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ABSTRACT

This thesis describes an investigation into the practical and efficient implementation of
structural modification methods using experimentally-derived models. Structural
modification techniques and the associated methods for collection, assessment and
analysis of experimental data are reviewed in a literature survey, from which the topics for
detailed study in this thesis are identified_

The standard theory for impedance coupling and modal coupling structural modification
methods is presented with discussion of the specific advantages and disadvantages of each
when used with experimental data. Developments of the impedance coupling method are
shown which improve both the computational efficiency (very substantially) and the
potential accuracy. From impedance coupling theory and a rational fraction form of
description for a Frequency Response Function (FRF), a new technique has been
developed to enable calculation of the sensitivity of modes to specific simple
modifications. The input data are the resonance and anti-resonance frequencies obtained
directly from point FRFs, measured in a preliminary survey of a structure, without the
need for extensive modal analysis procedures. A detailed measurement survey can then be
confined to the sensitive locations on the structure where particular care must be taken to
avoid influencing the response with the measurement equipment. Ranking the coordinates
in their order of importance for influencing each mode by simple modification provides a
valuable insight into the subsequent design and selection of practical modifications.

Problems of inconsistency and spatial and modal insufficiency in the measured data are
considered in detail. It is shown that rotational degree-of-freedom properties can be vital if
certain joint conditions are to be modelled correctly. Difficulties with the derivation of
these properties from measured translational FRFs are discussed, together with the
implications for the type of joints used in the attachment of modifications.

Throughout the thesis, simple examples are used for illustration of many specific points.
A comprehensive case study of a helicopter structure is presented which draws together
many of the topics of the study in a demonstration and critical evaluation of the current
ability to select the most appropriate site for a modification and then to predict the effects
of that modification using experimental data.
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The list of symbols described below represents the standard notation used throughout this
thesis.
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Chapter 1

Introduction

1.1 Preliminaries

Modem techniques for the design and manufacture of structures in which materials are
used far more efficiently than previously possible have led to structures that are now more
susceptible to vibration problems. Structures are designed to be just as strong as
necessary using the minimum amount of material, but the component parts, plates and
beams, etc. no longer have the individual stiffnesses of their previously overdesigned
counterparts. Additionally, modem trends to all welded construction, and components
milled from solid material (e.g. fighter aircraft wing skins which incorporate web
sections), generate components that have little inherent damping. As a result, modem
structures are more likely to be excited into resonance, and when they are, to have very
high response levels due to the virtual absence of damping. Such conditions can lead
quickly to fatigue failure of the components.

For any aerospace structure the consequences of vibration are generally more severe than
for similar ground-based structures. Methods for alleviating these vibration problems are
restricted by structural and aerodynamic constraints and by performance requirements: any
mass addition reduces the available payload by the same amount. A modem helicopter is a
good example of a structure that is particularly prone to structural vibration problems and
it is important that vibration of these structures is controlled in the most efficient and
economical way. Therefore, helicopter-like structures provide the main focus for the work
contained in this thesis.
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Fortunately, there are still many joints in aerospace structures that are riveted or bolted,
and a large number of these joints also incorporate some form of adhesive or sealing
compound. These joint features provide damping but can also make the structure non-
linear in its vibrational behaviour, and thence more difficult to model theoretically.

1 .l.l Cause, Consequence and Control of Helicopter
Vibration

The level of vibration found in a helicopter is generally higher than that experienced in
fixed-wing aircraft, especially when the helicopter is operating at high thrust or forward
speed. The primary causes of vibration in a helicopter are the high excitation forces
generated by the rotor blades and the downwash from each passing blade impinging on
the fuselage and tail surfaces. In forward flight, the main rotor system provides lift and
thrust simultaneously and the blades experience cyclic aerodynamic loading as the
apparent airspeed over each blade changes with the angle of the blade to the direction of
flight. At high forward speed the airflow at the tip of the advancing blade reaches a
transonic condition where there is a dramatic increase in blade drag. Simultaneously,
smooth airflow over the tip of the retreating blade cannot be sustained and a stall results,
causing large oscillatory loads in the blade and control system. Each blade experiences a
complete loading cycle in one revolution of the rotor and, therefore, the fundamental
excitation frequency transmitted to the airframe is given by (the number of blades, N) x
(the rotation speed, R), e.g. ‘NR’ which is approximately 22 Hz for a 4-bladed Westland
30 helicopter. These oscillatory loads provide a source of excitation that can lead to
structural vibration problems.

High vibration levels in a helicopter have several important consequences; the
environment can be uncomfortable and noisy so that pilots, crew and passengers cannot
tolerate the vibration for long periods of time. Fixed-wing aircraft have much lower levels
of vibration and, to some extent, expectations of passengers are set by the fixed-wing
standards. Military use of helicopters requires the crew to perform complex tasks at times
throughout the mission (e.g. weapons delivery, search and reconnaissance) and
prolonged vibration takes its toll by reduction in the efficiency with which the tasks are
executed. The reduction in performance of the pilot and crew occurs much more rapidly if
the predominant vibration frequencies coincide with certain resonances of the human
body, such as eyeball jitter. Furthermore, as military weapons and associated electronic
systems become more sophisticated their performance and reliability can be impaired by
vibration of the helicopter. Excessive vibration is also damaging to the components,
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critical flight systems and the structure of the helicopter itself and hence frequent, costly,
inspection and maintenance may be necessary.

There are three methods that have been used for the control of vibration in the airframe of
a helicopter

(9 Reduce the vibration excitation at the source - the main rotor blades

One of the most effective ways to minimise helicopter vibration is to use as many blades
as possible, thereby increasing the fundamental ‘NR’ excitation frequency - hence the
evolution of five-bladed helicopters from the more conventional four-bladed designs.
Considerations of hub complexity and blade manufacture and maintenance costs set a
practical limit on the number of blades used.

Passive, torsional vibration absorbers can be fitted to the rotor head but they suffer from
the disadvantage that they only operate in the plane of the rotor disc. Forces induced by
lift changes on the blades due to stall, etc., are perpendicular to the plane of the rotor disc
and, therefore, unaffected by the vibration absorber mounted to the rotor head.

Advances in materials technology have allowed production of aeroelastically adaptive
rotor blades with new aerofoil sections and blade tip planforms that delay the onset of
blade stall and improve the transonic performance of the blade tips. Rotor blades of this
type, with precisely matched dynamic and aeroelastic characteristics, have shown
promising reductions in excitation at the rotor head. This is another passive vibration
reduction technique.

An active vibration reduction technique - Higher Harmonic Control (HHC) - has been
used to allow precise control of the pitch of each blade. Hydraulic actuators replace direct
pitch linkages, thereby facilitating much greater control of the aerodynamic loading. With
this technique it is essential that the frequency responses of each actuator ate identical and
that an accurate and reliable control algorithm can be devised. Some reservations have
been expressed with regard to reliability and maintenance aspects of these systems and the
potential influence of any malfunctions on rotor performance and airworthiness. The
hydraulic power required for this type of active system is typically about 30 h.p. for the
Westland 30 helicopter.
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(3 Reduce the coupling between the rotor/gearbox/engine raft and the aixfiame

A combination of active and passive vibration isolation systems is used in the Active
Control of Structural Response (ACSR) system developed by Westland  Helicopters.
Hydraulic actuators are connected in parallel with elastomeric mountings between the raft
and the airframe. The actuators are computer controlled to minimise a summation of key
response functions at the blade passing frequency. Only a single response frequency is
considered otherwise the computations become impractical. Because the actuators am in
parallel with the elastomeric support and do not carry any steady load, there are no
airworthiness problems and an added bonus is that the hydraulic power is considerably
less than for HHC - about 4 h.p. for the complete installation in a Westland  30.

