Lunchtime Webinar

The role and value of inter-seasonal grid-scale energy storage in deep decarbonisation Caroline Ganzer Centre for Environmental Policy, Centre for Process Systems Engineering

Thursday, 21 May 12pm

energy futures lab

An institute of Imperial College London

21st May 2020

The role and value of inter-seasonal grid-scale energy storage in deep decarbonisation

Caroline Ganzer, Yoga W. Pratama, Niall Mac Dowell

Centre for Process Systems Engineering Centre for Environmental Policy niall@imperial.ac.uk caroline.ganzer17@imperial.ac.uk

London

Imperial College London

energy saving trust	On the path to net zero: renewable energy
----------------------------------	---

BEIS Public Attitudes Tracker

7th May 2020

Department for Business, Energy & Industrial Strategy

Renewables

Support for renewable energy remained steady at 82% in March 2020.

28 April 2020

Climate crisis: UK hits coal-free record for power generation amid coronavirus lockdown

Closure of fossil-fuel plants and fall in demand due to Covid-19 sees CO2 emissions cut by one-third

The Guardian

Tue 19 May 2020

How renewable energy could power Britain's economic recovery

Harnessing power from sun, wind and sea could spur UK's postpandemic economy while tackling climate crisis, say experts

Does renewables pioneer Germany risk running out of power?

SPIEGEL

JULY 18, 2019

German Failure on the Road to a Renewable Future

Forbes

Sep 4, 2019

Why Renewables Can't Save the Climate

FINANCIAL TIMES MAY 14 2019 Falling renewables investment stalls Paris climate goals

Imperial College
LondonEnergy transition, electrification & renewables integration –
risks and potential mitigation

Imperial College Questions

What is the potential for inter-seasonal grid-scale energy storage in the UK when explicitly accounting for the electrification of heat and transport?

Which function does inter-seasonal storage take on depending on the capacity mix?

What are priorities for the development of power-to-gas technologies?

What are cost optimal combinations of renewables, storage, low-carbon dispatchable technologies, negative emissions technologies?

Imperial College Energy Systems Optimisation Model (ESO(NE))

$ \forall i \in I \\ \forall a \in A $	Capacity expansion	Initial supply and transmission capacity Build rate constraints (supply, store, transmiss.) Life time constraints Maximum resource constraints	technology deployment until 2050	
$\forall c \in C$	System-wide constraints	Electricity demand Demand for commodities Reserve requirements Inertia requirements Emission target & carbon price	power dispatch schedule, storage levels.	
$\forall z \in Z$	Transmission	Transmission between zones	technology	
$\forall t \in T$	Techwise constraints	Power, Reserve, inertia provision Flexibility of generation/storage units Carbon emissions by technology	utilisation	~~~~~
	Integer scheduling	Uptime and downtime Import and export of commodities	carbon intensity,	
Σ	Objective	min { CAPEX + OPEX }	total costs, electricity price	10 10 10 10 10 10 10 10 10 10

Energy Futures Lab – Caroline Ganzer – 21st May 2020

Imperial College Electrification scenarios

power	efficiency improvements until 2030, further improvements offset by growth					
EV	steady progression	~50% of road transport	~80% of road transport	~100% of road transport		
heat pumps	no deployment	70% air-sourced, 30% ground-sourced heat pumps, no heat storage, profiles calculated using one year of full-hourly heat pump COP data				
		~50% of residential & commercial demand	~80% of residential & commercial demand	~100% of residential & commercial demand		

Imperial College Electrification scenarios

Disaggregating by sector allows us to incorporate the changing profile of the demand, becoming more "peaky" and more seasonal.

Imperial College London

Power-to-methane storage (P2M)

Power-to-methane has been shown in previous work to have cost advantages compared to power-to-hydrogen.

Yao et al., Sustainable Energy & Fuels 3 (11), 3147-3162), 2019.

We solve ESO-X in linear relaxation with **full-hourly demand & renewables data** in order to allow inter-day storage and analyse seasonal effects.

	CAPEX	Round-trip efficiency	Storage duration	Self-discharge
Pumped hydro storage	1,200 £/kW	0.75	5 h	0
Battery storage	1,800 £/kW	0.85	5 h	0.000050 /h
Power-to-methane storage (P2M)	2,400 £/kW	0.29	8400 h	0

Imperial College London

Net-zero carbon target in 2050 without a specific trajectory. **Carbon price** on CO_2 emissions ramping up from 18 £/t CO_2 in 2020 to 236 £/t CO_2 in 2050.

Biomass has embodied emissions of 0.25 tCO₂/t caused by the supply chain, which are counted toward the carbon target and penalised by the carbon price.

Plant **flexibility** is constrained via up time & down time, all plants are assumed to be able to start up and shut down within one hour; storage is always running.

Build rates (BR) are constrained based on historical date and increased by a factor when needed.

Imperial College High-iRE system without seasonal storage or dispatchable technologies

Imperial College iREs with & without CCS and/or P2M – capacity expansion London

Adding P2M allows the system to reach net-zero with **lower build rates**.

