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ABSTRACT

This thesis is concerned with the flexural vibration of rotating discs and bladed discs. The

preliminary part explores and unifies the definitions of different terms which have been

used by previous workers in this subject. For harmonic excitation of a rotating disc, the

general response of double modes is investigated. It is shown that there is more than one

frequency component in the response. Also, the relationship are obtained between the

frequencies of response and resonances, the disc rotation speed and the number of nodal

diameters due to a given excitation.

A major part of the thesis reports the development of a practical simulation of vibration in

a disc rotating past a static force. This kind of excitation occurs in practice due to non-

uniformity of the pressure distribution on either side of a rotating disc but it is difficult to

reproduce under laboratory conditions. It is shown that each mode of vibration can be

excited in a stationary disc using two harmonic forces having certain spatial and temporal

phase angles. For this simulation, a dual-sine excitation technique has been developed

which may also be used for modal analysis of a disc or any axi-symmetric  structure.

There are close modes and even coincidences of natural frequencies of the modes in axi-

symmetric structures which are often difficult to distinguish in normal experimental

methods. These modes can be isolated and identified using the dual-sine excitation

method.

The dual-sine excitation technique has been examined for different systems and excitation

sets in terms of complex modes, mistuned systems and also different spatial and temporal

phase angles for the exciters to see how widely the procedure can be applied in real



situations. A discrete mass model of a disc has been considered and different cases have

been simulated using this model. On the experimental side, a phase and amplitude shifter

has been developed for use in the dual-sine excitation method. Its input is a sinusoidal

signal from the generator and its output is two sinusoidal signals with controlled relative

amplitudes and phase angles.

A method is presented for displaying and interpreting the response in the vibrating disc.

The response of an axi-symmetric structure is a combination of travelling waves and fixed

vibration and the resulting complexity makes it difficult to visualise. A suitable format is

devised for presentation of the response of a such structure to help understand what is

going on at different points of the circumference when the disc is excited.

The final part of the thesis examines the vibration interaction between a rotating disc and

an adjacent stator. There are two cases of interest which are likely to occur in pracrice.

First, when the excitation initiated on the rotating disc due to an engine order excitation.

Second, there is a possibility of vibration interaction of the stator with a disc when the

stator is excited by a cyclic force input from an external source. In both of these vibration

interactions, the critical speeds and conditions should be identified and examined in order

to take them into consideration in practice.

In conclusion, this thesis provides a clear analytical and visual picture of the vibrational

response of a rotating disc and a technique for displaying the response. The dual-

controlled sine excitation method and its extension for more than two exciters is studied

which may be used to simulate vibration response of a disc rotating past a static force

(which is a travelling wave). A general formula for the simulation, a relationship between

the excitation forces, spatial and temporal phase angles is presented. In the study of

vibration interaction, it is shown that there is possibility of the transmission of disc

vibration to the stator or vice versa. In the former case, the stator response is a travelling

wave with frequency twice of the vibration frequency in the disc and in the latter case the

vibration of the disc is a combination of ‘fixed vibration’ and ‘travelling waves’.



To Fty FatniLy



ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. D.J. Ewins and Mr. D.A. Robb for their
supervision and advice which have been essential to carry out this research.

I would like to thank all the members of Dynamics Section, specially to Dr. R.M. Lin and
Mr. A. Nobari for discussions and comments on issues encountered in the work. Also
Mr. B. Dale and Mr. P. Woodward  are acknowledged for their assistance in the
experimental part of the work.

I would also like to thank Dr. M. Movahedi from the Department of Electrical
Engineering and Mr. M. Aref for their help and efforts in the design and making the
controller ‘PHASH’.

The assistance of the Department librarian Miss E. Archer and her assistant Miss A. Sage
is appreciated, who are always ready to help students.

Finally, I am grateful to the sponsors of this research, The Ministry of Higher Education
and Sharif University of Technology (in Iran), for the scholarship, financial support and
encouragement which were given for this work.



NOTATIONS

A A complex number, frequency dependent

A,,A2 - Coefficients have been defined in equation (7.9)

AF+-l Amplitude of forward travelling wave

AB* Amplitude of backward travelling wave

$jk - Modal constant of mode r from response measured at point j excited

at

al-l? brl -

a, b

f(t), F(t) -

&I

Frl
Fi,(e,,t> -

k

k,, k,, k,, k, -

knl& -

K

M,, M2 , etc. -

m

in

n

N

P1 q

q(t)

Q(t) -

point k

Amplitudes of sine and cosine components of the response

Two real constants are defined with the temporal phase angle in

chapter 4

Harmonic excitation forces

Amplitude of the sinusoidal force or - non-rotating static excitation

force

Amplitude of the nth engine order excitation

A part of forcing function generated due to the vibration interaction

Stiffness of each spring in a tuned model in chapter 5

Functions of excitation parameters (in chapter 3)

Arbitrary integer coefficients

Stiffness of the interface between rotor and an adjacent stator

Mass elements in discrete-mass model in chapter 5

Number of nodal diameters of an undesired mode to be excited or -

chapter 5, mass of every element in the tuned discrete mass model

Number of nodal diameters

Number of wave orders

Two constants

Normal coordinate

Generalised force



R20

R21

R22

s

t

Vg

Vfl

VfL

WI, W,,, etc. -

X@J>, x
Xl* x2

Y

[Al

WI

I?4

&I

Ll

u’

II u II

[T,l

P-l

a

a17 a2

aFny cr,r~

P

Prl

Control word for phase

Control word for amplitude in channel 1

Control word for amplitude in channel 2

Number of nodal circles

Time

Voltage on the command signal from generator

Voltage towards shaker 1

Voltage towards shaker 2

Amplitudes of different terms in the response

Response and its amplitude

Amplitudes of travelling wave and fixed vibration terms in the

response expression equation (3.33)

Amplitude of response

System matrix=[M]-‘[K]

FRF matrix

Mass man-ix

Complex stiffness matrix

An eigenvector = ( y.f)

An eigenvector = ( y’ )
Norm of the vector u

A matrix for wave order n defined in section 3.8

An expansion of [T,] containing all the 1 to N wave orders

Spatial phase angle between the excitation force and the origin of the

stationary coordinate

Phase angle between travelling wave term and fixed vibration term in

the response equation (3.33)

Phase angle of the forward and backward travelling wave terms

An angle as defined in equation (3.21)

Speed coefficient

.-



Abbreviations

BBD

DAC

DCS

EM

E o

FRF

NAG

ND

PHASH -

Increments for R21 and R22 respectively

Spatial and temporal phase angles between excitation forces

Eigenfunction of a diarnetral mode

An angle as defined in equation (3.21), also it is the spatial angle

between applied force and the origin in chapter 7

Damping loss factor

A complex value which is a function of the eigenvalue

Coordinate systems, rotating with disc and stationary respectively

Position of ‘pseudo-nodal point’ on the rim

An eigenvector

Revised eigenvector of repeated eigenvalue to fulfil the uniqueness

conditions

Normalised eigenvector of ( ye’)
Matrix of eigenvectors

Excitation frequency

Natural frequency of n diameual mode of the disc

Backward and forward apparent resonance frequencies

Bucket brigade delay

Digital to analogue converter

The dual-controlled sine technique

Experimental method in simulation of navelling wave

Engine order

Frequency response function

Hybrid method in simulation of travelling waves

A collection of library routines for computing

Nodal diameter

Phase and amplitude shifter



VP1

VCO

Vibration pattern imager, ( a laser device)

Voltage controlled oscillator

Sub- and super-scriptions

a

d

1, 2

Operators

II -

II II -

[I -

0 -

I IT, [ IT -

[ 1-l -

[I’ -

. .

L

Apparent resonance frequency

Disc

First and second modes of a pair diametral mode, also refer to

measurement points 1 and 2 on the structure

Stator (in chapters 6 and 7) and also for spatial phase angle 0,

Stationary

Critical speed of the disc

The n nodal diametral mode

Temporal phase angle between excitations

Absolute value

Norm of a vector or of a matrix

Matrix

Vector

Transpose of a vector or of a matrix

Inverse of a square matrix

Pseudo-inverse of a matrix

Second time derivatives

Angle
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GENERAL CONSIDERATIONS

1.1 INTRODUCTION

Vibration in structures and machines is normally an unwanted phenomenon behaviour

which may cause fatigue failure, unreliability and noise pollution. In order to cope with

this problem and to make sure that vibration levels are low enough to prevent damage and

losses, methods and theories have been developed and practiced, e.g. references [l] and

[2]. In recent decades, aided by development of computing and experimental facilities,

there has been abundant research, both experimentally and analytically, in the

identification of the dynamic properties of the structures. Modal testing - the

experimental techniques in vibration analysis - has been established and publicised

[3,33], which has significantly expanded the capability of the investigation and solving of

structural vibration problems. On the theoretical side also there has been a lot of effort to

predict the dynamic characteristics of a structure. However, neither theoretical nor

experimental methods always give a precise estimate and each has certain deficiencies. In

recent years, there have been many attempts to use experimental results in the theoretical

model to make a representative dynamic model for the structure.

b
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Among engineering structures, rotating machines have a specific place and are very

important from the viewpoint of vibration analysis. For example, jet engines are in this

category and it is needless to stress how important is the safety of these engines in an

aeroplane or how costly it would be if just one blade fails in a steam turbine.

Vibration analysis concerned with rotating structures has several different aspects. Many

researchers have worked on rotor dynamics and dealt with the vibration in rotating shafts

[30,31]. Much work has been done on disc vibration and a lot of studies on the vibration

analysis of the blades. Of course, these results have to be combined to present the

vibration characteristics of the complete rotating machines. Blades are more sensitive to

vibration and more failures have been reported in these components than in the others due

to the high stresses developed.

In gas and steam turbines, blades have a very important role. Often the failure of one

blade can be responsible for large economic, social and sometimes human losses. Fatigue

failure has been diagnosed for many of these accidents. Since the beginning of this

century, many researchers have tried to understand the real dynamic behaviour of the

blades in a bladed disc assembly under operating conditions. Blades have been modeled

as cantilevered beams, however in a bladed disc the flexibility of the disc and its

significant effect on the dynamic properties of the blades have also been included in the

considerations by some researchers [5,8].

The transverse or out-of-plane flexural vibration modes of a disc are characterised  by

nodal diameters and nodal circles [5]. The modes which consist of nodal diameters are

encountered more in practice and their response can be excited as stationary waves [4].

The stationary wave has been recognised as a wave which caused severe vibration in the

bladed disc. While this wave is stationary relative to a coordinate in space, it is rotating in

the opposite direction relative to the disc with a speed equal to the disc speed (Q). The

stationary and travelling waves and their relationships have been discussed in references

[3,6] and are described in more detail in section 1.3.
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Analyses and experimental techniques needed to explore the vibration behaviour in

rotating structures are not as simple as in the ordinary stationary ones. This is not only

because some of the dynamic properties (such as the natural frequencies) change with

rotation speed, but also the property of axi-symmetry  or periodicity within most of the

rotating components causes the problem to be more complex. The rotating disc used in

gas and steam turbines or in other applications has been studied by many researchers.

Since the invention and application of steam turbines in the early years of this century,

research on blade properties started because many failures had occurred. In the early

1920s Campbell [4] carried out his valuable work on the problem of failure of bladed

discs in steam turbines. For the first time, comprehensive experiments were carried out

on steam turbine bladed discs and different modes in the rotating discs were examined.

Campbell found that both disc and buckets vibrate together as a continuous disc and must

be treated as a unit in the study of vibrational behaviour. He also discovered the travelling

and standing waves in vibrating discs and in his observations, he found that the standing

wave - caused by a disc rotating past a static force - was the cause of most failures in

bladed discs. One of the consequences of his research was that discs then had to be so

designed that they did not operate at any of their critical speeds as always there is a

possibility of such small excitation forces present in turbines.

Ewins [8,12] found analytically and experimentally that a bladed disc has many more

natural frequencies than those predicted for one individual cantilevered blade. Figure 1.1,

which is taken from reference [8], shows the families of modes of a bladed disc, and also

those for the disc alone, compared with the cantilevered blade frequencies.

The general vibration behaviour of a bladed disc is similar to a solid disc and has nodal

diameters and nodal circles in its mode shapes. Considering the lower bladed disc curve

in figure 1.1 (which corresponds to the zero nodal circle family of modes), it is seen that

by increasing the number of nodal diameters, the natural frequencies do not change very

much and approach the first flexural cantilevered mode of the blade.
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Figure 1.1 Natural frequencies of a uniform bladed disc

The basic theory for the vibration modes of a disc has been understood for many years by

considering a circular plate [2]. However, research is still needed on how to predict the

maximum response level in the bladed disc if it is not ideally axi-symmetric.  Also, a

problem still exists of how to estimate the modal properties of a mode close to the

adjacent modes, which is usually the case for higher diametral modes due to the closeness

of the frequencies, shown in figure 1.1. This figure is for a perfect and ideal axi-

symmetric case but in real terms, the bladed discs are slightly imperfect and so there are

more modal frequencies than seen in figure 1.1.

Ewins et al [7, 8, 10,131 have worked on the effect of imperfections on forced response

levels as well as on the modal characteristics. It has been shown in [ 131 that the maximum

. ,
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level could increase in some blades by up to 163 percent of the tuned case while at some

other points the response level becomes less than in the tuned system so that the mean

Ievel is almost constant. Whitehead, in his theoretical investigation [28], explored an

approximate formula to predict the maximum level of mistuned response relative to the

tuned case. His formula is related to the number of blades and it has been deduced in this

work that an odd number of blades has been selected in many designs to avoid vibration

of the mode with number of nodal diameters equal to half of the number of blades. Due to

mistuning, a rogue blade vibration can occur in a bladed disc [24]. This provides severe

response levels in one or two blades while the others are at much lower levels.

Susceptibility of a blade becoming a rogue is not only a function of mistuning but also of

the excitation pattern. A significant degree of mistuning can be introduced to the bladed

disc assembly by packeting the blades [25,26,27,32]. This is done in shrouded bladed

discs and it has been shown that for certain patterns of packeted  assemblies we can

minimize the extent of blade vibration response levels to specific excitation orders.

Excitation sources originated from different mechanisms in the compressor and turbines,

but the most common has been modeled as a static force applied in the axial direction to

the bladed disc. This excitation could be from any non-uniformity in pressure distribution

of the gas flow through stationary vanes, struts or nozzles and can cause a serious

problem if the disc runs at one of the critical speeds. In reference [7], it is proposed that

any diametral mode in a disc rotating past a static force can be simulated by a stationary

disc with two harmonic forces. These forces are applied at the certain positions on the

disc and have 90° phase difference in time. This could be very important in the

experimental investigation of vibration in the rotating discs. First, doing experiments on a

stationary structure is more convenient than on a rotating one. Second, it is possible that

any diametral mode may be chosen and excited while the other modes are not excited or

their effects are very small, which can be a good procedure to identify modal

characteristics. Developing this idea has been a major objective on this thesis. Staples

[23] has simulated experimentally the travelling waves on a casing by using two

b
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shakers . He showed that by increasing mistuning, the amplitude of the

(with respect to the disc) decreased and so there was less possibility of

1 the stator and the rotor by comparison with the tuned case.

esearch into the vibration of bladed discs assemblies, e.g. as reviewed in

there are few works on the investigation of travelling wave responses. In

: two studies mentioned - i.e. [7 and 231, Macke [22] has explored

s in vibrational shells and rotating cylinders. In his work, the similarities

5 between the frequency - speed diagrams of a cylinder and a disc are

nore familiar with the basic terms which are frequently used in this thesis

modes, mistuning, Campbell diagram, engine order excitation and muli-

I, these are explained in the following sections.

L VIBRATIONAL MODES IN DISCS

ttems in a disc are comprised of nodal lines and nodal circles [5], as shown

$es in figure 1.2. For a free-free disc, the first mode is a two nodal diameter

9 but if the boundary conditions are different, as it is in many applications,

:r vibrational modes for a disc with natural frequencies lower than the 2 ND

:ncy [21].

ial pattern of a disc with clamped-free boundaries, the amplitude changes in

on on every non-nodal radius so that the maximum amplitude will be at the

:e of the disc for the diametral modes. This is why, in most analyses, the

f the disc is used to characterise  the disc vibration.
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beneficial, (standing waves and fixed vibration are explained in the next section). In

reference [17], it was shown experimentally that a pair of diametral modes with a split

factor of 0.056 behaves like a double mode (or a tuned system) while another pair with a

split factor equal to 0.25 percent acts as a mistuned system, (split factor has been defined

as the ratio of frequency split to the average of the two frequencies). Mistuning also

causes the number of resonance frequencies to be more than in the tuned case so that the

mistuned disc is more susceptible to resonances than the tuned case [9]. According to

reference [7], there is a correlation between the mistuning pattern and modes splitting; the

n nodal diameter modes will split if there is a 2n0 component in the mistuning distribution

of mass or stiffness around the disc. In a tuned disc, the mode shapes are defined patterns

each with a certain number of nodal diameters but in a mistuned case each mode shape

does not consist of one single diametral order but is contaminated by other orders

[25,26]. The contribution of other diametral orders depends on the patterns of mistuning.

This results in mistuned systems being more susceptible to vibration at certain engine

order excitations than are tuned assemblies.

1.3 ‘WAVES’ IN VIBRATING ROTATING DISCS

In the literature describing vibration in rotating discs, we come across phrases like

“travelling wave, standing wave and fixed vibration”. It is found that some of these

phrases are not used in a unified way by different groups. The definitions used and

explained here are identical to those used by Tobias  et al [6].

When a single-point excitation is applied to a stationary disc, vibration occurs in an

ordinary manner as for any other simple structures. If the frequency of the excitation is

close to just one of the nodal diameter modes of the disc, the response on the rim will be

similar to that shown in figure 1.3 and is called a fixed vibration. In this figure, in

fact, the unwrapped rim has been shown as a straight line scaled from 0” to 360° and this
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display format will be used through out this thesis. The distorted mode shape is shown at

6 (or 7 in some cases) frames - equal increments of time during one cycle. For this case,

the response is a fixed vibration since the nodal points - or nodal lines - are fixed on the

disc. The amplitude of response changes from zero at nodal points to its maximum value

at anti-nodal points. The response on the rim can be described as

x(O,,t) = A sin ne, cos tit, where n is the number of nodal diameters and it is equal to 2

in figure 1.3.

0 6 0

Figure 1.3 Fixed vibration response in a stationary disc
(2 ND mode)

In a rotating disc, the excitation effect is normally complex since there is also relative

motion between the excitation point(s) and the structure. In the study of vibration in

rotating discs, either of two coordinates can be chosen; one stationary in space e,(t), and

another one rotating with the disc 0(t). In a vibrating rotating disc, we can have a

travelling wave and fixed vibration simultaneously. A Travelling  wave in a coordinate

is a deformed shape moving in or opposite to the direction of that coordinate. Figure 1.4

shows the response of a 3 diametral  mode of a disc at three points in time which is

travelling in the stationary coordinate 8, to the right. For this case, the response can be

expressed as:

x(e,,t)=A sin 3(8,- fi,t) (1.1)
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where R, is the angular speed of the wave. In this type of response, every stationary

point

Figure 1.4 Schematic display of a travelling wave

experiences the same vibrational signal with frequency ‘322,’ but at a different phase to

its neighbours and, clearly, when the response is a travelling wave, there are no longer

any fixed nodal points. A travelling wave could also be obtained relative to rotating

coordinates. In figure 1.5, it is assumed that the disc is rotating so that its circumference

is moving to the left with speed R and it is vibrating such that its response is a travelling

wave moving to the right with speed Q, relative to the disc. This motion can be

expressed by:

x(e,t)=A  sin 3(0-C&t) (1.2)

Disc speed Q Wave speed R,

Figure 1.5 A standing wave (if Q,=Q)
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From a stationary viewpoint , the wave is moving with speed of ‘0,-R to the right

(L&&2). Now assuming a case that &,=R then, a stationary observer see the wave

stationary in the space which is called a standing wave. From the mathematics ,

substituting ‘EIO’ by ‘8+Rt’ in equation 1.2 gives x(e,,t)=A sin 8,, which represents a

stationary shape - a standing wave. When the response is a standing wave, a stationary

pick up or vibration sensor does not measure any vibratory movement.

Here, the terminological aspects of the waves have been explained without talking about

the conditions in which they will be excited in vibrating discs. However, those conditions

will be studied in the other sections.

1.4 FREQUENCY - SPEED DIAGRAM AND RESONANCES

IN ROTATING DISCS

It is convenient to express the vibration characteristics of a rotating bladed disc in the

diagrams introduced first by Campbell [4]. There are four main factors involved in

considering vibration in rotating bladed discs: rotational speed, vibration frequency,

number of nodal lines and the response level. A plot of frequencies against rotating speed

is known as a Campbell diagram and in the following, a figure is used to explain the

diagram. In figure 1.6, a Campbell diagram for the n - nodal diameter mode(s) of a disc

has been illustrated where the n - diameter natural frequency has been named as curve

‘A’. The natural frequency increases with rotational speed due to stiffening of the disc

and the following governing relationship applies.

(1.3)
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Figure 1.6 Frequency - speed diagram for the n ND mode

where ou is natural frequency of the mode in the stationary state and p, is a stiffening

factor ( or speed coefficient) which depends on the mode shape and also geometry and

material of the disc.

There are two other curves in the diagram in figure 1.6: curves ‘B’ and ‘F’ which are

offset ‘nR’ from the n diameter natural frequency curve ‘A’ and are the frequencies of the

backward and forward travelling waves. Assume the disc is rotating at speed Q,, and that

a stationary harmonic excitation with frequency 6.1~ is applied to the disc so that ot=o,-n

!2,, i.e. the excitation frequency intersects the curve ‘B’ due to the influence of rotating

speed. In this case, the disc will be at resonance with a frequency equal to CO, and the

response is a backward travelling wave. With the excitation frequency equal to o2 in

figure 1.6, a similar situation will happen but the response is a forward travelling wave.

In practice, this type of resonance - which can occur with some multiple of the rotational

speed (h Q) - is called a minor resonance [4,15]. Ewins [48] has investigated the

possibility of coincidence of two resonances in a mistuned disc at one rotating speed
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which causes certain blades to vibrate with amplitudes of up to 130 per cent above those

under normal conditions. This was reported to be mainly due to mistuning or even small

modification in design of the bladed disc.

French, in his experimental investigation on rotating compressor discs [ 161, explored

minor resonances which can be generated by a defective anti-friction bearing. Kushner

[15] and Jay et al [17] independently showed that in some turbine discs with certain

differences in numbers of vanes and blades can cause minor resonances in the bladed

disc.

Therefore, it can be stated that when a ‘per-revolution’ or multi-rotational excitation

frequency is equal to the frequency of backward or forward curve of a diametral mode in

the Campbell diagram, a minor resonance occurs. However, the ‘major’ resonances occur

when the rotational speed is equal to R, (shown in figure 1.6) which is called a critical

speed. At this condition, if the excitation is a static force (i.e. o=O), a resonance occurs

and the response of a double mode will be a standing wave. This excitation seems to be

inevitable in practice since any non-uniformity in pressure distribution on either side of

the disc, upstream of the stationary vanes to a bladed disc in a compressor (or gas flow

from n nozzles in a turbine disc) can produce this kind of excitation.

These critical speeds were first found by Campbell [4]. He also introduced the term

“standing waves” which have been found to be the cause of many failures in engine

bladed discs. At this condition, the natural frequency is equal to the number of nodal

diameters multiplied by the rotation speed,.oc=nRc. It is concluded that the critical

speeds in the Campbell diagram are found by intersections of line ‘nR’ with the curve of

the n nodal diameter natural frequency line, figure 1.6. The radial lines, such as ‘nR’

(n=l, 2, . . .), represent the excitation from n struts, vanes, nozzles or any obstacle in the

flow towards the bladed disc which represents n engine order excitation,.as it has

become known.
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In reference [4], it has been shown that the one - diameter natural frequency line does not

cross the ‘Q’ line and so there is no critical speed for this mode. This is always true since

the speed coefficient, p,.,, is normally between 2 and 3 according to reference [4] and it

can be shown that for n=l in the Campbell diagram line (w,-nn) does not cross the

horizontal axis ~0.

1.5 MODAL TESTING METHODS

Modal testing, or experimental modal analysis, is a technique for the identification of

dynamic properties - natural frequencies, mode shapes and damping values - of a

structure on the basis of a test on the real structure or on its model. There are other

techniques which solve the problem mathematically, such as finite element (FE) methods.

Both mathematical techniques and modal testing methods have been developed in the past

two decades and have their own capability and advantages.

In order to test a structure for dynamic identification, it is usually excited by an external

force. A simple test is using an instrumented hammer to apply an impulsive force to the

test structure. Other methods of excitation are applied using an electro-dynamic shaker

which is normally connected to the test piece by a push rod. Different signals can be

applied to a shaker: sinusoidal, impulsive, random and periodic, and hence, different

force functions may be applied to the structure.

Input (force) and output (response) signals are measured and analysed to get information

about the dynamic properties of the structure. The technique was first introduced by

Kennedy and Pancu [36] and then developed by others. For more practical aspects and

details of modal testing, reference [3] may be used.
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There are two principal methods of excitation in modal testing: Single-point excitation and

multi-point excitation techniques which are introduced in the following.