(iii) Tailor the dynamic characteristics of the airframe to ensure minimal response at
anticipated excitation frequencies

The initial design and production of a helicopter airframe that has satisfactory dynamic
characteristics is notoriously difficult, even with the availability of sophisticated Finite
Element (F.E.) analysis tools (some engineers even recommend that the designer should
try to place everything in resonance as a way of ensuring that it will be off resonance
when it is built! ). The benefits of adaptive rotor blades, HHC and ACSR can be lost
completely if the airframe has a lightly damped resonance corresponding with an
excitation frequency.

The dynamic characteristics of an existing airframe may be altered by active or passive
modifications but, whichever method is chosen, it is desirable to make the modifications
at or between the most sensitive points, thereby minimising any weight penalty.

1.1.2 Design and Selection of Structural Modifications

Many basic vibration problems can be investigated and minimized by the use of vibration
prediction and analysis techniques during the design phase of a project. Since there is no
hardware available for testing at the early stages, the techniques are invariably based on
finite element models produced from component drawings. However, there are so many
features and properties of real components, mechanisms and materials that are difficult to
represent adequately in a finite element model that the use of such a model, in isolation, is
considered to be insufficient. Once a prototype component has been produced, vibration
testing and analysis is almost always required in order to validate the finite element model



and the results therefrom More often than not, the finite element model is then adjusted to
reflect the vibration characteristics actually measured.

If the measured characteristics of a structure are such as to indicate the possibility of a
vibration problem arising in service, then some structural modifications may be required.
In the past, suitable modifications have been devised on an informed trial-and-error basis,
by people with a wealth of experience in the field Each time a modification was made, the
structure had to be re-tested to ensure that the vibration characteristics were acceptable. If
not, the whole sequence of events was repeated in an iterative fashion, until a successful
conclusion was reached. This was a very costly and time-consuming operation which
eventually resulted in a structure with acceptable dynamic characteristics, but not one in
which the changes had been made in the most efficient manner, nor in which an optimum
solution had necessarily been obtained.

The advent of relatively cheap computing and advanced analysis techniques allows a
mathematical model of a structure to be created directly from measurd data. Modification
techniques can be used with these measured data to enable a large number of different
modifications to be evaluated much more quickly and effectively than was previously
possible. Once a suitable modification is found using an experimentally-derived
mathematical model of the structure, the actual modification can be incorporated in the real
structure which will then undergo one further complete vibration test to confirm the
predictions. The whole process may involve only two complete vibration tests, although
many different modifications will have been ‘tried’. This can mean a great saving in costs
because, usually, it is the acquisition of the data which represents the largest single cost in
any vibration test.

The main disadvantage of using an experimentally-based approach is that it is only
available once a prototype structure has been built. At this stage, the project is well
advanced and the basic design, configuration and construction of the structure has been
final&d, thus severely restricting the type and extent of any physical changes which can
be made.

The initial process by which a modification is designed and selected can be improved if
the sensitivities of points on the structure to simple types of modification (such as added
masses or stiffnesses) are known. The intention is to select the most effective site and type
of modification at the earliest possible stage, preferably at a preliminary measurement
stage. A new method for calculating resonance frequency sensitivities for single degree-
of-freedom mass or stiffness modifications is developed in this thesis. The method is
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readily implemented, and is based on the use of resonance and anti-resonance frequencies
of the original unmodified structure. The sensitivity characteristics resulting from the
analysis enable each degree-of-freedom to be ranked in its order of importance for
modification, for each mode of vibration.

Once an order of importance has been established for the coordinates at which
modifications may be incorporated, then decisions can be taken as to which degrees-of-
freedom should be measured for use in the full coupling analysis. Furthermore, if the
sensitive coordinates are identified as a result of a preliminary measurement survey,
special care can be devoted to the acquisition of accurate and reliable data from those
coordinates during the full survey. The overall data acquisition task is made more efficient
by concentrating the effort on the important, sensitive, degrees-of-freedom and reducing
the amount of superfluous data measured.

In the design of a vibration test program, sensitivity data can be very useful but it is
important to remember that there are 6 degrees-of-freedom for each point on the structure.
If the rotational motion of points is ignored, 75% of the full FRF matrix is lost. For basic
troubleshooting applications, the limited data set (without rotations) is not usually too
restrictive. However, for use in prediction of the characteristics of a modified structure,
the omission of rotational data may be very serious - especially when the modification
attachment involves anything other than simple pin-joints. The measurement of a complete
set of rotational FRF properties is known to be difficult and some detailed discussions and
examples are presented in this work to illustrate the consequences of neglecting rotational
degree-of-freedom in coupling analyses. One interesting finding is that the measurement
of a rotational response is not too difficult but, the practical application of a pure torque
to provide a rotational excitation to a vibrating structure is significantly more difficult.

1.1.3 A Note on Terminology and Glossary of Terms

Frequency Response Function (FRF)

A frequency response function (FRF) is a frequency-dependent quantity derived from
knowledge of both magnitude and phase of a harmonic response and the excitation
causing that response. There are a number of different quantities that are classed as
frequency response functions, and these can be divided into two distinct groups;

(a) those denoting (response/force) characteristics; and,

(b) those denoting (force/response) characteristics.

.
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Each group can be subdivided further and categorized according to the actual response
parameter measured; displacement, velocity or .acceleration. All the different quantities
have specific names which are summarized below.

Response type 1 (a) response/force 1 (b) force/response

Displacement

Velocity

Acceleration

; = Receptance

$ = Mobility

,I
+ = Inertance

or Accelerance

f = Dynamic Stiffness

f = Mechanical Impedance

f = Apparent Mass

A

Table 1.1

For harmonic motion the quantities in each column of Table 1.1 are related very simply

by the ratio jo; j = 0 and cc is the ‘circular’ frequency in radians/second.

j;= j&=-&x

Because of this simple relationship, generic terms are often used to describe any of the
quantities in one column of the Table. Throughout this work, and in common with many
other publications, the following generic terms have been adopted,

and,
Inertance for response/force quantities in general

Impedance for force/response quantities in general.

Measurement Practicalities

In the above general definitions of inertance and impedance properties, important practical
conditions have been omitted. They are,

(i) for inertance quantities - all points on the structure must be completely
unrestrained except for the single force excitation point. In mathematical
terms,

receptance = with fk=O forallkitj
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(ii) for impedance quantities - all points on the structure must be completely
restrained except for the single motion input point,

dynamic stiffness = with x~=O forallkzj

Direct measurement of impedance quantities is virtually impossible since the requirement
to ground all coordinates on the structure, other than the motion input point, is very
difficult to achieve practically. In contrast, measurement of inertance quantities can be
simple; for a grounded structure, no special precautions are necessary and for a free
structure, the only requirement is for a suspension system which imposes minimum
restraint on the structure under test, e.g. air bags, rubber bungee cords or soft springs.
Consequently, the majority of vibration measurements made are inertance type
measurements for the simple reason that they arc considerably easier to obtain.

Forced Response

Measurement of a forced response alone yields what is known as an operating response.
This response may arise from many different, simultaneous, excitations distributed
throughout the structure. A forced response can be considered as a linear summation of
the appropriate FRFs, assuming that the structure is linear and that the force distribution is
known or can be estimated. The forced response is a useful indicator of the operating
characteristics of the structure but it is not very useful for diagnosis of the cause of a
particular problem, nor for detailed investigations of structural modification or
optimisation.

Natural Frequency

A natural frequency of a system is defined as a frequency at which free vibration can take
place. Natural frequencies are modal properties.

Resonance

In simple terms, the resonances of a structure are defined as the set of excitation
frequencies for which minimum force input produces a maximum - and possibly
damaging - response. The resonance frequencies are characteristics of the frequency
response function and generally coincide with the natural frequencies.



The magnitude of the response at resonance is controlled by the amount of damping
present in the structure. For light damping levels, a resonance occurs when the forcing
frequency is approximately equal to a natural frequency.