With CCGT-CCS and BECCS added, build rates required for the transition can be reduced further.

Imperial College P2M storage level (without CCS, central electrification)

Imperial College iREs with & without CCS and/or P2M – dispatch in 2050 London

Power-to-gas storage absorbs high amounts of renewable power and provides power during peak hours and on days with low renewable energy available. Long-term storage allows better utilisation and **avoids curtailment** and **lost load**. It can also provide **reserve** and **inertia**. **Seasonal generation** can also be provided by the combination of CCGT-CCS (load-following), CCGT (peak), and BECCS (negative emissions).

Flexibility (daily & seasonal) has great value.

Imperial College Minimal, central, high electrification – with CCS

When renewables deployment is constrained, dispatchable generation is needed to achieve higher levels of electrification.

Imperial College Minimal, central, high electrification – without CCS

Higher levels of electrification require higher amounts of dispatchable generation and/or long-term storage.

Imperial College Bottlenecks – low solar availability

Imperial College Bottlenecks – low wind availability

Imperial College Bottlenecks – low solar & wind availability

Imperial College London

Charging ratio and round trip efficiency

If higher charging-to-discharging power or higher round-trip efficiency come at higher technology CAPEX, they may not provide additional value to the system.

Low round-trip efficiency does not prevent power-to-gas storage from adding value in a seasonal system. This might be partly due to renewable power having near-zero marginal cost. Evaluating this technology from the system's perspective is key.

Investigating the potential flexibility of power-to-gas systems and the implications on cost could provide further insights.

Imperial College CAPEX sensitivity

The value of power-to-gas storage depends on the deployment of intermittent renewables, but seems to remain to an extent when their deployment is limited.

If the deployment of renewables is limited, low-carbon dispatchable technologies and negative emissions are key. If the deployment of CCS is limited, interseasonal storage becomes crucial.

A diverse portfolio could reduce the likelihood of missing climate targets and could lead to a system resilient to uncertainties (level of electrification, renewables availability, etc.).

How much value inter-seasonal storage such as power-to-gas storage can add to the energy system depends on its cost, other technologies deployed, build rates of renewables, and the level of electrification. When deployment of low-carbon dispatchable technologies is limited, it becomes essential.

The optimal system design is of course uncertain and depends on technology CAPEX assumptions, emissions accounting, policy, etc.

Seasonal effects impact the design, especially with rising share of renewable energy and electrification of heat.

Analysing the role of a technology in the system and in synergy with other technologies enables the assessment of its value.

It is of interest to investigate how to incentivise the deployment of CAPEX-driven technologies such as wind, solar, and storage.

Imperial College

London

Conclusions

Imperial College References

[1] Heuberger, Clara F., et al. "A systems approach to quantifying the value of power generation and energy storage technologies in future electricity networks." Computers & Chemical Engineering 107 (2017): 247-256.

[2] Heuberger, Clara F., et al. "Power capacity expansion planning considering endogenous technology cost learning." Applied Energy 204 (2017): 831-845.

[3] Zhang, Di, et al. "Unlocking the potential of BECCS with indigenous sources of biomass at a national scale." Sustainable Energy & Fuels 4.1 (2020): 226-253.

[4] Yao, Joseph G., Mai Bui, and Niall Mac Dowell. "Grid-scale energy storage with net-zero emissions: comparing the options." Sustainable Energy & Fuels 3.11 (2019): 3147-3162.

[5] National Grid: Future Energy Scenarios (FES). Available at <u>http://fes.nationalgrid.com/</u>, 2019.

[6] Ruhnau, Oliver, Lion Hirth, and Aaron Praktiknjo. "Time series of heat demand and heat pump efficiency for energy system modeling." Scientific data 6.1 (2019): 1-10. Available at https://data.open-power-system-data.org/when2heat/.

[7] DECC: The Future of Heating: Meeting the challenge. Available at

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/190149/16_04-DECC-The_Future_of_Heating_Accessible-10.pdf, 2013.

[8] BEIS: Clean Growth - Transforming Heating. Available at

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/766109/decarbonising-heating.pdf, 2018.

[9] DECC: Estimates of heat use in the United Kingdom in 2013. available at

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/386858/Estimates_of_heat_use.pdf, 2014.

[10] Open Power System Data. 2019. Data Package Time series. Version 2019-06-05. https://doi.org/10.25832/time_series/2019-06-05. (Primary data from various sources, for a complete list see URL).

[11] Element Energy: Electric Vehicle Charging Behaviour Study. Available at <u>http://www.element-energy.co.uk/wordpress/wp-</u> content/uploads/2019/04/20190329-NG-EV-CHARGING-BEHAVIOUR-STUDY-FINAL-REPORT-V1-EXTERNAL.pdf, 2019.

[12] Stefan Pfenninger and Iain Staffell. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy, 114:1251–1265, 2016. Available at http://renewables.ninja.

[13] Iain Staffell and Stefan Pfenninger. Using bias-corrected reanalysis to simulate current and future wind power output. Energy, 114:1224–1239, 2016. Available at http://renewables.ninja.