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Outline
• Statistical Inference with SN Ia Data

• Hierarchical Bayesian Framework for Structured 
Probability Models for Observed Data

• Describing Populations & Individuals, Multiple 
Random Effects, Covariance Structure of SN Ia LCs

• Statistical Computation with Hierarchical Models 

• Application & Results:  

• Nearby CfA NIR and Optical SN Ia Light Curves

• Better Constraints on w using SN Ia Optical+NIR?

• Optical LCs and Spectroscopic Features
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Open Questions

• How to test the assumptions underlying complex 
hiearchical model with multiple sub-models?

• How to discriminate between models using 
different information (e.g. light curves, spectra)? 
Predictive accuracy? Model Selection?

• How to find/test new information (i.e. spectra) to 
improve distances? Blind data mining vs. physical 
insight
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Measuring Astronomical Distances
Standard Candle Principle

1. Know or Estimate Luminosity L of a Class 
of Astronomical Objects

2. Measure the apparent brightness or flux F

3. Derive the distance D to Object using 
Inverse Square Law:  F = L / (4π D2)

4. Optical Astronomer’s units: m = M +μ
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The Expanding Universe: 
Galaxies are moving apart! Hubble’s Law (1929)

Distance ∝ Velocity (Redshift) 
But what is the rate of change of the expansion?

(the deceleration parameter)

Hubble: @Einstein, 
you’re wrong
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The Accelerating Universe
2011 Nobel Prize in Physics
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Supernova Cosmology:
Constraining 
Cosmological 
Parameters

using 
Luminosity Distance 

vs.  Redshift

AAS 215  
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Need accurate distances!
Host Galaxy Dust is a 
Major Confounding 

Factor

Credit: Gautham Narayan 
(ESSENCE)
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Cosmological Energy Content

Dark Energy Equation of state P = wρ

Is w + 1 = 0?  Cosmological Constant

8Wednesday, August 22, 2012



Type Ia Supernovae are
Almost Standard Candles

• Progenitor:  C/O White Dwarf 
Star accreting mass leads to 
instability (single / double 
degenerate)

• Thermonuclear Explosion: 
Deflagration/Detonation

• Nickel to Cobalt to Iron Decay + 
radiative transfer powers the light 
curve

Credit: FLASH Center
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Reading the Wattage of a SN Ia:
Empirical Correlations

• Width-Luminosity Relation: an 
observed correlation (Phillips)

• Observe optical SN Ia Light 
Curve Shape to estimate the peak 
luminosity of SN Ia: ~0.2 mag 

• Color-Luminosity Relation

• Methods: 

•  

• MLCS,  Abs LC vs Dust

• SALT,  App. Color single factor

Intrinsically Brighter SN Ia 
have broader light curves 

and are slow decliners

10

∆m15(B)
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Dust Absorption vs. 
Wavelength of Light

• Absorption depends on λ 
(reddening)

• Lines of sight to SN in different 
galaxies can pass through different 
amounts of dust

• Key Parameters of Interstellar Dust 
(different for each SN)

• AV ~ Amount of Dust Absorption

• RV ~ Wavelength Dependence of 
Dust Absorption

• Don’t really know a priori which 
SN are unaffected by dust; must 
model probabilistically

I will show you fear 
in a handful of dust
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Type Ia Supernova Apparent
Light Curve

!10 0 10 20 30 40 50 60

6

8

10

12

14

16

18

20

22

B + 2SN2005el (CfA3+PTEL)

V

R ! 2

I ! 4

J ! 7

H ! 9

Obs. Days Since B
max

O
b

s
. 

M
a

g
. 
!

 k
c
 !

 m
w

x

12Wednesday, August 22, 2012



Statistical inference with SN Ia

• SN Ia cosmology inference based on empirical relations

• Statistical models for SN Ia are learned from the data

• Several Sources of Randomness & Uncertainty

1. Photometric errors 

2. “Intrinsic Variation” = Population Distribution of SN Ia

3. Random Peculiar Velocities in Hubble Flow

4. Host Galaxy Dust:  extinction and reddening.

• Apparent Distributions are convolutions of these effects

• How to incorporate this all into a coherent statistical 
model? (How to de-convolve?)