Anti-resonance

An anti-resonance is defined as a frequency at which the ratio of the response at a point to
the force input tends to zero; a frequency at which the structure most strongly resists being
made to move at all at a point of excitation. This can happen when there is zero motion at
either the response measurement location, or at the excitation point. Anti-resonances are
specific to the force and response locations - they are local properties.

Degree-of-Freedom

The term ‘degree-of-freedom’ can be used with reference to physical space or to modal
space. It is important to note the differences in meaning of the two uses of the term. First,
when degree-of-freedom is used in relation to physical space, it refers to a physical
coordinate point and direction. Terms such as coordinate, location and point are
synonymous for the physical space usage of degree-of-freedom. Second, degree-of-
freedom can be used in relation to modal space, in which case, the degree-of-freedom
refers to a complete mode of vibration. In this work there are many references to ‘single
degree-of-freedom modification’. These single degree-of-freedom modifications are in
physical space, i.e. a modification is considered which is only active at one point and in
one coordinate direction. Although the modification is only active in one physical
coordinate, the effects of the modification may extend to all of the modes of vibration. The
modification is not single degree-of-freedom with reference to modal space.

Interface and Passenger Degrees-of-Freedom (coordinates)

The terms interface and passenger degrees-of-freedom refer to physical space and
are used in connection with the theoretical structural modification procedures. Interface
degrees-of-freedom are the coordinates on each component that are joined together directly
and are thus actively involved in the structural modification. The term ‘passenger
coordinate’ covers all the coordinates that are not directly involved in the coupling.

1.2 Literature Survey

The technique of structural modification using experimental data encompasses many
aspects of experimental modal analysis and requires the collection of more extensive and
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more accurate data than are necessary for less demanding applications. For the present
review of the literature, four broad areas for survey have been identified:-

(i) collection, assessment and analysis of experimental data;

(ii) derivation or measurement of rotational degrees of freedom;

(iii) structural modification methods; and

(iv) sensitivity aspects for optimum structural modification.

1.2.1 Collection, Assessment and Analysis of Experimental
Data

Of all the different stages in the experimental modal analysis of a real structure, the
collection and assessment of experimental data is the least well defined. There are many
things that are left to personal preference, engineering judgement and experience rather
than being covered by strict rules and procedures, as used with the later, more
mathematical, stages. This situation probably reflects the wide diversity of structures that
are now subjected to vibration test and analysis. The variability of FRF measurements as
made by different organizations, but for the same structure, has been highlighted clearly
by Ewins in a recent survey [ 11, where he advocates the need for much greater care in the
collection and assessment of experimental data.

It is known that there is a strong correlation between the thoroughness with which a
modal test is planned and a successful outcome. Ewins [2] points out the prime
importance of planning the complete vibration analysis procedure, from test right
through to final usage of the processed data, in order that just sufficient quantity of the
right quality data are measured The ultimate usage of the data influences the way in which
it is measured and how carefully it is analysed.  Stroud [3][4]  proposes a complete pre-test
analysis of the structure using the best available F.E. model, but as such an analytical
model is not always available, this approach may not be applicable. Ewins and Sainsbury
[S] discuss the quantity and type of data required to enable predictions of the coupled
properties of a simple beam with a block mass; another similar exercise was conducted by
Damms [SJ for coupling two beam structures.

Recently, Elliott [7] has shown that the spatial positioning of transducers on the base
structure must be adequate to describe the motion of the modified structuxz  as well as the
base condition. If the modified state could not be measured adequately with the
transducers as they are positioned, then prediction of the effects of the modification will



be unsuccessful. The problem is termed “modal insufficiency”. Once again, this
reinforces the need for a comprehensive preliminary survey in which possible
modifications are proposed. Estimations of the modified structural behaviour then allow
transducers to be placed in the correct positions on the base structure for the full tests.

As an example of the engineering judgement involved in vibration testing, the selection of
a suitable pushrod for the measurements described in the paper by Damms, [6], was
largely a matter of trial and error. More detailed studies of the influence of the pushrod  on
vibration measurements are discussed in works by Silva [8] [9] and methods for designing
pushrods  for particular applications have now been developed by Mitchell [lo] and Heiber
[ 111, although the quantity and type of input data required makes these impracticable in
most circumstances.

Work by Gleeson [ 12][ 131 has shown the care needed in mounting and aligning
accelerometers on a structure so that errors are not induced by the method of attachment,
or by excessive transverse motion. Ewins [14] has also shown how inaccurate positioning
transducers on locally flexible parts of a structure can lead to wide variations in the
measured results. Furthermore, the adverse effects that the measuring equipment can have
on the structure under test are illustrated by this author [15] and by Hopton [16].

Early vibration measurements were made using a Transfer Function Analyser (TFA) and
sinusoidal excitation at discrete frequencies, but with the advent of computer aided testing
systems and cheap Fast Fourier Transform (FFT) processors the emphasis shifted
towards broadband testing techniques. An excellent summary of the many types of
broadband excitation functions has been produced by Olsen [17], which notes the
advantages and disadvantages of each. The apparent demise of sine testing was lamented
by Lang [18] in 1985 and it is interesting to note that more sophisticated sine testing
techniques ate now appearing once more [ 191.

Apart from the standard checks for reciprocity and repeatability, there has been little work
presented on means for assessing the quality of experimental data at the time of collection,
although the subject has been broached by this author [20][21]. Stroud [3] mentions the
use of ‘test-support analysis’ where powerful, on-line, computers are used for rapid
evaluation and assessment of the test results. The assessment consists of identification of
modal parameters and orthogonality checks of the measured modes with the analytic
modes produced in a ‘pre-test analysis’- a type of modal assurance criterion. Once again,
though, such methods are not applicable if an analytic model is unavailable. Several
papers, including [22] & [23], have reported ways by which the quality of a modal
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database can be estimated from the ability to predict accurately the effects of simple
modifications. However, this is not thought to be a very reliable method due to the
influence of other factors and, furthermore, it is too remote from the testing phase to be of
any practical use.

With regard to the analysis of experimental data, since the introduction and development
of cheap and powerful computational facilities, a vast quantity of work has been
published. The basis for many of the analysis methods in common use today is presented
in works by Brown, Allemang, Zimmerman and Mergeay [24], Ewins [25], Stroud [26]
and Fiillerkrug [27], which cover single reference single degree-of-freedom (SDoF) and
multi-degree-of-freedom (MDoF) methods and multiple reference MDoF time domain
methods. A unique interpretation of FRF curves in terms of their “skeletal properties” is to
be found in an interesting book by Salter [28].

The extensive modal surveys presented by Stroud [4] show how the implementation of
different excitation and analysis techniques on the same structure can be used to build
confidence in the final modal models. The desirability of an indication of the degree of
accuracy for any given model, is noted by Goyder [29], so that judgements can be made
as to the suitability of the model for further analysis purposes. Quite how this degree of
accuracy should be determined is not explained.

Works by Hopton [16], Wei [30], and Skingle [ 151 show the typical types of errors that
can occur through incorrect or incomplete modal analysis. Unfortunately, there are
relatively few of these most informative examples - professional pride dictates that only
successful results shall be presented!

1.2.2 Derivation or Measurement of Rotational Degrees-of-
Freedom

The possible need for the measurement of rotational degrees-of-freedom FRFs was
considered by Ewins and Sainsbury [5] and, later, Henderson [31] and Crowley [321
have demonstrated the actual influence of rotational coordinates in a coupling analysis. As
indicated by Crowley, the need for rotational degrees-of-freedom is not universal; it is
highly dependent on the type of modification and the nature of the motion at the coupling
points. Similarly, papers by Smiley [33] and O’Callahan [34] develop, with examples,
reasons why rotational degrees-of-freedom can be vital. A theoretical necessity to include
rotational degrees-of-freedom in a coupling prediction can often be eclipsed by the
practical difficulties of measuring such quantities. There arc two different approaches used

..‘ __.
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in the measurement and calculation of rotational FRF properties: (a) direct from measured
FRF data, and (b) from complex mathematical operations on identified mode shapes.