1.5.1 Single-point excitation

Single-point excitation techniques are very common in modal testing and are simple as

just one exciter is used in each test. A single point excitation method has some advantages

and disadvantages compared with multi-point excitation techniques. The instrumentation

is simple as there is just one exciter and there is no need to control the input signals,

unlike in multi-excitation methods where relative phase control is necessary. However,

problems can arise when the test structure is big or the modal density is high. In the

former case, the input excitation energy may not be spread evenly over all parts of the test

structure. Also, using one excitation, most of the modes of vibration are excited except

ones whose nodal points coincide with the excitation point. By increasing the number of

excitation points, the possibility increases that modes are preferentially excited and even a

particular mode can be isolated and enhanced for better identification. In reference [35],

the problem of cross-axis motion and fragile test articles are also mentioned as limitations

of single point excitation. Despite these limitations, single point excitation techniques are

widely used in most modal tests on ordinary structures.

1.5.2 Multi-Point Excitation

The application of multiple excitation began more than forty years ago when Kennedy and

Pancu [36] introduced a method using two vibrators for the identification of symmetric

structures such as aeroplanes. At that time, the applied mathematical techniques for

determination of modal characteristics in a complex structure involved some

approximation and experimental verification of the analytical results were needed. This

led to the employment of multi-point excitation to excite normal modes by adjusting the
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different excitation forces.The idea of excitation of a normal mode is also important when

there are close-frequency modes where the single-point excitation method may not be able

to generate accurate modal properties.

The theory of the normal mode excitation technique has been established strictly for an

undamped - or a lightly-damped - lumped mass system [37], but the technique can also be

applied to continuous systems by considering a limited number of coordinates. The

general procedure of normal mode excitation is that the vibrators are located at proper

points for excitation. Then, arbitrary excitation forces at the desired frequency are applied

to the structure. This is done by checking on the oscilloscope the phase of the response

relative to the input force. At a resonance frequency, the phase angle is 90” for an

individual normal mode and, hence, we have to adjust the in-phase forces (except for

polarity) to achieve this phase angle at all the stations. This adjustment will be very

difficult for complex structures using many shakers. Asher [38] estimated the natural

frequencies and the force ratios needed to excite a normal mode theoretically. It has been

shown that the modal vectors are equivalent to those of the undamped or proportionally-

damped system and that the desired force vector can be calculated and predicted for

excitation. Craig et al [39] developed Asher’s method for more applications. In the case

studied, a nine lumped mass system with proportional damping, they examined different

combinations of shakers and close natural frequencies. They also explored the case of

addition of another shaker and suggested best locations. In reference [40] the limitations

on the modal testing with single-excitation as well as multi-excitation have been

discussed. The basis of the analysis of in-phase excitation using multi-point excitation is

applicable for a finite, discrete mass model and undamped or proportionally damped

systems. In a proportionally-damped system, once the forces are adjusted at a natural

frequency, they excite the normal mode; if the frequency is changed, the force pattern

remains unchanged and the shape of the response is still the normal mode. However, if

the system is non-proportional damped, it has been explained in reference [40] that by

varying frequency, we have to re-adjust the forces to maintain the normal mode shape in
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the response. Moreover, application of classical in-phase excitation technique for non-

proportionally damped systems may lead to incorrect estimates. The non-proportional

damping (general case) has been explored further in reference [40] and proposed that for

excitation of a complex mode, a mode of a non-proportionally damped system , a

complex excitation frequency should be applied. That is, excitation should be in the form

of a damped sinusoid to concentrate the energy in the vicinity of the desired complex

response frequency. Another requirement which has been added to the modal testing

system in reference [40] is the generalisation of the control the shakers. It has employed

phase and amplitude control of shakers instead of polarity (0 or 180° phase) and

amplitude control of the input forces.

Hallauer et al [41] also considered a coupled-damping (non-proportionally damped)

system in two numerical examples and showed that for these systems perfect mode tuning

is achieved only at the natural frequency with response quadrature phase relative to

excitation, even though all degrees of freedom are excited. They used multiple shaker

sinusoidal excitation and developed Asher’s method for real continuous structures where

finite coordinates or incomplete excitation are applied and they showed the strengths and

weakness of the technique.

Sinusoidal excitation is the earliest technique applied for the identification of dynamic

characteristics and is still widely used. This is because of some properties of this type of

excitation. It is simple to apply and to measure the input - output signals. This factor was

very important a few decades ago regarding the experimental equipment at that time. The

most important factor of sinusoidal excitation is the possibility to reveal any non-linearity

present in the system. In the past decade, with more improvement in signal processing

and digital control systems, random excitation is applied widely in modal analysis even in

multiple input methods. Allemang et al [42] used a two random input excitations

procedure and developed a formula to estimate the frequency response functions. They

have given some experimental example for their method. In reference [43], multiple input

random (MPR) and multi-phase sine sweep (MISS) methods have been introduced and
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discussed. In these techniques, uncorrelated inputs are used and so FRFs can be

computed between every response location and each of the inputs. They also have

proposed a method using multiple input FRF acquired via MPR or MPSS to determine

frequencies, repeated or closely spaced modes and the force associated with each mode.

The FRFs are employed in an eigenvalue solution to determine at which frequencies the

in-phase response is a minimum compared to the total response. This automated

procedure produces the force appropriation required to perform isolation and excitation of

real normal modes. In reference [44] another technique called ‘Spatial Sine Testing’

(SST) has been introduced in which the test structure is excited with an arbitrary force

vector at a particular frequency. The force vector and the forced mode (response) are

measured, then the parameter estimation algorithm extracts the modal parameters using an

eigensolution technique. More experimental results using SST method have been

presented in reference [45] which show the capability of this method.

In a single-point excitation technique, cross-axis motions may cause to fail the test

results. One way to deal directly with such undesired response is to actively suppress the

cross-axis motion, Stroud et al [35] introduced the multi-exciter single axis (MESA)

technique and have employed phase control as well as cross coupling compensation. With

coordinated exciters, out-of-phase drive signals can be used to suppress unwanted motion

reducing cross-axis response and undesired coupling effect.

In the modal testing of axi-symmetric  structures, we often deal with repeated natural

frequencies and high modal density. As mentioned before, one of the objectives of using

multi-point excitation is to enhance a mode which is difficult to identify and to analyse

with an ordinary single-point excitation test. On the other hand, simulation of a travelling

wave in a rotating disc is of the interest of this work. Here, special dual sine excitation

must be developed which enables preferential excitation of a double mode or two close

diametral modes with the same order (number of nodal diameters). The input force

amplitudes and phase have to be controlled in order to fulfil the corresponding conditions.
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1.6 SCOPE AND OBJECTIVES OF THIS THESIS

One of the main objective of the research reported in this thesis is to develop a procedure

for simulating, displaying and interpreting vibration in a disc rotating past a static force.

In order to do that the basic understanding of forced vibration of a rotating disc is

investigated in chapter 2. A simple model is assumed in this stage since the qualitative

understanding of the response - in terms of frequencies and components - is of interest in

this work. The response is obtained in both stationary coordinates and rotating

coordinates to show the resonance frequencies and the nature of the response in respect of

travelling  waves or fixed vibration. Some of the analytical results are checked on a

rotating disc with the prediction and the assumed model results.

In chapter 3, the theoretical aspects of the simulation are described. First, the basic

concept of the simulation of a disc rotating past a static force is studied and it is shown

how the vibration can be simulated by exciting the stationary disc with two harmonic

forces. Then, the generalisation of the simulation is discussed which leads to a formula

presents the relationship between number of nodal diameters, spatial and temporal angles

between two excitation forces. In another part of this chapter, the application of more than

two excitations in the simulation is examined and a technique is proposed to improve the

simulation by increasing the number of exciters. In order to present the response of the

disc in an animated shape - which is very helpful for appreciating the complexity of

response- a decomposition procedure is introduced. In this method, we can estimate the

contributions of different wave orders in the response by carrying out a form of Fourier

transform of the response function of the rim with respect to the wave order.

In chapter 4, the application and the experimental aspects of the simulation are described.

Two methods are suggested which are basically the same. The first is a hybrid method in

which after obtaining the FRF matrix from experimental data, the response to the
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simulation condition are calculated. In the second method, the vibrational response of a

rotating disc is simulated experimentally on a stationary disc. Both methods are tested on

a real bladed disc and there is some discussion of the results. For controlling the

magnitude and relative phase of two forces, a phase and amplitude shifter is developed

and corresponding software is introduced. It is worth mentioning that to control the two

excitation forces is not easy in practice. Because there is non-proportionality between the

voltage input to a shaker and the out put force of the shaker around resonance, we have to

adjust relative phase and amplitudes of forces by a trial - and - error procedure.

In the next part of the thesis, a discrete-mass model of the disc is considered to examine

the simulation procedure in a model having more than one or two pairs diametral modes

assumed in the earlier simple model. Also, the simulation can be tried for the system with

complex modes and mistuned systems. These investigations are achieved by introducing

different data in the lumped mass model.

Another related subject concerned with the vibration in rotating bladed discs is the

possibility of vibration interaction between a rotating disc and an adjacent stator, and this

is the subject of chapters 6 and 7. It is shown that the vibration from one substructure can

transfer to the other through the medium in between. Regarding the vibration in the disc

discussed earlier, its interaction in the stator is obtained. Also, assuming that the stator

vibrates by a harmonic excitation, which is quite possible, the vibration induced on the

rotating disc is explored. The possibility of coincidence of resonances in the both cases is

examined by some numerical examples.

The conclusions from this work are drawn in chapter 8 where also suggestions for

further development are presented.



Chapter

FORCED RESPONSE OF A ROTATING DISC

2.1 INTRODUCTION

A clear understanding of the steady-state response of rotating discs to harmonic excitation

is essential in most investigations of the vibration of structures having these components.

Although many workers have explored the response of the rotating disc, a comprehensive

theory of forced response of rotating discs has not been presented. Frequency

components of response, natural frequencies and the critical speed concepts are usually

used in most of the corresponding literature.

Nodal diameter modes are particularly important in the vibration analysis of a rotating

disc. These modes are the origins of the travelling and standing waves which have been

identified as the cause of many failures in turbine discs. The response of a disc due to the

excitation of a diametral mode is normally represented by the response on a concentric

circle on the disc such as rim of the disc, This consideration is simple and accurate since

the travelling waves are created in the circumferential direction and the maximum

response is on the rim.

Other assumptions have also been made here to simplify and to make the analysis

possible. A disc is treated as a lightly-damped structure. The stiffening effects due to
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rotation and centrifugal forces are not considered; these assumptions do not change the

generality of the conclusions.

In this chapter, steady-state response of a rotating disc under stationary harmonic

excitation is investigated in tuned and mistuned discs.

2.2 RESPONSE OF THE SINE MODE TO HARMONIC
EXCITATION

2.2.1 Analysis Using Rotating Coordinates

2.2.1.1 Analysis

Let us consider a single mode of the pair of n ND mode of a disc rotating at speed Q. The

mode shape is assumed to be Q(e) = sin no and the natural frequency ~1. The coordinate

8 is assumed to be on the disc and the excitation is a harmonic stationary point force

applied initially at a spatial angle a as shown in figure 2.1. The direction of coordinate 9

is assumed in the opposite direction to the disc rotation.

Figure 2.1 Coordinate on the rotating disc

The forcing function for such a system is [51]:

F(Q) = (FOcos ot) 8[@(Qt+a>] (2.1)
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where S[@(CIt+a)] is a delta function and defined as:

S[0-(Qt+a)] = 0 for 8*(Q t+a)
+-

a n d IS[e-(iz t + a ) ]  de=1
-00

The generalized force for the assumed mode is :

27L

Q(t)= WV de

or :

2n

Q(t)= (F. cos cot) s[Cb(i2t+a)]  sin ne de

After integration, this becomes:

Q(t)= F, cos (at) sin n@t+a) (2.2)

Equation (2.2) represents the generalized force for the n ND mode. Having obtained the

generalized force, the normal response is calculated by using the convolution integral for

a very lightly-damped system [55]:

q(t) =
1 [

IQ(z) sin o,,l(t - z)dz
mxl1  %l 0

W h e r e :  m,l is the modal mass or generalized mass of the mode;

%l is the natural frequency of the mode;

Substituting from equation (2.2) in (2.3) and integrating will give:

(2.3)
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q(t) = F” {
sin [(w+nR)t+na] - sin(-o,lt+na)

4mn1 (J-&l c0+nR+W,r

sin [(o+nR)t+na] - sin( O,tt+na) sin [(o-nQ)t-na] - sin(-o,,t-na)

o+nR - on1 CO-nR + Cl&l

i
sin [(o-nQ)t-na] - sin(o,,t -na)

> (2.4)
DnR-c0,r

This equation contains the transient response where the terms of natural frequency ~0,~

exist. The investigation is concerned with the steady-state problem, that is considering

only the terms which are relevant to the excitation frequency. After simplification of

equation (2.4) we will have:

Foq(t) = 2m,l
-1

(o+nL2)2- wn12
sin [(w+nR)t+na]  +

+l
(o-nQ)2-  on12

sin [(w-nQ)t-na]

This equation gives the normal coordinate of the n ND mode and by using it , the

response is calculated :

Kdw  = q(t) w>

or

X,l(CI,t) = -WI sin [(o+nQ)t+na]  sin n6+ W2 sin [(o-nR)t-na]_  sin n0 (2.5)

where :

w1= +Fo
2 m,,[(w+nR)2- o,12]

and w2= +Fo
2 m,l[(o-nR)2- w,12] I (2.Q
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Equation (2.5) presents the response of a single ND mode of a rotating disc excited by a

stationary harmonic force. It consists of two ‘fixed vibration’ components with

frequencies of (&G?). The response frequencies at different speeds are shown in figure

2.2 for a defined excitation frequency CO.

ux A
3

(measured on disc)

CJI Excitation frequency

Rotation speed Q

Figure 2.2 Excitation and response frequencies of single n ND mode
in a rotating disc; (Stationary harmonic excitation;
and response coordinate on the disc)

Equations (2.5) and (2.6) show that there are two frequencies for the system at which the

denominators are zero: (cJ.&Q)~- ~zt=O . It follows that there are two ‘apparent resonant

frequencies’ at each spinning speed L2 :

w + = o,,+nQ
a

(2.7)
and ma = o,,-nR
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where CO: and 0; are apparent resonant frequencies and are shown in figure 2.3 for

different speeds. Note that the analysis has been based on the coordinate fixed on the

disc. In the next section, the analysis is carried out in terms of a stationary coordinate.

Rotation speed CJ

Figure 2.3 Apparent resonance frequencies for a rotating disc vs rotation speed
(In the stationary harmonic excitation)

2.2.1.2 Resonance frequencies in rotating discs

Response frequencies and resonant frequencies are shown schematically in figure 2.4. It

has been assumed that the excitation frequency o is less than on1 . The crossing points of

A and B in this figure are in a vertical line since for example, the lines CO: and (o+nR) are

parallel. These two points in figure 2.4 correspond to the rotating speed R, and at this

speed coincidence of resonance occurs. This resonance can be interpreted either by the

intersection of the horizontal line o with the apparent resonant line OH - point A, or by

point B which is the intersection point of the response line (o+nQ) with horizontal line

o,~. The former interpretation is in fact in the stationary coordinate while the second one
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refers to the coordinate rotating with the disc. Both points A and B in figure 2.4 have 61 =

cnnl-n!3 which is equal to the apparent resonant frequency introduced in equation (2.7).

Rotation speed R

Figure 2.4 Resonance frequencies in a rotating disc at speed R ,
(Excited by a stationary excitation with frequency CO)

An interesting case is when the excitation frequency is equal to the disc’s actual natural

frequency and the disc is spinning, that is o=w,~ and Qz=O . For this case, there will be

no coincidence of resonance; because we can not find any point which satisfies equation

( 2 . 7 ) .

A similar analysis could be done for the case o>cI+,~. In this case we will find that there

are two points like A and B in figure 2.4 where the equation CO = o,,,+nQ is applied and

resonance occurs.

It is concluded that in the forced excitation of a single ND mcde of a rotating disc, for any

excitation frequency CO, there is a rotation speed at which resonance occurs. We can state

this in another way, at each rotation speed there will be two apparent resonance

frequencies, one below and one above the actual natural frequency.
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2.2.2 Analysis using Stationary Coordinate

Next, a stationary coordinate 80 is used in the analysis of harmonic excitation of the sine

n ND mode, as shown in figure 2.5. In this coordinate the forcing function is:

F(80,t) = (F. cos ot) ~[~~-a] and the eigenfunction will be sin n(Bu+Rt).

b i2t _L a
r

f(t)=E cos CM

t-
‘I- -

I
0 27t

+e We, 4 - Q

Figure 2.5 Stationary coordinate 8, for the rotating disc

We can either (a) conduct a similar analysis to that carried out for the coordinate located

on the disc 8; or (b) replace 8 by (80+Rt ) in equation (2.5) to obtain the response of the

disc in terms of the stationary coordinate. If we substitute 8 by (@+Qt) in equation (23,

we will have:

xdeO,t) = -WI sin [(WnQ)t+na] sin n(BO+Rt)+  W2 sin [(o-nR)t-na] sin n(80+Qt>

If the terms of this equation are multiplied and simplified, it becomes:

Wl WI
x,l(eO1t) = - 2 cos [n&3-tit-na] + 2 cos [&+(o+2nQ)t+na]

w2 w2+ 2 cos [neo-(o-2nQ)t+na] - 2 cos [neo+wt-na] (2.8)
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Equation (2.8) represents the response of the rotating disc in terms of the stationary

coordinate 80 and shows that the response frequencies measured with a stationary sensor

are o and (w+2nR). These three frequencies are shown in figure 2.6. Note that the

apparent resonant frequencies are the same as those presented in equation (2.7) and figure

2.3. Thus they are independent of the chosen coordinate.

0+2& (Response frequency)

22  ~~ a

C
I

0
__-_----

nl I
C O (Excitation and response frequencv)

2tQ (Response frequency)

-Qr Rotation speed Q

Figure 2.6 Excitation and response frequencies in a rotating disc; Coincidence of
resonance at speed Q (As detected in the stationary coordinate)

In figure 2.6 the apparent resonant frequencies oa+ and o; have also been plotted. It is

seen that at points A and C the coincidence of resonance occurs since at these points o =

onl-nS2 and W, becomes infinity which is same as obtained in rotating coordinate in

section 2.2.1.2.
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2.3 RESPONSE OF THE COSINE MODE TO HARMONIC

EXCITATION

In section 2.2 the response of a single diametral mode has been obtained. In this section

similar analysis is used for the other n ND mode of the pair (cosine mode). Again, the

analysis is carried out in two parts. First, the response is analysed in terms of a

coordinate on the disc, then it is extended to a stationary coordinate.

2.3.1 Analysis Using Rotating Coordinates

The mode shape in this coordinate is described by $(Cl) = cos ne and the forcing function

is the same as that introduced in section 2.2.1, that is:

F(e,t) = (FO cos tit) 8[e-(S2t+a)]

The generalized force for the assumed mode is :

2x

Q(t)= (Fc cos ot) s[&(fit+ol)] cos n0 d0

After integration, this becomes:

Q(t)= FO cos (at) cos n(Qt+a) (2.9)

Equation (2.9) represents the generalized force for the cosine conjugate of the n ND mode

pair. Having obtained the generalized force, the normal response is calculated by using

the convolution integral; similar to that mentioned in section 2.2-l. 1.

q(t) = F”
4 mn2 *n2

cos [(o+nR)t+na] + cos(un2t+na)  + cos [(o+nR)t+na] - cos(4dn2t+na)
otnR-% o+nQ + on2

cos [(o-nQ)t-na]  + cos(0n2t-na)  + cos [(w-nQ)t-na] - cos(-on2t -na)
w-d2 - 0,~ o-nR+od 1

(2.10)
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Where ~4,~ and % are natural frequency and modal mass of the cosine mode. The terms

containing the natural frequency We are transient and are not considered in the steady-

state study. Thus, the steady state response is:

Foq(t) = 2m,2 {
-1

(o+nL!)2-  0,~~
cos [(clwnQ)t+na] -

+l
(w-nQ)2-  0,~~

cos [(o-nR)t-na] >

(2.11)

This equation gives the normal coordinate of the n ND mode and by using it , the

response of this mode is obtained:

Xn,(%t>  = q(t) Me)

or:

Xd0,t) = -W3 cos [(o+nR)t+na]  cos n0 - W4 cos [(o-nQ)t-na] cos n6 (2.12)

where :

+Fow 3= 2q2[(c0+nQ)2-  o,22]

a n d w4= +Fo
2m,2[(o-nR)2-  (~49~1 ! (2.13)

Equation (2.12) represents the response of the cosine mode of the diametral pair excited

by a non-rotating harmonic force. It consists of two ‘fixed vibration’ components with

frequencies of (o+nQ). Figure 2.2 which shows the response frequencies for different

speeds in the rotating coordinate, is also applicable for this mode.

Equations (2.12) and (2.13) show that there are two resonance frequencies

system, when the denominators are zero (oknLX)2- w,,*=O . It follows that there

for the

are two
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‘apparent resonant frequencies’ at each spinning speed R, and these are similar to the

apparent natural frequencies of the other mode, equation (2.7):

2.3.2 Analysis in the Stationary Coordinate

In the previous section the response of the cosine pair of n ND mode to the stationary

harmonic excitation was obtained. Next, that response is obtained in a stationary

coordinate, 80, as shown in figure 2.4. In this coordinate the forcing function is F(Bo,t)

= (F. cos ot) s[ec-a] and the eigenfunction will be cos n(Bc+Rt).  We can replace 0 by

(Bo+Rt ) in equation (2.12) to obtain the response of the disc expressed in terms of the

stationary coordinate.

Xn2(00,t)  = -W3 cos [(otnQ)t+na] cos n(Bo+Rt)- W4 cos [(CO-nR)t-no]  cos n(&j+Qt)

(2.14)

where W3 and W4 have been defined in equation (2.13).

If the terms of equation (2.14) are multiplied and simplified, it will give:

w3 w3x&h&t) = - 7f cos [r&-6x-na] - 2 COS  [neO+(a-thfi)t+na]

w4 w4- 2 cos [neo-(o-2nQ)t+na] - 2 cos [nec+ot-na] (2.15)

Equation (2.15) represents the response the cosine pair of n ND mode of the rotating disc

in the stationary coordinate and shows that the response frequencies are CO and (ok2nQ)

the same as have been obtained for the other pair and shown in figure 2.5. Note that the
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apparent natural frequencies are the same as those presented in equation (2.7) and shown

in figure 2.3 and they are independent of the chosen coordinate.

2.4 RESPONSE OF THE n ND MODE PAIR TO HARMONIC

EXCITATION

2.4.1 Analysis of the response

In the previous two sections 2.2 and 2.3 we obtained the responses of each of the pair of

n ND modes in a rotating disc to a stationary harmonic force. These have been presented

in equations (2.5) and (2.12) in terms of rotating coordinates and in equations (2.8) and

(2.15) relative to the stationary coordinates. In order to obtain the combined response of

both n ND modes to the stationary harmonic excitation, we can just add equation (2.8)

and (2.15), that is:

xdeo,t) = - Wl-tW3 WI-w3
2 cos [&IO-ot-na] + ___ cos [&+(w+2nR)t+na]2

+ w2-w4 w2+w4
2 cos [neo-(o-2nQ)t+na] - 2 cos [nClo+wt-na]

(2.16)

where WI, W2, W3 and W4 are defined in equations (2.6) and (2.13).

2.4.2 Discussion

Equation (2.16) represents the response of the pair of n ND modes of a rotating disc to

the harmonic excitation in the stationary coordinates. It is seen that the coincidence of
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resonance occurs at the same conditions as for the pairs of the n ND modes presented in

equation (2.7). In a tuned disc the natural frequencies and modal masses of a pair

diametral  modes are identical but usually the disc is slightly mistuned and so m,,tfm,

and o,~#co~. For a tuned case, equation (2.16) is simplified to the following formula

which represents two travelling waves:

x-l(~o,t> = - WI3 cos [n@-ot-na]  - W24 cos [n&+ot-na] (2.17)

where: Wi3’Wl’W3 and w24=w2=w4

Figure (2.7) shows an example for a tuned case where the response frequency is just a

single frequency equal to CO. The apparent resonant frequencies are (o,&nR) where

%=cJJ,~=Q and therefore at point R there is the possibility of coincidence of resonance

since at this point cn=(o.&,-nR)  . This makes Wt3 tend towards infinity and means that the

first term in equation (2.17), which is a backwards travelling wave, dominates in the

response. Recall the reason that the term presenting a travelling wave: The wave moves in

00 direction (due to negative sign of ‘ot’) and on the other hand the disc is rotating

opposite to 80. Thus, the wave travels opposite to the disc’s rotation and is called a

backward uavelling wave.
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0 (Excitation and response frequency)

Rotation speed f2

Figure 2.7 Harmonic excitation the n diametral  pair modes in a tuned disc.
Point R : Coincidence of resonance which presents a backward travelling wa
Point C : Critical speed where a standing wave is formed

(Detected in the stationary coordinate, 00)

It is worth mentioning a special case here which is the case of static force excitation i.e.

when o=O. Point C in figure (2.7) represents this situation. For this case Wr3=W24=W

and equation (2.17) becomes:

Xd@O,t) = - 2W cos [n8o-na] (2.18)

which represents a ‘standing wave’, since the response is time-independent and the disc

rim takes up a cosine deformed shape stationary in space while the disc is rotating.