13
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Review: Hierarchical Bayes
Simple Bayes:

P (θ| D) ∝ P (D| θ)P (θ)

Hierarchical Bayes:

D| θ ∼ Model(θ) + �

θi| α,β ∼ P (θ| α,β)
Di|θi ∼ Model(θi) + �

P ({θi}, α, β|{Di}) ∝
� N�

i=1

P (Di| θi)P (θi|α,β)
�
P (α,β)

Posterior:

Joint Posterior:

Build up complexity by layering conditional probabilities

θi = Individual
α,β = Group or Population
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Advantages of Hierarchical Models
• Incorporate multiple sources of randomness & uncertainty 

• Express structured prob. models adapted to data-generating process

• Hierarchically Model (Physical) Populations and Individuals 
simultaneously: e.g. SN Ia and Dust

• Intrinsic Variations/Correlations

• Color/Luminosity/Light Curve Shape & Dust Reddening/Extinction

• Full (non-gaussian) probability distribution = Global, coherent 
quantification of uncertainties

• Completely Explore & Marginalize Posterior trade-offs/degeneracies/
joint distributions

• Deals with incomplete/missing data problems

• Make best inference/estimate for the observed data

• Modularity
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Directed Acyclic Graph for SN Ia Inference
with Hierarchical Modeling
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Representing SN Ia Light curves:
Differential Decline rates

• Intr Distr is a Gaussian 
Process over Decline 
Rates at different 
Wavelengths / Phases 
and Peak Luminosities

• Goal: Infer the Intrinsic 
Covariance Structure of 
SN Ia light curves over 
multiple wavelengths and 
phases

• Use to make “best” 
distance predictions
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Positive Dust only Dims and Reddens
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Directed Acyclic Graph for SN Ia Inference:
Distance Prediction
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Statistical Computation with Hierarchical 
SN Ia Models:  The BayeSN Algorithm

• Strategy: Generate a 
Markov Chain to sample 
global parameter space 
(populations & all 
individuals) => seek a 
global solution

• Chain explores/samples 
trade-offs/degeneracies in 
global parameter space 
for populations and 
individuals

Multiple chains globally 
converge from random 
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BayeSN

• Metropolis-Hastings within Gibbs Sampling 
Structure to exploit conditional structure

• Requires (almost) no tuning of jump sizes

• Generalized Conditional Sampling to speed 
up exploring trade-off between dust and 
distance: (Av, μ) → (Av, μ) + γ(1, -x)

• Run several (4-8) parallel chains and 
compute Gelman-Rubin ratio to diagnose 
convergence
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs
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BayeSN in Graphs

AppLC 

#N
AbsLC 

#N

Av, Rv 

#N

Dust

Pop

AbsLC

Pop

µN

AppLC 

#N
AbsLC 

#N

Av, Rv 

#N

Dust

Pop

AbsLC

Pop

µN

Sampling from conditional densities

22

22Wednesday, August 22, 2012



BayeSN in Graphs
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Practical Application of Hierarchical Model: NIR SN Ia
Why are SN Ia in NIR interesting?

• Host Galaxy Dust presents a major 
systematic uncertainty in supernova 
cosmology inference

• Dust extinction has significantly 
reduced effect in NIR bands

• NIR SN Ia are good standard candles 
(Elias et al. 1985, Meikle 2000, 
Krisciunas et al. 2004+,  Wood-Vasey 
et al. 2008, Mandel et al. 2009).

• Observe in NIR!: PAIRITEL /CfA
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~100 Nearby SN Ia in the NIR:  PAIRITEL

CfAIR2:  Andrew Friedman, Michael Wood-Vasey (2008, 2012)

Also, Carnegie Supernova Project (88 SN Ia; 2010, 2011)

44 PAIRITEL SN  JHK Light Curves
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Figure 1: 142 CfA Light curves from 2000-2004 (UBV RI) and 2004-2007 (UBV ri)

CfA3:
183 Optical SN Ia 

Light Curves
(Hicken et al. 2009)

CfA4:
94 more (Hicken et 

al. 2012)
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Optical+NIR Hierarchical Model Inference

PTEL+CfA3 Light-curves
(Moderate Extinction)
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Optical+NIR Hierarchical Model Inference

SN 2010ai
CfAIR2 + CfA4 
BVRIJH Light Curves

Marginal Posterior of Dust
and Predicted Distance
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Population Analysis: 
Optical and NIR Luminosity vs. Decline Rate

