

Demonstrating flexible operation of the TCM CO₂ capture plant

Mai Bui,^{1,2} Nina Enaasen Flø,³ Thomas de Cazenove,³ Niall Mac Dowell^{1,2,*}

Centre for Environmental Policy, Imperial College London
Centre for Process Systems Engineering, Imperial College London
CO₂ Technology Centre Mongstad (TCM DA), Norway

Imperial College London Flexible CCS in future electricity systems

To accommodate intermittent renewables, fossil fuel power plants will need to operate flexibly.

Coordinate the balance between electricity demand and CO_2 capture requirements.

Imperial College London

Strategies that improve flexibility:

Solvent storage tanks

Cohen, S. M., Rochelle, G. T. & Webber, M. E. 2011. Energy Procedia, 4, 2604-2611.

Imperial College London

Strategies that improve flexibility:

Solvent storage tanks

Bypass system

Cohen, S. M., Rochelle, G. T. & Webber, M. E. 2011. Energy Procedia, 4, 2604-2611.

Imperial College London

Strategies that improve flexibility:

Solvent storage tanks Bypass system

Venting system

Wiley, D. E., Ho, M. T. & Donde, L. (2010). Energy Procedia, 4, 1893–1900 (2011).

Imperial College London

Strategies that improve flexibility:

Solvent storage tanks

Bypass system

Venting system

Optimised steam cycle design

a) RETROFIT WITH NEW LP CYLINDER AND LET-DOWN TURBINE

b) RETROFIT WITH A PASS-OUT BACK-PRESSURE TURBINE (from hot RH or IP exit, depending on access and pressures available and required

c) RETROFIT WITH TWO BACK-PRESSURE TURBINES (from hot RH or IP exit, depending on access and pressures available and required

d) LOW_EFFICENCY RETROFIT WITH TWO THROTTLE VALVES

e) – f) LOW EFFICIENCY RETROFIT WITH ANCILLARY BOILER AND OPTIONAL BACK-PRESSURE TURBINE

Lucquiaud, M. & Gibbins, J. 2011. Energy Procedia, 4, 1812-1819.

Imperial College London

Strategies that improve flexibility:

Solvent storage tanks

Bypass system

Venting system

Optimised steam cycle design

Load following

Wiley, D. E., Ho, M. T. & Donde, L. (2010). Energy Procedia, 4, 1893–1900 (2011). Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Imperial College London

Strategies that improve flexibility:

Solvent storage tanks

Bypass system

Venting system

Optimised steam cycle design

Load following

Time-varying solvent regeneration

Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

The use of solvent storage tanks involves high capital cost.

Alternatively, CO₂ can be "stored" within the amine liquid.

The **time-varying solvent regeneration** approach can be used to coordinate the DoC with electricity price/demand.

Potentially more cost effective and profitable.

Time-varying solvent regeneration

References: Mechleri, E., Fennell, P. S. & Dowell, N. M. (2017). International Journal of Greenhouse Gas Control, 59, 24–39. Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Time-varying solvent regeneration looks to be the most profitable strategy.

Can we actually do it?

Time-varying solvent regeneration

Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Process dynamics of flexible operation

Much of the research on flexible operation focuses on the development of operation strategies and configurations.

To design robust flexible operation strategies and process control, we need better understanding of process dynamics at larger plant scales.

This study combines experimental pilot plant testing with dynamic modelling of the TCM CO_2 capture plant.

Objective: To assess the feasibility of novel flexible operation strategies at the TCM CO_2 capture plant (time-varying solvent regeneration, variable ramp rates). Understand the effects of plant scale on the process dynamics.

TCM CO₂ capture facility, Mongstad Norway

12

Flexible operation of the TCM CO₂ capture plant

Imperial College London

The dynamic operation scenarios of this test campaign are:

Effect of steam flow ICL_1 to ICL_6

Time-varying solvent regeneration ICL_7 to ICL_9

Variable ramp rate ICL_10 to ICL_13

Bui, M., *et al.* (accepted). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO_2 capture plant. International Journal of Greenhouse Gas Control.

Effect of steam flow rate

Imperial College London

Steam

flow rate

(kg/h)

2000

5000

To understand the dynamics of the process, the relationship between steam flow rate and the degree of capture was establish.

 CO_2

capture

rate (%)

26.0

72.0

0.4375

0.2456

Off-peak electricity prices: Solvent is regenerated, reducing power output → expect lower flue gas flow rates.

Increase steam flow to reboiler:

- Increases degree of capture (DoC)
- Decreases lean CO₂ loading

Peak electricity prices: accumulate CO_2 in the amine

Power output increases, burning more fuel \rightarrow higher flue gas flow rates.

Reduce steam flow to reboiler:

- DoC reduces
- Increase in lean CO₂ loading

Time-varying solvent regeneration

Time-varying solvent regeneration

lean CO₂ loading reduced.