Ewins and Gleeson [35] propose an experimental method for multi-directional
measurements on beams and further work has been done by Silva [9] using a ‘T-Block’
transducer method. A more sophisticated technique, than that described by Silva [9], for
the measurement of the full FRF matrix at a point, which includes the cross-axis effects of
the accelerometers, has been developed by Mead and Heron [36]. Nevertheless, despite
meticulous attention to detail, the calculated mobility terms which involved at least one
rotational degree-of-freedom deviated somewhat from the theoretical predictions. Several
possible reasons for the discrepancies are cited, but of particular interest is the influence of
the contact stiffness between the ‘transducer’ and the structure, the sire of the ‘transducer’
and the dynamic range of the FRF measurements used in the calculations. These key
factors were identified as being responsible for poor rotational degree-of-freedom
estimations in the case study of a modern helicopter presented in chapter 6. The
limitations of accelerometers used in the measurement of rotational properties are
discussed by Gleeson [ 131  and Licht [37].

O’Callahan  [38] and Haisty and Springer [39] propose methods for determining the
rotational degree-of-freedom information by fitting spline functions to the mode shape
data and then differentiating to find the slopes. These methods have been shown to work
satisfactorily with data produced from F.E. analysis, but no results are presented for
experimental input data. Avitable [40] presents a method which uses transformation
matrices, derived from a F.E. model of a structure, to expand the measured data set to
include the required rotational degree-of-freedom properties. Once again though, such
methods are only applicable if a F.E. model is available, and then the accuracy of the
results is linked with the accuracy of the F.E. model.

In recent years optical techniques, such as laser doppler velocimeters and vibration pattern
imagers, have been developed. The large quantities of response data that can be obtained
by use of these techniques will provide much more accurate information about the
deflection shapes of a vibrating structure than is presently available. From the accurate
deflection shapes it is possible to derive the rotational responses. However, although it is
possible to measure all the translational and rotational responses by these techniques, there
is still no method for excitation of the structure with a pure torque.
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1.2.3 Structural Modification Methods

Structural modification methods can be divided into two groups: (a) FRF Impedance
Coupling methods, and (b) Modal Synthesis methods. The analytical basis for the
impedance coupling method is described in the standard reference work by Bishop &
Johnson [41], and implementation of the method for practical structures is discussed by
many authors, such as Ewins [42], Goyder [29], and Lamonita [43]. The basic theory for
the modal synthesis method can be found in works by Snyder [44] and Lang [45], and an
adaptation of the method has been developed by Luk and Mitchell [46][47].

In theory, both the impedance coupling and modal synthesis coupling methods should
give the same results. In practice, however, each method has limitations which should be
clearly understood if assessment of the results is to be valid. Reviews of both categories
of modification methods have been conducted by Craig [48] and Jones [49] which show
the strengths and weaknesses of each type. FRF impedance coupling methods have the
advantages that out-of-range modes can be incorporated easily through the use of residual
terms and the final results of the modification prediction are in the most convenient form
for assessing the overall performance of the coupled structure - FRFs. Residual terms
cannot easily be incorporated directly into the model if a modal synthesis method is used
[88], and the immediate results of this type of analysis are in terms of eigenvalues and
eigenvectors - one stage removed from the FRFs of the modified structure. However, the
modal synthesis method does have one major advantage over the impedance method,
computationally it is very much simpler. Recently though, development of the impedance
coupling method by Jetmundsen, Bielawa and Flannelly [50] has made this method more
efficient, especially for large structural models with few coupling points, narrowing the
gap with modal synthesis methods quite considerably.

1.2.4 Sensitivity Aspects

As the design of structures has grown more and more scientific, the structures have
become highly efficient in terms of their utilization of materials. Although this is
particularly relevant to aerospace structures, where unnecessary structural mass detracts
from the available payload, the trend is filtering down to more everyday objects, driven by
the ever-increasing cost of raw materials. If modification of a structure is necessitated by
some unwanted operational characteristics, then the efforts to produce an efficient,
economical structure in the first place can be negated by a clumsy approach to the design
and siting of a modification. Studies of the sensitivity of a structure to various changes
have led to the concept of sensitivity analysis, whereby more efficient modifications can
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be designed and selected. In an early allusion to sensitivity, Jones [51] considers the
effect of small changes in mass and stiffness on the natural frequencies of a vibrating
system, and concludes that the change in any mode frequency, for a given modification, is
partly dependent upon the value of that frequency in relation to those of the other modes
of the system. Other work [52], [53] and [54] has shown that it is the relationship of the
resonances to the anti-resonances that is of greater importance than the spacing of the
resonances alone.

Many of the sensitivity analysis techniques have their roots in F.E. analysis, with early
references to rates of change of eigenvalues and eigenvectors by Fox and Kapoor [55].
More recently, sensitivities of eigenvalues and eigenvectors have been studied extensively
by Vanhonacker [56][57], where the emphasis is placed on methods requiring the input of
modal analysis data only. However, the methods involve lengthy calculation procedures
and rely quite heavily on the identified eigenvector matrices, even for the eigenvalue
derivatives. Rather than using the sensitivity analysis results solely as a method for
identifying types and locations for modifications, Vanhonacker has used the techniques
for the prediction of the effects of small or large changes. In some instances, this has
necessitated the use of 2nd order sensitivities of eigenvalues and eigenvectors. Equations
for the 2nd order sensitivities are even more complicated than those for the 1st order
sensitivities. In a similar analysis procedure, Chou [58] notes that the calculation of higher
order sensitivities becomes too complicated to be practical and To [89] suggests that use
of higher order sensitivities in prediction of modified resonance frequencies may not be
beneficial in all cases. Furthermore, the accuracy with which the actual behaviour of the
structure is represented by these higher order sensitivities must be questioned, especially
if the input data for the calculations are derived from measurements.

A different approach to sensitivity analysis was initiated by the discovery, in 1972 by
Vincent [59], that the locus of a point response to a single excitation at a fixed frequency
when a single structural (M, K, or C) parameter was varied, was circular when plotted in
the Argand plane. The plots are similar to Nyquist plots, where frequency is varied while
the structural parameters remain constant. Developments of what has become known as
the Vincent Circle theorem, have been made by Done, Hughes and Webby [60][61], in
which simultaneous modifications of two structural parameters are considered, and
feasible regions of the response points in the Argand plane are identified. Several other
developments have also been reported; Gaukroger [62] considers the application of the
method to undamped structures, for which the characteristic circles degenerate into
straight lines, and it is argued that this application of the analysis gives greater insight into
the effect of structural modifications than it does when applied to damped systems. In
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extending the ideas yet further to include many points of interest and many simultaneous
structural parameter changes, Sobey [63][64] exceeds the capabilities of the circle
presentation and reverts to consideration of a mean square weighted response function. A
strain energy method is presented by Hanson [65] in which structural elements with the
highest strain energy are targeted for modification. The results are compared closely with
those of Vincent’s Circle analyses, and although the same elements were identified for
modification it was concluded that the strain energy method was more suitable when many
elements are to be considered for changes simultaneously.

A different technique for sensitivity analysis has been developed by this author [66] which
is based on the use of experimental FRF data directly, and produces the differential
eigenvalue sensitivities to point mass or stiffness changes. The input data are resonance
and anti-resonance frequencies and can be obtained directly from measured FRFs - no
modal analysis is necessary - which can be a considerable advantage in preliminary
investigations.