In a mistuned disc there are two different natural frequencies for n ND modes, W,~ and

0,. This general case is illustrated in figure (2.8):
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2.5 CASE STUDY

It has been shown in sections 2.2.2 and 2.3.2 that for a rotating disc excited by a

stationary harmonic force, a stationary pickup at a point should detect three frequency

components - (G-2nR),  o and (o+2nR). The initial analysis has been carried out for a

single mode and then the response of the pair has been obtained. Although according to

equation (2.16) the response of n diametral modes pair has three frequency components,

this part of the case study is going to examine and check the three frequency components

of a single diametral mode as the basis of the analysis results. Therefore, in a real

situation, we have to examine the response frequencies at an excitation frequency near to

a natural frequency which is well separated from any adjacent modes. To achieve this, we

have to make the disc mistuned in order to have separated modes, since in practice there

are close ND modes in pairs. This investigation concentrates on the 2 ND modes, that is

n=2, and can be applied to the other diametral modes.

2.5.1 Description of the rig and equipment

2.5.1.1 Test rig

The test rig and measuring equipment are shown schematically in figure 2.9. The disc

which has been tested is a simple steel disc with diameter of 34 c.m.made of a plate

5m.m. thick. It is mounted on a shaft of a electric-motor with adjustable and controlled

speed. There are four identical steel masses which can be bolted to the disc to make it

significantly mistuned for the 2 ND modes.
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Electric-motor
Control Panel

Disc

\-w-j \ M o t o r I -* I I

Proxi-Probe

(From accelerometer on

Xgnet

(To Exciter) t

Figure 2.9 Test rig and measuring equipment in the forced excitation test on a rotating disc

( - - - - - is in case of the hammer tests)

2.5.1.2 Excitation

In the experiments on the rotating disc, the excitation device is an electro-magnet  made

from a coil on a C shape core. One problem with this type of exciter is that it produces

harmonics of the excitation frequency rather than a single frequency, as shown in figure

A.1 in Appendix A. In our case, the second harmonic is stronger and is used as the main

excitation frequency. The input signal for the magnet exciter is generated from a power

amplifier LOS TPO3OO. By using this exciter and command signal from B&K 2032 FFI

Analyser, experiments with random excitation also have been done to find the general

wide band response of the rotating disc.
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Initial hammer tests also have been carried out to find out the natural frequencies and

modes of the stationary disc stationary disc. From the FRFs, we can easily find the

desired ND modes.

251.3 Response Measurement

In this work the response of the rotating disc is measured at a stationary coordinate by

using a proximity probe. This is a non-contacting device used to measure displacement

and is assembled on a support of the test rig such that it is positioned close to the rim. At

the beginning, the gap between the probe and the disc should be about 1 m.m. which

produces 7 to 8 volts on the oscilloscope.

The VP1 sensor [58] is another non-contacting device which is based on the laser Doppler

phenomenon, measuring velocity at a point on the structure. These non-contacting

sensors have the advantage that they do not affect the mass and dynamic characteristics of

the structure whose vibration they are measuring.

One problem with using the proximity probe is that there is the possibility of transmission

of excitation from the shaker to the probe through the support. This effect was examined

by using the VP1 sensor and proximity probe simultaneously in the same measurements.

Figures 2.16 to 2.18 will be explained in the following sections; however, they can be

referred here to see that in each figure, three major frequencies have appeared exactly in

both measurements. Therefore, the excitation frequency which appears in the response

spectrum is from the vibration in the disc and we shall assume that we can trust the

frequencies measured by the proximity probe mounted on the test rig support.
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2.5.2 Experimental results

The experimental work has been carried out in three parts and using three different

methods: hammer tests on a stationary disc, single frequency excitation on the rotating

disc and random excitation on the rotating disc.

2.5.2.1 Hammer tests

The results of the hammer tests on the disc when this is not rotating are shown in figures

2.10 to 2.15. The first three figures are for the disc without added masses and the others

are for the disc with added masses (mistuned). The positions of the measurement and

excitation points, which are identical in each test so called ‘point measurement’, are also

shown alongside the main FRFs. From figure 2.10, we understand that the natural

frequencies of the 2 ND modes are 150.0 Hz and 158.0 Hz. This has been confirmed by

changing the measurement point to two special points in sides of the first measurement

point, figures 2.11 and 2.12. Each of these two points is, in fact, on a nodal line of one

of the pair of 2 ND modes so that in figure 2.11 only lower frequency mode and in figure

2.12 only the higher 2 ND mode has been excited .When the masses are attached they are

at 153 Hz and 200.5 Hz according to figure 2.13. It is seen that even when the pieces are

not bolted to the disc, the disc is mistuned for the 2 ND mode by about 8 Hz. This is

because of the existence of four holes on the disc and other non-uniformities in the

structure. By bolting pieces to the disc, the two 2 ND natural frequencies are about 48 Hz

apart, making two well-separated modes.

For comparison, the accelerometer and the proximity probe have been used

simultaneously in one test and the results are shown in Appendix A figure A.2. Good

agreement is found from this comparison.
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2.5.2.2 Single frequency excitation of rotating disc

For the case where the natural frequencies of the 2 ND modes are well separated (by

bolting four identical pieces on four perpendicular radii), we can examine the response of

a single 2 ND mode to a harmonic excitation. An excitation frequency is chosen on the

generator near to the natural frequency of one of the 2 ND modes. For this excitation the

response spectrum has been measured to find the frequency components in the response.

The results of different excitation frequencies are presented.

a) Excitation frequency below a natural frequency

The rotation speed of the disc was set to 120 rev/min, which is equivalent to 2 Hz, and

excitation frequency was chosen to o=196.0 Hz which is below the higher 2ND mode

shown by letter D in figure 2.13. The auto spectrum of the response was obtained using

the proximity probe and at the same time using the laser facility for comparison. The

result is shown in figure 2.16. It is seen that in the region of the excitation frequency

there are three peaks at :

188 Hz, 196 Hz and 204 Hz.

These frequencies are equivalent to the theoretical response frequencies o and (WnQ)

which have been predicted in the analysis of response of a rotating disc in a stationary

coordinate.

b) Excitation frequency above a natural frequency

The excitation frequency was set at ~204.0  Hz while the disc was spinning at the same

speed of 120 rev/min. This excitation frequency has shown by letter E in figure 2.13. The

b
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auto spectrum of the response is shown in figure 2.17 as a zoom measurement from 150

to 250 Hz. We can recognise the three dominant frequencies at 196.0 Hz, 204.1 Hz and

212.2 Hz. These frequencies are also in good agreement with theory which predicts that

the response of a single ND mode of rotating disc to harmonic stationary excitation in a

stationary coordinate consists of three frequency components, (m2nQ), CII and (ot2nR).

c) Excitation frequency near to the first 2ND mode .

Similar tests to those in parts a) and b) have been carried out around the lower 2 ND

natural frequency, 153 Hz. The excitation frequencies are 156.5 and 145.6 and

corresponding auto spectrums are shown in figures 2.18 and 2.19 respectively. Again we

can simply check that the response contains three frequency components which

correspond to (o-2nR), o and (ti2nR).

2.5.2.3 Random excitation of the rotating disc

A random noise signal can be generated by the FFT analyzer and applied to the (non-

contacting) shaker to excite the rotating disc. In this test the disc has been used without

adding the auxiliary pieces. Figure 2.20 shows the auto spectrum of the response when

the speed of rotation is equal to 180.0 rev/min (3.0 Hz). The apparent resonant

frequencies which have been defined in earlier sections are shown. Remembering that in a

rotating disc the apparent resonant frequencies and the actual (non-rotating state) natural

frequency or, have the relationship of
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In figure 2.20 the frequencies corresponding to 2ND are 143, 151, 155, and 163 Hz. On

the other hand for this case nQ=2(3)=6  Hz, 0,,~149 Hz, 0,~~157 Hz. We see that

resonant frequencies 143 and 155 correspond to on1 and resonant frequencies 151 and

163 come from on2.

The apparent resonant frequencies of the 3 ND mode have been obtained 301, 319 Hz

and shown in figure 2.20. For this case nR=3(3)=9 Hz, and 0~,~0,~=310 Hz.(see

figures 2.9 and 2.10). It is seen that the apparent resonant frequencies are identical to the

theoretical values oQnC2.

2.6 CONCLUSION

In the harmonic excitation of a single diametral mode of a rotating disc, the response has

three frequency components o and(ok2nQ) while in rotating coordinates there are two

frequency components, (&Q).

In a rotating disc the value of natural frequency o, no longer indicates the resonance

frequency directly but each single ND mode represents two apparent resonant frequencies

(o,+n!A). Of course, this does not depend on which coordinate is used. It is further

concluded that if the excitation frequency is exactly equal to a diametral natural frequency,

as long as the disc is rotating there is no coincidence of resonance for that mode at any

speed R.

For a mistuned disc, the harmonic excitation response of a pair of ND modes is a

combination of four travelling waves. In the tuned case the total response comprises two
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travelling waves forward and backward with effective vibration frequencies equal to the

excitation frequency.

In the case of static excitation, w==O,  and a tuned disc, the response is stationary in space

and is referred to as a ‘standing wave’. This situation is for any rotation speed. However,

it will be at resonance at a particular speed called the critical speed which is equal to the

natural frequency divided by the number of nodal diameters.
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No. Freq.

FREQUENCY RESPONSE M a g n i t u d e
0 F r e q u e n c y  H z . 4 0 0

--------_________
; 100.5 93.5

3 114.5
4 150.0
2 310.5 158.0

Y0o”o O
0

Position of measurement
point ‘y’ on the disc

Figure 2.10 FFW  of the stationary disc from hammer test
(Excitation point at ‘y’ >

- 4 0 M a g n i t u d e
F r e q u e n c y  H z .

I

4 0 0

No. Freq.
_______________
1 93.0

: 101.5 115.0
4
5 158.0
6 311.0

xY0o”cl O
0

Position of measurement
point ‘x’ on the disc

Figure 2.11 FRF of the stationary disc from hammer test
(Excitation point at ‘x’ )
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FREQUENCY RESPONSE M a g n i t u d e

0 F r e q u e n c y  H z . 4 0 0

No. Freq.
__-__-----_______

: 99.0
3 115.5
4 150.0
5
6 310.5

xyz0o”o O
0

Position of measurement
point ‘z’ on the disc

Figure 2.12 FRF of the stationary disc from hammer test
(Excitation point at ‘Z’ )

,
0 F r e q u e n c y  H z . 4 0 0

No. Freq.
_______________

:
loo.5

j
153.0
200.5

4 339.5

U 00,@I

II
Position of measurement
point ‘u’ on the disc

Figure 2.13 FRF of the mistuned stationary disc from hammer test
(Excitation point at ‘u’ )
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44

ii
2
z

%

- 2 5 1-n

0 F r e q u e n c y  H z .

No. Freq.
_______________

:
loo.0
153.0

3
4 345.0

Position of measurement
point ‘v’ on the disc

Figure 2.14 FRF of the stationary disc with added masses
from hammer test (Excitation point at ‘V’ )

F requency  H z .

No. Freq.

1 101.0
2
3 200.5
4 339.5
5 344.5

Position of measurement
point ‘w’ on the disc

Figure 2.15 FRF of the stationary disc with added masses
from hammer test (Excitation point at ‘w’ )
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4 0

I
0 Frequency Hz. 400

a) Using Laser (Velocity has been measured)

56

0 Frequency  Hz. 400

b) Using Proximeter (Displacement has been measured)

Figure 2.16 Response of rotating disc
(Excitation frequency=196 Hz)
(Rotating speed= 120 rev/min.)

No. Freq.
______________

:.
188.0
196.0

3 204.0

No. Freq.
______________
1 188.0

:
196.0
204.0
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dB

1.1

4 6

dE3

- 2 . 9

RIITO  SPFC.  CHANNFI A r i
150 F r e q u e n c y  H z . 2 5 0

I I

RI IT0 SPFC:  r.HANNFI R r 1
F r e q u e n c y  H z . 2 5 0

Figure 2.17 Response of rotating disc; a) using Laser (VP1 sensor)
b) using Proximeter

(Excitation frequency=204.1  Hz)
(Rotating speed= 120 rev/min)

No. Freq.
_______________

:
196.0
204.1

3 212.2

dB

5 . 3
53

dB

4 . 4
100 F r e q u e n c y  H z . 2 0 0

Al IT0 SPFC CHWFI No. Freq.
100 F r e q u e n c y  H z . 2 0 0

I 1
____________-_

:
147.1
156.6

3 163.6

Figure 2.18 Response of rotating disc; a) using Laser (VP1 sensor)
b) using Proximeter

(Excitation fiequency=156.6 Hz)
(Rotating speed=140 revhnin)
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%

Ez
@
WS

N o .  Freq.
____-__________

gr!1, a
;

137.7
<s 145.6
%! 3 153.6

AUTO SPEC CHANNEL B C 1
13

100 Frequency Hz. 2 0 0

Figure 2.19 Response of rotating disc
(Excitation frequency=145.6  Hz)
(Rotating speed=120 rev/min = 2 Hz)

59

“0

%z No. Freq.
@ __________----
v1$ 1 143.0

<.$ 92
151.0

3 155.0
3 4 163.0

301.0
AUTO SPEC CHANNEL B C 1.81 1 ii 319.0

0 Frequency Hz. 4 0 0

Figure 2.20 Response of rotating disc to random excitation. Frequencies at points
1,2, 3 and 4 are resonant frequencies of 2 ND modes and frequencies
at points 5 and 6 are resonant frequencies of 3 ND modes.

(Rotating speed=180 rev/min = 3 Hz)



Chapter m

THEORY OF VIBRATION FOR A DISC ROTATING PAST A

STATIC FORCE

3.1 INTRODUCTION

In the previous chapter, the response of the rotating disc to a non-rotating harmonic

excitation was analysed. A special case of this analysis is when the excitation frequency is

zero i.e. the static forced excitation of the rotating disc. In practice there are many cases

where this kind of excitation occurs, such as nonuniformity in the pressure distribution

on either side of the discs in gas and steam turbines. The response of a rotating disc to a

static force excitation can generate standing waves, as mentioned in chapter 2 as a special

case of zero excitation frequency.

It is possible to simulate the response of a specific nodal diameter (ND) mode in a rotating

disc with harmonic forces applied on the disc in a stationary state [7]. This is very

important since it changes the test on a rotating structure to a stationary one which is more

practical. This simulation technique can be developed for more general cases to obtain the

relation between forces and their spatial position and temporal phase angle. In fact, this



THEORY OF VLBRATION  FOR A DISC ROTATING PAST A STA-IX FORCE 71

technique can be considered as a special form of multi-excitation method which is useful

for the modal identification of axisymmetric structures.

Normally, the response of a disc to a non-rotating excitation comprises travelling waves

and on the other hand the well-known “standing wave” in a rotating disc is simulated by a

backward travelling wave in the stationary disc. A uavelling wave response is generated

by the excitation of the diametral modes in a disc and they are complex, for which the

normal methods of presentation are not applicable. A proper technique for demonstration

of the response is needed.

In the simulation, the response of a tuned disc is a pure backward travelling wave with

the same order as the order of the desired diametral mode. However, in a mistuned disc

or any real case, the response to the same excitation is contaminated by other wave

orders. Mathematically, we can obtain the contribution of the other wave orders in the

response and display the spectrum of different waves in the response.

In this chapter, the response of a rotating disc to the non-rotating and static excitation is

analysed and then the theory of the simulation of travelling waves is developed. Also, a

method is presented to estimate the contribution of different wave orders in the response.

3.2 RESPONSE OF A ROTATING DISC PAST A STATIC
FORCE

In chapter 2, the general case of harmonic forced excitation of a rotating disc has been

presented. A special case for that analysis is the static force excitation of a rotating disc

which can be obtained by substituting a zero excitation frequency (-0) in the response

expressions. Also, it can be achieved similarly by direct analysis, as follows.

Let us consider a pair of n ND modes of a disc rotating at speed R. The orthogonal mode

shapes on the rim are assumed to be @(l)(6) = cos ne and QC2)(8)  = sin ne . The
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coordinate 8 is assumed to rotate with the disc and the direction of coordinate 0 is

assumed to be in the opposite direction to the disc rotation R. The disc is passing a static

stationary force Fu applied initially at a spatial angle a as shown in figure 3.1.

nt a Fo

k t--
0' 0

I 40 Disc circumference 27t

Figure 3.1 Coordinates on the rotating disc past a static force

The forcing function for such a system is:

F@,t) = F, 6[0-(nt+a)] (3.1)

It can be shown that the generalized forces for the assumed modes are:

Q(‘)(t) = Fe cos n(Rt+a)

Q;)(t) = Fe sin n(Rt+a)n

(3.2)

Equations (3.2) represents the generalised forces for the n ND modes. The normal

responses are calculated by using the convolution integral and then the response can be

obtained using the mode summation formula, in the same way that has been applied in the

previous chapter. Having done this, we will get the steady-state response as:

X,(e,t) = - Y1 cos [nRt+na] cos r-8 - Y2 sin [nRt+na] sin ne (3.3)

where :
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Y2= Fo
mn2 I(nW2- 1

(3.4)

Equation (3.3) represents the response of an n ND mode of a rotating disc excited by a

static force. It is a complex vibration at frequency (nn) and consists of two ‘fixed

vibration’ terms. For a tuned disc, it can be shown that Yt=Yz=Y and so the response is

a pure backward travelling wave:

X,(&t) = - Y cos [ne - r&It-na] (3.5)

The analysis can be transformed to the stationary coordinate 80 by substituting 0 by

(Bo+Qt) in the response equation (3.3). After substituting and simplification, we will

have:

X,@o,t) = - (‘+) cos [2nRt+r@o+nol]  + (GJ+ cos [n&na] (3.6)

The response of a tuned rotating disc to a static force in the stationary coordinate is

obtained by just considering Yt=Y2=Y in equation (3.6):

x,(eo,t) = Y cos [neona] (3.7)

This represents a standing wave and it means that the disc rim looks deformed with a

cosine shape, static in the view of a stationary observer. Also, equation (3.7) shows that

the configuration of the ‘standing wave’ is independent of R and hence it forms at any

rotational speed.
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3.3 SIMULATION OF TRAVELLING WAVES

In section 3.2 the general formulae for the n ND modes of a disc rotating past a static

force have been obtained. Recalling equation (3.3) for the generalized forces;

Q’,‘)(t) = Fo cos n(Rt+a)

Q(*)(t) = Fo sin n(Rt+a)n

we see that each expression is a harmonic force with frequency (nn) and presents the

forcing function for a normal mode. It seems that it is possible to simulate the response of

an n ND mode by applying two harmonic forces equivalent to the generalised forces and

positioned at nodal points of the ND modes. This means that, the spatial phase angle & =
360°4n and the temporal phase angle is -9O”, equal to the phase angle between q) and

Q(t). This excitat 0i n results in a travelling wave in the non-rotating disc just as in the disc

rotating past a static force. In this way, the response of each ND mode of a disc rotating

past a static force is simulated in a stationary disc with two harmonic excitations. This

idea was first proposed by Ewins [7] and it can now be developed for a more general

case.

When the generalised forces of a particular ND mode are applied to the main structure,

rather than applying to the modal mass in a SDOF (normal mode) system, there is no

guarantee that the response level will be the correct value since two generalised forces do

not necessarily have the same effect as the real forcing function. However, from the

quality point of view, the two harmonic forces create the same shape of response.

In the simulation, the excitation frequency should be equal to the number of nodal

diameters of the mode to be excited, multiplied by the rotating speed of the disc, i.e.

o=nR. Therefore, each time just one wave order can be simulated for a certain rotating

speed.
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3.4 GENERALISED SIMULATION FOR PRESCRIBED

SPATIAL PHASE ANGLE

3.4.1 Analysis

As the result of the idea of the simulation of a rotating disc, a stationary disc is considered

vibrating at a frequency w near to the natural frequency of its n nodal diameter mode.

The excitation source consists of two harmonic forces fl and f2 acting at points 1 and 2

on the rim, (Fig.3.2). In the general case, fl and f2 have a temporal phase difference (QJ,

and the excitation points are positioned at an angle & apart (the spatial phase angle). The

angle between point 1 and the nearest nodal diameter is called a . The origin of

coordinate 8 is assumed to be at point I and point 3 is considered at position 8 on the

rim.

fl=Ft cos ot I

f2 =Fz cos (at+@, )

Figure 3.2 Two excitations on a stationary disc

The harmonic response can be calculated by using the general equation:

Ix) = WI (0 (3.8)
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where {x) is the response vector, [H] is FRF matrix and (f) is the excitation vector.

From equation (3.8), the following equation can be written for point 3:

~3=H31.  fi + H32. f2 (3.9)

where :

f1= F1 c o s  o t

f2= F2 cos(o t-t Cpt)

H31 and H32 can be obtained from the general FRF formula:

(3.10)

(3.11)

where &j and & are the mass normalised eigenvector elements for points j and k when

vibrating in mode r .

At the disc rim, the eigenfunctions are known for any nodal diameter mode. Also, it is

well known that most of the modes are dual modes. In the case of an n ND mode, by

assuming that modal masses are equal to one, the mass-normalised eigenfunctions are:

Q n (I)= cos n(B-a) (3.12)

qn c2)  = s i n  n(e-a)

The natural frequencies of the dual modes which are close are assumed to be 01 and 0~ ;

and the damping loss factors, ql and q2. Knowing that 81=0 , @=$I,  and 03=8 (in

figure 3.2), and substituting in equation (3.11) from (3.12), H31 and H32 can be

obtained:
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H31-
cos n(8-a) cos (-nor> + sin n(B-a) sin (-na)

0: -69+irjtq 6S2-02+iQ2(U2,

H32-
cos n(0-a) cos (&-a) + sin n(B-a) sin n($,-a)

o.$-02+irj  I CJ+ c.$-02+iTj2022 J

1 1
Denonng A1-*_o$+itjl* ’ A2-

022-w2+iq2022
9 and substituting H31 and H32 into

equation (3.10) , we will have:

x3= [Al cos n(&a) . cos na - A2 sin(na) . sin n@-a)] . Ftcos cot

+ [ Al cos n@-a) . cos n($,-a) + A2 sin n(8-a) . sin n($,-a)] , F2 cos (tit +$J

(3.14)

In the general case when ArfA2, no further simplification can be made of equation

(3.14). However, for a tuned disc, wr =m and qt =q2 and, consequently, At=Az=A  so

that equation (3.14) becomes:

x3=AF1  cos ne . cos at + AF;! cos n@-+,) . cos(ot+qq (3.15)

This equation shows that a has been cancelled out and so the response is independent of

the position of the excitation set on the rim. In other words, location of the excitation

points spaced around the disc is not important to the response of any particular n nodal

diameter mode.

Equation (3.15) can be written in another form:

x3=kl cos &I . cos 6x - k2 cos ne . sin cct

- k3 sin ne . sin at + b sin ne . cos cot (3.16)

where :
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kl= AFr + AF:! cos  n$, . cos qt
7

k2= AF2 cos  n$, . s in  Cpt
(3.17)

k3= AF2 sin n$, . s in  Q,

k4= AF2 sin n$, . cos Qt J

In fact, point 3 can be any point on the rim and so x3 can be replaced by x(0,t) to present

the general case. Rearranging equation (3.16) will give :

x(9,t) = k3 cos (ne+ot)  + (kl-ks) cos n0 . cos cot

+ b sin (n6+ot) - (kz+b) cos no . sin tit (3.18)

This formulation has been rearranged to form the forward travelling wave, (n0+ot). It

can be also written on the base of the backward travelling wave ( i.e. the term of (no-

at)), which is more useful, since we are expecting a backward travelling wave from the

simulation:

x(0,t) =klcos  (n&tit) - (ki+k3) sin r& . sin cct

+ b sin (ne-ot)  - (k2-b) cos ne . sin at (3.19)

From this equation, for the cases that kl;tO and (kt+k+O, we can write:

k4.x(e,t) = kl[cos (no-ot) + I;T sm(n@-ot)]

By letting :

a n d

kz-k4- (kl+k3)[sin ne + kl+ks . cos dl ] sin mt.

tan y kz-k4
=kl_tk3

(3.20)

the final formula for the response of the rim excited by two harmonic forces will be

obtained:
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x&t) = kl- sin (n@ot+P)  -
kl+k2

sin p
sin(ne+y) sin at. (3.22)

cos y

The first term represents a backward travelhng wave and the second term implies a fixed

vibration component.

Before discussing the applications of equation (3.22) in the following sections, the usual

conditions in the simulation are examined. Assuming that the two equal harmonic forces

with spatial phase angle & 360”=x and temporal phase angle &=-90’ are applied to a

tuned disc. If these conditions are applied to equations (3.17), we will have:

kl= A F

k2= 0

k3= -A F

k4=0

Substituting in equation (3.20), the response is obtained:

x@,t) = A F cos (n&M)

which represents a backward travelling wave, as expected.

In the following sections, some concluding remarks from the above analysis are
presented.

3.4.2 General formula in simulation

In practice, sometime, there is a restriction on the choice of spatial angle for the exciters’

positions, or a certain value for this angle is applied for simplicity. This value may not be
360’

equal to its normal value for the mode of interest, i.e. (x). In this section, we seek

conditions which result in the n nodal diameter modes being excited as a backward

travelling wave.

