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Source/Object Detection: Problem Definition

• Aim: Detect and characterize discrete sources in a background
• Each source described by a template f(p) with parameters p.
• With source and noise contributions being additive and Ns source

• Inference goal: Use data d to constrain source parameters Ns, pk (k = 1, 2, …, Ns). 
Margnialize over background and noise parameters (q and r).
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Probabilistic Source/Object Detection

Textures in CMB

• Problems in Object Detection
– Identification
– Quantifying Detection
– Characterization



• Collect a set of N data points Di (i = 1, 2, …, N), denoted collectively as data 
vector D.

• Propose some model (or hypothesis) H for the data, depending on a set of M
parameter θi (i = 1, 2, …, N), denoted collectively as parameter vector θ.

• Bayes’ Theorem:

• Parameter Estimation: 
posterior α likelihood x prior

Bayesian Parameter Estimation
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• Consider two models H0 and H1

• Bayesian Evidence Z = P(D|H) =                        plays the central role in 
Bayesian Model Selection.

• Bayesian Evidence rewards model preditiveness.
– Sets more stringent conditions for the inclusion of new parameters

Bayesian Model Selection
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• Evidence =

• Evaluations of the n-dimensional integral presents great numerical challenge

• If dimension n of parameter space is small, calculate unnormalized 
over grid in parameter space → get evidence trivially

• For higher-dimensional problems, this approach rapidly becomes impossible
– Need to find alternative methods
– Gaussian approximation, Savage-Dickey ratio (see Trotta, 2007, MNRAS, 378, 72)

• Evidence evaluation at least an order of magnitude more costly than parameter 
estimation.

Computation of Bayesian Evidence
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Metropolis Hastings Algorithm

• Metropolis-Hastings algorithm to sample from P(θ)
– Start at an arbitrary point θ0

– At each step, draw a trial point, θ’, from the 
proposal distribution Q(θ’│θ0)

– Calculate ratio r = P(θ’) Q(θn│θ’) / P(θn) Q(θ’│θn)
– accept θn+1 = θ’ with probability max(1, r) else set

θn+1 = θn

• After initial burn-in period, any (positive) proposal Q → convergence to P(θ)
• Common choice of Q, multivariate Gaussian centred on θn but many others
• Inferences wrt posterior can be obtained easily from converged chains
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• Choice of proposal Q strongly affects convergence rate
and sampling efficiency

– large proposal width ε → trial points rarely accepted
– small proposal width ε → chain explores P(θ) by a 

random walk → very slow
• If largest scale of P(θ) is L, typical diffusion time 

t ~ (L/ ε)2

• If smallest scale of P(θ) is l, need ε ~ l, diffusion time 
t ~ (L/ l)2

• Particularly bad for multi-modal distributions
– Transitions between distant modes very rare
– No one choice of proposal width ε works
– Standard convergence tests will suggest 

convergence, but actually only true in a subset of
modes

Metropolis Hastings Algorithm – Some Problems



Nested Sampling

• Introduced by John Skilling
(AIP Conference Proceedings, Volume 735, pp. 395-405, 2004).

• Monte Carlo technique for efficient evaluation of 
the Bayesian Evidence.

• Re-parameterize the integral with the prior mass X
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1. Sample N ‘live’ points uniformly inside the initial prior 
space (X0 = 1) and calculate their likelihoods

2. Find the point with the lowest Li and remove it from the 
list of ‘live’ points

3. Increment the evidence as  Z = Z + Li ( Xi-1 - Xi+1 ) / 2

4. Reduce the prior volume Xi / Xi-1 = ti where 
P(t) = N tN-1

5. Replace the rejected point with a new point sampled 
from          with constraint L > Li

6. If                      then stop else goto 3 ZXL i α<max

)(θπ

Nested Sampling: Algorithm



Nested Sampling: Demonstration

Egg-Box Posterior



Nested Sampling: Demonstration

Egg-Box Posterior



Nested Sampling

• Advantages:
– Typically requires around 100 times fewer samples than standard

MCMC methods
– Proceeds exponentially towards high likelihood regions

 Prior volume shrinks by exp(-1/Nlive) at each iteration
– Parallelization easily done

• Bonus: posterior samples easily obtained as 
by-product. Take full sequence of rejected 
points, θi & weigh ith sample by pi = Liwi/Z

• Problem: must sample efficiently from prior 
within complicated, hard-edged likelihood 
constraint.
– Possible solutions:

 MCMC (can be inefficient)
 ellipsoidal rejection sampling (MultiNest)
 Galilean Monte Carlo (GMC)



Multi-modal Nested Sampling (MultiNest)

