
Introduction to Bayes

Alan Heavens

September 3, 2018

ICIC Data Analysis Workshop

Alan Heavens Introduction to Bayes September 3, 2018 1 / 35



Overview

1 Inverse Problems

2 The meaning of probability
Probability rules and Bayes theorem
p(x |y) is not the same as p(y |x)

3 Parameter Inference
The posterior p(parameters|data)
How to set up a problem
Priors

4 Sampling
Case study: Eddington 1919 Eclipse expedition
The perils of not marginalising

5 The Monty Hall problem

Alan Heavens Introduction to Bayes September 3, 2018 2 / 35



Some books for further reading

D. Silvia & J. Skilling: Data Analysis: a Bayesian Tutorial (CUP) P.
Saha: Principles of Data Analysis. (Capella Archive)
http://www.physik.uzh.ch/∼psaha/pda/pda-a4.pdf
T. Loredo: Bayesian Inference in the Physical Sciences
http://www.astro.cornell.edu/staff/loredo/bayes/

M. Hobson et al: Bayesian Methods in Cosmology (CUP)

D. Mackay: Information Theory, Inference and Learning Algorithms.
(CUP)
http://www.inference.phy.cam.ac.uk/itprnn/book.pdf

A. Gelman et al: Bayesian Data Analysis (CRC Press)
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Inverse Problems

Analysis problems are inverse problems: given some data, we want to
infer something about the process that generated the data

Generally harder than predicting the outcome, given a physical process

The latter is called forward modelling, or a generative model

Typical classes of problem:

Parameter inference

Model comparison
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Typical problem: analyse WMAP Cosmic Microwave
Background Data
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WMAP Cosmic Microwave Background Data

ΛCDM fits WMAP data well:
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WMAP Cosmic Microwave Background Data

ΛCDM fits WMAP data well:
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Bayesian Inference

What questions do we want to answer?

Parameter Inference:

I have a set of (x , y) pairs, with errors. If I assume y = mx + c, what
are m and c?

I have detected 5 X-ray photons. What is the luminosity of the source
and its uncertainty?

Given LIGO gravitational wave data, what are the masses of the
inspiralling objects?

Given the Planck CMB map, how much Dark Matter is there?
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Bayesian Inference

What questions do we want to answer?

Model Comparison:

Do data support General Relativity or Newtonian gravity?

Is ΛCDM more probably than alternatives?
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The meaning of probability

Probability describes the relative frequency of outcomes in infinitely
long trials (Frequentist view)

Probability expresses a degree of belief (Bayesian view)

Logical proposition: a statement that could be true or false

p(A|B) is the degree to which truth of a logical proposition B implies
that A is also true

The Bayesian view expresses what we often want to know, e.g.

given the Planck CMB data, what is the probability that the density
parameter of cold dark matter is between 0.3 and 0.4?
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Probability rules

p(x) + (not x) = 1 (sum)

p(x , y) = p(x |y) p(y) (product)

p(x) =
∑

k p(x , yk) (marginalisation over all possible discrete yk
values)

p(x) =
∫
p(x , y) dy (marginalisation, continuous variables. p = pdf)

p(x , y) = p(y , x)→ Bayes theorem:

Bayes Theorem

p(y |x) =
p(x |y)p(y)

p(x)
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Conditional probabilities

Avoid the probability 101 mistake

p(x |y) is not the same as p(y |x)

e.g.

Figure: Julia Margaret Cameron

x = is male; y = has beard

p(y |x) ∼ 0.1

p(x |y) ∼ 1
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Example of p(x |y) 6= p(y |x) errors
Medical test

An allergy test gives a positive result (T ) in allergic patients (A) with
p = 0.8, and has a false positive rate of 0.1. You get a positive result. If
0.01 of the population are allergic, what is the probability that you are?

Rule 1: write down what you want to know. It is . . .
p(A|T )
What we know are: p(T |A) = 0.8, p(T | ∼ A) = 0.1, p(A) = 0.01
Use Bayes theorem:

p(A|T ) =
p(T |A)p(A)

p(T )

Marginalisation in the denominator: p(T ) = p(T ,A) + p(T ,∼ A)
and write p(T ,A) = p(T |A)p(A) and similarly for p(T ,∼ A):

p(A|T ) =
p(T |A)p(A)

p(T |A)p(A) + p(T | ∼ A)p(∼ A)
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Allergy problem

Medical test

An allergy test gives a positive result (T ) in allergic patients (A) with
p = 0.8, and has a false positive rate of 0.1. You get a positive result. If
0.01 of the population are allergic, what is the probability that you are?

p(A|T ) =
p(T |A)p(A)

p(T |A)p(A) + p(T | ∼ A)p(∼ A)

Put in numbers:

p(A|T ) =
0.8× 0.01

0.8× 0.01 + 0.1× 0.99
= 0.075

So there is still a 92.5% chance that you do not have the allergy.
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Notation
Data d ; Model M; Model parameters θ
Rule 1: write down what you want to know
Usually, it is the probability distribution for the parameters, given the
data, and assuming a model.
p(θ|d,M)
This is the Posterior
To compute it, we use Bayes theorem:

p(θ|d ,M) =
p(d |θ,M)p(θ|M)

p(d |M)

where the Likelihood is L(d|θ) = p(d|θ,M)
and the Prior is π(θ) = p(θ|M)
p(d|M) is the Bayesian Evidence, which is important for Model
Comparison, but not for Parameter Inference.
Dropping the M dependence

p(θ|d) =
L(d |θ)π(θ)

p(d)
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The Posterior

p(θ|d ,M)
If you just try long enough and hard enough, you can always manage to
boot yourself in the posterior. A.J. Liebling.
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It is all probability

The Posterior

Everything is focussed on getting at p(θ|d).

