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Energy transition, electrification & renewables integration –

risks and potential mitigation

variability of 

power supply

& power demand
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Questions

What is the potential for inter-seasonal grid-scale energy storage in the UK when 

explicitly accounting for the electrification of heat and transport?

Which function does inter-seasonal storage take on depending on the capacity 

mix?

What are priorities for the development of power-to-gas technologies?

What are cost optimal combinations of renewables, storage, low-carbon 

dispatchable technologies, negative emissions technologies?
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Energy Systems Optimisation Model (ESO(NE))
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Electricity demand

Demand for commodities

Reserve requirements

Inertia requirements 

Emission target & carbon price

Power, Reserve, inertia provision 

Flexibility of generation/storage units

Carbon emissions by technology 

Uptime and downtime

Import and export of commodities

System-wide

constraints

Tech.-wise

constraints

Integer

scheduling

Objective min { CAPEX + OPEX }

Initial supply and transmission capacity

Build rate constraints (supply, store, transmiss.)

Life time constraints

Maximum resource constraints

Capacity

expansion

∑

Transmission Transmission between zones

technology 

deployment 

until 2050

power dispatch 

schedule, 

storage levels, 

technology 

utilisation

carbon intensity, 

total costs, 

electricity price
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Electrification scenarios
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power efficiency improvements until 2030, further improvements offset by growth

EV steady progression ~50% of road transport ~80% of road transport ~100% of road transport

heat pumps no deployment 70% air-sourced, 30% ground-sourced heat pumps, no heat storage,

profiles calculated using one year of full-hourly heat pump COP data 

~50% of residential & 

commercial demand

~80% of residential & 

commercial demand

~100% of residential & 

commercial demand
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Electrification scenarios
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Disaggregating by sector allows us to incorporate the changing profile 

of the demand, becoming more “peaky” and more seasonal.

[5]-[11]
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Power-to-methane storage (P2M)
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CAPEX Round-trip efficiency Storage duration Self-discharge

Pumped hydro storage 1,200 £/kW 0.75 5 h 0

Battery storage 1,800 £/kW 0.85 5 h 0.000050 /h

Power-to-methane storage (P2M) 2,400 £/kW 0.29 8400 h 0

We solve ESO-X in linear 

relaxation with  full-hourly 

demand & renewables data in 

order to allow inter-day storage 

and analyse seasonal effects.

Power-to-methane has been

shown in previous work to have

cost advantages compared to 

power-to-hydrogen.
Yao et al., Sustainable Energy & Fuels 3 (11), 3147-3162), 2019. 

[4][12][13]
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Critical assumptions
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Net-zero carbon target in 2050 without a specific trajectory.

Carbon price on CO2 emissions ramping up from 18 £/tCO2 in 2020 to 236 £/tCO2 in 2050. 

Plant flexibility is constrained via up time & down time, all plants are assumed to be able to start 

up and shut down within one hour; storage is always running. 

Biomass has embodied emissions of 0.25 tCO2/t caused by the supply chain, which are counted 

toward the carbon target and penalised by the carbon price.

Build rates (BR) are constrained based on historical date and increased by a factor when 

needed.
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High-iRE system without seasonal storage or dispatchable technologies
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BRx2
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iREs with & without CCS and/or P2M – capacity expansion
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Adding P2M allows the 

system to reach net-zero 

with lower build rates.

With CCGT-CCS and 

BECCS added, build rates 

required for the transition 

can be reduced further.
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P2M storage level (without CCS, central electrification)
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~12 TWh
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iREs with & without CCS and/or P2M – dispatch in 2050

15

Power-to-gas storage absorbs high amounts of renewable 

power and provides power during peak hours and on days 

with low renewable energy available. Long-term storage 

allows better utilisation and avoids curtailment and lost 

load. It can also provide reserve and inertia.

Seasonal generation can also be provided by 

the combination of CCGT-CCS (load-following), 

CCGT (peak), and BECCS (negative emissions).

Flexibility (daily & seasonal) has great value.
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Minimal, central, high electrification – with CCS
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When renewables deployment is constrained, 

dispatchable generation is needed to achieve 

higher levels of electrification.
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Minimal, central, high electrification – without CCS
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Higher levels of electrification require higher amounts 

of dispatchable generation and/or long-term storage.
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Bottlenecks – low solar availability
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Bottlenecks – low wind availability
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Bottlenecks – low solar & wind availability
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Charging ratio and round trip efficiency
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If higher charging-to-discharging power or 

higher round-trip efficiency come at higher 

technology CAPEX, they may not provide 

additional value to the system.

Low round-trip efficiency does not prevent 

power-to-gas storage from adding value in 

a seasonal system. This might be partly 

due to renewable power having near-zero 

marginal cost. Evaluating this technology 

from the system’s perspective is key.

BRx1.5

Investigating the potential flexibility of 

power-to-gas systems and the implications 

on cost could provide further insights.
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CAPEX sensitivity
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The value of power-to-gas storage 

depends on the deployment of intermittent 

renewables, but seems to remain to an 

extent when their deployment is limited.

If the deployment of renewables is limited, 

low-carbon dispatchable technologies and 

negative emissions are key. If the 

deployment of CCS is limited, inter-

seasonal storage becomes crucial.

A diverse portfolio could reduce the 

likelihood of missing climate targets and 

could lead to a system resilient to 

uncertainties (level of electrification, 

renewables availability, etc.).

BRx2
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Conclusions
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How much value inter-seasonal storage such as power-to-gas storage can add to the energy 

system depends on its cost, other technologies deployed, build rates of renewables, and the level 

of electrification. When deployment of low-carbon dispatchable technologies is limited, it becomes 

essential.

The optimal system design is of course uncertain and depends on technology CAPEX 

assumptions, emissions accounting, policy, etc.

Seasonal effects impact the design, especially with rising share of renewable energy and 

electrification of heat.

Analysing the role of a technology in the system and in synergy with other technologies enables 

the assessment of its value.

It is of interest to investigate how to incentivise the deployment of CAPEX-driven technologies 

such as wind, solar, and storage.

caroline.ganzer17@imperial.ac.uk
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