From equation (3.19), in order for only a backward travelling wave to exist, the

following relations should be satisfied:

c
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kl+ k3 = 0
k2 - k4 = 0

Substituting from (3.17) :

AF1 + AF;! cos n$, . cos G1+  AF;! sin @, sin nQ,= 0

AF2 cos n$, . sin ql- AF2 sin n$, cos $[= 0

or :

l+$cos (nQ,- oI) =  0

sin (n$,- Qt) = 0 i
(3.23)

From the latter equation:

n$,- @= kn , ( k=. . . -2, -1, 0, 1, 2,3 ,... >

F2If F> 0 , cos (n$,- qt) will be negative, so that only k=.. .-1,1,3,... are acceptable

values.

Thus, for exciting the n nodal diameter modes in the form of a backward travelling wave

only, the following conditions should be satisfied:

n$,- Qt= kx (k=...-1,1,3 ,...)

F2 = 1
(3.24)

Fl

The analysis can be repeated on equation (3.18) to obtain the conditions to have a

uavelling wave in the other direction i.e. a forward travelling wave. According to

equation (3.18), in order for only a forward travelling wave to exist, the following

relation should be satisfied:

kr-k3 = 0
k2 + k4 = 0
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Substituting from (3.17) and rearranging in the similar forementioned way, finally the

following conditions are obtained in order to excite the n ND modes in the form of a

uavelling wave only:

n$,+ +t= krt

F2 = 1
Fl

(k=...-1,1,3 ,...)
(3.25)

In a disc rotating past a static force, the n ND mode is excited as a backward travelling

wave i.e. opposite to the direction of rotation of the disc. In the simulation, we can

change the direction of the wave by just imposing the conditions indicated in equation

(3.25) rather than those in equation (3.24). However, we should remember that in fact,

equation (3.24) represents the condition of simulation of the vibration of n ND mode in

the rotating disc excited by a static force and that using +$+ (i.e.appIying equation (3.25))

produces the same travelling wave but in the other direction. This is like to assume the

other direction for rotation of the disc. Also note that kr is bigger than the other

coefficients, which confirms that the backward travelling wave is the dominant

component in the response of such a disc.

3.4.3 Excluding a diametral mode in the simulation

In the previous section, two necessary conditions were found to excite the n nodal

diameter modes in the form of a travelling wave. Now, further conditions are being

sought in order that another mode, (say the m nodal diameter modes), is not excited :

From equation (3.19), the following relations should be satisfied in order to prevent

excitation on m ND mode as a backward n-avelling  wave:

kl= 0, and lo= 0
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Substituting from equation (3.17), these can be written as:

l+$cos Qt. cos m$s = 0

s in  m@,.cos QL = 0
(3.26)

It is assumed that the n ND modes are the target of the excitation set and have been

excited in the form of a backward travelling wave so that equations (3.24) are satisfied;

therefore from (3.24) :

cos &= -cos t-i+, (3.27)

By substituting into equation (3.26) , we will have:

C o s  n$, cos m$, =l

sin rno, (-cos nQ,)= 0
(3.28)

The solutions for the fast equation are:

cos n$, &l and cos m$, = +1

or:

m +s=kmrt

0 s=knlI:
(3.29)

where k, and k, =l, 3, 5,. . .or: k, and k, =2, 4, 6,. . .

If n and m are considered as two successive numbers i.e. In-ml=l, there is no solution for

qS from these equations except &,=360’, which makes no sense. However, for the other

cases where In-ml>1, a solution can exist.

If the second equation of (3.28) is considered : sin m@,= 0 and/or cos n$, = 0 .

Their solutions will be :

. .._
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m +s=kmn km=l 2 3...

a n d / o r  : n$, = k, 5
(3.30)

k,=l 3  5...

The first equation in (3.30) is equivalent to the first equation in (3.29). Therefore, if the

spatial angle and the modes are such that equations (3.29) are satisfied, kr and k4 become

zero and the m ND mode will not be excited.

From the second equation in (3.30), we have :

0
k71:n-

S-n 2 k,=l, 3, 5,...

This means that if oS is chosen such that the above relation is satisfied, then the effects of

other modes are decreased but, of course, cannot be removed completely.

3.4.4 ‘Pseudo-nodal point’ for m ND mode

It is possible to find a particular point on the rim (e=Cl,) at which the fixed vibration

component of the response for a particular m ND mode is zero. It is appropriate to call

this a ‘pseudo-nodal point’ for the m ND modes. To establish this condition, it can be

found from equation (3.22) that:

sin (m$+y) = 0 (3.3 1)

k2-k4Using the definition in equation (3.21), tan y = kl+k3, and substituting for parameters

from equations (3.17), gives:

F2 .

tan y=
~1 sin GkmW

F21% cos ($1-mW

From equation (3.31) :

(3.32)

-
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me, + y = 0, x, 27E, 3x ,...

or: tan(m$)=-tarry

Substituting tan y from equation (3.32) and solving for 0,, gives :

F2 .

tan 8, = i atan[-
~1 sin 04w-W

F2
1

1% ~0s Ch-4h)

F2Therefore, for a given excitation set, i.e. (F), Qs and qt, we can find a position 8, at

which there is a travelling wave component of m nodal diameter mode only and no other

components such as fixed vibration. This position could be suitable to measure the

response when the excitation of the n ND mode is the objective and it is close to an m ND

mode.

3.4.5 Representation of response as travelling waves

According to equation (3.22), the general form for the two-excitation response of n ND

modes on the rim can be represented as :

x@,t)= Xlcos (n&wt+q) - X2 sin (ne+a2) . sin cut (3.33)

where X1 and X2 vary with frequency. Equation (3.33) gives the response of vibration of

the n ND modes with the assumption that two natural frequencies and damping factors are

identical, i.e. the disc is tuned (or perfect). It can be shown that this equation is applicable

for mistuned discs too, but the coefficients and constants in it do not have same relations

as those which have been obtained for the tuned case.

In the more general case, equation (3.33) can be recast to a form containing two uavelling

waves, one backward and one forward, as follows:
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z2x(B,t)=Xl  cos (n@wt+al) - 2 [cos (n@ot+a2) - cos (rd+ot+adl

x2 x2
=X1 cos (n@ot+al) - 2 cos (n@ot+a2) + 7j- cos (nCI+ot+a2)

=Xl[cos (ne-ot)  cos a1 - sin (no-ot) sin aI]

x2
- + [cos (no-ot) cos a2 - sin (r&I-ot) sin a2+ 2 cos(ne+ot+a2)

x2x(e,t)= [xlcOs  al- 2 cos a21 cos (db6.x)

x2 x2
- [Xlsin al+ 2 sin a21 sin (n&N) + 7j- cos (n0+ot+a2)

then :

Denoting:

x2Xlsin al+ 2 sin a2
x2

= tan a&
Xlcos al- 7j-- cos a2

x2

x@,t>=
Xlcos al- 2 cos a2

COS (IIh.)t+aBd  +
x22 cos (n0+otca2)

Cos aBn

By letting :

x2Xlcosal-2 cos a2
=ABII ;

COS aB

and a2= ah, the general formula for the response of the rim to the excitation of the n

nodal diameter modes will be obtained :

x(e,t) = AF* cos (ne+ut+a&  + AB,, cos (no-ut+a&) (3.34)
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In section 3.8, this formula is used to decompose and display the response of the rim at

any particular excitation frequency, 0.

3.5 COMPLEXITY OF RESPONSE

In the simulation using two excitation sources due to the existence of double modes the

response is complex even if the mode shapes are real. A model with complex modes will

be considered in chapter 5. The degree of complexity of the response can be obtained

easily for the tuned disc. Recalling equation (3.15) for the response at a point on the rim ,

we have:

x(e,t)  =A F1 cos no . cos cot + A F2 cos n@-$,) . cos(ot+$,)

This is the response to the excitation set shown in figure 3.2 and is independent of a.

In order to excite the n nodal diameter mode into a travelling wave, the force magnitudes

should be equal, Fr=F2, and the relationship between the temporal and spatial phase

angles should be:

Substituting for $t and F2 in equation (3.15), and expanding, we have :

x@,t) =A F1 [cos nf3 cos 6.x - cos ne cos2 n@,cos mt + cos ne cos n&sin n$,

sin Ot

- sin ne sin n&cos n$, cos 0X + sin nt3 sin2 n&sin 0X ]

Noting that cos2 n&=1-sin2 no, and factorising the corresponding terms, we will obtain:

x&t) =A Ft sin n$, sin (at - t-&J + n&J (3.35)
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which represents a backward travelling wave, as expected, since the appropriate

simulation conditions have been applied to the disc.

In order to obtain the phase angle between x and excitation ft(t)=Fr cos on, equation

(3.35) is written as:

x(&t) =(A Fi sin n$,) cos (at - r&J + n$, -9OO)

Recalling that A-
l

o’,- cG+i+&
, it can be shown that :

f:-(
sin n&--

w’,-w2+iT+$
) eiCr

where “y= (- ne + n$, -9OO). For cases of low damping, the angle y is the degree of

apparent complexity of n nodal diameter mode which wilI appear in the modal analysis of

this mode.

3.6 EXTENSION OF THE PROCEDURE TO MORE THAN TWO

EXCITATIONS

Assume that three exciters have been applied on the disc rather than two and the n ND

modes are to be excited in the form of a travelling wave. A similar analysis to that

mentioned in sections 3.4.1 and 3.4.2 can be used to obtain the relations between

parameters to produce a travelling wave in this case. Having obtained and simplified the

equations, we will have:

F2 F3l+ $1 cos Wd- hl> + $1 ~0s (nQs2- &2)=  0

F3
(3.36)

(2) sin (hi- nfP,l) + ($ sin (Qt2 - n$s2) = 0
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f2=Fz cos (cot+$,1 )

Figure 3.3 Three excitations on a stationary disc - General case

This is equivalent to equation (3.23) for the two-excitation method. In the general case,

finding the relationship between forces ratios, spatial and temporal phase angles from

equations (3.36) is not straightforward as it is in the two-excitation case. However, if we
F2 F3assume that the force amplitudes are identical- = - = 1, then the exact relation betweenFl Fr

spatial and temporal phase angles are obtained.

k=...- 1, 0, 1, 2,.. . (3.37)

These equations show the relationship between spatial and temporal phase angles in the

three-excitation technique to excite n ND mode as a travelling wave. The difference from

the two-excitation case is that in that case, we had only one solution for (%) which isFI
F3equal to 1, but here, we have assumed that 2 = F= 1. It can be concluded that using

more than two exciters to simulate a travelling wave is difficult in general, even to find the

required relation between parameters.
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However, we can take advantage of the symmetry of ND modes and expand the two-

exciter method to any even number of excitations: 4, 6,8 , etc. The idea is originally

based on the two-exciter technique but there are more than one pair of excitation sets and

all of these pairs are identical to the main two excitations in amplitude and phase but at

different and proper spatial positions.

In figure 3.4 four excitations are shown applied to a disc. Forces f, and f2 are the original

excitations with spatial and temporal angles $S and $t respectively, corresponding to n ND

modes. The third excitation fl is chosen such that its magnitude and phase are exactly

same as for f, and its spatial angle is k’(x3600), where k’ is any integer number. The force

f; is exactly the same as f2 and having a spatial angle $S with f;. It is obvious that when

we are using more than two exciters, the response level on the disc is no longer the same

as on the simulated rotating disc, unless proper levels for all forces are calculated and

chosen.

Figure 3.4 Four excitations on a stationary disc
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3.7 ISOLATION OF A PARTICULAR DIAMETRAL MODE

Excitation of a structure at a frequency in order that one mode only dominates is called by

different expressions such as ‘normal mode tuning’ and ’ isolating of a mode’. There are

different techniques to isolate a particular mode but here a method is proposed to isolate a

pair of diametral modes in the form of travelling wave which can be detected as a normal

vibration by a stationary sensor.

The simulation technique of vibration in a disc rotating past a static force has a secondary

application which is the isolation of certain ND modes. Selected nodal diameter modes of

a stationary disc can be excited and identified by using two (or more) excitations, as are

used in the simulation. By using this method we can excite just the mode of interest. This

is more important when the modes are very close and the response is strongly affected by

the adjacent modes.

If the disc is heavily mistuned for that mode, each individual mode behaves as an

ordinary single mode and the response will be a fixed vibration for dual-sine excitation

method. However, for most cases the disc may be assumed to be nearly tuned so that the

response is dominated by the travelling wave.

The technique for isolating a ND mode is to apply two shakers at spatial positions Qs apart

on the rim. The forces these shakers exert should be controlled to be equal in magnitude

with a temporal phase difference ($J which should satisfy equation (3.24), that is:

@=n$,-krc (k=. . . -1, 1, 3,+

By increasing the number of exciters, as mentioned in section 3.6, the isolation would be

achieved more effectively. This method is a special type of tuned sine excitation in which

some mono-phase excitations are used to excite or isolate a particular mode of a structure.

h
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3.8 CONTRIBUTION OF DIFFERENT WAVE ORDERS IN THE

91

RESPONSE

In section 3.4.5, the general formula for the response of a disc’s rim was obtained as a

combination of forward and backward travelling waves:

x(&t) = AF,, COS (n&at+&  + ABE COS (nhJ.)t+aBn) (3.38)

Remembering that this formula represents the response of the n ND modes and is

applicable for the general case of exciters’ positions and also for the mistuned case as well

as the tuned case.

At the frequency of excitation CO, the response x can be determined or measured at any

position, 8. Knowing x, we can calculate the unknown parameters of equation (3.36),

i.e. : AF,, C~F~, BF~ and a~,,, then it is possible to display the response. In the following,

it is shown how the foregoing parameters can be calculated from x.

The response ‘x’ at each point is a harmonic quantity which can be measured in

magnitude and phase or in the form of real and imaginary components. Here, the real and

imaginary components of x are used which are called a(m) and b(m) , where ‘m’ implies to

the measured values:

x= a(m) sin at + b(m) cos at (3.39)

Equation (3.38) can be expanded and re-written in the form of equation (3.39) :

x(e,t)= [-AF, sin (ne+o& + AB* sin (ne+c@,)] sin c0t

+ [AF,, cos (n&x& + AB,, cos (n&a&] cos c0t

By letting :

(3.40)
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[-AF, S i n  (ne+aFn) + ABE Sin (ne+aBn)] = a , ,

[AF, cos (ne+aF,) + ABE cos (ne+aB,)] = b,

equation (3.40) becomes:

x(&t)= a, sin cot + b, cos mt (3.42)

which has same form as equation (3.39) so that a,, and b, are equivalent to the measured

values acrn) and b(m) respectively.

Equations (3.41) can be written in matrix form:

-sin ne -COS d3 + s i n  ne +COS d3

+COS nt3 - s i n  ne +COS nt3 -sin ne

where :

UFn = AF,, C O S  CXFn

VFn = AFn Sin CXFn

UBn = ABn C O S  aBn

VBn = AB,, sin aBn

Now, by letting :

-sin ne -COS ne + s i n  ne +cos ne
Unl =

+COS ne - s i n  n0 +cos ne -sin ne I

ad { AnIT = {UFn VF n UB n VB n } , equation (3.43) will be:

= [Tn12x4 {An Idxl

(3.43)

(3.44)

(3.45)

In this equation, a, and b, can be substituted for a(m) and b(m) , and vector {An}

calculated. However, there are four unknowns in this vector, so two sets of data or
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response at two points 8; and 9j have to be measured. Thus, from equation (3.45), we

will have:

= { *n 14x1

4x4

(3.46)

Knowing or measuring a(m) and b(m) for points i and j , the unknown parameters can be
Tni -’

determined provided ---
[ 1 exists:

Tnj

In equation (3.38), it has been assumed that the response is comprised of just one wave

order (order n). Now, the analysis can be extended for the general case by assuming that

N wave orders have contributed in the response at the excitation frequency CO. In this case

instead of equation (3.38), we have :

X(e,t)  = AFT COS (6+6X-!-aF1)  + ABE COS (6-ot+aBl)

+ i’+2 COS (28+@t+aF2) + ABE COS (2%ot+aB2)

+ . . .

+ AFT COS (d%.)t+aFn)  -t- ABn COS (no-ot+aBn)

+ . . .

+ Am COS (N8+OX+aFN)  i- ABN COS (N@Ut+aBN) (3.47)

%. ,. _
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It should be noted that at a particular excitation frequency o, different wave orders travel

at different angular speed 5). around the disc. This angular speeds are such that :

nC&=o , (for n=l to N)

where: n = wave order or number of nodal diameter of the mode;

Q,., = angular speed of wave order n around the disc, (rad/sec);

o = Excitation frequency or vibration frequency, (rad/sec).

In equation (3.47), each wave order can be treated as shown for wave order n in

equations (3.40) and (3.41). As a result, equation (3.47) can be written in another form:

x(&t)= al sin at + bl cos at

+ a2 sin c0t + b2 cos 6X

+. . .

+ a, sin cnt + b, cos ot

+. . .

+ aN sin ot + bN cos 6.X

or :

N N
x@,t)=( za,) sin mt + ( Cbn) cos at

n=l n=l

Now, if e’ and q) are the real and imaginary parts of the response at point 8i, then :

. (3.48)



El THEORY OF VIBRATION FOR A DISC ROTATING PAST A STATIC FORCE 95

Substituting for a, and b, from equations (3.45), will give :

= [Tri T2j . . . Tni . . . (3.49)

This equation is for just one data set or one measured point. For p data points, we can

write:

(3.50)

where :

{ab}T={  a?) b(Im)  i a($‘) bff’) i . . . i ay)by) i . . . ! ar) br) } ;
lx2p

Tit T12 . . . Tt, . . . TIN
T21 T22 . . . T2n . . . T2N

Tit Ti2 a.- Tin ... TN

2px4N

.,

and [AIT= [A, A, . . . A, . . . AN] 1x4N

For N wave orders, at least 2N points or data points are needed. In this case, matrix

[T] 2px4N  is a square matrix and can be inverted to calculate waves parameters, ( of course

inversion of a matrix is valid only if its determinant #O) :

{*I ~N~I=[T]-;~x~N{ ab ] 2px 1

h
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However, the elements of matrix [T] are such that its determinant is equal to zero for

p=2N. Therefore, p should be greater than 2N. If p>2N then the matrix [T] is not square

and cannot be inverted. In this case the pseudo-inverse of [T] is used, that is :

where [T]+ has been called the ‘pseudo-inverse’ of [T] and it is defined as :

[T]+ = ([TIT [~I)-’ [TIT
Therefore, at excitation frequency o, by measuring response at different points, (p points

where p>2N),  wave parameters can be calculated from equation (3.50). Knowing the

wave parameters and using equation (3.47), the response can be identified and displayed

in an animated form.

Having obtained the wave parameters, the contribution of different wave orders are

identified and the dominant mode in the response can be recognized.

If the excitation arrangement is such that a particular mode is to be excited in the form of a

backward travelling wave, the contribution of this mode in the total response is

determined. By repeating the measurement and analysis for different frequencies near the

natural frequency, the frequency response for this mode can be obtained.

For the analysis mentioned in this section, programs ‘HDISK4’ and ‘WAVE6’ have been

written in Basic for H.P. computers. They calculate the response and give wave

parameters from measured data; then the response is displayed as explained in the next

set tion.
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Table 3.1 Different systems in the numerical study

Modes Natural. frequencies.
[Hz1

Damping loss factor Excitation
pts.

2ND 3ND 2N-D 3 ND $s Qt

System I 28~3 100, 100 130, 130 0.001. 0.001 0.001, 0.001 45 -90
ND

System II 2&3 100, 100 102, 102 0.001, 0.001 0.001, 0.001 30 -90
ND

System 2&3 100, 101 130, 130 0.002, 0.001 0.001, 0.001 30 -120
III ND

System 28~3 100, 100 102, 120 0.001. 0.001 0.001, 0.002 30 -90
Iv ND

two pairs of modes: the 2 ND and 3 ND modes. figure 3.5 shows the response of system

I to the two harmonic excitations. This is a tuned system with well-separated 2ND and

3ND natural frequencies.The spatial phase for exciters is 45’ and temporal phase angle is

selected so that the 2 ND mode to be excited as a backward travelling wave, (p,=-90”.

Angle a, the offset between one excitation point and an adjacent antinode  point, is

assumed to be equal to zero since the modes are tuned.

Figure 3.5 shows that the dominant wave is a 2 ND backward travelling wave, and that it

constitutes 83% of the total response. These calculations have been carried out on the

basis of the analysis in sections 3.2 and 3.8 respectiveIy.  The response at each of 15

points around the disc has been calculated. Then, the contribution of the different waves

has been obtained up to order 6 and are presented in table 3.2. The total response,

dominant wave and other waves have been displayed separately in figure 3.5. Each

display is constructed of six curves and each curve represents the response at one frame

(a sixth fraction of a period); so that we can visualize the response of the rim in time. The

direction of the dominant wave has been shown by a small arrow in the above.

In system II, the modes are assumed to be close and a 3 ND mode is excited by choosing

the appropriate exciter positions. The excitation frequency is 95 Hz which is quite
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different from the natural frequencies. Figure 3.6 shows the response for this case and it

is seen that in spite of the fact that the 3 ND mode is the target of the excitation, the

dominant backward travelling wave is 2 ND.This  is because of the proximity of the 2 ND

mode whose natural frequency is closer to the excitation frequency than that of the 3 ND

mode.

Table 3.2 Waves parameters obtained for system I

The possibility of improving the situation is examined by using 4 exciters which are

identical two by two and are positioned at O”, 30°, 120’ and 150’. The result has been

shown in figure 3.7 and it is seen that the dominant backward travelling wave is 3 ND

and it is 54% of the total response. We can see here the significant effect of the number of

excitors in the simulation and in the isolation of a mode.

In figure 3.8, the excitation frequency has been set exactly to the target mode (3 ND)

natural frequency. It is seen that almost the entire response is a backward travelling wave

of this mode. However, figure 3.9 shows that if the natural frequency of the target mode

is not chosen correctly, then the response is far from a pure travelling wave and could

even be dominated by an unexpected order.
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The simulation has next been applied to a mistuned system in figure 3.10 (system III).

The 2 ND mode is excited by two exciters with a spatial angle equal to 30°, which is

different from its normal value for this mode. The simulation formula n$, - +x has

been used to determine the temporal phase angle. It is seen that the total response is

presenting essentially a 2 ND backward travelling wave, which is comparable with the

corresponding tuned case in figure 3.5. By increasing the number of exciters, the

response of the target ND mode can be improved significantly, which has been shown in

figure 3.11 for four exciters.

The case of a ND mode which is heavily mistuned, and appears as a single mode, is

presented in system IV and figure 3.12. The target mode is one of the 3 ND pair and the

excitation frequency is assumed equal to the natural frequency of this mode (102 Hz). For

such a case, the response is a fixed vibration which can be decomposed into one

backward travelling wave and one forward travelling wave as shown in figure 3.12.
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Figure 3.5 Response of a tuned disc at a frequency different
from natural frequencies, (System I)
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Figure 3.6 Response of a tuned disc with close modes, (system II>
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Figure 3.7 Response of a tuned disc using 4 excitations
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Figure 3.8 Response of a tuned disc at frequency equal to the natural frequency
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Figure 3.10 Response of a mistuned disc at frequency different from the
natural frequency (system III)
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Figure 3.11 Response of a mistuned disc at frequency different from the natural
frequency using 4 excitations
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Figure 3.12 Response of a single ND mode to the simulation in system IV
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3.11 CONCLUSIONS

For vibration of a disc rotating past a static force, a standing wave is generated which is

seen by a stationary observer. It happens at any speed of rotation but there is a resonance

if the rotating speed is equal to one of the wave frequencies, (Wave frequency = Natural

frequency of ND mode divided by number of ND of that mode).

The response of each ND mode in a rotating disc excited by a static force may be

simulated on a stationary disc using controlled multiple harmonic forces. In such a

simulation, the standing wave response mentioned above appears as a backward

travelling wave since the disc is stationary.

The simplest form of such simulation is for two forces which are orthogonal in time and

spatial position. However, in

and temporal phase angles

always be equal.

the general case, there is a particular relation between spatial

(t-t@, - $t= x) whilst the amplitudes of two forces should

The dual sine-excitation technique can be used to isolate a particular ND mode to provide

a secondary result from the simulation. For greater effectiveness, it is possible to apply

more than two exciters, but it is preferable to use even numbers of exciters and identical

pairs of exciters at the proper positions.

The contribution of different wave orders can be determined if there are more

measurement points than twice of the maximum number of considered wave orders. An

animated display of the response of a disc can be shown on a video screen and a hard

copy of the travelling waves are presented.



Chapter

EXPERIMENTAL SIMULATION OF VIBRATION

IN A DISC ROTATING PAST A STATIC FORCE

4.1 INTRODUCTION

In chapter 3 it was demonstrated that vibration in a disc rotating past a static force can

establish a travelling wave on the disc and at a certain speed, called the critical speed, a

resonance occurs. Also, it was explained that this system can be simulated for each

diametral  mode in a stationary disc when excited by at least two harmonic forces. These

forces should be orthogonal in time and spatial position with regard to the diameual mode

concerned. This is very useful, since rather than rotating the disc, we can test a stationary

disc with simpler and better modal testing methods than are possible under spinning

conditions. In addition to simulating the response for a pair of ND modes, there are other

applications for this method of excitation. Isolation of a particular mode and modal testing

can be the objectives of the dual-excitation of an axisymmetric structure.

