α*. How good is the second derivative as a guide to the uncertainty?

More involved problems:

3. An astronomical source emits photons with a Poisson distribution, at a rate of λ per second. A telescope detects the photons independently, with probability p. In time t, the source emits M photons, and N are detected. Show that the joint probability of N and M is

(1)
$$P(M,N) = \frac{\mu^M}{M!} e^{-\mu} \frac{M!}{N!(M-N)!} p^N q^{M-N}$$

where $\mu = \lambda t$ and q = 1 - p.

Marginalise over M to show that

(2)
$$P(N) = \frac{p^N q^{-N} e^{-\mu}}{N!} \sum_{M=N}^{\infty} \frac{(q\mu)^M}{(M-N)!}$$

DAY 1 PROBLEMS

Sum the series¹ to show that N has a Poisson distribution with expectation value $p\mu$. Why could this have been anticipated?

Calculate the probability that the source has emitted M photons given that N have been detected, P(M|N), for $M \ge N$, and deduce that M - N also has a Poisson distribution, and compute the expectation value for M - N.

¹Remember that $\sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x$.