1.3 Review of the Present State-of-the-Art of
Modal Testing and Analysis

As indicated in the literature survey, there are numerous different methods for data
collection. In recent years, increasingly sophisticated techniques have been developed to
meet the requirements for extensive quantities of high quality data. These developments
have resulted in very expensive and complex packages of computer controlled measuring
equipment and analysis software. In order to obtain the best results from these systems,
the user must have a detailed knowledge of how the data are processed. As the test and
analysis systems become more complicated, the number of people who really know how
they work and how to run them to their best advantage becomes smaller. A great deal of
insight into many vibration problems can be gained by proper use of the simplest
equipment coupled with a thorough knowledge and understanding of basic vibration
measurement and analysis theory. Extension of the basic theory with straightforward,
easy to implement, techniques for data assessment seems to have been eclipsed by these
more glamorous methods.

One area in which a great deal more work is required is that of assessing the quality and
accuracy of measured data. Preferably, this assessment should be available as soon as
possible after the data are measured so that repeat measurements can be made, if
necessary, without delay. Some assessment methods presently available are too remote
from the data collection phase to be of any real use - in all but research applications.
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Throughout the course of this work, the)difference  FRF (AFRF) has been used very
successfully for the clear assessment of various types of data, e.g. repeatability,
reciprocity, raw data vs synthesised data, etc. All the data assessment methods, including
the AFRF, are used to provide an indication of the quality of the data only. The absolute
accuracy of measured vibration data (i.e. X f Y%) is very difficult to quantify because an
‘exact answer’ is only available for comparison in purely theoretical studies. With
experimentally measured data there are so many unknowns and possible sources of error
(structure loading by the measuring equipment, transducer calibration errors, digitization
errors, etc.) that normal error analysis methods yield unrealistic error bands. Generally,
there is no substitute for painstaking attention to detail for the collection of good, high
quality data. However, as the emphasis tends towards collection of greater quantities of
data, the quality will undoubtedly suffer as a result of the associated tedium felt by
operators. The problem is that large measurement surveys are often approached with a
‘sledge hammer’ method - measure everything in sight, just in case it turns out to be
important at a later stage. If it is known from preliminary analysis that certain coordinates
are particularly sensitive to modification, and therefore important, there is more incentive
to make these measurements accurately. While no quantitative assessment can be made, a
sensitivity analysis can provide a ranking of the degrees-of-freedom in their order of
importance for altering the frequency of a particular mode. When testing time and
resources are limited, this information can be of great value in helping to decide which
data should be measured and which measurements can be eliminated. The concept of
sensitivity studies is not new (see section 1.2.4) but, once again, it is important that the
techniques can be readily implemented at an early enough stage in any vibration
measurement program for subsequent use of the results in the design of modifications and
formulation of the full measurement test schedule. A criticism of sensitivity analysis
methods presently available is that they do not produce results at a sufficiently early stage
to be useful. The sensitivity analysis method developed during the course of this work
provide; results that are available soon after measurement of the data, and without the
need for modal analysis.

Mathematical methods for prediction of the effects of a structural modification on the
dynamic characteristics of a structure are well developed in theory (impedance and modal
coupling methods). However, there is still scope for development of the practical
implementation of these coupling techniques. Experimentally-derived vibration data are
neither accurate nor complete and both these deficiencies can have a significant influence
on the quality of coupling prediction results. Furthermore, use of numerical computational
algorithms in the coupling prediction calculations (especially for matrix inversion in the
impedance coupling method) can also give rise to errors. Computers have a finite accuracy
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and the number of repetitive operations required in the numerical inversion of a large
matrix can cause errors to build up quickly. Such problems will be exacerbated at
frequencies close to the natural frequencies of the structure and modification components
when the matrices become nearly singular and the computations take much longer to
converge to a solution, if at all. As the size of the dynamic models increases, the
computational time for modification predictions escalates rapidly. A large proportion of
the time is taken up with calculations involving passenger coordinates. Passenger
coordinate information is not required for calculation of global properties of the modified
structure but for calculation of the local properties only. The computational effort is not
used in the most efficient manner. Several new formulations of the impedance coupling
method are presented in this work that improve the way in which the calculations are
performed. The number of matrix inversions is reduced by a factor of three and the size of
the matrix for inversion is cut down to the number of interface coordinates. When the ratio
of interface coordinates to passenger coordinates is small, very substantial improvements
in computational speed are achieved.

There is a definite requirement for some research into the ‘accuracy’ of results that can be
achieved from coupling predictions based on experimentally-derived data. If, for instance,
only a portion of the required input data are available, what will be the effect on the final
results and will it be worthwhile continuing the study if it is not feasible to measure all of
the data?

1.4 Outline and Scope of this Work

The work presented in this thesis can be divided into four sections,

(9

@o

(iii)

a review of impedance and modal coupling theories with some recent
developments of the impedance coupling method that can improve the
calculation speed and efficiency very significantly;

the development of a simple sensitivity analysis technique which indicates
the most efficient sites for the modification, working from data collected
during a preliminary survey of a structure;

an investigation of the practical aspects of vibration testing that influence the
type, quantity and quality of data that can be collected. Additionally, the
consequences of some of the practical measurement limitations on the results
from a coupling analysis have been studied; and,

I.,
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(iv) the techniques, analysis methods and assessment tools developed in the
theoretical stages of this study have.been applied to the measurement of a
modem helicopter and subsequent study of some simple modifications. In
this demonstration of the present ability to predict the effects of
modifications using experimentally-derived data, theoretical predictions of
the effects of modifications are compared critically with the measured results
when the actual modifications are made.

One aim of this work is a demonstration of the present ability to predict the effects of a
simple practical modification on a real structure (chapter 6). It was intended that rotational
information should be included in these predictions but rotational measurements proved to
be beyond the capabilities of the apparatus and techniques and, therefore, the
modifications were limited to those in which rotational degrees-of-freedom could be
ignored. Although the resulting predictions for the dynamic characteristics of the modified
structure showed the correct trends, there were still some discrepancies between the exact
detail of the predicted and measured FRFs for the modified structure. These differences
have been traced to alterations in the base structure’s properties not considered in the
modification. Even with knowledge of the possible cause of the problem, its solution
would have necessitated very many more FRF measurements for a range of contrived
loading conditions. Such measurements may have enabled correct prediction of the actual
measured result, but these measurements were not the type that would be made as part of
a normal measurement survey.

Although this study is primarily aimed at devising methods for aerospace structures, the
techniques will be equally applicable to other structures which have a less demanding or
restrictive vibration environment.



Chapter 2

Structural Modification -
Theoretical Basis

2.1 Introduction

Mathematical techniques for the prediction of the effects that a modification will have on a
structure’s vibration characteristics are commonly known as structural modification or
coupling methods. The great advantage of such techniques is that they do not involve
extensive trial and error procedures on the structure itself - any modification refinement
procedures are carried out on the the mathematical model of the structure. Whichever
method of structural modification prediction is used, the accuracy of the final results will
depend heavily upon the quality and extent of the mathematical models of the base
component(s). Therefore, it is absolutely vital that the mathematical model of the structure
is a true and accurate representation of the characteristics of the real structure. Discussion
of whether or not the model is an accurate representation will be left until chapters 4 and
5.

In this chapter, the main methods of structural modification prediction are presented and
reviewed, with emphasis placed on experimentally-based techniques.
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2.1.1 Structural Modification Methods

Structural Modification

F.E. or Analytical
re-analysis of modified

structure.

I
I

I
Modal Coupling. Impedance Coupling.

Techniques for prediction of the Effects of Structural Modifications.
Figure 2.1

Methods for the prediction of the behaviour of modified structures can be divided into
three categories, as shown in Figure 2.1. The least flexible of the three methods is
complete F.E. or theoretical re-analysis of the modified structure - in effect, the
equations of motion for the complete modified structure are derived and solved. Such
methods are of greatest use in the design stages of a project when there is no physical
example of the structure available for test.