In the previous chapter, the general relation has been obtained for the excitation set

parameters when the magnitude of the forces is kept equal (n qSk ql=l SO”). In this
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chapter, it is intended to show how this condition can be applied to a disc in practice. A

bladed disc test piece has been chosen. First, a standard sine test with one shaker is

carried out to find out the general FRF and natural frequencies. Then, the two-shaker test

and simulation is carried out on the disc. Attention has been paid to the 2 ND modes as an

example but a similar procedure can be followed for other diametral  modes.

4.2 SINE-SWEEP TEST ON THE DISC

4.2.1 The general description of the test

One of the most accurate methods in modal testing is the sine-sweep test. A sinusoidal

excitation is applied to the structure at each step and the steady-state response is measured

at the same frequency as the excitation. The excitation frequency is shifted to the next

value and the corresponding response is measured. By changing the frequency and

measuring the response, it is possible to plot the frequency response function (FRF)

which has been defined as:

c rAjk
=

ft=O, 1=1,- but I#k
&02+ilJ  ,ws

r=l

(4.1)

According to this definition, the only force causing Xj should be fk and this is an

important point in this equation which is the foundation of the conventional modal testing.

One disadvantage of using the shaker excitation is that there is an interaction between the

shaker and structure. The dynamic characteristics of the structure can change due to this

interaction.
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4.2.2 Frequency-dependency of the input force

In the sine- step excitation tests, the input voltage of the signal for the shaker is usually

chosen to have a certain value and does not change during the test. However, the applied

force to the structure may change with frequency due to the changing impedance of the

shaker. The electrical impedance of the shaker depends on the displacement level and this,

in turn, depends on the vibration characteristics of the sn-ucture.  Therefore, around the

resonance and anti-resonance, there will be more variation in the input force and less

variation far from these points. In figure 4.1, we can see the varying force level as the

exitation frequency pass two natural frequencies.

The variation of input force is not important in a standard modal test using single-point

excitation as the ratio of acceleration per unit force is measured. But it makes it difficult to

control and to adjust the forces which are required in some special tests for example, in

the two-shaker method proposed here.
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Figure 4.1 Variation of excitation force with excitation frequency
( There are two natural frequencies in this range.)
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4.2.3 Results of single-excitation tests

A disc with 45 integral blades has been chosen for the tests. It is suspended in a vertical

plane by flexible ropes as shown in figure 4.2.

In a preliminary test, the natural frequencies were found and are presented in figure 4.3.

For the freely-supported disc, the first flexural mode is the 2 ND mode (n=2) at 264 Hz.

This was confirmed by carrying out some hammer test on different points on the rim and

observing the sign of the imaginary part of each FRFs in the vicinity of the resonance.

Remembering that the sign of the imaginary part of the response shows whether that point

vibrates in phase or out of phase with the force, this is a simple way to estimate the mode

shape of a structure.

Figure 4.2 Schematic of the freely supported disc in the tests and measurment points 1 and 2
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Frequency Hr.

Ref Freq
No. [Hz]

1 158

2 264

3 296

4 344

5 482

6 682

7 746

8 752

Figure 4.3 First natural frequencies of the disc

Having recognised the 2 ND mode natural frequencies, we can perform a zoom

measurement around these frequencies to obtain more information about the 2 ND modes.

Figure 4.4 shows the FRFs from a point measurement and a transfer measurement

respectively. The modal data from these FRFs have been obtained by using ‘MODENT

and are presented in table 4.1.
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Figure 4.4 Single-excitation test on the 2 ND modes of the disc
a) Point measurement; b) Transfer measurement

Table 4.1 Modal properties from measurements at points 1 and 2

Data from
point 1

point meas.)

Data from
point 2
(Transfer
-rrnn \

2NDmode Natural Modal constant Phase Damping loss

No. fTequency  [Hz] u/Q1 [lka.] factor; TJ

1 157.05 0.0113 -6.6 0.00235
2 158.38 0.0513 -4.3 0.00118

1 157.06 0.0298 +172.8 0.00234
2 158.38 0.025 1 -7.0 0.00118
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4.3 EXPERIMENTAL SIMULATION OF A TRAVELLING

WAVE

In order to simulate a travelling wave, at least two sinusoidal excitations should be

applied at specific positions around the disc (or any other axisymmetric structure). The

two forces should be equal in magnitude and have Qt phase difference in time so that the

general simulation equation (n$,+ $+=l SO”) is satisfied. This set of excitation conditions is

hereafter called “dual controlled sine” (DCS) excitation. The spatial angle chosen was 45’
360’in the tests which is equal to the normal value (7 ) for 2 ND modes. The spatial angle

would be -90’ for generating a backward travelling wave. If Q,=+90°  is chosen then, the

direction of the generated wave is reversed but it should not be thought that the forward

travelling wave has been simulated, as explained in section 3.4.2.

Two methods are proposed to find the response to the DCS excitation. In the first

method, which is fully experimental, a phase and amplitude shifter (PHASH) has been

developed to control and adjust the two input forces at each frequency.The second

method is a hybrid procedure. By carrying out two ordinary sine-sweep tests, A and B,

we can measure the corresponding response vector (x) and input force vector (F) . Then,

we can calculate the FRF matrix [H] by using the general response formula (x j=[H]

(F]. Having obtained [HI, the response can be calculated for the DCS excitation.

4.3.1 Experimental method (EM)

In this method, the simulation is applied directly to the test structure. At the frequency of

excitation, the relative amplitude and spatial phase angle of the two input forces must be

adjusted to meet the predefined values. An acceptable tolerance for forces ratio (F$) is
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chosen as &O. 1 which is within 10% ; and the acceptable tolerance for the temporal phase

angle is assumed to be +2’ for $,=90”. In figure 4.5, the instrumentation layout for this

method is shown and specifications of the equipment are presented in Appendix D.

Phase
shifter  (Variable)

Figure 4.5 Instrumentation in the Experimental method for the simulation
of a travelling wave

Two sinusoidal forces f, and f2 are applied at points 1 and 2. The command signal from

the generator goes to the power amplifiers through the phase shifters. A standard phase

shifter is in series with one channel of ‘PHASH’ for manual phase controlling in difficult

situations. The PI-LASH is used for fine control through a computer and the phase shifter

is just for manual large phase shifting when it is necessary. The program POLAR, which

is for a single-sine sweep test, has been modified to control two shakers with the

hardware ‘PHASH’. The details of the controller ‘PHASH’ and the corresponding

program are presented in Appendix C.
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4.3.2 Hybrid method (HM)

The second method is a hybrid procedure in which two tests are performed without

applying any restriction or control on the two sinusoidal excitations. The FRF matrix [H]

is calculated from these measurements. Finally, the response to the DCS excitation can be

obtained using (x) =[H] {F) .

In the following, the analysis used in the hybrid method is summarised

Applying equation (x)=w] (F] for the measurement points 1 and 2 in the tests A and B,

we will have:

Combining these two man-ix equations, we have:

[‘x’A’x]B] = [H]

1 (4.2)

(4.3)

In the measurement, normally f2 and the responses are measured relative to f,, which is

received at channel 1 of the analyser. Therefore, both sides of equation (4.2) are divided

by F, and so equations (4.3) after combination will become:

If@ f +(F ) , the second matrix on the right hand side can be inverted and the FRF
A B

matrix N is calculated:



EXPERIMENTAL SIMULATION IN A DISC ROTATING PAST A STATIC FORCE 115

In the abovementioned method, two excitations are used simultaneously. However, it

may be more convenient if we use just one shaker when the other is disconnected in each

test. By this method, we can measure the elements of the FRF matrix directly. Assuming

that in test C, excitation is at point 1 and the response is measured at points 1 and 2 then,

we will obtain:

H,,‘(& a n d  H,,=(z)c

Similarly, in test D, excitation is at point 2 and response is measured at points 1 and 2

then, the other two elements of FRF matrix are obtained:

Therefore, in this method [H] is measured directly.

Having obtained [H] by either of the hybrid methods, two-excitation or single-excitation

tests, then, we can calculate the response due to the simulation condition.

Each of these two hybrid methods has some advantages. Using two excitations at the

same time takes less measurement time, since the shakers are aligned and connected just

once. The effects of shaker, push rod and force gauge are almost equal for both modes

when applying two exciters. However, using one shaker in each test may cause different

effects, although it has the advantage of avoiding interaction between the second shaker

and structure. Let us suppose that a mistuned disc is vibrating at a frequency near to one

of the ND modes. The response will be dominated by this single mode. The forces are

applied at two points which could be relatively out of phase for the excited mode while
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the temporal phase angles of the forces are the same. Then, one of the forces will be

opposing the vibration which is to be generated and this is a contradiction to our aim,

which is to excite the disc.

F2Also, when we are using two exciters , the ratio of (r) should be different in test A and
1

test B to avoid singularity of the forces matrix. This may be another disadvantage of the

two-excitation hybrid method compared with applying a single shaker.

In this work, two exciters have been used for the hybrid method, using the same number

as have been applied in the direct (or experimental) procedure.

4.4 EXTRACTION OF MODAL PROPERTIES

In the previous sections, the methods for simulating a travelling wave response have been

presented. Now, the question is: if we simulate a travelling wave for a range of

frequencies around the diametral mode, how can these data be used to extract modal

properties - can the conventional modal testing methods be applied?

Assuming that two harmonic excitations F, and F, have been applied on the disc, then the

response at a point j on the rim xj will be:

xj = Hjl F1 + Hj2 F2

or (~) = Hjl + Hj2 (~) (4.5)

where Hjl and Hj2 are the receptances between points 1,2 and j respectively.

Remembering that the term on the left hand side is measurable and, also, in single-point

excitation modal testing, the second term on the right hand side is zero.

Substituting the general FRF formula into equation (4.5), we have:
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2 2

() cg= A$ 1%
C0$-02+iTj,0+  + c r@i r+2 (3)

I=1
c0+9+i?p~ Fl

(4.6)

I=1

where r-1 and 2 represent the dual diametral modes which are being investigated. Adding

two parts of equation (4.6) we get:

(4.7)

This equation is similar to the FRF formula for Hjl, the only difference is in the

numerator. It seems that the modal analysis routines such as the circle-fitting method can

still be applied for $ if the ratio (2) can be held constant during the measurements. The

denominator is the same as for the standard FRF formula. Thus, the calculated natural

frequencies & and damping factors q, will yield the natural frequencies and damping loss

factors of the diametral modes. The numerator represents a complex quantity which is

called ‘pseudo modal constant’ rA+ .

F2According to the simulation criterion, (-)
h

is equal to +i when $,=+90 and the spatial

360phase angle is equal to the nominal value (QS=-4n ). In the general application of

simulation, QS can be any applicable angle so that equation (4.8) can be written as:

rAje = r@j &+a r4+ +ib ,@21 (4.9)

where a and b are defined as: a=cos $ , b=sin qt.

If the nodal diameter mode shapes of the disc are assumed to be real, r$l and r$2 will be

real. Then, from equation (4.9), the phase of the pseudo-modal constant will be:

11  ,
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LrAje = tan-’ ( b 82 )

81 +a 82

This implies that this angle does not depend on the position on the disc and for any two

points on the rim, say points 1 and 2, we can write:

This means that the pseudo-modal constants have O” or 1800 phase difference for any two

points. This is similar to the behaviour of real modes despite the (pseudo-) modal

constants being complex.

If ,Ajl and ,Aj2 are the modal constants relating points

(4.9), we can write:

1, 2 and j, then from equation

rAje = $jt +a ,Aj2 +ib rAj2

For this equation, the real and imaginary parts in the both sides should be equal. Again, if

the modes are assumed to be real, the modal constants (which are also real) can be

obtained from:

rAjl = Real(,Aj,) - i Im(,Aj,)

and rAj2 =
ImLA ie)

b

(4.10)

Thus, using equation (4.10) and assuming that the modes are real, the modal constants

can be calculated from the ‘pseudo modal constants’.

A special case is considered: when ($I =-90’ as the result a=0 and b=-1, then the

following relations can be applied for this case:

,Ajl = Real(,Aj,)

,A j2 = - ImLA j,)
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Another point from the definition of pseudo-modal constant, equations (4.7) and (4.8), is

that the phase difference between two modes can be obtained:

If 1$ and & are real, and assuming that Qt =+900  then:

L1Aj-z = * :i:tan- (-) and LzAjc = ’ zirtan- (-)

By assuming that l$=cos n(B-a) and #=sin n@-a), and substituting for 8l=O” and

8,=45O, we can show that:

1 %-----tan na
1%

and 2$2- = t a n  (na-90°)
2 %

Therefore, the phase angle between two modes are obtained:

LzAj, - LlAje = (na-900) - na

or:

It is seen that this angle is -900 between the second and first conjugates of the diametral

mode.

4.5 SENSITIVITY OF THE SIMULATION TO THE

EXCITATION PARAMETERS

As mentioned in section 3.4.2, the travelling wave response of a particular ND mode pair

can be simulated using two harmonic excitations provided that the spatial and temporal

phase angles, $S and $ satisfy the relation n 0, - Ot =JK and also that the relative amplitude

of the forces to be equal, 6: F2? = 1). The parameters QS, Qt and (I=-) are called the excitation

parameters.
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In practice and in the experimental work, it is possible that an excitation parameter will

not have its desired value precisely but will contain some error. Hence, a tolerance has to

be given for each of the excitation parameters as in many other practical techniques. Here,

the effect of the excitation parameters’ deviation on the travelling wave response is

investigated. A simple tuned system with just a single pair of ND modes is considered.

The response at different points on the disc are calculated and then the component of the

travelling wave can be estimated using the method mentioned in section 3.8. However,

for the tuned case, we can obtain the amplitude of travelling wave directly using equation

(3.10) in section 3.4.1.

Different values of the excitation parameters around their nominal values have been

chosen and then the travelling wave amplitude relative to the amplitude of the total

response is calculated for each case. Figure 4.6 shows the variation of the travelling wave

against the excitation parameters. It is seen that for a certain value on the horizontal axis

for every parameter, the deviation of the forces ratio has less influence than the spatial and

temporal phase angles. The chosen tolerances in the experiments in section 4.6.1 have
Ezbeen derived from figure 4.6. The tolerance of +lO% in (F1) makes the travelling wave

component to be at least 90% of the total response. There is more than 97% travelling

wave component in the response if +2’ tolerance is used for the temporal or spatial phase

angles.
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Figure 4.6 Normalised travelling wave amplitude vs normalised excitation parameters

4.6 EXPERIMENTAL RESULTS AND DISCUSSION

The same disc which was used in the tests with one shaker (in section 4.2.3) is chosen

for the simulation of travelling waves. The experiments are concentrated on 2 ND modes

although similar tests may be carried out on the other ND modes. Two excitations have

been used and two different methods of simulation - experimental (EM) and hybrid (HM)

- have been applied to the disc. The results are presented in the following sections

4.6.1 The Experimental Method (EM) Results

Two equal sinusoidal forces with predefined temporal phase angle were applied to the

disc at a certain spatial phase angle. For two diametral mode and spatial phase angle equal

to 45’, qt should be equal to -90” for simulating the (backward) travelling wave.

Remembering that by choosing $,=+90’ instead we just change the direction of the wave.

I,..
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The test is consisted of sine-sweep at frequencies around the 2 ND naturai frequencies. At

each frequency the magnitudes of two forces and the temporal phase angle are checked to

be within the acceptable tolerances mentioned in section 4.3.1. The measured responses
F

are shown in figure 4.7 in the fort-n of @) and @) together with (A) plotted against
Fl Fl Fl

frequency.

These are not in fact standard FRFs due to the fact that more than one exitation is applied

to the structure. As mentioned in section 4.4, although these are not normal FRFs, we

can apply the standard modal analysis methods on these data, regarding the obtained

modal constants as pseudo-modal constants. The program MODENT was used and the

results obtained are presented in table 4.2.

Table 4.2 Modal properties from EM at points 1 and 2

Data from
point 1
(x1-=1)

Data frompoint 2

(x2-=1)

2NDmode

No.

1

2

1

2

Natural Pseudo-Modal Phase Damping loss

frequ=y I%1 Constant IDeg.1 factor; Tl

[l/Kg1

157.14 0.0257 -59.4 0.00208

158.39 0.0593 +24.9 0.00164

157.16 0.0680 +117.9 0.00224

158.40 0.0315 +16.6 0.00164

4.6.2 The Hybrid Method (HM) Results

In the other method also, two exciters were used but there was no control on the temporal

phase angle or on the amplitude ratio of the forces. The measured data for both tests A

and C are shown in the Appendix B. Again, these are not standard FRFs; however, they

can be used to calculate the special FRFs to represent the simulation of traveiling wave as
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mentioned in section 4.3.2. The results are shown in figure 4.8 and the modal data are

presented in table 4.3.
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Figure 4.7 Results in the Experimental Method of simulation
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Table 4.3 Modal properties from HM at points 1 and 2

2 ND mode Pseudo-Modal Damping loss

I No.

[l/Kg1 a
Data from

point 1 1 157.16 0.0272 -69.6 0.00200
WLAC)

2 158.39 0.0538 +21.0 0.00133
1 Data from 1 157.15 0.0696 +115.2 0.00209

point 2
WZAC)

2 158.39 0.0270 +16.2 0.00129
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Figure 4.8 Results in Hybrid Method of simulation
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4.6.3 Discussion

In previous sections, the simuIation of a uavelling wave has been carried out in a disc for
a range of different frequencies. The responses at two points 1 and 2 on the disc were
measured for the frequencies around the natural frequencies. Two methods, the fully
experimental and the hybrid methods, have been used and the results shown in figures
4.7, 4.8 and tables 4.2 and 4.3.

The disc behaved as a mistuned system since the natural frequencies of the two 2 ND

modes are not the same. The separation of these frequencies has also appeared in the

single-excitation test results shown in figure 4.4. Some part of this frequency-splitting is

due to the influence of the attached transducers and shakers. Since the mode is mistuned,

the travelling wave at frequencies adjacent to the natural frequencies will be contaminated

with the other sorts of vibration, even though the conditions of the simulation are met. As

mentioned in the earlier sections, the modal properties can be obtained from the measured

response using conventional modal analysis. The natural frequencies and damping factors

obtained are almost the same as the original ones (in table 4.1), although there are

‘pseudo-modal constants’ which can be used to find the true modal constants if the modes

are assumed to be real.

In order to interpret the results, a numerical example is examined. Assuming a disc has

two pairs of diametral modes, 2 ND and 3 ND, whose modal properties are shown in

table 4.4. Two sinusoidal excitations are used and the temporal phase angles are set to be

+90” in order to excite the 2 ND modes.

The responses at points 1 and 2 are shown in figure 4.9 and the modal properties have

been obtained (using MODENT) and they are presented in table 4.5. This numerical

example is for a mistuned case similar to the disc in the experiment. In another numerical

study, a tuned system is examined. This system is similar to the mistuned case but the

natural frequency and damping factor
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Table 4.4 Modal data for numerical example (mistuned system)

Natural
frequencies

Damping factors Excitation parameters

2ND 3ND 2ND 3ND QS % a& a&

0.001. 0.001,100, 101 130, 130 0.002 0.001 45 +90 10 0
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Figure 4.9 Results from numerical example (mistuned system)

a) at point 1 (0=0”) ; b) at point 2 (0=45”)
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Table 4.5 Modal properties from measurements at points 1 and 2; (mistuned system)

a>

2NDmode
No.

1

2

1

‘)

I+200
“, 7 0

I I I 1
Natural F%dO_l-lKXM Phase Damping loss

fresumy WI constant
[mgl [Deg.]

factor; Tl

100 0.9397 +20.0 0.00100

101 0.3419 -70.0 0.00200

100 0.3426 -20.0 0.00100

101 0.9396 -110.0 0.00200

:- -.
. ..* .- -.._ -...

._._ . . . . . . . *--**
. ...*-*

..a- *...
--- . . . . ...*_

. . . . . . . . . . . . . . . . . . . . . .._......

9 8 . 0 0
Data from 11 0 90 ]

F r e q u e n c y  H z . 1 0 3 . 0 0

I
9 9 . 0 0

Data from 11 45 90 i
Frequency H z .

1 0 3 . 0 0

b)

Figure 4.10 Results from numerical example (tuned system)

a) at point 1 (e=O”)  ; b) at point 2 (0=45”)
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Table 4.6 Modal properties from measurements at points 1 and 2; (tuned system)

2NDmode Natural Modal constant Phase Damping loss
No. frequency  l-w WQI IDeg.1 factor; Tj

Data from
point 1

GLcL_~>

1 100 0.9999 0.0 0.00100

2

Data from
point 2

(~_45_90)

1

2 100 0.9998 +90.0 0.00100

are 100 Hz and 0.001 respectively for both 2 ND modes. Of course, in this system a is

equal to zero since it is a tuned case. For this tuned system, the responses to the DCS

excitations have been presented in figure 4.10 and the modal properties are given in table

4.6.

There is a pure travelling wave at each frequency shown in figure 4.10. By comparison

of the phase angle curves for points 1 and 2, it is seen that at each frequency the phase lag

of point 2 relative to point 1 is +90°. This is for inertances which is same for the phase

difference of the receptances. It implies that the wave travels from point 2 towards point 1

on the rim. This is correct, since qt was chosen to be +90° which is the opposite sign to

the temporal phase angle for generating a backward travelling wave which would go

from point 1 towards point 2.

For the mistuned system shown in figure 4.9, the phase difference around the two natural

frequencies is not 900 but away from the natural frequencies, where the effect of

mistuned modes is reduced, the phase angle is 900. In the actual mistuned system,

figures 4.7 and 4.8, similar interpretation can be made. At frequencies very close and

equal to the natural frequencies, the travelling wave disappears, while at frequencies away

from natural frequencies, the condition of the response returns to the travelling wave.
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From the calculated modal parameters, the phase difference between two modes

corresponding to the pseudo-modal constants is 900 for the numerical system (table 4.5).

However, these are about 100 off for the actual systems (tables 4.2 and 4.3).This is

because the measurements and modal analysis of the data is carried out with the inevitable

inclusion of some errors.

The phase of the pseudo-modal constant shows that the phase difference for each mode at

two different points on the rim is O” or 180°,  as it was expected from the theory. This

shows that the modes are originally real, even though they have appeared as complex

modes.

The results from the experimental or direct simulation method and results from the hybrid

simulation method are in general agreement. As mentioned earlier, each method has some

advantages and disadvantages. The direct simulation method needs more testing time and

a controller such as ‘PHASH’, which makes for more complicated instrumentation for the

test. However, in this method we can have the simulated travelling wave on the real

structure while in the hybrid method the response to the DCS excitation is calculated.

F2Another disadvantage in the hybrid method is the requirement of different (F) in the two
1

tests. When the disc is mistuned and the damping is low, the two diametral modes behave

as two separate modes. In this situation, near resonance, it is not easy to apply different
F2(q) in two tests since one of the forces (which is more involved in the excitation of the

first mode) will be at a low level due to the frequency dependency of the input force. We

cannot increase it by increasing the input voltage. For the similar situation in the

experimental method, it is also difficult to excite the other mode by adjusting the forces at

frequencies close to a natural frequency of a mistuned lightly-damped system.

The test disc is a very lightly-damped structure. Its damping had to be increased by

adding a wire to the blades in order to carrying out the two excitation tests. The inherent

damping is about four times less than the values measured with the additional damping

b ,
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material. A single-shaker test on the disc without additional damping and the

corresponding modal data have been shown in Appendix B for comparison with the other

modal data which have been obtained from the wired disc.

4.6 CONCLUSIONS

It has been shown that travelling waves can be simulated on an axisymmetric structure by

applying two harmonic excitations. Two methods have been applied: in the first ,

conditions of the simulation are applied directly on the structure. This method has been

called the experimental method. The second method is a hybrid procedure in which the

FW matrix is calculated from the data of two sets of measurements on the structure.

Then the response to the special excitation for the simulation (DCS excitation) is

calculated.

In a tuned system, the response is a pure travelling wave. However, in the case where the

structure is mistuned and very lightly-damped, a pure travelling wave can not be

established at frequencies close or equal to a natural frequency. The experimental method

has some advantages subject to having a proper controller for the amplitude ratio and the

temporal phase angle between the two forces.

As a result of simulating the travelling wave at frequencies around a set of diametral

modes, two modes will emerge from the analysis with phase angles at 90° relative to each

other. The standard modal analysis routines such as the circle-fitting can be applied on the

responses despite the application of more than one exciter. In the case of real modes in the

disc, the modal constants can be obtained from the pseudo-modal constants.



Chapter LJ5

TRAVELLING WAVE RESPONSE IN
A LUMPED-MASS MODEL

5.1 INTRODUCTION

In chapter 1, it was mentioned that non-uniformity in the static pressure distribution

exerted on a rotating disc in a gas or steam turbine could excite the disc in different engine

orders. Furthermore, each nodal diameter mode of the disc rotating past a non-rotating

and static force may be simulated on a stationary disc using a dual harmonic excitation.

On the other hand, for a disc as an axisymmetric structure, most of the modes are double,

so that at one frequency there are two modes with same mode shapes but orthogonal in

space. Simulation of double modes is carried out by applying two harmonic forces
360’

separated by a spatial angle of e5=4n where n is the number of nodal diameters (ND),

and by a temporal phase angle Qi=900. In chapter 3, it was shown that different temporal

and spatial phase angles can be chosen provided they satisfy the following relation:

In the present chapter, a discrete mass model of a disc is considered for further analysis

on the forced vibration of rotating discs. The simulation criterion which has already been
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5.3 EIGENVECTORS FOR REPEATED EIGENVALUES

As mentioned in the previous section, for repeated eigenvalues any linear combination of

their eigenvectors is itself also an eigenvector. However, a particular eigenvector can be

introduced which is unique relative to a chosen eigenvector of the family of eigenvectors

of the repeated eigenvalues. In the following, the method which has been developed in

reference [47] is used.