0.8 1 1.2 1.4 1.6

−20

−19.5

−19

−18.5

−18

−17.5

−17

−16.5

−16

∆ m
15

(B)

P
e
a
k 

M
a
g
n
itu

d
e

 

 

0.8 1 1.2 1.4 1.6
∆ m

15
(B)

 

 

M
B

B
0
−µ

M
H

H
0
−µ

1. No MH trend with 
Decline Rate*

2. MH has smaller 
scatter

3. H-band Smaller 
Dust Correction

*but see also Kattner et al. 2012

28Wednesday, August 22, 2012



Population Analysis

Intrinsic 
Correlation 

Map for 
Abs Magnitudes 

and Decline 
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Bootstrap Cross-validation

Low-z SN 

data

Training Set
{Ds, zs}

Bootstrap

Test Set
{Dt}

Test Set
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SN Ia 

Model Predict
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Hubble
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Compare

• Test Sensitivity 
of Statistical 
Model to Finite 
Sample

• Avoid using data 
twice for training 
and distance 
prediction

• Prediction/
Generalization 
Error
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Nearby Optical+NIR Hubble Diagram

(Opt Only) rms Distance Prediction Error = 7.5% (0.15 mag)
(Opt+NIR) rms Distance Prediction Error = 5% (0.11 mag)

Overall Improved Precision ~ (7.5/5)2  ≈ 2 !
(Relative Weight in Hubble Diagram)
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RAISIN:  
Tracers of cosmic expansion with SN Ia in the IR

with the Hubble Space Telescope (HST)

Combining NIR HST observations with (ground-based) 
Optical improves statistical uncertainty on w by ~1.7x

Reduces systematic sensitivity to dust error by 2x
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Using Spectra to Improve SN Ia Distances

• Bailey et al. (2009): Using Spectral Flux Ratios to 
standardize SN Ia to 0.12-0.13 mag

• Flux Ratios and other Spectral Indicators Explored 
by Blondin, Mandel & Kirshner 2011 with CfA SN 
Ia spectra using K-Fold Cross-Validation

µ = mB −M0 + (α× width)− (β × color) + (γ × spec)

A&A 526, A81 (2011)

WRMS residuals [mag] Absolute Pearson correlation

R

(x1,R)

(c,Rc)

(x1, c,Rc)

Fig. 7. Results from 10-fold cross-validation on maximum-light spectra. From top to bottom: R only; (x1,R); (c,Rc); (x1, c,Rc). The left column
is color-coded according to the weighted rms of prediction Hubble residuals, while the right column corresponds to the absolute Pearson cross-
correlation coefficient of the correction terms with uncorrected Hubble residuals.

results in a Hubble diagram with lower scatter when compared
to the standard (x1, c) model. Using a flux ratio alone, Bailey
et al. (2009) find R(6420/4430) as their most highly-ranked
ratio, while we find R(6630/4400) (see Table 2). The wave-
length bins are almost identical, and in any caseR(6420/4430) is

amongst our top 5 ratios. For this ratio we find γ = −3.40±0.10,
in agreement with γ = −3.5± 0.2 found by Bailey et al. (2009)3.
3 In fact Bailey et al. (2009) find γ = +3.5 ± 0.2, but this is due to a
typo in their equation for the distance modulus: γR really appears as a
negative term in their paper (S. Bailey 2010, priv. comm.).

A81, page 10 of 24

Correlation of
Flux Ratios with 

Absolute Magnitude
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No Correction

Blondin, Mandel & Kirshner 2011
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Using Light Curves alone

Blondin, Mandel & Kirshner 2011
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Best Spectral Ratio alone

Blondin, Mandel & Kirshner 2011
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Best with light curves and spectra

Flux ratios help, but not as much as we hoped (~2σ)

Blondin, Mandel & Kirshner 2011
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SN Ia Ejecta Velocities and Opt LCs

• Wang et al. (2009): Splitting SN into High / 
Normal Ejecta Velocities reduces Hubble 
Diagram scatter

• Foley & Kasen (2011): Peak Intrinsic B-V 
color is correlated with Si II velocity

• High Ejecta Velocity : Broader Absorption 
Lines in B-band :  Redder SN color

• Velocity can help determine intrinsic color, 
improve SN Ia dust and distance estimates
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Si II λ6355 line
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Theoretical Model
• Asymmetric 

Explosion Model

• Predicts Linear 
relation between 
intrinsic color and 
velocity

• Idea: Hierarchical 
Model with velocity 
as continuous 
parameter

6 Foley et al.
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Fig. 7.—

.