It is possible to address a vibration problem using measured modal properties and this is
the basis of the modal coupling method as presented here. Alternatively, instead of modal
properties, the impedance coupling method uses FRFs directly. The impedance coupling
method has some advantages when the structure has a high modal density and an infinite
number of modes (where consideration of residuals becomes important with the modal
coupling method: chapter 5) but, generally, the impedance method has the disadvantage
that a large quantity of data is involved.

Modal coupling and impedance coupling methods are predominantly experimentally-based
methods, but they can also be used with the appropriate data derived from F.E. or analytic
models. This can be especially useful when investigating the effects of a theoretical
modification to an actual structure, where the properties of the modification may be
derived from an analytical or F.E. model and the structure is represented by measured
parameters. Whichever coupling method is adopted, an important assumption which is
made is that the structure is linear. At the present time, there are no experimentally based
procedures for including the effects of non-lineatities and any non-linear analytic or F.E.
based methods are highly computational and require complete definition of the non-linear
elements. Providing that any non-linearities are not too great, acceptable predictions of the
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effects of modifications may be obtained using a linearised model (or several piecewise
linearised models). However, it is well known that the task of showing that a system
contains a non-linearity is considerably easier than locating and identifying the type and
magnitude of the non-linearity - which is by no means straightforward.

The theory underlying the impedance coupling and modal coupling methods is presented
in the following sections, together with brief comments on how and when each method
should be used.

2.2 The Impedance Coupling Method

2.2.1 Theory

Prediction of the dynamic behaviour of a modified structure by means of the impedance
coupling method requires the knowledge of a specific set of FRFs. As mentioned earlier,
these FRFs may be derived from a number of different sources, but care must be taken to
include the maximum amount of relevant data, i.e. number of points considered on the
structures and the type and extent of the data; data for rotational degrees-of-freedom must
be included along with that for translational degrees-of-freedom where necessary. In the
illustrative example used below (Figures 2.2 and 2.3), degrees-of-freedom numbers 4 and
5 represent the interface coordinates (those actively involved in the coupling) while the
remainder constitute passenger degrees-of-freedom which may be included to provide data
for specific key points on the structure other than the modification points (e.g. the pilot’s
seat in an aircraft), or for purposes of identifying the modified mode shapes. The only
data available here are a 5x5 FRF matrix for component A and a 4x4 FRF matrix for
component B.

Consider the two components A and B, which are to be joined together in two degrees-of-
freedom (4 and 5) to form component C.
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X
I a5

f b5

f b4

Definition of Coordinates for the Base Components.

Figure 2.2

In this statement of the impedance coupling method displacement and receptance quantities
have been used for convenience. The final ‘impedance coupling’ equations derived
(equations 2.10 and 2.11) are equally applicable for mobility or inertance data.

For compatibility of the displacements at the connection points,

XJ =X+,5=%5 a n d  Xa4=Xb4=w . . . . . . . . . . . . . . . . . . . . . . (2.1)

For equilibrium of the forces at the connection points,

fa5 + fb5 = f,s and faLt + fM = f@t . . . . . . . . . . . . . . . . . . . . . . . . . (2.2)

Coordinate Definition for the Modified Structure.
Figure 2.3

* ,
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Now, receptance is defined as the ratio of the displacement to the applied force -

x.eiW
Receptance CQ) =T . . . ..*.................................. (2.3)

f.e

where, x = amplitude of harmonic displacement response,
f = amplitude of harmonic forcing,
i=&i,
CO = frequency in radians/second, and

t = time.

Therefore, for component A, the receptance matrix is defined in the following way:

{

Xal
Xa2
%I3
Xa4
Xi35 1 1a a(O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.4)

I 4

similarly, for component B and the resulting component C:

{iii)-[ abcw) I.{$} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5)

Xcl‘
xc2
xc3
%4
xc5
“~6
xc711=

.

a da) .

. 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.6)

Assuming that each of the receptance matrices is non-singular, equations (2.4), (2.5) and
(2.6) can be rearranged to give -

Ifal = ~%I-’ - (Xal ; (fb) = [a# . (xb} a n d  (f,} = [a,]-’ . (&} . . . .(2.7)

Now, invoking the equilibrium condition expressed in equation (2.2)

{fc) = {fa) @ {fb) = ([aal-1. (xa)) @ ([ad-‘. {xb}) . . . . . . . . . . . . . . . . . . . . . .WV

(where the @ sign represents an addition with due regard for the physical nature of the

coupling), and including the compatibility condition of equation (2. l), gives:
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{fC) = (Ka-1 @ [W-l) M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.9)

and by comparison of equation (2.9) with equation (2.7): (fC1 = [~cl-’ * kc)

It can be seen that, Kw = (w-1 @ WJI-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.10)

The receptance matrix for the coupled structure is formed
matrices of the constituent components. The form of this
diagrammaticaIly  in Figure 2.4.

by “adding” the receptance
matrix “addition” is shown

=

i ; : i : ; t :
I t , , 4 4

.._w __LAc-_~
: : 1.__:__A__,.___

___I [
A -’1.___ __+_+?‘~L_.__

Diagrammatic Representation of Matrix “Addition”.

Figure 2.4

For the special case of coupling in one degree of freedom and where interest is confined to
the coupling degree-of-freedom, the matrices revert to single terms, and equation (2.10)
becomes -

1-=L+L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a, ab

(2.11)
a,

2.2.2 Discussion of the Impedance Coupling Method

In concept, the impedance coupling method is very simple and can be used with FRF data
derived from various different sources; F.E. model, analytic model or, more commonly,
from test measurements. The results produced by the impedance coupling method are in
the form of FRFs for the modified structure. These FRFs can be used directly in
predictions of the forced response of a modified structure. Since the ultimate aim of a
structural modification investigation is an improvement in the operating characteristics of
the structure, having the results presented in FRF format is considered a desirable feature.

.



Structural Modification - Theoretical Basis 26

The FRF data produced using F.E. or analytic models is self-consistent - all the FRFs
have exactly the same resonance frequencies - but they may be inaccurate owing to
various simplifying assumptions which are inevitable with such models. Raw measured
data, however, may be less extensive and may show the resonance frequencies for all the
FRFs at slightly different frequencies - due to experimental or systematic errors in the
measurements. However, measured data does include the effects of all the modes and any
non-linear elements. The inconsistencies with measured data can give rise to numerical ill-
conditioning problems in the inversion of the impedance matrices which can be overcome
if the raw measured data are first subjected to modal analysis and then the FRFs are
synthesised from the modal database. By definition, all the synthesised FRFs are
consistent and the system has been linearised, but unless sufficient modes have been
analysed, or residual terms are included in the synthesis, valuable information will be lost
in the process.

The size of the matrices involved in the coupling procedure depends very much on the
number of interface coordinates - those degrees-of-freedom actively involved in the
coupling - and the number of additional points for which the modified behaviour is
required - the ‘passenger’ coordinates. The minimum size of the matrices in any given
coupling analysis is the number of interface coordinates, in which case characteristics of
the modified system are only available for the interface coordinates. The global modal
properties of the modified system - modified natural frequencies and dampings - can be
obtained by modal analysis of the FRFs produced by the coupling analysis. As more and
more passenger coordinates are included, for full characterisation  of the modified mode
shapes, the matrices quickly become large and, it should be remembered that three full
matrix inversions are required for each frequency point considered. The large additional
computational effort necessary at present prohibits the inclusion of numerous passenger
coordinates. However, recent developments of the impedance coupling method - notably
by Jetmundsen, Bielawa and Flannelly [SO] - have reduced the number of inversions at
each frequency point from three to one, and the size of the matrix for inversion is only that
of the number of interface coordinates, regardless of the number of passenger coordinates
incorporated. In reference [50], the final result is quoted but in the following sections a
derivation of the result and further adaptations are presented.