Computing the posterior

p(θ|d) ∝ L(θ)π(θ).

We need to analyse the problem:

What are the data, d?
What is the model for the data?
What are the model parameters?
What is the likelihood function L(θ)?
What is the prior π(θ)?
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Priors

Bayesian: prior = (usually) the state of knowledge before the new data are
collected.
For parameter inference, the prior becomes unimportant as more data are
added and the likelihood dominates.
For model comparison, the prior remains important.
Issues:

One usually wants an ‘uninformative’ prior, but what does this mean?

Typical choices: π(θ) = constant; π(θ) ∝ 1/θ - so-called Jeffreys
prior (by Astronomers)
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Priors
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Uninformative prior
A flat prior seems natural, but consider this problem. Imagine cartesian
coordinates in N dimensions, with the prior range being (−1

2 ,
1
2) for all

coordinates. The prior probability of being inside the N-sphere which just
fits inside the prior volume is

πN/2

2NΓ(1 + N/2)

log10p vs N
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An apparently uninformative prior may be highly informative when viewed
a different way.
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Case Study: fair coin?
From Sivia & Skilling.
Model: probability of a head is θ. Uniform prior in θ assumed. Sequence is
HHTT. . .

Second panel: p(θ|H) ∝ p(H|θ)π(θ) = θ
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Case Study: fair coin?
3 different priors, shown in first panel.

After many data are collected, the posterior becomes insensitive to the
prior. In this case, the highly informative prior that supposes the coin is
almost fair needs more data to overrule the prior.
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High-dimensional priors
An interesting non-experiment with the VSA (Slozar et al. 2003)

Priors: Λ ≥ 0, 10 ≤ Age/Gyr ≤ 20.

• VSA	CMB		
experiment	
(Slosar	et	al	2003)

h	≈	0.7	±	0.1

Priors:		ΩΛ≥0		
10	≤	age	≤	20	Gyr

There	are	no	data	in	
these	plots	–	it	is	all	
coming	from	the	prior!

p(✓1) =

Z
d✓j 6=1 p(x|✓) p(✓)

Hubble parameter h ∼ 0.7, in line with expectations.
BUT...there are NO data here. This is the prior, marginalised over an odd
shape.
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High-dimensional priors
Now with the data

VSA	posterior
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Sampling
The posterior is rarely an analytic function, and evaluating it on a grid in
parameter space is usually prohibitively expensive if there are more than 2
or 3 parameters.

MCMC

Standard technique is MCMC (Markov Chain Monte Carlo), where random
steps are taken in parameter space, according to a proposal distribution,
and accepted or rejected according to the Metropolis-Hastings algorithm.
This gives a chain of samples of the posterior (or the likelihood), with an
expected number density proportional to the posterior.

MCMC example
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Planck parameter inference
Assuming ΛCDM
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Figure: ΛCDMPlanck parameters
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Case study: Eddington 1919 Eclipse expedition
In General Relativity, light is bent by the Sun through an angle 4GM

rc2
.

In Newtonian theory, the bend angle is 2GM
rc2

.

Figure: Illustration of the lensing effect (highly magnified).

If we treat this as a parameter inference problem: bend angle at the limb
of the Sun = α, and we will infer α.
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Case study: Eddington 1919 Eclipse expedition

Analyse the experiment:

What are the data?

Measurements of displacements (Dx ,Dy) of (7) stars, between eclipse
plate(s) and a reference plate.

What is the model?

Displacements are radial, with magnitude α (arcsec) for light grazing
the Sun.

What are the model parameters?

α

What is the likelihood function?

Measurement errors are Gaussian (assumption!)

What prior should we choose?

Uniform π(α) =constant.
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Case study: Eddington 1919 Eclipse expedition. Nuisance
Parameters
Hang on.

Reference plate may not be centred correctly

Plates may be rotated with respect to each other

Eclipse plate may have be scaled in size (thermal effects/different
instruments)

Model for the data is

Dx = ax + by + c + αEx

Dy = dx + ey + f + αEy . (1)

7 parameters, including 6 nuisance parameters

Likelihood

L ∝
∏

stars i

exp

{
− [Dxi − (axi + byi + c + αExi )]2

2σ2i

}
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Results from Plate II

Using only displacements in R.A. (4 parameters)

Figure: Hamiltonian MCMC samples of distribution of nuisance parameters a, b, c
and bending at Solar limb α (in arcsec; GR predicts 1.75).

Marginalising over a, b, c gives p(α) =
∫
p(a, b, c , α) da db dc.
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Marginalise over nuisance parameters!

Figure: Exquisite BICEP B-mode CMB map (Credit: BICEP team).
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BICEP and losing the Nobel Prize

Figure: BICEP article (Science 2.0).

Dust contribution not marginalised over.
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Back to Eddington 1919
What if we do not marginalise over a, b, c?

Figure: Setting a, b, c ' 0.

Inferred light bending is 5.8 arcsec at the limb.
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The Monty Hall Problem
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The Monty Hall Problem
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