Reboiler temperature: 124.1 °C CO₂ capture rate: 89–97% Lean CO₂ loading: 0.16 mol_{CO2}/mol_{MEA}

Peak: CO₂ is "stored" in solvent and lean CO₂ loading increases.

Reboiler temperature: 109.5 °C **CO₂ capture rate:** 14.5% Lean CO₂ loading: 0.48 mol_{CO2}/mol_{MEA}

Rich CO₂ Loading: 0.52–0.53 mol_{CO2}/mol_{MEA}

Reboiler duty: 3.93–4.11 MJ/kg CO₂

Cumulative CO₂ capture rate: 66.5%

Bui, M., et al. (accepted). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO₂ capture plant. International Journal of Greenhouse Gas Control.

Time varying solvent regeneration

Bui, M., *et al.* (in preparation). Demonstrating flexible operation of CO_2 capture plants at Technology Centre Mongstad (TCM). International Journal of Greenhouse Gas Control.

Variable ramp rate

Imperial College London

Can the CO₂ capture plant be as flexible as the power plant?

Conventional CCGT can ramp at $2-8 \ \ensuremath{\%P_n/min^1}$

Ramp rates tested:

- 1) decrease 0.6%/min
- 2) decrease 0.6%/min
- 3) increase 1.7%/min
- 4) increase 5%/min

The process control system at TCM limits ramp rate to 0.6%/min. Manual operation of blower enables ramp rates 1.7 to 5%/min.

Variable ramp rate

Imperial College London

Flue gas, solvent and steam flow rates ramped simultaneously, maintaining constant L/G ratio.

CO₂ capture rate: 87-89%Lean CO₂ loading: $0.14-0.16 \text{ mol CO}_2/\text{mol MEA}$ Rich CO₂ loading: ~0.53 mol CO₂/mol MEA

By keeping L/G ratio constant, the CO_2 capture performance also remains constant:

- lean CO₂ loading
- rich CO₂ loading
- CO₂ capture rate

Bui, M., et al. (accepted). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO₂ capture plant. International Journal of Greenhouse Gas Control.

Variable ramp rate: Absorber temperature

Bui, M., *et al.* (accepted). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO₂ capture plant. International Journal of Greenhouse Gas Control.

Variable ramp rate: Stripper temperature

Change in steam flow rate not significant enough to result in large change in Reb T \rightarrow Stripper T constant

Bui, M., *et al.* (accepted). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO_2 capture plant. International Journal of Greenhouse Gas Control.

Conclusions

This study demonstrates that flexible operation is technically feasible in a CO_2 capture process using MEA in the TCM CO_2 capture plant (captures 80 t_{CO2}/day in CHP mode).

Understanding the dynamics of the process is important when investigating flexible operation strategies, *e.g.*, effect of only changing steam flow rate. For example, TCM results show:

Steam flow rate (kg/h)	CO ₂ capture rate (%)	Lean CO ₂ loading (mol CO ₂ / mol MEA)
2000 🕂	26.0 🕂	0.4375 🟠
5000 介	72.0 企	0.2456 🗸

Time-varying solvent regeneration: absorption-based processes can "store" CO_2 within the amine liquid – lean loading increases from 0.16 (off-peak) to 0.48 (peak) mol CO_2 /mol MEA.

Variable ramp rate: different ramp rates can be applied in succession. By maintaining a constant L/G ratio, CO₂ capture performance (capture % and loading) will remain constant

Bui, M., et al. (accepted). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO₂ capture plant. International Journal of Greenhouse Gas Control.

Imperial College Key characteristics found to limit flexibility London

Stabilisation time: Need to allow sufficient time to stabilise the plant before changing to new process conditions.

Transition time: For step changes and rapid ramp rates to new set-point conditions, actual process conditions do not transition immediately, it takes time to reach final set-point conditions. This time varies with parameter & size of the change.

Magnitude and speed of process parameter change: Rapid and large process parameter changes tend to be avoided at TCM to prevent inverse responses and plant instability (observed in previous test campaigns).

Process control system: Designed for steady state operation. Found to be the key factor that limited ramping capabilities. This is an important area for future work.

Plant flexibility is a function of the scale of the plant and volume of solvent inventory.

Further research challenges

Further work studying plants at other different scales \rightarrow larger scale, slower dynamics

- Develop a correlation between plant scale and dynamic CO₂ capture performance.
- PACT 1 $t_{CO2}/day \rightarrow$ Brindisi plant 60 $t_{CO2}/day \rightarrow$ TCM 80 t_{CO2}/day

Solvent development/design

- Improve fluid flow properties to ensure adequate solvent distribution over the packing.
- Higher working capacities (i.e., more moles of CO₂ per mole of liquid absorbent).

Tool development

- Improve accuracy of commercial software to better model dynamic physical behaviour
- Liquid measurement instruments that **accurately** measure CO₂ loading online.
- Process control strategies that improve operability during flexible operation (e.g. to achieve faster ramp rates).

Integrate flexible CO₂ capture processes into energy system models to identify the value of flexible CCS.