E0 hosts, respectively. Neither object had indications of
significant reddening. From these objects, we find

E(B − V )true = −0.06 + 1.06E(B − V )host (7)

and

E(B − V )true = 0.03 + 1.02E(B − V )host (8)

for the normal and high-velocity objects, respectively.
With the “true” measurements of E(B − V ), we can

attempt an analysis similar to that of W09 to determine
the relationship between MV

max, ∆m15, and E(B−V ) for
each sample. Using their formalism, we fit Equation 1
to the entire sample and those with E(B − V )true <
0.35 mag both separately for the subsamples and with
them combined finding the parameters listed in Table 1.
We also plot the results in Figure 7.

In Figure 7, we replot the data from W09, except us-
ing the values of E(B − V )true found from the above
relationships. The figure shows that our treatment of
the extinction gives a similar distribution of E(B − V )
for both samples.

The values for Mzp and α are similar for all fits. The
value of RV differs somewhat depending on sample and
restriction on E(B − V ). Unlike what was seen with the
analysis of W09, once we make the separate reddening
measurements for the two samples, separating the ob-
jects does not significantly reduce the scatter in the rela-
tionship. Therefore, the differences between the samples
can be treated as strictly an intrinsic color difference and
not a difference in reddening, especially for objects with
relatively low reddening.

3. ADDITIONAL DATA FROM THE CFA SAMPLE

4. THEORETICAL UNDERSTANDING

4.1. Model Light Curves & Spectra

Using the KP07 models, we seek to further examine the
correlations between various observables with the hope
of understanding the physics behind our emprical find-
ings. KP07 already noted that B − V color evolution
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Fig. 8.— Si II λ6355 (circles) and Ca H&K (squares) velocity as
a function of color for the KP07 model spectra. Each viewing angle
is represented by a different color with the mapping shown by the
color bar at the top. The best-fit lines for each feature are shown as
black solid lines. The dashed line represents the velocity that W09
used to differentiate the normal and high-velocity subsamples. It
also roughly separates the models between viewing angles in the
two hemispheres.

.

and Si II velocity depend on viewing angle. However,
they did not examine the maximum-light values of these
two quantities and their correlation. In Figure 8, we show
the (B − V )max color and Si II velocity at maximum as
a function of viewing angle. The two values are highly
correlated, and a linear fit produces

v = (−11.1 − 28.0(B − V )max) 103 km s−1. (9)

We find a similar relationship for the Ca H&K feature,
with

v = (−17.8 − 22.7(B − V )max) 103 km s−1. (10)

Not surprisingly, the velocity of the Si and Ca features
are highly correlated in the models. However, unlike the
Si II λ6355 feature where we were able to fit the line
profile with a Gaussian to determine the minimum of the
feature, the Ca H&K feature had a very complex profile
for some viewing angles, and we instead simply measured
the velocity from the minimum of the profile. This is not
practical for real data which may have significantly more
noise, but this method still shows the trend of the model.

Kasen & Plewa (2007) showed that there was a small
variation in MB as a function of viewing angle; however,
there is very little variation in MV . Despite this small
variation, ∆m15(B) varied from ∼1.0 to ∼1.4 over all
viewing angles, and it was claimed that this could ac-
count for a large amount of the scatter in the WLR.

Using the spectral models, we reddened the model
spectra using a Cardelli et al. (1989) dust model, sim-
ilar to what was performed in Section 2.4. Light-curve

Foley & Kasen 2011
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6 Foley & Kasen

they are best fit by RV = 2.21 ± 0.21.
If one properly separates these groups, the situation

becomes the same as described in Section 2.2. This
clearly affects the distances measured in previous cos-
mological analyses and should be accounted for in the
future.

2.5. Improvement to Measured Distances

W09 noted that using a different value of RV for the
two subsamples would reduce the scatter of Hubble resid-
uals for their sample. However, as Section 2.2 showed,
the two subsamples have similar values of RV if the ex-
tremely reddened SNe Ia are excluded, and it is not clear
that two values of RV is particularly useful for cosmo-
logical samples. In this section, we examine how the
Hubble scatter is affected by separating the SNe Ia into
two groups based on their ejecta velocity.