Supposing that (tq), and (w ), are two eigenvectors corresponding to the equal

eigenvalues I$nd hf. Alternative eigenvectors (v’) k and (~‘1 1 are introduced such that

at a certain coordinate, xi, one of them is zero :

Also, the new eigenvectors are to fulfii the orthogonality condition:

Setting (v’), and (v’], as a combination of the initial eigenvectors, we can write :

where p and q are two constants which are to be determined.

Substituting into equation (5.6) gives :

p q mk + ml‘= 0

where :

(5.7)

(5.8)



El SlMULAl’KN  OFTIUVELLING  WAVE IN A DISCRl3-E  MODEL 136

On the other hand, by using equation (5.5) for coordinate i, we will get :

P kWi - IWi = O

or : Iwip=--

kwi

Now, q will be obtained from equation (5.8) :

ml . &i
q’,k 1Wi

(5.9)

(5.10)

The new eigenvectors possess the properties of orthogonality and are unique in direction

(or phase). However, they should be normalized in magnitude to be the same as the

original ones. For simplicity, if the eigenvectors are represented by vectors IJ and u’ :

iv),  =’ and I+), = ” (5.11)

they can be written in term of unit vectors and norms :

“=&I and G’ U’
=iixl

The normalised eigenvector IJ~ is in the direction to u’ and is equal to u in magnitude,

that is:

II; = llull 0’

or :
lluli I%l - Ilu’ll

--. u

Substituting the original vectors from equation (5.11) will give:

&w’& =
(nombi)k)  I (w)k

(nom(v)k)
(5.12)
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Similarly, we can obtain the normalized eigenvector for the other mode:

(5.13)

5.4 DUAL-EXCITATION RESPONSE

In the previous section, the eigenvalues and eigenvectors of the assumed lumped mass

system have been obtained. Now, the response to any set of harmonic forces can be

calculated; although particular interest is on the response to the two harmonic excitations

with specific spatial and temporal phase angles. The general formula for the response [3]

is:

WI = WI PI (5.14)

where [H] is the FRF matrix whose general element Hij is given by:

N

N is the number of modes and is assumed to be equal to the coordinates. r$ is the mass

normal&d eigenvector element at point i, and is equal to :

The input forces, fr(t)=Fu cos cnt and f2(t)=Fo cos(wt+$,>, should have equal magnitudes

and hence the force vector for the case of interest is

(5.15)

b
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where $t is the temporal phase angle which is equal to -90’ with the spatial angle 0,
360’; In the general case, the following relation is applicable between 9, and +s as

shown in chapter 3:

n +s - $ = x (5.16)

Now, using equation (5.14) and assuming different numerical data for the model, the

response can be calculated and the simulation criterion examined for different conditions

such as mistuned systems, complex m&es and general spatial phase angle.

5.5 NUMERICAL STUDY

Program DISC4 has been written for the analysis of the lumped mass system shown in

figure 5.1. It is assumed that the system consists of 16 elements and all the masses and

stiffness are the same unless they have been modified in the input data. This means that,

for example, the mass, stiffness or damping loss factor of element i can be p% above or

below its nominal value. In this way we can introduce any kind of mistuning or non-

proportionality in the system.

The program first calculates the eigenvalues and eigenvectors of the system, then, in the

case of repeated eigenvalues, obtains proper eigenvectors for such eigenvalues using the

method mentioned in section 5.3. Finally, it calculates the response at all the coordinates

for the desired mode, for a given spatial angle (between the two exciters) and at the given

excitation frequency.

In another subroutine of the program, the multi-input sine dwell test method has been

considered to isolate one mode. In this method mono-phase forces are applied at all
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coordinates. Their amplitudes are selected such that a particular mode -but only that

mode- will be excited. Using this method any mode can be isolated at the excitation

frequency.

In the following section, seven particular cases of mistuned systems with different

damping and forcing inputs are presented.

CASE 1 : Mistuned system with real modes

In this case all the masses are equal to unity except those at coordinates 1,5,6 and 12

which are increased by 2%. 3%, 4% and 2.5% respectively. Also, the stiffness for all the

springs is l-E+4 (N/m) except for elements 3, 8 and 9 which are changed by +l%, +2%

and +l% respectively. The damping loss factors for all elements are assumed to be 0.05.

The first 7 eigenvalues and eigenvectors are shown in table 5.1. A rigid body mode has

been found at 4.46 rad/s and the rest of the modes are nodal diameter modes which are in

pairs with close natural frequencies. This table shows that although the modes are close,

they are real modes since proportional damping has been assumed for the model.

The 2 ND modes are plotted in figure 5.2; they correspond to the eigenvalues h, and k5 .

This figure shows that despite the mistuning in [M] and [K], the mode shapes are very

close to sinusoidal forms.

To simulate the 2 ND travelling wave on the system, two excitations with a temporal

phase angle of 90’ are located at coordinates 1 and 3. The angle between these two

coordinates is 45’ for 16 elements around the disc. The total response due to this

excitation at frequency equal to 76.3 rad/s (identical to the lower 2 ND natural frequency)

is shown in figure 5.3 (c). The response to the different wave orders can be analysed as

mentioned in section 3.8. Figure 5.3 (b) shows the contribution of the 2 ND mode
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Table 5.1 Eigenvalues and eigenvectors for case study 1

backward wave, which is the largest of the various orders in the total response. This is

expected as the excitation is set for 2 ND modes. Figure 5.3 (a) represents the rest of the

response when the contribution of the backward wave of 2 ND modes is removed. Note

that when the wave travels in the direction of the excitation point 1 to the excitation point

2 it is a backward travelling wave. In contrast, if it travels from point 2 towards point 1, it

is a forward travelling wave. This terminology is based on the earlier description of the

simulation where the direction of disc rotation, R, was assumed to be in the opposite

direction to 8. Therefore, a wave is a backward one if travels in the direction of 8.
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Figure 5.2 2ND modes of mistuned system; case study 1

(a) _----_a
fhpt.=7.46E-m

‘Dr.Wrn’

(b) 68

fbpi  .-4.2iE-a4

68

R!qi! .=4.99E-a4

Figure 5.3 Response of the disc in case study 1

7 9 11

Disc circumference

EI dala3-21
l data3-22
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CASE 2: Mistuned disc with complex modes

Table 5.2 shows the first 7 eigenvalues and eigenvectors of the system with the same

mass and stiffness data as in the previous case but with the damping loss factors at

elements 3, 8 and 9 changed by -5O%, +50% and -20% respectively. This variation in the

damping loss factors results in non-proportional damping in the model and,

consequently, the modes are complex as seen in table 5.2. The response to the two

excitations is calculated for this system and the results are shown in figure 5.4. It is seen

that the backward wave of 2 ND modes is dominant in the response as in the previous

case, and that the modal complexity had no significant effect on the response to this

excitation.

Table 5.2 Eigenvalues and eigenvectors for case study 2
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68

sa

fbpl.-5.02E-04

Figure 5.4 Response of the disc in case study 2

CASE 3 : Excitation at frequencies different from the natural frequency

According to theory, the response of the dual diametral modes to the excitation preset for

the simulation of a travelling wave is a pure travelling wave if the disc is tuned. This is

independent of the excitation frequency, whether it is equal to, below or above the natural

frequency. However, in a mistuned case, the component of the travelling wave increases

if the excitation frequency is away from the natural frequency, since at frequencies away

from the natural frequencies, the effects of the two modes are almost the same. This

argument is always true whether we consider just one set ND modes or more. But in the

latter case, the other modes are also excited more or less depending on the excitation

frequency.

Ln case study 3, excitation at a frequency away from the natural frequency is investigated.

The same model as was used in case 1 is used again here and an excitation frequency of



80 rad/s is chosen which is higher than 2 ND natural frequencies of 76.34 and 76.64

x-ad/s. The response is shown in figure 5.5 and indicates a backward travelling wave of 2

ND modes.

60

Rap1 .-2.00E-04

60

Rmpl.-2.45E-04

Figure 5.5 Response of the disc at 80 rad/s in case study 3

The investigation is continued further at an excitation frequency of 110 rad/s,  which is

very close to the 3 ND natural frequencies of 110.75 and 111.16 rad/s, while the two

exciters are properly selected for excitation of the 2 ND modes. In figure 5.6 the response

is shown in which the 3 ND modes are seen to be dominant. It is concluded that a mode

cannot be isolated at a frequency equal to the natural frequency of another nodal diameter

modes even if the excitation forces are set such as to excite that mode. As a result, the

modes which are not easy to identify by their number of nodal diameters can be

recognized by applying a different excitation pattern at the suspected natural frequency.

By changing the excitation pattern, if it still responds to the previous modes, then this

mode is the right one.
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6 0

6 0

Amp1 .= l.BEE-04

6 0

Rmpl.-2.76E-04

Figure 5.6 Response of the disc at 110 rad/s in case study 3

CASE 4 The effects of frequency split and damping level on the response

In the excitation of n ND modes, the response approaches a backward travelling wave if

the corresponding natural frequencies are close together and the level of damping is high

enough. Figure 5.7 shows the response of the same system as discussed in figure 3.5 but

with a damping loss factor of 0.005 instead of 0.05. It is seen that the total response is

close to a fixed vibration (vibration of one mode), rather than a travelling wave.

The effects of damping level and the closeness of natural frequencies in the simulation are

studied comprehensively below, in section 5.6.
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68

68

Rmpl.-4.66EY-03

Figure 5.7 Response of the disc in case study 4

CASE 5 : Excitation with the forces at an arbitrary spatial phase angle

The same data as were applied in case 2 are considered here and the second excitation

force is applied at point 4 so that QS=67.5’. By using the relation (5.16) for 2 ND

modes, temporal phase angle Qt would be required to be +45’ in order to simulate the

travelling wave of 2 ND mode. The response and its two components are shown in figure

5.8, representing almost a backward travelling wave of 2 ND mode, the same as figures

5.3 and 5.4, when qS=450.  Hence, any applicable spatial angle can be used, subject to

satisfying relation (5.16).

CASE 6 : Dependency of modes location on the mass distribution

A set of data is considered in which all the masses are the same except at point 3 where it

is 5% more than the others. The mode shapes of the 2 ND modes are shown in figure

5.9. It is seen that the anti-node of the lower natural frequency mode coincides with point

3 while the node of the other mode is at this point. This is the same conclusion that has

been mentioned in references [7]

L ,
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Figure 5.8 Response of the disc in case study 5

0.8 ,

7 9 11

Disc circumference

17

Figure 5.9 2 ND modes when there is concentrated mass at coordinate 3
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Figure 5.8 Response of the disc in case study 5
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Figure 5.9 2 ND modes when there is concentrated mass at coordinate 3
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and [19] and states that in mistuned axisymmetric systems, the modes are located such

that the masses are effectively on the nodes of higher frequency mode and at the anti-

nodes of the lower frequency mode. By referring to figure 5.2 and comparing with figure

5.9, it is seen that the position of the modes has been changed due to different mass

distributions around the disc, although the same excitation positions were used for both

simulations.

CASE 7 : Applying simulation using more than two excitations

As mentioned in section 3.6, it is feasible to apply more than two excitations in the

simulation provided that they are located and synchronised  with respect to the two

original excitations. In this case, four excitations which are two identical pairs, are

applied to the disc in a similar way to the case shown in figure 3.4 of chapter 3. The

response of the system to the four excitations is shown in figure 5.10. Here, the same

data as had been used in case 1 were applied, and so figure 5.10 is comparable with

figure 5.3. In figure 5.10, the relative maximum amplitude of ‘other waves’ to the total

response is 0.10 while for the two excitation case figure 5.3, it is 0.15.

These figures imply that by increasing the number of exciters there will be a significant

reduction of the ‘other waves’ components in the response. In the other words, by using

more excitation locations, the response approaches the response of the mode of interest

and this is beneficial from a quality point of view.

Practically, the application of more than two excitations does not necessarily mean that the

controlling procedure becomes more complex. This is because by choosing proper

locations and similar temporal and spatial phase angles to the two set exciters for the

required mode shape there is no need for extra controllers and more complex procedures.
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‘Ttial bm’
Rap1 .-B.42E-04

Figure 5.10 Response of the disc in case study 7; (4 excitations were used)

5.6 GENERAL STUDY ON THE EFFECTS OF THE

NATURAL FREQUENCY SPLIT AND DAMPING

FACTOR ON THE SIMULATION

In this section, the sensitivity of the simulation of a travelling wave response to the

damping and also to the frequency splitting is investigated. In chapter 3, it has been

explained that the travelling wave can be simulated in an axisymmetric structure by

applying the special set of harmonic forces. The basis for establishing a travelling wave in

a disc is the existence of dual modes. Here, it is intended to study the effect of natural

frequency splitting and damping level on the simulation.

Eigenfunctions of a dual ND mode are assumed to be of the form:

t$‘)@) = cos n(9 -cz)

4J2’(8) = sin n(0 -cx)
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The response x3 at a point on the rim to the two harmonic excitations F, and F, can be

expressed as:

x3 =  H31 Fl +  H32 F2

In an analytical investigation, x3 can be calculated since the receptances H3t and H32 are

obtained using the general FRF formula:

Hjk=c r@j  r@k

c+02+irlrw~
r=l

Responses at some other points, (say 15 points), can be calculated in the similar way.

Then, the travelling wave component in the total response is estimated by using the

technique mentioned in section 3.8.

Consider a disc with 2 ND modes for this analysis. Two harmonic exciters are applied on

the disc with a spatial phase angle $,=45’, temporal phase &=-90’ and relative

magnitudes equal to 1. The excitation frequency is assumed to be 95 Hz while the lower

natural frequency is 100 Hz. Different frequency splits can be studied by considering

different values for the second natural frequency. The effect of damping loss factor on the

development of the travelling wave is also investigated. In each case, damping is assumed

to be the same for both of the 2 ND mode.

To illusnate  the results, a 3 dimensional diagram has been shown in figure 5.11. It can be

seen that the travelling wave component increases with lower frequency spacing and with

higher damping. The effect of the frequency spacing is more than the effect of damping in

the low damping value range (qcO.2).  This range of damping covers most of the

structures which are encountered in practice. Thus, the frequency splitting has a

significant role in the formation of a travelling wave at a certain frequency.
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Figure 5.11 Travelling wave component vs nat. frequency split and damping

5.7 CONCLUDING REMARKS

In the analysis of the assumed lumped mass model of the disc the following conclusions

can be drawn:

l- By introducing non-proportional damping to the model, complex modes are achieved

and for this system and the considered case, the travelling  wave can be simulated by

using DCS exciters, similar to the system with real modes.

2- Various spatial phase angles for two excitation forces can be chosen, subject to the

satisfying the relation of: n QS - $t = x.
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3- Orientation of a ND mode shape depends on the distribution of the mass and stiffness

in the mistuned disc. The point with a higher effective mass will coincide with an anti-

node of the lower natural frequency mode while it will be on the nodal line of the higher

natural frequency mode.

4- The response of an n ND mode to the two excitations (DCS exciters) is a travelling

wave with order n. This is true for a tuned disc; however, in a mistuned disc, the

contribution of the travelling wave to the total response at a certain excitation frequency

will be decreased by increasing the natural frequency-splitting or by reducing the

damping.



Chapter

VIBRATION INTERACTION OF A ROTATING
DISC AND AN ADJACENT STATOR -

Part I Excitation applied to the disc

6.1 INTRODUCTION

It is well understood that at critical speeds as shown on the Campbell diagram, the n ND

mode of a disc, or bladed disc, can be excited by n EO excitation and resonant vibration

can occur leading to possible fatigue failure. Hence these critical speeds are avoided in the

design and operation of the rotating discs. Kushner [ 151 has shown that even minor

resonances can become significant if the critical points are to be avoided in the running

speed ranges. These minor resonance points are determined by the difference between the

number of blades in the disc and the number of vanes in the stator. Jay et al [17] also

have shown that the difference between the number of blades and vanes defines the order

of the forcing function and hence determines the order of the excited nodal diameter

mode. There are several kinds of interaction between a rotating disc and the stator in

which the number of vanes and blades are concerned. There is the possibility of vibration
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interaction between a rotating disc and an adjacent stator in a gas or steam engine where

vibration in one of the structures is transferred to the other one. In figure 6.1 two

possibilities for vibration transmission between the rotating disc and the stator have been

illustrated. Figure 6.la) shows a typical seal between the stator  and the rotating disc

which is used, for example, to separate the gas passage and the adjacent section in the

rotor disc construction. Supposing that the rotating disc is vibrating at nth EO-excitation,

a dynamic force can be transmitted to the stator through the seal due to this vibration.

a) b)

Figure 6.1 Two possible situations which could cause a vibration interaction
between the rotating disc and the stator

Figure 6.lb) represents another configuration in which the surface of the casing (stator)

of the engine is not parallel to its axis. When the disc vibrates, it is possible that the gap

between the rotor and the stator changes with the same order as the excited ND mode in

the disc. The pressure of the gas-flow is related to the thickness of the gap and as a result,

the dynamic pressure on the stator causes vibration. Hence, there is a similar situation for

the possibility of vibration interaction between the rotating disc and the stator.

In order to investigate the vibration interaction between a rotating disc and the stator, two

distinct analyses are considered according to the source of the excitation. In this chapter,
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it is assumed that the initial excitation is the n EO excitation on the disc and in the next

chapter, the excitation is assumed to be exerted on the stator. In the both cases, it is

assumed that the vibration is transmitted between the disc and the stator through a soft

spring so that the displacement in one causes a proportional force on the other structure.

In this chapter, the response of a pair of ND modes of a rotating disc due to nth EO

excitation is obtained, then the response of the stator due to the vibration interaction is

determined. It will be explained in section 6.3 that the total analytical solution for the

vibration interaction is not possible and we only obtain the part of the stator response due

to the interaction.

6.2 RESPONSE OF THE ROTATING DISC TO nth ENGINE

ORDER EXCITATION

One of the most significant sources of excitation of diametral modes in a rotating disc is
engine order excitation. This kind of excitation can be expressed as F,(B,,t)=F, cos n %,,

which could be the effect of the static gas pressure behind n stationary vanes or nozzles to
the rotating disc, (Remembering that 0, is the stationary coordinate and 8 is a coordinate

rotating with disc). A static force applied to the rotating disc is also, in fact, an engine
order excitation to which all the diametral modes are susceptible to resonance and not just,
for example, n ND modes in the case of n EO excitation.

In the following section, the response of a pair of ND modes of the disc to nth EO

excitation is obtained.

6.2.1 Analysis in terms of coordinates rotating with disc

Consider a rotating disc subjected to nth EO excitation, F,(B,,t)=F, cos n 0,. By

substituting 8, by (9-Rt ), and expanding, the forcing function in terms of coordinates

rotating with the disc is obtained:

b.
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F,@,t) = F, sin r-8 sin nRt + F, cos n0 cos nRt (6.1)

By setting the eigenfunctions of the two n ND modes as: Onl=sin r&l and 0)n2=cos  n0,

the generalized forces in these two modes can be calculated.

According to the definition, if F,-,(Cl,t) is a dynamic distributed force applied on a system,

the generalized force formula for mode i of that system is :

2n

Qi= (F(',t) ~i('> de) (6.2)

Therefore, for the first n ND mode of the disc, the generalized force will be:

Q=k’ (F, sin2n0 sin r&t + sin no cos n0 cos nQ t de)

2x 2x

=F
0 I

l-cos  2ne
2 sin nRt de + F,

sin
i

2 ne
2 cos nRt de

0 0

or :

Qnl= 7c F, sin nRt (6.3)

Similarly, for the other mode:

Qn2W = ,. j;sin nKc0s nt3 sin nQt + cos2 nt3 cos nRt de) (6.4)

or:

q2(t) = IC F, cos nRt (6.5)

Having obtained the generalized forces, the generalized (or normal)  responses are

calculated by using the convolution integral, as used in chapter 2. If mnl and on1 are the
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q,(t) = w2.1 cos rlRt + w22 cos 6I& t

where: w21=
-x F,

mn2 (n2Q2 - o,22)

and w22 =
x Fo

mn2 (r&22 - a,‘,,

and the steady-state solution will be deduced:

q,(t) = W21 cos r&t (6.11)

Knowing the generalized coordinates

using the mode-summation formula:

2

for the n ND modes, the response is calculated

xdll(e9t> = ), @nice> q,Ct>
i=l

(6.12)

Substituting from equations (6.10) and (6.11) into equation (6.12), the response of the

rotating disc due to n EO excitation is obtained:

X,(e,t) = W11 sin n9 sin nQt + W21 cos n0 cos nRt (6.13)

6.2.2 Analysis in terms of stationary coordinates

Equation (6.13) represents the response of the rotating disc in terms of a coordinate

rotating with it_ However, from the stator point of view, the response of the disc should

be obtained in terms of the stationary coordinate 8,. By assuming that rotation is in the

opposite direction to 8, the relation between the rotating and a stationary coordinates is:
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Equation (6.23) represents the steady-state response of the stator due to interaction with

the disc subjected to EO excitation. Supposing that the stator is tuned, then the parameters

A and P would be equal and hence:

Xsn@oJ) = A- cos n(e, + 2Rt)
ms OS

which expresses a forward travelling wave with speed of ‘20.

Another result from this analysis is that the frequency of vibration in the stator is twice the

vibration frequency in the disc. Also, it is deduced from equations (6.22) and (6.23) that

for a system in which natural frequency of the n ND mode of the stator is equal to ‘2nR’,

a resonance coincidence in the stator would occur as a consequence of the interaction.

6.4. NUMERICAL STUDY

The analysis has been used in a computer program to investigate different situations in the

disc-stator interaction. The program ‘IN_PLT’ has been developed to simulate the

interaction of n EO excitation of the disc and stator. In this program, different data for the

disc and the stator are entered. The program calculates the response of the rotating disc in

terms of coordinates rotating with the disc, X,,(e,t), and then the responses of the

rotating disc and of the stator from the view point of a stationary observer, X&&J) and

Xsn(Clo,t), are calculated. An animation display of the responses is shown on the

computer screen and a hard copy of these displays can be obtained. In one time period

(T= 60.1 nC2), the response is plotted at six time intervals successively. In the case of a

travelling wave, different colours  and/or numbering of the curves can help to indicate in

which direction it is travelling. The direction of the travelling waves can also be shown by

an arrow above the curves, similar to the cases shown in figures 6.4 to 6.10.
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In figure 6.3, a frequency-speed diagram for the 3 ND modes of a disc and stator is

shown. The natural frequencies of the 3 ND modes are assumed to be 100.0 and 101.0

Hz for the disc and 80.0 and 80.5 Hz for the stator. Also, it is assumed that the natural

frequencies of the disc do not change with the speed of rotation. The generalised masses

for the 3 ND modes of the disc are supposed to be mnl=l .O and m,=l .1 kg and of the

stator, mS,=0.9 and mS2=1 .O kg. The various responses of the disc and the stator for the

interface stiffness equal to K=l.E+6 (N/m) are calculated and examined at six rotational

speeds shown in figure 6.3. The results will be discussed in the next section but the

conditions for each case are as follows:

R, : At this speed the lower natural frequency of the 3 ND modes of the stator

coincides one of the resonant frequencies of a 3 ND mode of the rotating disc, that is:

0~~=0~~-3Q~. Hence QA is equal to 400 rev/min and the responses for this speed are as

shown in figure 6.4.

fiB : The interaction is examined at an ordinary speed fin=500 rev/min  for

comparison of the resuits with other particular cases. Figure 6.5 illustrates the responses

for this speed.

Ro : At this speed, the ‘3Q’ line (or 3 EO line) intersects one of the resonant

frequency lines of the rotating disc. For this case (0~~-3Ro)=3Qo  and hence RD=lOOO

rev/min.  In figure 6.6 the responses of the disc and the stator are illustrated when the

rotation speed is at R,.

R, : It is worth examining the interaction at the rotating speed for which the

excitation line (3 EO line) intersects one of the stator natural frequency lines. As an

example of this case, consider RE in figure 6.3 for which we can write (3!2~) =oSl  and

hence, C&=1610  rev/min. The responses for this speed are illustrated in figure 6.7.
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Rotation speed R

Figure 6.3 Natural frequencies and the rotation speeds studied in the
vibration interaction between the disc and the stator

Qs: In the analysis, it has been realized that at a certain rotating speed the stator will

be at resonance . That speed is given by Rsa. At one of these speeds Rs=800  rev/min

, the interaction has been examined and corresponding responses are shown in figure 6.8.

& : Let us consider one of the critical speeds. Theoretically, at the critical speed of

n EO excitation, the response of the disc is very high and in an undamped case goes to

infinity. In order to make calculation feasible at speeds such as RC , the denominator of

the amplitudes in equations (6.13) and (6.15) is assumed to be a small value rather than

zero.

At this critical speed, odl - nRc =0 and with the assumption of o,,=lOO Hz, then Rc

becomes 2000 rev/mm. The results of these data are shown in figure 6.9.
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'DISC: rot coord ulth dlrc'

'DISC; otatlonary coord'

68

'STATOR: stationary coord' -E--
Rmp1.13.04E+00

60

Ampl.-4.1lE+RE

Figure 6.9 Responses at !&=2000 rev/min.