2.2.3 Reformulation of the Impedance Coupling Method

The basic coupling equation (2.10) can be expressed as:

[Cl“ = [A]-’ 49 [B]-’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.12)

..,.- .
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where the 03 ‘addition’ reflects the physical coupling of the components.

Equation (2.12) can be written more formally as:

The impedance matrices are augmented with zeros (zero matrices or vectors) to facilitate
direct addition; the zeros in each matrix correspond with the degrees-of-freedom which
are entirely related to the other component. The interface degrees-of-freedom are contained
in the overlapping parts of the [A] and [B] matrices.

Unfortunately the augmented matrices of equation (2.13) are singular and cannot be
inverted. However, the equation can be rewritten, without loss of generality, as:

[Cl-1 = E A l -

.

0 0

0-
0

[II _

+

_

1 I

0
0_

E I

~ ‘[  -

1 0 0
0 0 01O OFI

. . . . . . . . . . . (2.14)

Small identity matrices are included in the augmented matrices and then subtracted again.
By this means, the augmented matrices referring to components A and B become diagonal
partitioned impedance matrices which can be formed by inversion of similar inertance
type matrices.

[Cl-1
=

Now, if we adopt the following notation:

: [Y]1 . . . . . . . . . . (2.15a)

[‘A] = [I ] 0 0
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Equation (2.15a) becomes:

[Cl-’ = [AJ1 + [B/J’ - [Id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.15b)

By appropriate pre- and post-multiplications, the following equation for the impedance of
the coupled structure is obtained:

[Cl-’ = [Ad-l ([BA] + [Ap; - [Ad. IIA]. DA-J) [B/J-l . . . . (2.16)

Inversion of both
coupled structure:

Now, we let

sides of this equation leads to an expression for the inertance of the

. . . . . . . . (2.17)

1 . . . . . . (2.18)

where the constituent elements Arr, Arz,...etc.  can be single numbers, sub-matrices or
vectors. After some algebraic manipulation (given in Appendix A) we obtain the following
expression,

Alz.[A22+B&.A21  A12.[A22+B22]-1.A22  -A12.[Az+B22]-1.B23

[Cl= Am[A,+B22]-'.Azl  A22[Ap+B22]-1.A22 -A22.[Az+B2J-1.Bu

-B32[A22+B22]-1.A21  -B32.[A22+B&1.A22 B32.[Au+B22]-1.B23 1. . . . . . . (2.28)

or, more concisely as:

[C] =[ ;: ;: %,1-{-i;}. [A~z+B~~]-~.  t AZI A22 -h ) . . . . ..(2.29)

First, it will be noted that the number of matrix inversions has been reduced from three in
the original method to one in the new approach. Second, the size of the matrix for
inversion in the new method is only that of the number of interface coordinates. In most
modification studies, the total size of the model is much greater than the number of
interface coordinates and, therefore, reducing both the number of matrix inversions and
the size of the matrix inversions represents a very large saving in computational time.
Hence, the formulation of equation (2.29) is much more advantageous than that of the
original coupling procedure, equation (2.10).
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The first matrix of equation (2.28) is a representation of the unmodified characteristics of
the base components, with A as the “reference” component. The second matrix of
equation (2.28) is a difference matrix between the representations of the constituent
components and the modified structure. Further consideration is given to these difference
functions in later chapters.

The form of the result shown in equation (2.29) can be checked by a much simpler
analysis, where interest is restricted to the interface degrees-of-freedom only.

or,

and therefore,

In common with

[a’= [A]-’ + [B]-’ ............................................ (2.30)

[cl-’= [Al-’ Wl+[AI) PI-’ .................................. (2.3 1)

[Cl = LB1 Wl+LW’ [Al ...................................... (2.32)

[Cl = Wl+Bl-[AI) ([Bl+Ld [Al .......................... (2.33)

[Cl = [Al . [Al Wl+[AI)‘l [Al ................................ (2.34)

equation (2.29), the final result of this analysis, equation (2.34), only
requires one matrix inversion and the inertance properties of the modified structure are
given as those of the base component [A], together with a difference matrix -

CA1 (lW+LW’ WI.

The new method has been tested for a system with component A having 6 degrees-of-
freedom (3 passenger degrees-of-freedom and 3 interface degrees-of-freedom) and
component B having 3 degrees-of-freedom, all of which relate to the interface. The results
for the modified structure were found to be identical to those obtained using the standard
method, and approximate timing of the computations showed the new method to be 2.5
times faster than the original. For larger models with proportionally fewer interface
degrees-of-freedom compared with the total number of degrees-of-freedom of interest, the
savings will be substantially greater.

2.2.4 Refinement of Method for Spring Modification
Components

One disadvantage of the new method, as presented above, is that it does not permit the use
of idea&d spring element modifications on their own. All the dynamic property matrices

.



Structural Modification - Theoretical Basis 30

required in the new method are of the inertance ‘form’ of (response/force), i.e. inertance,
mobility, or receptance - but such matrices do not exist for simple spring elements.
However, a further refinement can be made for such cases:

Assume that the modifying component consists only of spring elements, and that the
points of interest are confined to the main structure A, i.e. the modification component is
described solely by [B&-l, the impedance matrix for the interface degrees-of-freedom of

component B. For convenience, we shall make the following substitution:

Therefore, equation (2.13) becomes -

[cl-l = All
A21

re-arrangement gives:

[cl-’ = All

A21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.35)

;;;j’.[[ :, ;] + [ ;;I ;::] [ 1 PO,,]] . . . . . . . . . . . . (2.36)

and inversion of the whole equation produces:

[Cl = c:, ;] + [ ;;I ;;;] [ 1 P:2]jr[ ;l; ;:I] . . . . . . . . . . . . . . . . (2.37)

or, [Cl = . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.38)

From which it can be shown that:

[l322][1+  A22P22]3  A21 A22  I . . . . . . . . . . . . . . (2.39)

Where the Ai; elements are inertance sub-matrices, and [p22] is an impedance
matrix.
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This formulation retains the advantage that there is only one matrix inversion and the size
of this matrix is limited to the number of interface degrees-of-freedom.

2.3 The Modal Coupling Method

2.3.1 Theory

The classical matrix equation of motion for forced vibration of a non-proportionally
damped multi-degree of freedom system can be written as -

[MJ (E) + [Cl (i) + WI {xl = IFI . . . . . . . . . . . . . . . . . . . . . . . (2.40)

Ml = mass matrix.
[C] = viscous damping matrix.
[K] = stiffness matrix.

all these matrices are square (N by N) and it is
assumed that they are all symmetric.

If N is the order of the system (number of modes), the matrix equation consists of N
second order differential equations in (x) . Using the method developed by Frazer,
Duncan and Collar [67], these N second order differential equations can be transformed
into 2N first order differential equations by changing the variables - transformation into
2N space.

Introduce the variable (v) = ( x) , and rewrite equation (2.40) as -

[Ml (+) + [Cl (i) + Kl {xl = U3 . . . . . . . . . . . . . . . . . . . . . . . (2.41)

With the identity [Ml (x} - ]lvEl Iv] = 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.42)

Now, combine these equations to form the single matrix equation -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.43)

The matrices and vectors are all now of order 2N. For free vibration, the problem reduces
to:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.44)
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and assume the following form of solution:

(4 = (6) eht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.45)

where h is a complex variable.

Therefore, {v} = (ii) =h ($1 eht ....................................... (2.46)

and, (v) = (G) =X2( $1 eht ..................................... (2.42)

Substituting equations (2.45),  (2.46) and (2.47) into equation (2&I), and simplifying;

[[;;]‘{T}+ [-;;{7}]8={o, . . . . . . . . . . . . . . . . . . . . . . (2.48)

and therefore,

where
and,

h, is an eigenvalue of the unmodified system

((0r is an eigenvector of the unmodified system.

