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Introduction – circular economy for fuels
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Our model

Ganzer, Caroline, and Niall Mac Dowell. Sustainable Energy & Fuels 4.8 (2020): 3888-3903.
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Production routes for methanol
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Production routes for ammonia
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PV profiles

We examine systems in 

seasonal (London) and non-

seasonal (Dubai) climates.

[1]
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Comparison of methanol routes

9

The optimal route for MeOH depends on 

the location. In London, the route via FA is 

optimal, reducing the cost of seasonal 

storage. In Dubai, the direct route is best 

due to lower PV & electrolyser cost.

PV, electrolyser and H2 storage dominate 

the cost.
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Storage levels 

10

H2 storage for 

seasonal storage 

and battery storage 

for balancing daily 

fluctuation are 

optimal.
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Electrolyser throughput in summer and winter

In the optimal schedule, the electrolyser follows the radiation pattern. Additional 

electrolyser capacity is preferred over additional battery storage.
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MeOH vs. NH3

In London, NH3 and MeOH costs are 

similar, whereas in Dubai NH3 is cheaper.

In Dubai, no seasonal storage is required, 

reducing the cost dramatically.

Current prices are 400-500 $/t-MeOH and  

500-600 $/t-NH3.

Priorities for cost reduction are PV, 

electrolysis, H2 storage. Impacts of cost 

reduction of synthesis are negligible.
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Energy flows – MeOH – London 

13

In a seasonal climate like London, any route which can reduce the cost of seasonal 

storage is advantageous. FA storage being cheaper than H2 storage, a route via FA is 

optimal, even though higher PV and electrolyser capacities are needed.



Chevron Climate Energy Environment Webinar Series – Caroline Ganzer – 11th May 2021

Energy flows – NH3 vs. MeOH – Dubai 

14

CO2 is significantly less abundant and more chemically stable 

than N2. N2 can be obtained at negligible energetic cost. 

Additional PV and electrolyser capacity are needed for the 

separation and chemical activation of CO2. 

Nitrogen-based fuels may offer 

advantages over carbon-based fuels 

in a post-fossil sustainable future.
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Comparison of EROI to other fuels

15

London Dubai

Methanol 2.4 4.5

Ammonia 3.5 6.1

Corn-based bioethanol 1.1 – 1.65

Cellulose-based bioethanol 4.4 – 6.6 

Sugarcane-based bioethanol 3 – 10 

Algae-based biofuels 0.14 – 3.35 

Biodiesel 2

Oil & gas 10 – 70 

While not competing with traditional fuels, 

methanol and ammonia from air, water and 

renewable energy may challenge bio-based 

sustainable fuels.

Synthetic fuels as opposed to biofuels have fewer 

drawbacks regarding competition for resources 

and biomass carbon footprint. Biofuels on the 

other hand may provide negative emissions.

[2][3][4]
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Cost of intermittency

Added cost due to daily and seasonal 

fluctuation in PV capacity factor can 

constitute up to two thirds of total cost.

Running chemical plants in summer 

(solar) mode and winter (bio) mode 

could be considered.

Novel fuel production technologies 

which are entirely flexible may be 

preferable in locations with high 

seasonal variation – even if they 

require higher CAPEX.
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Impact of process flexibility

Increased process 

flexibility can reduce cost 

substantially.

Intermittency needs to be 

taken into account when 

designing process 

systems depending on 

renewable energy input.
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Wind vs. solar vs. hybrid systems in varying locations
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In Dubai, solar availability is higher – a 

solar-only system is optimal.

In London, wind availability is higher – a 

wind-only system is optimal.

Munich has similar wind and solar 

availability – a hybrid system reduces cost.
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Interannual variability

19

Interannual variability is significant. It 

depends on the power sources and the 

location. In these runs, capacity 

required in the worst year is up to 60% 

higher than average optimal capacity.

If steady state processes are to use 

only renewable, intermittent energy, 

the power plant may need to be 

oversized to account for the worst 

year, ensuring the production target is 

met throughout the lifetime.
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Improving competitiveness of renewable fuels

20

A carbon price, the selling of excess electricity, and increased process flexibility can improve 

the competitiveness of renewable fuels and chemicals compared to fossil-based products.



Chevron Climate Energy Environment Webinar Series – Caroline Ganzer – 11th May 2021

Conclusions

23

– Solar NH3/MeOH cannot currently compete with traditional fuels in terms of cost.

– A shift from C-based to N-based fuels should be carefully considered from a circular economy perspective.

– Solar fuel production systems are strongly dependent on the location. 

– The cost of intermittency is especially high in London due to the seasonal radiation pattern.

– Flexibility can lead to cost reductions in London but not in Dubai, so it can remedy the impact of seasonal but not daily 

intermittency.

– Priorities in cost reduction are PV, electrolysis, H2 storage.

– Integrated assessment of renewable fuel production is required to assess the value of novel technologies and the actual 

production cost.

caroline.ganzer17@imperial.ac.uk
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