‘IIISC:  r o t  c o o r d  u f t h  d f t c ’ -_j

- - - - - -

‘DISC: rtmtfonary  coord’

‘!8RToc(t rtatfonary coord'
FVmp1.r6.29E-86

66

Fhmp1.r2.9X-86

Figure 6.10 Responses at 400 rev/min.and with reduction of the detuning in the disc
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this figure. The responses for different cases are presented in figures 6.4 to 6.10. In each

figure, two upper families of curves represent the disc responses in terms both of

stationary coordinates and of coordinates rotating with the disc. The lowest family of

curves illustrates the response of the stator. In almost all figures, the response of the disc

to 3 EO excitation is very close to a backward travelling wave in the rotating coordinate or

a ‘standing wave’ in the stationary coordinate. Since the disc has been assumed to be

mistuned, it is not a pure standing wave but a standing wave oscillating in its position as

shown, for example, in figure 6.7. In fact, this slight deviation from a pure standing

wave is responsible inducing vibration to the stator.

The response of the stator is almost a forward travelling wave with a speed twice that of

the travelling wave on the disc. At R,--400 rev/min and !&=500 rev/min there is no

resonance coincidence, (figures 6.4 and 6.5). Also, resonance does not occur either when

the 3 EO line intersects the disc resonance frequency line, (o,,-3R), (that is at !2~=1000

rev/mitt), or at the speed of R,=1610  rev/min where the 3 EO line intersects the stator

natural frequency line. However, the level of response is higher than in figures 6.4 and

6.5 as these speeds are closer to a critical speed. In figure 6.9, the response at one of the

critical speeds of the disc has been illustrated. The level of response indicates that the

resonances coincide . In this figure, the response of the disc in terms of coordinates

rotating with the disc is a fixed vibration which means one of the pair of 3 ND modes of

the disc dominates in the response due to the detuning assumption made for the disc.

At Rs=800 rev/min, where the 3 EO line intersects the (us,-3R) line the coincidence of

0
resonance occurs in the stator as seen in figure 6.8. This speed is equal to R=$ in

general, which has been obtained in the analysis and is introduced as a minor resonance

in the vibration interaction between a rotating disc and an adjacent stator.

Another point examined in the analysis is the effect of detuning on the interaction. Figure

6.10 shows the responses for the case in which the modal masses of 3 ND mode of the

disc are closer than in the case whose responses are illustrated in figure 6.4. Due to the
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lower detuning, a reduction in the level of vibration in the stator is observed and, as

mentioned before, because of this effect, no vibration will be induced to the stator in the

case of a perfectly tuned disc.

6.6 CONCLUSIONS

The vibration interaction between a stator and a disc subjected to n EO excitation has been

investigated. In general, a forward travelling wave with a speed of ‘2R’ and effective

vibration frequency equal to ‘2nR’ exists in the response of the stator. There is a

resonance coincidence for the stator when the natural frequency of the structure is equal to

‘2nR’; in other words, in the interaction a critical speed for the stator is equal to (2).

This point can be seen in the frequency - speed diagram where the assumed ‘oS-nR’ Iine

intersects the excitation line(n  EO).

The response of the disc is almost a standing wave from the viewpoint of a stationary

observer, such as the stator. It is the slight deviation from a pure standing wave which

excites a travelling wave response in the stator. However, for a tuned rotating disc the

response to the n EO excitation is an exact ‘standing wave’ so that it could not introduce

any vibration to the stator.
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disc. A computer program has been developed to display and plot the responses of the

disc and stator in order to examine the interaction .

Analysis is started by assuming a harmonic force applied to a stator as shown

schematically in figure 7.1. The vibration of the stator can be transferred to the adjacent

rotating disc through the seal as described in section 6.1. In the following, an analysis is

carried out for one pair of modes of the nodal diameter family to examine the vibration

interaction between the stator and rotor.

F=FO cos wt

I
2x

Unwrapped circumference

Figure 7.1 Schematic diagram of the stator and applied force

7.2 RESPONSE OF THE STATOR

In order to analyse the response of a.stator to a harmonic excitation, it is assumed that the

eigenfunctions of the n ND modes are:
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+ Sl =  s i n  no,

1

(7.1)
$S2= c o s  n0,

In fact these equations represent the n ND mode shapes on a circle of the stator and in the

interface area with the adjacent rotating disc The excitation point may not coincide with a

nodal diameter and the spatial angle between the excitation point and the adjacent nodal

point is assumed to be r, figure 7.1. By these assumptions, the forcing function will be

(F&OS ot) &(3,-y] and the generalised forces can be obtained as follows:

2n

Q,,(t) = F,(cos ot)S[&,-y] sin n&, de, (7.2)

27t

Qs2W = F,(cos ot)s[0,-y] cos ne, de, (7.3)

or : Q,Jt> = Fo sin ny cos Ot
(7.4)

Q,t(t) = F, cos  ny  cos  at

Now, the modal responses are calculated by using the convolution integral .

q,,(t) =
1 (Fosin

mS1 OS1

ny cos 07) sin (nSt(t-T) d7

s,,(t) = l (Focos
mS2 OS2

ny cos 07) sin c)S2(t-T) dz
1

(7.5)

After integration and considering the steady-state terms only, will give:
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q&) = - [ FosF ny
mS1 (0 - ws12)

] cos  cot

i
(7.6)

q,,(t) = - [ F°Cy ny
ms2 (w - US,*)

] sin cot

The response of the stator is obtained by using the mode-summation formula :

&n@o,t) = 9,l (0 ~,,(e> + qs* (0 @,,@o) (7.7)

or : Xsn(eo,t) = -Al c o s  at s in  no,- A2 c o s  at c o s  n0,

where:

(7.8)

Equation (7.8) can be written in another form :

Xsn(Oo,t)  = -A, cos ox sin n(6, - a) (7.10)

whereA,=+dmand a=atan(-2)

which represents the response of the stator to the harmonic force .and it is seen to

represent a ‘fixed vibration’. Since at a certain value of CIo, the response is zero and these

points are time independent (nodal points) which implies to a fixed vibration.
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7.3. RESPONSE OF THE ROTATING DISC

The excitation of the n ND modes on the stator can be transferred to the disc through the

seal and generate a distributed dynamic force on the disc. The interface force is assumed

to be proportional to the difference of the disc and stator displacements. The block

diagram of the vibration interaction has been illustrated in figure 7.2. Similar to part I

(chapter 6), this system has no complete analytical solution but it is possible to analyse

some parts of the response by assuming that

Figure 7.2 Block diagram for vibration interaction when the
excitation force applied to the stator

the system is linear. For the stator, the response to the force F(0,,t) = F,COS tit has

already been obtained

These disc and stator

interaction.

and for disc, the response to Fil(O,,t) = K Xsn(@,,t) is analysed.

responses are a part of the total response due to the vibration

Substituting from equation (7.10) gives:

Fir(e,,t) = - K A, cos Ot sin n(C), - a) (7.11)
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This is the equation of the dynamic force induced on the rotating disc by the vibrating

stator.

7.3.1 The generalised forces

The rotating disc with the applied stationary dynamic force is shown schematically in

figure 7.3. Coordinate 8 is rotating with the disc which spins with an angular speed of R

in the opposite direction to 0,. The dynamic load (Fil) is stationary in space as presented

in equation (7.11). The analysis is carried out in terms of the rotating coordinate 8. Thus,

the forcing function relative to

Figure 7.3 Schematic of the rotating disc and the dynamic force on it

the coordinate on the rotating disc is obtained by substituting 8, with (0 - Rt ) in equation

(7.11):

fd(e,t) = - K A, cos mt sin n(0 - Rt - a) (7.12)

In the general case we consider the m ND modes of the disc and later we will see that m

has to be equal to n, the number of nodal diameters in the m&e considered in the stator.

The eigenfunctions of the m ND modes of the disc are assumed to be:



El LNTERACTION-Pan  ll 179

Qrnl = sin me and Qrn2 = cos m0 (7.13)

Now, the generalized forces can be obtained:

QJO = jr- K A, cos tit sin n(e-nt-a)] sin me d0

It can be shown that this integral has a non-trivial solution only when m=n. Setting m=n

and after simplification, we find:

Q,,(t) = - 71: K A, cos ut cos n(Rt + a) (7.14)

Similarly, for the other mode:

Qd2(t) = + n: K A, cos ut sin n(nt + a) (7.15)

7.3.2 Analysis of the response in terms of coordinates rotating

with disc

Using equations (7.14) , (7.15) and the convolution integral, the modal responses are

obtained:

t

qdlW = 1 [- nKA, cos COT cos n(Rz+a)sin udl(t-7)]dT
mdl Odl

t

and qJt) = l [+KKA, cos COT sin n(RT+a) sin wd2(t-x)]d’l
md2 @d2

After integration and considering the steady-state terms, this gives:

qdl(t) = W11 cos[(o+nfi)t+na]+Wt2 cos[(o-nfi)t+na]
(7.16)

and qd2(t) = -W21 sin[(o+nR)t+na]+W22 sin[(o-nR)t+na]

where :

b,
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Wll =
+7&4,

w12 =
+xKA,

2m,r [(CJJ+nQ)2- 0d12] ’ 2md, [(w-~&)~- wdt2]

w21  =
+WA,

w22 =
+7tKA,

2m,2[(W+nR)2- ad221 ’ 2m,2[(o-nCI)2-  od22]

(7.17)

Using the mode-summation formula , the response of the disc is derived:

Substituting from equations (7.13) and (7.16) gives:

xd,(e,t) = wll cos[(u+n~)t+na]sin  n&w12 cos[(a-nfi)t+na]sin ne

-W21 sin[(o+nR)t+na]cos  ne+W22 sin[(o-nQ)t+na]cos  ne (7.18)

Equation (7.18) represents the response of the rotating disc expressed in terms of the

coordinate rotating with the disc. This equation can be presented in two parts to show the

backward and the forward travelling wave components:

where:

xb(e,t> = wll sin[ne-(~+n~)t-na]+(wll-w21)sin[(~+n~)t+na]cos  ne

and xf(e,t) = W22 sin[ne+(o-nR)t-na]+(Wlz-W&cos[(o-nQ)t+na]sin ne

(7.19)

Recalling equations (7.17), it is concluded that resonances will occur if o-tnQ=o,,

and/or c&Q=od2. This means that at the following excitation frequencies, a resonance

coincidence happens :
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Wll =
+7K4,

2rndl  I(o+nS2)*- 0d12] ’

w21 =
+?IKAs

2m,2[(o+n~)2-  od2*] ’

w12 =
+7tKA,

2rnd, [(w-nn)*- cOdl*l

w22 =
+7tKA,

2m,*[(o-nR)*-  ad221

(7.17)

Using the mode-summation formula , the response of the disc is derived:

X,(M) = qdl (t) o,,(e) + s*(t) o,,(e)

Substituting from equations (7.13) and (7.16) gives:

Xd,(e,t) = W11 cos[(o+nQ)t+na]sin n0+Wl2 cos[(o-nQ)t+na]sin  ne

-W21 sin[(o+nR)t+na]cos n&W22 sin[(o-nQ)t+na]cos  n0 (7.18)

Equation (7.18) represents the response of the rotating disc expressed in terms of the

coordinate rotating with the disc. This equation can be presented in two parts to show the

backward and the forward travelling wave components:

where:

xb(e,t> = WI1 sin[ne-(m+nfi)t-na]+(wII-w21)sin[(u+nfi)t+na]coS ne

and xf(e,t)  = W2* sin[ne+(o-nR)t-na]+(W12-W&cos[(o-nQ)t+na]sin  ne

(7.19)

Recalling equations (7.17), it is concluded that resonances will occur if o+nQ=odl

and/or o+_nCI=od2. This means that at the following excitation frequencies, a resonance

coincidence happens :
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O=O&lQ and CJ.M&R (7.20)

Each of these frequencies is called a ‘resonance frequency’ of the n ND mode in the

rotating disc.

7.3.3 Response of the rotating disc in terms of stationary

coordinates

An expression for the response in terms of the

replacing ‘0’ by ‘B,+irt’ in the equation (7.18).

stationary coordinate %,, is obtained by

X&e,,t) = Wit cos[w+nQ)t+na]sin n(B,+Rt)+W12  cos[w-nR)t+na]sin n@,+Qt)

-W21 sin[otnQ)t+na]cos  n(B,+Rt)+W22  sin[w-nQ)t+na]cos n(B,+Rt)

After rearranging the terms of this equation, we obtain:

X&CI,,t) = 0.5(Wll+W21)  sin[ne,-ot-na]+O.5(Wl2-W22)sin[n0,-(o-2nR)t-na]

+ 0.5(W12+W22)  sin[ne,+ot+na]-0.5(W21_WI t)sin[ne,+(o+2nR)t+na]

(7.21)

Equation (7.21) represents the response of the disc in terms of the stationary coordinate.

It shows that the response consists of four uavelbng waves; two backward and two

forward waves. Comparing equation (7.21) with equation (7.18), we see that although

the response frequencies are different in the two coordinates, the resonance frequencies

are the same and are as presented in equation (7.20).

Equation (7.21) can be separated into the two parts; backward and forward travelling

waves ;
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&n(%,t)  = x,(&t> + Xf@,,t)

where

and

xb(&t) = o.5(w1 l+w21) sin[n&ut-na]

+0.5(Wt2-W22)sin[ne,-(w2nR)t-na]

xde,,t) = 0.5(W12+W22)  sin[ne,+ot+na]

-OS(W2t-Wrt)  sin[ne,+(ot2nR)t+na]

For the special case where the disc is tuned, mdl=md2  and odl =od2, it is deduced from

equation (7.17) that Wt2=W22  and Wtt=W21 and therefore:

and

xb(ed)  = W tlsin[nf3,-o t-na]
(7.22)

xf(eO,t) = W 22sin[ne,+ot+na]

which are single backward and forward travelling waves. Although equation (7.22)

represents the response components for a tuned disc, it can also be used to estimate the

components of the response for a mistuned disc if the excitation frequency is far enough

from the resonance frequencies.

From equation (7.22) we can deduce that when o=O (i.e. a static force excitation which,

here, has physically no sense), the response of the disc is:

xd,(e,,t) = (2W cos na) sin ne,

which represents a ‘standing wave’ and it is expected from the excitation of a rotating disc

with a static force.
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7.4 NUMERICAL STUDY

The results obtained in the previous sections can be used in a computer program to

investigate different situations in the disc-stator interaction process. A program

‘IN_PLTD’ has been developed to simulate the vibration interaction of the stator with the

disc when a harmonic force excites the stator. In this program, different data for the disc

and the stator are entered and the responses of the stator and the disc are calculated.

Different excitation frequencies and rotating speeds are examined on two assumed

systems. The two systems are similar and consist of a disc and stator with 3 ND modes.

The modal parameters used for system I are shown in table 7.1. The only difference

between the two systems is the second natural frequency of the disc, which is assumed to

be 202.0 Hz in system II, compared with 200.5 Hz in system I. The interface stiffness is

assumed K=l .E+6 (N/m) in all cases.

Table 7.1 Modal data for 3 ND modes (systems I and II)

DISC

STATOR

Generalized masses, [kg]

System I System II

1.00, 1.02 1.00, 1.02

1.20, 1.30 1.20, 1.30

Natural frequencies, [Hz]

System I System II

200.0, 200.5 200.0, 202.0

150.0, 152.0 150.0, 152.0

Different cases which have been considered for System I are summarized in table 7.2.

For system II, only one case has been considered and the other situations are similar to

the cases in system I hence they are not considered.



lil INTERACTION-Pm II 184

Table 7.2 Different cases considered for system I

Case symbol A B C D E F G H
Excitation frequency, 1oo 152 200 152Hz 150 152 152 150

Rotation speed,rev/min 1000 1000 960 970 1010 1000 1000 2500

Relevant figure No. 1 7.4 1 7.5 &7.6 1 7.7 1 7.8 1 7.9 I7.10 I7.11 17.12 1

The disc response is obtained in terms of the stationary coordinates and also in terms of
the coordinate rotating with the disc and the results are illustrated in figures 7.4 to 7.13
for the different cases. In each figure the maximum amplitudes obtained in the analysis
are written at the bottom of the curves. The general format and idea behind this style of
presentation has been explained in previous chapters and the only difference here is that
there are different components with different frequencies for the response of the disc in
the stationary coordinate. In displaying a disc response which consists of more than one
frequency component, it is usually impractical to select a period to cover all the
components’ periods. The display will be more representative of the response if the
longer period (corresponding to the lower frequency) is used. However, if the amplitude
of the lower frequency term is much less than the amplitude of the higher frequency term,
we would present the response in the basis of the period of the higher frequency
component.

Following the above considerations, nine cases studied and the results have been

displayed in figures 7.4 to 7.13 and are discussed in the next section.

7.5 RESULTS AND DISCUSSION

The possibility of vibration interaction in a stator-disc system with a harmonic excitation

on the stator has been studied. The response of the stator has been presented in equations

(7.8) and (7.10). It is seen that the stator response is a ‘fixed vibration’ and there are no

travelling waves since the excitation is simply one harmonic stationary force. The position

of the exciter on the stator has been shown by an arrow, in figures 7.4 to 7.13. In all the
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case studies, the spatial position for the exciter has been assumed to be ~100 which has

been illustrated in the schematic responses of the stator, figure 7.1. In those cases where

the excitation frequency coincides with one of the natural frequencies of the stator (e.g. in

figures 7.5 and 7.7), the response is exactly the same mode shape assumed earlier in the

analysis , i.e.a ‘sin 30’ or a ‘cos 30’ shape. But at the other excitation frequencies, both

3 ND modes have effective influence in the response of the stator and hence, the response

is a sin(3R+a,) or a cos(3R+a2) shape, e.g. in figures 7.4 and 7.11.

Equation (7.11) represents the forcing function applied to the disc which is due to the

interaction with the vibration in the stator. The rotating disc response to this excitation has

been presented in equation (7.18) and also in the two separate parts in equation (7.19).

This response has been calculated in terms of the coordinate rotating with the disc. The

disc response has also been obtained in terms of the stationary coordinate and presented

in equation (7.21). The general conclusion is that when the excitation frequency coincides

with the disc resonance frequencies, o=o,fnQ, a resonance coincidence will occur.

Different cases studied have been summarised in table 7.2; moreover, a special case of

system II has also been examined where at one rotating speed there are two possible

resonances. All the responses for different cases have been shown in figures 7.4 to 7.13

and are discussed respectively. In figure 7.4 the responses at o= 100 Hz and R=lOOO

rev/min are shown. In this case, the excitation frequency is below the natural frequency

of the stator (150 Hz) and also is different from the resonant frequency of the rotating

disc. The response of the stator is a ‘fixed vibration’ while for the disc it is a travelling

wave with varying amplitude.

The responses for the excitation frequency equal to 150 Hz and at the speed of 22=1000

rev/min  are shown in figure 7.5. This excitation frequency is equal to the natural

frequency of the stator and, also, for the assumed speed it coincides with the resonant

frequency of the disc. It is seen that here resonance occurs in the stator as well as in the

disc. However, the amplitude in the disc is much higher than in the stator as the figures
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below the plots show. Figures 7.5 illustrates that the response of the disc is a fixed

vibration in the coordinate rotating with the disc. This response can be decomposed into

the two components XI and Xt, according to equation (7.19). For this case, the term of

(Wll-W21)sin[(o+nR)t+naJcos  n0 is dominant which represents a fixed vibration and

is shown in figure 7.6.

There are three other cases where the the excitation frequencies and the speed are such

that the stator and the disc are at resonance. These situations and their responses have

been shown in figures 7.7, 7.8 and 7.9. It is seen that the disc response for all of these

cases are in the same shape as in figure 7.5 and they represent the fixed vibration in the

disc.

Figure 7.10 shows the case in which the excitation frequency is equal to the stator natural

frequency but the speed is such that the response frequency does not coincide with the

disc’s resonance frequency. In this case, although the stator is at resonance, the disc

itself is not and the response is a large backward travelling wave. In figure 7.11 the

excitation frequency is assumed to be 200 Hz which is equal to one of the disc natural

frequencies. This figure represents the responses for this case and shows that the disc is

not at resonance. The interpretation is that for the rotating disc its ‘resonance frequencies’

should be considered in the comparison with the excitation frequency and not its actual

natural frequencies.

Another case considered is shown in figure 7.12 where the excitation frequency is equal

to one of the stator natural frequencies and the speed is much greater than for the

resonance frequency. In this case, the disc is not at resonance, similar to the case shown

in figure 7.10 and the response is a backward travelling wave with varying amplitude.

The last case considered is on system II, which is similar to the previous system but the

second natural frequency of the 3 ND of the disc is 202 Hz rather than to 200.5 Hz. This

change makes the system have two distinct coincidences of resonance at the speed of

.
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lOOOrev/min;  see figure 7.13. Comparison of the responses with the relevant case in the

previous system (figure 7.54, we see that there is no significant differences.

7.6 CONCLUSION

There is the possibility of vibration interaction between the stator and an adjacent rotating

disc if the stator is excited by a harmonic force. Owing to this interaction, the analysis

showed that the effective excitation force for the rotating disc is in terms of two

frequencies ‘w’ and ‘r&2’ rather than a single frequency. The response in the n ND modes

of the stator to this excitation is a fixed vibration with frequency equal to the excitation

frequency, o. However, the disc response is a combination of ‘fixed vibrations’ and

‘travelling waves’. The frequencies of the disc response are o+nR in the view of an

observer on the disc, and hence the resonance frequencies are o$nR for the rotating

disc. In a frequency-speed diagram of a diametral mode, there are four points where the

coincident of the resonance will occur. At these points the excitation frequency is equal to

the both stator natural frequency and the disc resonance frequency.
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‘DISC: caard rot rith  disc’ -

60

'DISC: stat lonary coord'

60

‘STRTOR:  atatfonery  o o o r d ’
Rnyll.-5.06E-86

68

f Ekrtrr1npm1mt
Ibpl.-1.53E46

Modal data for 3 ND modes

Generlized
I

Natural
mars, kg] Frequencies, IJ-Iz] I

1 DISC 1 1.00, 1.02 1 2oW200.5  1

ISTATORI 1.20, 1.30 1 150.0, 152.0 1

Excitation frequency o = 100 [HZ]

Running speed R = 1000 [revhinl Rt Rotation speed

(b)

Figure 7.4 (a) The responses of disc and stator, (b) Relevant data about them
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'DISC: caord rot uith dfsc’

66

'DISC: stat lonary  coord’

68

‘!TFKORr  atmt tonary coord’
Fbp1.r6,54E+BS

rExclt8tlon point Fbpl.=4.lGE-e1

Modal data for 3 ND modes

1 STAMRl 1.20, 1.30 1 150.0, 152.0 1

Excitation frequency o = 1% WI

Running speed il = 1000 [rev./min]

(b)

Rt Rotation speed

Figure 7.5: (a) The responses of disc and stator, (b) Relevant data about them
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‘DISC:  XC conponmnt  L caord rot at th d tsc’

-S 4 9 E - 0 1
‘DISC: Xh coaponant -f?d,sd,L coord rot ult

‘STRTOR:  rtmtfonary c o o r d ’

a’-‘60

f Exc1t8t1on  point

(a)

Modal data for 3 ND modes
Generlized Natural

masses, Fgl Frequencies, Wzl

1 DISC 1 1 . 0 0 ,  1 . 0 2  1 2oW200.5

1 ST*& 1.20 ,  1 .30  1 150.0, 152.0

Excitation frequency o = 150 [Hz1
Running speed !2 = 1000 [rev./min]

@I

Fb491.14.1eE-01

u”
5rrfi: Q+t2

_------
Odl

It Rotation speed

Figure 7.6: (a) The response components of the disc and the stator response;
(b) Relevant data about them which are the same as in figure 7.5
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‘DISC: +tmt 1 onwy coatd’

66

‘STRl-Wz  strtfonwy  cootd’
fbmpl  .- 1.64E+06

66

T Excrt8t1on  point
Rlqzil.-6.66E-61

(a)

Modal data for 3 ND modes

Generlized Natural
masses, kg1 Frequencies, [Hz]

,
1 DISC 1 1.00, 1.02 ( 200.0,200.5 1

1 STATOR 1.20, 1.30 1 150.0, 152.0 I

Excitation frequency o = 152 [Hz]

Running speed R = 960 [rev./min] tR Rotation speed

Figure 7.7: (a) The responses of disc and stator, (b) Relevant data about them
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Modal data for 3 ND modes

Generlized Natural
masses, [kg1 Frequencies, [Hz]

DISC 1.00, 1.02 200.0,200.5

STATOR 1.20, 1.30 150.0, 152.0

Excitation frequency o = 152 [Hz]

Running speed R = 960 [rev./min]

'DISC: ttmt 1 onmty coatd’

6 6

‘Sn3l-W~  strtfonwy  cootd’ fhpl .- l.B4E+06

Lo 76iil

T Exclt8tlon  polnt
nlqz41.-6.66E-61

4
co

_------_------
Odl

tR Rotation speed

Figure 7.7: (a) The responses of disc and stator, (b) Relevant data about them
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'DISC: coard rot ufth dfsc’

'DISC: &atfonery aaord'

68

‘SRTOR:  rtattonary  caard’
Rqal.11 .WE+B6

tExcftmtfan  pofnt

I

Generlized N a t u r a l
masse  kg1 Frequencies, [Hz]

