ICIC DATA ANALYSIS WORKSHOP

DAY 1 PROBLEMS

Simple problems:

1. Solve the 'Monty Hall' problem given in the lectures, using Bayes' theorem.
2. The distribution of flux densities of extragalactic radio sources is a power-law with slope $-\alpha$, say, so the likelihood to measure a source flux S is $p(S \mid \alpha) \propto S^{-\alpha}$, above some (known) instrumental limiting flux density of S_{0}. In a non-evolving Euclidean universe $\alpha=3 / 2$ and departure of α from the value $3 / 2$ is evidence for cosmological evolution of radio sources (we assume measurement errors are negligible). This was the most telling argument against the steady-state cosmology in the early 1960s (even though they got the value of a wrong by quite a long way).

- Given observations of radio sources with flux densities S, what is the most probable value of α, assuming a uniform prior? (Hint: in this case you will have to normalise $p(S \mid \alpha)$).
- Show that if a single source is observed, and the flux is $2 S_{0}$, that the most probable value of α is 2.44 .
- By examining the second derivative of the posterior, estimate the error on α to be 1.44 .
- Plot out the posterior of α. How good is the second derivative as a guide to the uncertainty?

More involved problems:

3. An astronomical source emits photons with a Poisson distribution, at a rate of λ per second. A telescope detects the photons independently, with probability p. In time t, the source emits M photons, and N are detected. Show that the joint probability of N and M is

$$
\begin{equation*}
P(M, N)=\frac{\mu^{M}}{M!} e^{-\mu} \frac{M!}{N!(M-N)!} p^{N} q^{M-N} \tag{1}
\end{equation*}
$$

where $\mu=\lambda t$ and $q=1-p$.
Marginalise over M to show that

$$
\begin{equation*}
P(N)=\frac{p^{N} q^{-N} e^{-\mu}}{N!} \sum_{M=N}^{\infty} \frac{(q \mu)^{M}}{(M-N)!} \tag{2}
\end{equation*}
$$

Sum the series ${ }^{1}$ to show that N has a Poisson distribution with expectation value $p \mu$. Why could this have been anticipated?

Calculate the probability that the source has emitted M photons given that N have been detected, $P(M \mid N)$, for $M \geq N$, and deduce that $M-N$ also has a Poisson distribution, and compute the expectation value for $M-N$.

[^0]
[^0]: ${ }^{1}$ Remember that $\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}$.

