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The Schrödinger Equation for Many Electrons

Time independent, non-relativistic, Born-Oppenheimer…

A linear equation in 3N variables
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Three terms – kinetic energy, external potential and electron-electron.



The External Potential

The interaction with the atomic nuclei is:

∑ −
−=

∧ atN

ext
Z

V
α α

α

|| Rr

The external potential and the number of electrons, N, completely
determine the Hamiltonian.



The Variational Principles

For any legal wavefunction (antisymmetric, normalised)
the energy is
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- the energy is a functional of Ψ

0][ EE ≥Ψ

- Search all Ψ to minimise E => the ground state



Hartree Fock Theory

An ansatz for the structure of the wavefunction
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The Hartree Fock Equations

non-interacting electrons under the influence of a mean field
potential consisting of the classical Coulomb potential and a non-
local exchange potential.
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Beyond Hartree-Fock

Many methods/approximations applicable to small systems.

Expensive & scaling with problem size is ferocious

Eg:

MP2, MP3, MP4 ~ N5,  N6, N7

CISD ~  N6

CCSD ~  N6

CCSD(T) ~  N7



Avoiding Solving the Schrodinger Equation

Is it necessary to solve the Schrödinger equation and
determine the 3N dimensional wavefunction in order
to compute the ground state energy ?

…..   No !



The Pair Density

The second order density matrix is defined as
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The diagonal elements are the two particle density matrix or pair
density function,
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This object in 6 dimensions is all we need to compute the exact total
energy !



The Energy and the Density Matrices

The first order density matrix is

H only contains one-electron and two-electron operators
- the energy can be written exactly in terms of P1 and P2
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The energy is a functional of P2: E[P2]

Perhaps solve using by minimising  E[P2]  ?

Very difficult problem –

A legal P2 must be constructible from an antisymmetric Ψ.

Applying this constraint in practice is non trivial.

Life would be much easier if there was a way of doing it …..!



Do we really need to know P2 ?

No …

To find the exact total energy knowledge of the
charge densityρ(r) is enough !



DFT – the theorems

Theorem 1.

The external potential is uniquely determined by the density - ρ(r)

- so the total energy is a unique functional of the density  -   E[ρ] !

Theorem 2.

The density which minimises the energy is the ground state density and the
minimum energy is the ground state energy.

Hohenburg-Kohn – 1964

Mel Levy

E B Wilson
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Theorem 1 – Wilson’s proof

The charge density has a cusp at the nucleus of any atom such
that,
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The charge density uniquely determines the Hamiltonian, thus the
wavefunction and all material properties !!!



Density Functional Theory

The fundamental statement of DFT is
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there is a universal functional E[ρ] which could be inserted into the
above equation and minimised to obtain the exact ground state
density and energy.



What is the functional ?

There are three terms in the Hamiltonian…
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Vext[ρ] is trivial

T and Vee are very difficult to approximate !
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Exc[ρ] - Properties

• Does not depend on Vext (the specific system): it is a
‘universal’ functional.

• The exact dependence on ρ(r) is unknown

• E(x)c can be exactly determined for any specific density, but
the effort is greater than for usual many-body calculations

E(x)c must be approximated in applications



The Homogeneous Electron Gas

Thomas (1927), Fermi (1928), Dirac (1930)

For the non-interacting gas the kinetic and exchange energy per
particle can be computed – the single particle wavefunctions are
simply plane waves.
Perhaps integrate these energy densities for an inhomogeneous
system ?
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….. No chemical bonding !

Ex is OK but what about T ?



A local function of the density

Thomas-Fermi-Dirac suggests:
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The functional is a local function of the density …
What to do about εc(ρ) ?



E[ρ] – The Kohn Sham Approach
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Write the density in terms of a set of N non-interacting orbitals…

The non interacting kinetic energy and the classical Coulomb interaction
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Allow us to recast the energy functional as:
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Where we have introduced



Variation Theorem => Kohn Sham Equations

Vary the energy with respect to the orbitals and ….

No approximations, So…

If we knew Exc[ρ] we could solve for the exact ground state energy and
density !

Cost – N3 ….. In principle N.
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The Non-interacting system

There exists an effective mean field potential which, when applied to a system of
non-interacting fermions, will generate the exact ground state energy and charge
density !!!
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Hartree Fock is a density functional theory…

Hartree-Fock theory is a density functional theory !

- but with a non-local potential.
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Quantum Monte Carlo Simulations

ρ

εxc

For the Homogeneous electron gas the exact dependence of εxc(ρ)
can be computed.

Ceperley and Alder 1980



The Local Density Approximation - LDA
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Conclusions I

• For the ground state energy and density there is an exact
mapping between the many body system and a fictitious non-
interacting system.

- DFT-people study the fictitious system !

• The fictitious system is subject to an unknown potential derived
from the exchange-correlation functional

• The energy functional may be approximated as a local function
of the density !



Density Functional Theory II

• Why does the LDA work ?
• The exchange correlation hole
• Comparison with exact exchange and correlation energy

densities
• Generalised gradient approximations – GGA’s
• Semi-local interactions: Meta-GGA’s
• Hybrid-exchange functionals
• Performance in molecules and solids