Figure 6 presents the weighted residual scatter, defined
as

(

∑
(

∆µ2/σ2
)

∑

(1/σ2)

)1/2

, (2)

where ∆µ and σ are the Hubble residual the uncer-
tainty of the distance modulus for a given SN Ia, respec-
tively, for different samples as a function of maximum
Bmax − Vmax color. In the figure, the full sample (with
1 ≤ ∆m15(B) ≤ 1.5 mag) is represented by the black
lines, while the Normal and High-Velocity subsamples
are represented by blue squares and red circles, respec-
tively. The fits which generate the black dotted line as-
sume a single intrinsic color for the entire sample, and
allow Mzp and RV to vary for each maximum value of
Bmax − Vmax. This is the approach that has normally
been used in cosmological analyses. To determine the
scatter for the other samples, all parameters were fixed
for all maximum values of Bmax −Vmax, and only a color
offset between the Normal and High-Velocity SNe Ia was
applied.

For Bmax − Vmax ≤ 1 mag, the scatter is consistently
improved by using two intrinsic colors. For SNe Ia with
Bmax − Vmax ≤ 0.2 mag (corresponding to E(B − V ) !
0.3 mag and AV ! 0.7 mag), the scatter decreases from
0.190 mag to 0.130 mag by adopting this method. Fur-
thermore, the Normal subsample has a scatter of only
0.109 mag for this color cut. This is better visualized in
Figure 7, where only a subset of the data from Figure 6
is plotted.

Increasing the maximum color increases the scatter
of the High-Velocity subsample, but the scatter of the
Normal subsample remains constant for all color ranges.
This is a consequence of the Normal subsample having a
single value for RV for all colors while the High-Velocity
SNe Ia have a significantly different value for RV depend-
ing on the maximum color (see Section 2.2 and Figure 3).
This, in turn, increases the scatter of the full sample for
large values of Bmax − Vmax, even when using different
intrinsic colors for the subsamples. Perhaps counterintu-
itively, the scatter of the full sample with a single intrinsic
color increases as the maximum color is decreases. This
is mostly because the fraction of Normal to High-Velocity
SNe Ia increases with increasing color in our sample.

Despite the relatively small number of High-Velocity
SNe in this sample, it is noteworthy that the Normal
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Fig. 6.— Weighted Hubble residual scatter as a function of
maximum Bmax−Vmax color. The dotted and solid lines represent
the full sample (with 1 ≤ ∆m15(B) ≤ 1.5 mag) assuming a single
intrinsic color and separate intrinsic colors for Normal and High-
Velocity SNe Ia, respectively. The blue squares and red circles
represent the Normal and High-Velocity subsamples, respectively.
Using separate intrinsic colors for the two subsamples significantly
reduces the scatter. Additionally, Normal SNe Ia appear to have
significantly smaller scatter than High-Velocity SNe Ia.
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Fig. 7.— Weighted Hubble residual scatter as a function of
maximum Bmax − Vmax color for various samples and methods.
The empty and filled black diamonds represent the full sample
(with 1 ≤ ∆m15(B) ≤ 1.5 mag) assuming a single intrinsic color
(labeled ‘Single’) and separate intrinsic colors (labeled ‘Dual’) for
Normal and High-Velocity objects, respectively. The blue squares
and red circles represent the Normal (labeled ‘N’) and High-
Velocity (labeled ‘HV’) subsamples, respectively. Only the values
for Bmax − Vmax ≤ 0.2, 0.4, 1, and 2 mag (from right to left) for
each sample and method are plotted.
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Foley & Kasen 2011
Using BV data

Velocity information 
improves distance scatter

by separating Normal from 
High Velocity SN Ia

18 Foley et al.
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Fig. 18.— Maximum-light Si II λ6355 velocity (v0
Si II

) as a function of intrinsic Bmax −Vmax pseudo-color for the W09 sample of SNe Ia.
The red circles represent the median values of equal-numbered velocity bins with the error bars being the median absolute deviation. The
dashed line is the relation between velocity and color for the Kasen & Plewa (2007) models (Equation 3 of FK11). The solid line is the
best-fit linear model for the data.
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Fig. 19.— Same as Figure 15, except for the F11 sample.

samples, respectively. However, correcting for the lin-
ear trend reduces the overall scatter from σ = 0.087 to
0.080 mag.