Modal data for 3 ND modes

i

DISC 1.00, 1.02 200.0,200.5

STATOR 1.20, 1.30 150.0, 152.0

Excitation frequency 0 = 152 WZ]

Running speed R = 970 [rev./min]

(b)

Rt Rotation speed

Figure 7.8: (a) The responses of disc and stator, (b) Relevant data about them
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‘D I S C :  c o o r d  rot  w i t h  dfso’

60

'DISCI stat ionarv coord’
Rap1  .-6.27E+%S

0 360

‘STRTOR: s ta t ionary  coord’ Rap1  .-Ei.3EE+aS

T
1 Exoltatlon pofnt

(a)

Modal data for 3 ND modes

\IGenerlized
I

Natural
ma=% @%I Fretperks,  [Hz]

DISC 1.00, 1.02 200.0,200.5

STATOR 1.20, 1.30 150.0, 152.0

Excitation frequency

Running speed R =

0 = 150 I?+1
1010 [rev./mini

(b)

I41 .-4.lBE-01

Rt Rotation speed

Figure 7.9: (a) The responses of disc and stator, (b) Relevant data about them
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‘D I S C :  c o o r d  r o t  w i t h  dfso’

‘DISCI  stat ionarv coord’
Rap1 .-6.27E+%S

‘STRTOR: s t a t i o n a r y  c o o r d ’

T
1 Exoltatlon pofnt

(a)

Modal data for 3 ND modes

Generlized Natural
ma=% @%I Fretperks,  [Hz]

DISC 1.00, 1.02 200.0,200.5

STATOR 1.20, 1.30 150.0, 152.0

Excitation frequency o = 150 I321
Running speed R = 1010 [rev./min]

(b)

Figure 7.9: (a) The responses of disc and stator, (b) Relevant data about them
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(a>

‘c

‘D I S C :  coord  t o t  r l t h  dtsc’ -

60

‘DISC:  stat fonaty  cootd’

60

‘.STFROR: staffmary  cootd’
Rlnpl.-4.3fE+el

r-- -- abY

tee1trrtn  pmlrrt
-1.16.66E-01

Modal data for 3 ND modes

Generlized Natural
mass=. hl Frequencies, [Hz]

DISC 1.00, 1.02 200.0,200.5

STATOR 1.20, 1.30 150.0, 152.0

Excitation frequency o = 152 [HZ]

Running speed fi = loo0 [rev./min]

(b)

Od2- - - - - - -- - - - -
Odl

D_
us2

Qt Rotation speed

Figure 7.10: (a) The responses of disc and stator, (b) Relevant data about them
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'DISC: caord rat rfth  disc’

68

‘DISCt stat  fonmrv  coord’

60

‘!STRTOFt:  atrtfonmry  cootd’
Fbql.-4.6SE-86

60

? Exc1tatfon point
FImp1.rl.lJE-86

Modal data for 3 ND modes

1 STATOR 1.20, 1.30 1 150.0, 152.0 1

Excitation frequency

Running speed Q =

CD= 200 u-w
l o o 0  [rev./til

(b)

T Od2- - - - - - -- -
\ PC;- - - -Odl

I-
D

%2
E

+%_

%
I od2-3 R

Rt Rotation speed

Figure 7.11: (a) The responses of disc and stator, (b) Relevant data about them
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‘D I S C :  c o o r d  rot vfth dftc’ -

‘DISC :  statfonary  coo rd’
Fhpl.-1.38E+W

‘-OR: ttatlonary  c o o r d ’
Rmp1.-1.37E+BB

a_  ___  __-  ---  ---  -_a

- -  60

E+octattm  pacnt
FhlqJ1.r6.66E-81

Modal data for 3 ND modes

1 STATORl 1.20, 1.30 1 150.0, 152.0 (

Excitation frequency o = 152 [Hz]

Running speed R = 2500 [rev./min]

(b)

----a--
-------

@dl

tn
Rot&ion  speed

Figure 7.12: (a) The responses of disc and stator; (b) Relevant data about them
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'DISC: coord rot ufth dfsc’

‘DISC: stmt fonacy  coord’ Rmp1.16.4X+05

60

‘STMOR:  statlonwy  c o o r d ’ Rrnpl.-6.54E+BS

Gl=360

? Excitmtton  polnt

Modal data for 3 ND modes

DISC 1.00, 1.02 200.0,202.0

STATOR 1.20, 1.30 150.0, 152.0

Excitation frequency

Running speed R =

CO= 150 [fil
1 0 0 0  [rev./min]

(b)

Ftlwp1.r4. leE-ral

_--Mm

_-__---

!a t
Rotation speed

Figure 7.13: (a) The responses of disc and stator, (b) Relevant data about them
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- Collection of different terms and definitions used in rotating disc study such as

backward and forward travelling waves, standing waves and fixed vibration;

- Analysis of the frequency response of a rotating disc in rotating coordinates and in

stationary coordinates. The analysis was confirmed by experiments;

- Presenting a more genera1 relationship for excitation parameters - forces ratio, spatial

and temporal phase angles - in the simulation of a disc rotating past a static force;

n$, - $I[ = k x kz... -1,1,3 ;..

- Development of hardware (PHASH) and a software to control and adjust two forces for

simulation of travelling wave. The program is written for H.P. computers and can be

run to control the relative force ratio to the desired value through the PHASH;

- Presenting a technique using more than two excitations for simulation of travelling

waves which use the same control system as used in the dual-controlled sine excitation

method. A four-excitation method was applied to a discrete mass model of a disc to

simulate travelling waves. This application resulted in increasing the relative amplitude

of the travelling wave component about 6% compared with using dual excitations;

- Development of a format for displaying the travelling wave and animated response of a

disc. The unwrapped rim response was used. This method can give a clear picture of a

vibrational rotating disc;

- Study of possibilities of vibration interaction between a rotating disc and an adjacent

stator. The vibration initiated in the rotating disc might transfer to the stator or vice

versa.

8.3 RECOMMENDATIONS FOR FURTHER WORK

The work studied here is the development of a method which can be very effective in the

modal testing of rotating discs. The models of a disc used in this study have been simple

ones. This was necessary as an early stage to achieve the main theoretical relationships.
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APPENDIX q

FURTHER DATA OF NON-CONTACTING EXCITER AND PROBES

A.1 Non-Contacting Electra-Magnetic Exciter

An electro-magnetic exciter is one of the non-contact devices which may be used in

experiments on rotating structures. The problem with these exciters is that in high

amplitude vibration, they produce some harmonics of excitation frequency rather than just

a single frequency equal to the input frequency [55]. Before any harmonic excitation

measurement on the rotating disc, the spectrum of the response of stationary disc has

been obtained to check the harmonics of excitation frequency. It was realized that second

harmonic is stronger and so in all measurements, this harmonic has been considered as

the excitation frequency. In figure A. 1 the spectrum of response of a stationary disc to the

excitation frequency set equal to 98 Hz has been shown. In the figure the measured

spectrum have been obtained by using two different non-contact devices a) Laser and b)

Proximeter.
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1

-3.1

46

I I
0 Frequency Hz. 400

N o .  Fret
____________

:
98

190

0 Frequency Hz.

Figure A.1 Response of the stationary disc to a non-contacting electro-magnet
excitation Using: a) Laser doppler VPI, b) Proximeter probe
(Generator frequency setting =98.0 Hz)
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A.2 Comparison of Proximeter and Accelerometer in a hammer

- 4 0

- 3 2

No. Freq.
______________
: 115’5 90 5

3 149:o
4 157.5
5 310.0

No. Freq.
__________-_--
: 115.:  91.C

3 149.:
4 158.C
5 31 l.(

Figure A.2 FRF from hammer test. Using a) Accelerometer b) Proximeter

. . ..
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SECONDARY RESULTS IN THE SIMULATION METHODS

In this Appendix, some of the results related to the simulation of travelling waves which
have been explained in chapter 4 are illustrated. These are for the cases where more
details about the results are required.

B.1 Circle fitting on the data

In the following, some of the results are illustrated in Nyquist plots in order to give a
better idea for the phases of the dual modes and also to present the modal analysis
procedure.

%-rRL +  ve.)

EFIL + ve.)

Res_Freq_= 157 .  16  Hz .
Phase = +115.5  d e g

Damping = .00216
P s. MO d a 1 c.= 6,46940E-02  l/kg

X 2  F 2 1 L o w e r  2  N D  m o d e-

1 5 8 . 4 0  H z .
116.6  d e g

.00168
3.24569E-02  1 / ‘k g

X 2  F 2 1 Higher  2  ND  mode-

Figure B.l Using circle-fitting of MODENT on the data of X2_F21

(Receptance plot - removing effect of other mode)
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Uata from : X2_F21
-------.-------------------------
INERTANCE Plot .
-_._.--I--------------------------

from 156.80 Hz.
to 158.65 Hx.

X = Measured Data.
+ = Regenerated Data.

Figure B.2 Regenerating data X2F21 after circle-fitting (in Nyquist plot)

B.2 Numerical results when spatial phase angle is -90°

As mentioned in chapter 4, in the simulation of a travelling wave we can either use tit or

-Qt as the temporal phase angle of the excitation forces. In section 4.5.3, two numerical

examples have been presented to examine the relative phases of the pseudo-modal

constants. Here, the results for the similar cases but for &=-90” are shown.
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Figure B.3 Results from a numerical example of a mistuned system
(Similar system as introduced in table 4.4; but here 4+=-90”)

a) At point 1 (WY’); b) At point 2 @=45O)

Table B.l Modal properties from data presented in figure B.3

Data from
point 1
W_O)

Data fi-om
point 2
W-45)

2NDmode

No.

1

2

1
2

100

101

100

101

F%eudc-modal
constant
[I/IQ]

0.9394

0.3418

0.3425

Phase

@%.I
Damping loss

factor; Tj

h
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Figure B.4 Results from a numerical example of a tuned system
(Similar system as introduced in section 4.5.3; but here (j+=-90”)

a) At point 1 (&W’); b) At point 2 (GE”)

Table B.2 Modal properties from data presented in figure B.4
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B.3 Raw data in the Hybrid Method

In the Hybrid Method, two sets of experimental data have been used to calculate the
simulation responses at points 1 and 2 on the disc. These experimental data are illustrated
in figures B.5 and B.6.

t - t
I i I

-t

-i i-_-  ‘i/__

+
L
CI I
2

-30 i~cK----- -. _ ._._.-Rxh  frsm_B.LL_,
- . t requency  tit. 159 .88

Figure B.5 Response at points 1 and 2; together with force ratio
in test A of Hybrid Method
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?BW  ,r----___-l_____--------.,.
Dcg

‘--__

,

Figure B.6 Response at points 1 and 2; together with force ratio
in test C of Hybrid Method
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B.4 An earlier experiment for simulation on the disc

In this section the results of the earlier experimental simulation on the disc are presented.
These experiments had been carried out using the phase shifter in a manually-controlled
test. The results from both methods have been shown in figure B.7, tables B.3 and B.4.
Although the test structure had been suspended in a different way and the technique had
been not as accurate compared with the experiments in chapter 4, we can see similar
relative relationship for the phases.

II
157.00 Froquonoy Hz. 162.88

Response  at point 2

Figure B.7 Experimental and Hybrid method’s results
from the earlier test ( &=-900  )
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Table B.3 Modal parameters from the EM

Table B.4 Modal parameters from the HM
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B.5 Results for the very lightly-damped disc

Figure B.8 and table B.4 show the results of a single-sine test on the disc without

additional damping. It is seen that compared with the value of damping in chapter 4, here

the damping loss factor is very low.
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Figure B.8  Point measurement in the single-excitation test of the disc

Table B.5 Modal parameters from data in figure B.8

Data frompoint 1

WlU

2 ND mode
No.

1

2

Natural Modal constant Phase Damping loss
fi=pnCY  IHZI 1UW [%.I factor: ?J

161.16 0.0198 +9.5 0.00054

161.40 0.0510 -0.1 0.00036
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APPENDIX m

PHASE AND AMPLITUDE SHIFTER (PHASH)

In chapter 4, it was mentioned that vibration in a disc rotating past a non-rotating static

force can be simulated for each mode in a stationary disc excited by two harmonic forces.

These two harmonic forces should be equal in magnitude and their temporal phase angle

should be equal to a specific value. On the other hand, during a sine sweep test, the

magnitude and the phase of the excitation will change even if the input voltage to the

shaker does not change. The electrical impedance of the shaker is a function of its coil

displacement and, hence, it is a function of the frequency response of the structure. This

function can not be simply defined but it is complex. As long as one excitation is used,

changes of the excitation force do not make the test difficult, since normally the ratio of

the response to the input force is required at each frequency. However, in the two

excitation test, where some special conditions should be fulfilled, a controller has to be

used to keep the input forces at the desired levels. In the simulation of a travelling wave,

the controller must be able to control the magnitudes of the two input forces, and also

their phases, by changing the input to the shakers accordingly.

Since the function relating the input voltage to the excitation frequency is not available,

the two forces must be controlled using a trial and error procedure with the input

voltages.

C.1 Hardware of the shifter

A shifter (PHASH) has been developed which is controlled by a H.P. computer. The

PHASH has been made using four different components as shown in Figure Cl. They

r*..
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are the DAC, BBDs, VCO , and Multipliers which are described briefly in the following

sections:

C.l.l Digital to Analogue Converter (DAC)

A four-channel digital to analogue converter interface provides four independent voltage

outputs with 12-bit resolution. In this application, three channels are used: Vo for the

‘voltage controlled oscillator’ (VCO) and V 1 , V2 for controlling the amplitudes of the

forces.

An H.P. computer program controls the output voltages of the DAC independently. The

DAC has different options for its output voltage: in this application, the O-10 volt range

has been chosen for all channels.

Command signal

t (From Generator)

R22
GPIB

(From H.P. :

Figure C.l Components in the ‘PHASH’
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C.1.2 Phase Controllers (BBD and VCO) :

This instrument has been made using two bucket brigade delays (BBD) and a voltage

controlled oscillator (VCO). The time delay of the signal passing through the BBD, and

hence the signal phase, is controlled by the frequency of the clock input to the BBD. The

signal from the generator goes to the BBDs. One of these, (BBDl), gives a signal with a

fixed phase angle while the other can give the signal with variable phase angle using the

VCO. In the frost BBD, the clock works with a pre-set value set by a potentiometer and in

the second BBD, the clock is controlled by a signal from the VCO which in turn responds

to VO from the DAC.

A schematic diagram of the circuits of BBDl, VCO and BBD2 are shown in figures C.2,

C.3.and C.4.
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Figure C.3 Voltage Controlled Oscillator (VCO)
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C.1.3 Analogue Multiplier (M)

In order to make the ratio of two forces take the desired value, which is usually 1, the

controller has to be able to change the magnitude of each signal to the shakers

independently. A multiplier has been used in the path of each signal to the shaker as

shown in figure C. 1. Each multiplier is controlled by a voltage coming from the DAC.

The output voltage is one tenth of the product of the input voltage and controlling voltage,
i.e. Vout = Vin?u;rOVDAC.

C.2 Software for Controller

The program POLAR has been in use for many years in sine sweep tests and is quite

popular. Its latest version, New-POLAR has been modified to make it suitable for two-

excitation sine-sweep tests using the controller. This program is called

‘POLAR_PHASH’ .

In the sine-sweep test, at each frequency, the conditions of the simulation should be

checked and if they are not in the acceptable range, they have to be changed using the

controller. However, if they are acceptable, the measured values are recorded and the test

will proceed for the next frequency.

The acceptable tolerance for the phase of the two forces has been chosen arbitrarily as zb2O

and for their relative magnitude as + 0.1. In section 4.5, it has been shown that with this

amount of tolerance, the travelling wave component in the response is quite strong and

acceptable for the simulation. These tolerances may also be examined if they are low

enough to produce a smooth frequency response curve for analysis.

The controller has been programmed on the basis of trial and error, since the theoretical

relationships between voltage input to the shakers and input forces to the disc for different
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frequencies are very complicated. In the following, the procedure used is introduced and

its flow-chart is presented in figure C.6.

C.2.1 Trial and error procedure for controller

Three parameters need to be changed in order to achieve the desired values of phase and

the ratio of &. These parameters are the magnitudes of and phase difference between
Fl

the input voltages to shakers 1 and 2 which change with the voltages of the three channels

of the DAC; Vo , V1 and V2 respectively. These three voltages, in turn, are changed with

the input control words sent from the computer to the DAC which are called R20, R21

and R22 respectively. Each control word can lx chosen independently in the range of 0 to

4095. Before the procedure of trial and error to be presented, the increments for the

control words should be derived such that the required phase and relative force accuracy

is achieved. In section C.2.3, the proper increments are introduced.

C.2.2 Initial values for DAC

At the beginning of each sweep, in order to start the trial and error procedure as close as

possible to the target values of the phase, the initial value for the control word R20 is

chosen by interpolation and using the appropriate lookup table. These tables are

characteristics of the controller and the one for the case of qt=900  is shown in table C.l.

This table shows the values of R20 which should be sent to the controller to have 90°

phase angle in the output signals of the PI-LASH.

Table C.l Frequency vs control word for VCO when $t=90°

Freq.~] 115 120 150 200 250 300 350 400 450 500 600

=o 4095 3930 3200 2175 1345 2820 2270 1720 1320 920 0
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The amplitudes of forces F, and F2 are controlled to some extent by the input voltages to

the shakers. These voltages are proportional to the corresponding voltages from the DAC.

The initial values for the corresponding control words are chosen as equal to their

maximum value, i.e. 4095, which would produce 1Ov at the DAC outputs..

C.2.3 Tolerances and proper steps in the DAC

As mentioned earlier, a suitable accuracy or tolerance is chosen for data acquisition. In the

program, the rate of the control word should be such that it satisfies these accuracies.

C.2.3.1 Increment of the word for force amplitudes

If V, is the voltage of the signal from the generator, Vfl, the input voltage

is equal to :

vfl=
v,. VDACl

10

Similarly for shaker 2 :

vn= V, . VDAC2
10

to the shaker 1

The forces from the shakers are assumed to be proportional to the voltage inputs, thus :

Cl)

The output of the DAC has been set in the range of 0 - 10 volt. The input of the DAC is a
number in the range of 0 to 4095. Hence, the slope will be 409.5 ($I$) for each

channel. This means that the following relations can be written between R21 and VDACI

and between R22 and VDA~ respectively :

R21-409.5.  VDACI

R22-409.5  . VDAC2
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or :
0.2 (R21)2

*l ‘R22 + 0.2 R21

b2) Assumed R21 is increased then we can have:

R22 R22 202
I=I-R21+A1 *

which leads to:
0.2 (R21)2

*l ‘R22 - 0.2 R21

Therefore, for changing R21 the increment should satisfy the relation (C.4), if R21 is

(C.4)

(C.5)

decreasing and relation (C.5) if it is going to be increased.

C.3.2 The phase changing

Table C.2 shows the variation of phase angle against the control word R20 for different

frequencies. It is seen that by increasing frequency and also with higher values of R20,

the rate of change of the phase angle increases. The maximum rate should be taken into

account in order to obtain the limitation or the minimum increment for R20 to produce the

prescribed accuracy of the phase, (i.e. so).

Table C.2 Phase angle against R20 for different frequency in PHASH
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This tolerance should be satisfied when the phase is around the spatial phase angle (9OO).

Figure C.5 shows the variation of the phase vs the control word IX20 around 90’ for 200

Hz. From this curve, the rate of 8.18 is deduced and hence, for the range of tolerance

equal to 4O (i.e.from So), the limit for the R20 increment becomes 32.72 bits. This

means that in the trial and error procedure, the increment of R20 at 200Hz should be less

than 32.75 in order that the acceptable tolerance for the phase angle to be achieved. The

same procedure can be done for any desired frequencies to obtain the limit for the

increment of the control word R20. In table C.3, maximum increments of R20 have been

shown for some frequencies. In the experiments of chapter 4, the increment of 10 has

been used for R20.

80

2600 2 0 5 0 2 1 0 0 2150 2200 2 2 5 0 2 3 0 0

Control word R20

Figure C.5 Variation of the phase angle vs R20 around 90 at 200 Hz

Table C.3 Rate of R20 around 900 for different frequency

Freq.[Hz 150 200 300 (1) 300 (2) 400 (1) 400 (2)

1
Slope[Bits/deg.] 7.49 8.18 8.58 4.45 4.61 2.89
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Although the above recommendation is for $t=900,  it can also be applied with certainty in

tests for which $,<900. Since at any frequency, the slope for the lower phase angle is

less than for the Qt=900.

C.4 LOGIC OF THE PROGRAM

Having chosen the initial values and considering the limitations in the control word

increments, the procedure may be carried out by two approaches as shown in the flow-

chart ; figure C.6. The first and shorter route considers the absolute error of A, and B,

which are called E, and Eb respectively. A change is carried out to reduce the larger error.

A, is the relative magnitude and B, is the phase angle of the input forces. The second

branch looks at the quality of the action and takes into account the last try. If it converges,

i.e. goes in the proper direction, that action will be continued. Otherwise, the other

parameter is changed. The string ‘Convg$’ is used to present this idea; if it is equal to

“ON” then the action is converging, otherwise it is equal to “OFF”.

There are three parameters to change : magnitudes of Ft and F2 and the relative phase

between them. The corresponding parameters in the controller are Vu, Vr and V2 of the

DAC. Each time one of these parameters is changed then a measurement is performed and

the results are checked. Each parameter may be decreased or increased, therefore there are

six types of change available which are labeled by ‘Chgtypes’ in program and ‘Chgt’ in

the flow-chart. The string which represents the status of the procedure relevant to these

changes is ‘Chg$‘. This string allocates different characters such as ‘Chg_l_DN’ which

means the last action was reduction in channel 1 (on DAC).

I
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(Main POLAR Program)
7000 I

8135 Enable
AlT@dS

manually

NtryO=2

YES

R2O=FNInit(Freq)
NW=178135

B

(Re-measurement)

Ea=(Ar-1)/l
Eb=(Br-Phi t)/Phi

I

Yes
O.K.

(Return to main program)
GOT0 26090

Figure C.6 Flow-chart of the sub-program for PHASH
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R21

Chg$=

“Ch_l_UF’”-7-J
PSUB DAC

Cl2
Chgtypes 12 Q

c 4Q
t _
I
\Chgt 4_>

R2
*

Chg$=
“Ch_2_UP”

Anti$=Cli Anti$=cl:!
Ntry=O

8115

Chg$=

I I

Chg$=
“Ch_2_DN” “Ch_l_DN”

Figure CT.6 (Continued )
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I

R20
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NoI

No

Figure C.6 (Continued)
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No

P
No

onvg$=“OFF”Fc 2

0B2

0R

(Return)
(New meakement it same frequency)

Figure C.6 (Continued)
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INSTRUMENTS AND EQUIPMENT USED IN THE

EXPERIMENTS

In two chapters 2 and 4, some experiments have been reported; the types of equipment

and instruments used in those experiments are as follows:

Computers: There were two types of Hewlett Packard computers: HP 9816 and HP

300. Either could be used in the experiments and in the analyses with no

significant difference. In chapter 5 computations were carried out with main frame

CDC computer.

Analysers: FRA is a Solar-non type 1254 (four channel), and was used in harmonic -

single, double and ‘dual controlled’ - excitation tests.

FFI is a Bruel & Kjaer (B&K) dual channel signal analyser type 2034 and was

used in hammer tests (in chapters 2 & 4) and in the spectrum measurement of the

rotating disc in chapter 2.

Charge Amplifiers: A charge amplifier converts the charge generated in a transducer

(piezo-electric)  to an analogue voltage. Three different types of charge amplifiers

could be used, B&K type 2626, B&K type 2635 (uses battery) and DJB type

CA/O4. There is also special charge amplifier in a packed instrumented hammer

facilities, PCB piezotronics International Inc. type 4808 with sensitivities 2.04

mV/N and 10 mV/g which was used in hammer tests in chapter 2.
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We should be careful when different types of charge amplifiers are used in a

experiment, because there is possibility that different type of charge amplifier

having different polarity (O” or 1800) relative to each other.

Force gauges: Different types of transducers could be chosen for measuring force. In

chapter 4, B&K force gauge type 8200 has been used.

Accelerometers: Transducers B&K type 4344 in hammer test (in chapter 2), and DJB

type A/O2 in hammer test (in chapter 4) were used.

Proximity probe: The proximity probe was used in measurement of transverse

displacement on the rotating disc (in chapter 2) was Bently Nevada made, model

2088501

VP1 sensor: This is a non-contacting device made by OMETRON, using the laser

Doppler phenomenon. It measures the velocity of the vibrating surface and is used

to check the results from other devices measured the response of rotating disc.

Electra-magnetic shakers: In the single-, double- and dual controlled-excitation tests

in chapter 4, Derritron shakers type VP 50 were used. In chapter 2 the non-

contacting shaker was a nonstandard one and had been made with a C shape core

and a coil.

Power amplifiers: A power amplifier is used to amplify the command signal before

it is applied to a shaker. In chapter 2, the power amplifier - made by ‘Ling

Dynamic Systems Ltd.- type TP0300’ was used. A Den-in-on type W25 WT was

used in the experiments of chapter 4.

Phase shifter: In the dual controlled sine excitation method (chapter 4), the variable

phase oscillator FEEDBACK type VP0 230 was used together with PHASH to

control the two excitation forces.
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