• Introduced by Feroz & Hobson (2008, MNRAS, 384, 449, arXiv:0704.3704), refined by 
Feroz, Hobson & Bridges (2009, MNRAS, 398, 1601, arXiv:0809.3437)

Ellipsoidal Rejection Sampling

Multi-Modal DistributionUni-Modal Distribution



Optimize                                         , subject to F(S) ≥ 1
S = collection of live points,  V(S) = prior (target) volume,  Ek = kth ellipsoid
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Optimal Ellipsoidal Decomposition
Feroz, Hobson & Bridges, 2009, MNRAS, 398, 1601, arXiv:0809.3437



Identification of Posterior Modes

• For multi-modal posteriors, useful to identify which samples ‘belong’ to which mode

• For well-defined ‘isolated’ modes:
– can make reasonable estimate of posterior mass each contains (‘local’ evidence)
– can construct posterior parameter constraints associated with each mode

• Once NS process reached likelihood such that ‘footprint’ of mode well-defined → 
identify at each subsequent iteration the points in active set belonging to mode

• Partitioning and ellipsoids construction algorithm described above provides efficient
and reliable method for performing this identification

Feroz, Hobson & Bridges, 2009, MNRAS, 398, 1601, arXiv:0809.3437



• Bayesian Purist Gold Standard: detect and characterize all sources in the data 
simultaneously ⇒ infer full parameter set θ = {Ns, p1, p2, …, pNs, q, r}

• Allows straight-forward inclusion of prior information on number of sources, Ns.

• Complication
– Length of parameter vector, θ, is variable
– Requires reversible-jump MCMC (see Green, 1995, Biometrika, V. 82)
– Counting degeneracy when assigning source parameters in each sample to 

sources in image ⇒ at least Ns! modes

• Practical Concern: If prior on Ns remains non-zero at large Ns

– Parameter space to be explored becomes very large
– Slow mixing, can be very inefficient

Bayesian Object Detection: Variable Source Number Model



Bayesian Object Detection: Variable Source Number Model

• 8 Gaussian sources, with variable scale and amplitude, in Gaussian noise
• Analysis done with BayeSys (http://www.inference.phy.cam.ac.uk/bayesys/)

– Runtime: 17 hours CPU time

Hobson & McLachlan, 2002, astro-ph/0204457

http://www.inference.phy.cam.ac.uk/bayesys/


Bayesian Object Detection: Fixed Source Number Model

• Poor man’s approach to Bayesian gold standard

• Consider series of models HNs, each with fixed Ns, where Ns goes from say 0 to Nmax

– Length of parameter space is fixed for each model
– Can use standard MCMC or nested sampling

• Determine preferred number of source using Bayesian model selection

• See e.g. Feroz, Hobson & Balan, 2011, arXiv:1105.1150
– Detection of second companion orbiting HIP 5158



Bayesian Object Detection: Single Source Model

• Special case of fixed source number model, simply set Ns = 1

• Not restricted to detecting just one source in the data
– Trade-off high dimensionality with multi-modality
– Posterior will have numerous modes
– Each corresponding to a either real or spurious source

• Fast and reliable method when sources (effects) are non-overlapping

• Use local evidences for distinguishing between real and spurious sources



•

•
• H0 = “there is no object with its centre lying in the region S”
• H1 = “there is one object with its centre lying in the region S”

•

• For objects distributed according to Poisson distribution
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Quantifying Object Detection: Single Source Model
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MultiNest
• 7 out of 8 objects identified

– missed 1 object because 2 objects are very close
• runtime = 2 min on a normal desktop

Thermodynamic Integration
• Solution possible only through iterative sampling (see McLachlan & Hobson, 2002)
• runtime > 16 hours on a normal desktop

How Many Sources? Bayesian Solution
Feroz & Hobson, 2008, MNRAS, 384, 449, arXiv:0704.3704



• 0.5 x 0.5 degree2, 100 gal per arcmin2 & σ = 0.3

• Concordance ΛCDM Cosmology with cluster mass & redshifts drawn 
from Press-Schechter mass function

• pth = 0.5

True Mass Map MaxEnt2 Reconstruction

Applications: Clusters in Weak Lensing

MultiNest Reconstruction

Feroz, Marshall & Hobson, 2008, arXiv:0810.0781



Applications: Clusters in Sunyaev Zel’dovich (SZ)

background + 3 radio sources background + 3 radio sources
+ galaxy cluster

galaxy cluster

Galaxy cluster (and radio sources) in interferometric SZ data

Feroz et al., 2009, arXiv:0811.1199
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Applications: Clusters in Sunyaev Zel’dovich (SZ)