Comparing pEW0(Si II) to the intrinsic Bmax − Vmax
pseudo-color (Figure 20), there is a reasonable correla-
tion (ρ = 0.28), with a linear relation defined by

(Bmax − Vmax)0 = (−0.16± 0.03)− (0.0016± 0.0003)

× pEW0(Si II) mag. (12)

The slope of the best-fit line for the two quantities is
6.3-σ from zero. Again, looking at medians (now for
bins of equal number in pEW space), the trend is clear.
Performing a Bayesian analysis of Monte-Carlo linear re-
gressions on the data (Kelly 2007), we find that 98.6% of
the realizations have a positive slope and a median cor-
relation coefficient of 0.34. The intrinsic color of SNe Ia
can be derived from both the velocity and pEW of Si II
λ6355 near maximum brightness.
The Ca II H&K measurements produce less robust re-

sults. Intrinsic color is correlated with v0Ca H&K, where
(similar to Si II λ6355) SNe Ia with higher velocity ejecta
tend to be intrinsically redder. A linear least-squares fit
to the data results in a slope that is 4.7-σ from zero.
However, the data have a large scatter and the correla-
tion is not apparent by eye (ρ = −0.24). A Bayesian
Monte-Carlo analysis of the data results in 96.1% of the
realizations having a negative slope and a median cor-
relation coefficient of −0.33. Nonetheless, lower-velocity
SNe Ia, as determined from Ca II H&K, appear to have
less intrinsic color scatter than higher-velocity SNe Ia.
Splitting the sample at v0Ca H&K = −14, 000 km s−1, we
find that the higher/lower velocity SNe Ia have intrinsic

Foley, Sanders & Kirshner 2011
Correlation btw Velocity and 

Color is ~3σ
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CfA SN Ia Spectra [Blondin et al. 2012]
(largest low-z SN Ia spectroscopic database)– 68 –

Fig. 18.— Left: Intrinsic B − V color at B-band maximum light, as derived from BayeSN
fits to SN Ia light curves, vs. the absorption velocity of the Si iiλ6355 line, for SN Ia in
the Normal and High-velocity subclasses with 1.0 ≤ ∆m15(B) ≤ 1.5 mag. The Pearson
correlation coefficient is r = −0.35 (r ≈ −0.20 when taking into account the uncertainties
in intrinsic color). The dashed line is the result of a least-squares linear fit, with a slope of
0.013± 0.005 (∼ 2σ different from zero). We also indicate the weighted mean intrinsic color
(〈B − V 〉) for both samples. Right: Distribution of intrinsic B − V color at maximum light
for the Normal and High-velocity subsamples. A K-S test shows that the two samples are
discrepant at the p = 0.023 < 0.05 significance level.

Regress Intrinsic Colour 
Inferred from BayeSN fit 

to BVRI(JH) LCs
against Si II velocities:

~2σ effect.
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Expanded Hierarchical Model for 
SN Ia LCs and Spectroscopic Measurements

Mandel, Foley, Kirshner. 2012, in prep.
Use BVRI and spectral line measurements
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Summary: 
Statistical Methodology

• Hierarchical Bayesian framework is useful for 
coherently modeling multiple random effects

• BayeSN: an efficient MCMC for computing 
inferences with SN Ia hierarchical models

• Cross-Validation:  Test sensitivity of predictions to 
finite training set

47

47Wednesday, August 22, 2012



Applications: Conclusions

• NIR Light Curves give excellent distances less 
prone to dust extinction

• SN Ia Optical with NIR: Estimate dust, smaller 
distance uncertainty and better precision than 
with Optical alone (0.11 vs 0.15 mag)

• Rest-Frame NIR obs of SN Ia at z ~ 0.3 
improves constraints on w by a factor of 1.7, 
less sensitive to a systematic error in dust RV 

• Modeling Correlations btw spectral velocities 
and Optical LCs:  Tests theory, improves distance 
estimates?
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Open Questions

• How to test the assumptions underlying complex 
hiearchical model with multiple sub-models?

• How to discriminate between models using 
different information (e.g. light curves, spectra)? 
Predictive accuracy? Model Selection?

• How to find/test new information (i.e. spectra) to 
improve distances? Blind data mining vs. physical 
insight?
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