Bayesian Model Comparison
R = P(cluster | data)/P(no cluster | data)

background + 3 radio sources background + 3 radio sources
+ galaxy cluster

galaxy cluster

R = 0.35 R ~ 1033

Galaxy cluster (and radio sources) in interferometric SZ data

Feroz et al., 2009, arXiv:0811.1199
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Clusters in SZ – Parameter Constraints
Feroz et al., 2009, arXiv:0811.1199



Planck SZ Challenge II – Results with MultiNest

• 50 x 106 pixels, ~ 1000 recovered clusters, ~ 3 CPU hours



Applications: Gravitational Waves

• Simulated LISA data contatining two signals from non-spinning SMBH 
mergers. Each source has antipodal degeneracy ⇒ at least 4 modes 

• All identified and well characterized by MultiNest 
(Feroz et al., 2009, arXiv:0904.1544)

• Also applied successfully in Mock LISA Data Challenge Round 3 to 
simulations of 5 spinning SMBH binary inspirals and 3 cosmic strings
(Feroz et al., 2010, arXiv:0911.0288)



Applications: Gravitational Waves

• MultiNest integrated into data analysis pipeline of LIGO:
– Fully coherent analyses for follow-up of events using the network of 

detectors.
– Infer physical parameters of the waveforms.

• Results from the sky localization study, 190 compact coalescing binaries 
injected



Bayesian Object Detection: Iterative Approach

• Can be used when single-object model is not valid
– Overlapping/correlated (in terms of data) sources

• Fit n-source model and determine the distribution of residual data
–

• Analyse residual data and compare between:
– H0 = “there is no additional object, residual 

data is due to noise only”
– H1 = “there is an additional object present”

• If H1 is preferred then fit for n+1 sources 
and repeat the procedure

• Example: Extra-solar planet detection
– See Feroz, Balan & Hobson, 2011, arXiv:1012.5129



Applications: Exoplanet Detection
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where

Vj = systematic velocity with reference to jth observatory
Kp = velocity semi-amplitude of the pth planet
ωp = longitude of periastron of the pth planet
fi,p, = true anomaly of the pth planet
ep = orbital eccentricity of the pth planet
ep = orbital period of the pth planet
ep = fraction of an orbit of the pth planet, prior to the start of data taking at which 

periastron occurred



Applications: Exoplanet Detection – HD 10180
Feroz, Balan & Hobson, 2011, arXiv:1012.5129



• H0 = “there is no object with its centre lying in the region S”
• H1 = “there is one object with its centre lying in the region S”

•

•

• Expected number of objects

• Expected number of true positives 

• Expected number of false positives

• Expected completeness

• Expected purity
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Purity, Completeness & Threshold Probability
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Purity, Completeness & Threshold Probability

Probabilistic classification of type-Ia 
Supernovae using Neural Network

Karpenka, Feroz & Hobson, 2012,  
arXiv:1208.1264



Purity, Completeness & Threshold Probability

Galaxy cluster detection in weak lensing surveys
Feroz, Marshall & Hobson, 2008, arXiv:0810.0781



Conclusions 

• Bayesian statistics provide rigorous approach to astrophysical object detection
– Use Bayesian model selection to distinguish real objects from spurious ones

• Efficient and robust object detection can be done using nested sampling
– MultiNest allows sampling from multimodal/degenerate posteriors
– local and global evidences and parameter constraints
– typically ~ 100 times more efficient than standard MCMC

• Probabilistic object detection removes arbitrariness in choice of detection 
criterion

– allows calculation of expected purity and completeness

• MultiNest publicly available
– with SuperBayeS for SUSY phenomenology (www.superbayes.org)
– as a standalone inference engine (www.mrao.cam.ac.uk/software/multinest)



Supplementary Slides



Galilean Monte Carlo

Nested Sampling needs to generate a new point from constrained prior

Generating new point using MCMC
Problem: Diffusion time very long

Generating new point using Hamiltonian Monte Carlo 
(Reflective Slice Sampling of Radford Neal)

Problem: Don’t know the edge of constrained prior

1. Start at x1 where L(x1) > L’
2. Propose x2 = x1 + v
3. If (L(x2) > L’)

Proceed to x2
Else

Reflect to x3
If (L(x3) > L’)

Proceed to x3
Else

Reverse



• Signal from a circularly symmetric Gaussian shaped object

• With k such discrete objects and the generalized noise contribution n, the data 

• Likelihood function takes the form

, where

N = <nnt> is the noise covariance matrix
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Applications: Clusters in Weak Lensing



Applications: Clusters in Weak Lensing
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