The orthogonality relations are stated as:

MT[; ff]M = [ 1 1 ..................................... (2.50)

[@I’[ -; ;][ol= - [ h 1 .................................. (2.5 1)

where: [o ] = a matrix of all the eigenvectors for theb : 0
unmodified system in 2N space, and [ h ] =

[ 1: - - -. . . , a diagonal matrix

0 : G

of the associated eigenvalues. (N.B. here, the * superscript denotes complex
conjugate.)
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Following the derivation in [45], assume that a stiffness modification, [AK], is made
between two points, such that the modification may be described by the following
equation,

[AK] = k.(t) {t}T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.52)

where: k is the spring stiffness and (t) is a tie vector which describes the physical
connections. For example, the tie vector for a single spring connected between

0
17..

two degrees-of-freedom

.

i
would be (t} = :

ii

, with 1 and -1 at the connection
-1

..

.

i,

degrees-of-freedom only.

Taking similar steps to those for the derivation of equation (2.44),  the following
eigenvalue problem can be derived for the modified system:

G :I{ ~}+CT  K,",,li:b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.53)

This system of equations could be solved by a standard eigensolution, but this requires
knowledge of the original [MJ, [K], and [C] matrices. When the problem is approached
from the experimental side, these matrices will not be known and the following form of
solution is adopted:

assume a new form of solution
{x) = (0) eht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.54)

where A is a complex eigenvalue of the modified system
and ( a) is an eigenvector of the modified system.

Therefore, (v} = (A) =A (0) eht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.55)

and (G} = (i) =A*( a} eAt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.56)

leading to’the  following equation for the free vibration of the modified system:
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[&[;;I+ [-;;I+ [;&]]{T}={O) . . . . . . . . . . . . . . . . . . (2.57)

Now, the original eigenvector matrix [@I is made up from a set of orthogonal

eigenvectors and hence the new eigenvector can be formed from a weighted summation of
the original eigenvectors. Therefore, assume:

= [$I WI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.58)

where {W,) is the weighting vector, and substitute this equation into equation (2.57) to
give:

[&[;;I+ [-;;I+ [~~K]]Mwr~=Ku . . . . . . . . . . . . . . . . . (2.59)

Now, expand and pre-multiply through by [@IT

and employ the orthogonality relations stated in equations (2.50) & (2.5 1) to give:

[*r] I ] - [ A ] +  [  $17: &I]$]] (Wr) = (0) . . . . . . . . . . . . . . . . . . . ..(2.61)

From equation (2.52), [AK] = k.(t) { tlTa.nd  by extending the tie vectors to 2N space,

with zeros,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.62)

then, br[ I ] - [ h ] +  k[$IT{ y} { f}T[+]] (Wr) = (0) . . . . . . . . . . (2.63)

If we now define a new vector, UJ) = [@IT{ 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.64)

. . ‘.
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then, Ar[ 1 ] - [ h ] + k(U) IUIT 1 (WJ = (01 . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.65)

or, [&[ 1 ] - [ h ]]Wrl + WHUIT( W = WI . . . . . . . . . . . . . . . . . . . . . . . . . (2.66)

The vector product (U }‘( W,) is a scalar quantity, which we shall define as k (unknown).

Thus, Ar[ 1 ] - [  h ]](w., +LkRJI =  101 . . . . . . . . . . . . . . . . .(2.67)

and hence, {W,) =-w[4[ 1 ] - [  h ]I-‘{u) . . . . . . . . . . . . . . . . . . . .(2.68)

Therefore,

= [O] (WI  = +A [+] [&[ 1 ] - [ k ]] -hJl . . . . . . . . . . . . . . (2.69)

Substitute equation (2.68) into equation (2.65) to yield -

-hk h,[ 1 ] - [ h ] + k{Ul{UITI[&[ 1 ] - [ h I] -‘GUI = (01 . . . . . . (2.70)

or, -kk [I ]+WJWIT[h[I ] - [h 11-l 1 WI = m . . . . . . . . . (2.71)

Now, pre-multiply through by ( U)T

-/M~~TW)- ~~2UJ~TOUJ~T[&[  1 ] - [ h ]]-‘ru, =O . . (2.72)

Note that -k (U IT{ U ) is a scalar constant, and can be divided out, so that:

Ar[ I ] - [ h ]]-‘~uJ

I

=O . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.73)

.’ .,.
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and, for h f 0: l+k(U+r[ I ] - [h ]]-l{u, = o . . . . . . . . . . . . . . . . . (2.74)

:+ WIT [A$ I ] - [ h ]] -l{u) =o . . . . . . . . . . . . . . . . . . . (2.75)

Now, [ &[ 1 ] - [ h ]] -’ *IS a diagonal matrix, so its inverse consists simply of the

reciprocal of the individual diagonal elements, and hence equation (2.75) can be rewritten
without the use of matrix notation as -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.76)

This is a polynomial in & which can be solved to give the new natural frequencies for the

modified system. Substitution of these values into equation (2.69) enables the
corresponding eigenvectors to be calculated. Subsequently, modal synthesis may then be
used to generate the FRFs for the modified system.

Mass or Damping Modifications

From equation (2.52) onwards, the analysis has been for a stiffness modification. Other
simple types of ideal&d modification are also possible, such as damping modifications
and mass modifications. By similar analysis to that described above for a stiffness
modification, it is found that equation (2.76) is replaced by -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.77)

for a damping modification.

The analysis for a mass modification is made easier if, instead of the identity of
equation (2.42), we use

PI (i) - Kl bl = WI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.78)
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and then stack the equations (2.41) and (2.78) as follows -

[y E]{ l}+[ _; ;I{;}={;} . . . . . . . . . . . . . . . . . . . . . . . (2.79)

The analysis is, once again, similar to that described above for the stiffness modification
and it is found that equation (2.76) is replaced by -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.80)

for a mass modification. The important difference between this equation and
equations (2.76) and (2.77) is in the definition of the numerator of the summation. For
equations (2.76) and (2.77), the numerators are formed from components of the vector
(U), given by equation (2.64),

WI = MT{ ‘;‘}
For equation (2.80) the numerators in the summation are formed from components of the
vector {V}.

where, W) = [elT{ A} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.8 1)

and, [ 81 is the eigenvector matrix for equation (2.79)

The modal coupling method requires knowledge of the eigenvalues and eigenvectors of
the unmodified system only and the mass, stiffness and damping descriptions of the
modification.

2.4 Discussion of Coupling Methods

2.4.1. Practicalities for Implementation of the Coupling
Methods

It can be seen that the modal coupling method requires much less input data than the
impedance coupling method - simply because the modal description of the vibration
characteristics of a structure is more compact than a corresponding description using
FRFs. In both of .these coupling methods, the vibration properties of the modified



Structural Modification - Theoretical Basis 38

structure are produced in the same format as the input data, i.e. for the modal coupling
method, input and output data are in the form of modal and/or spatial parameters. Modal
parameter description of the vibration characteristics is not the most useful since,
frequently, the object of the modification exercise is to improve the operational
performance, character&d by forced response functions, and these must be derived from
appropriate weighted summations of the frequency response functions. These are
available directly from the impedance coupling method, but in the case of the modal
coupling method, must be generated in a further stage of analysis.

When applying the modal coupling method, it is important to recall some of the
assumptions made in the modal analysis stages of the process. The basis of modal
analysis is that the behaviour of a structure can be described by a sum of all the (N) modal
contributions. This can be expressed for a single FRF as:

N

ajk(a) =
r$j r@k -+ r$j* r$k*

S&c, + i (0 - Q, 1-C ) Q,c, + i (0 + Q,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.82)

In practical applications, this series is truncated to the number of modes measured, with
the implicit assumption that the contribution to the response of the modes which have not
been measured is negligible; i.e. the response can be described completely by a linear
summation of the measured modes. When a modification is made, the structure will
exhibit new response characteristics. Now, using the modal coupling method for
predicting the modified response, it can be seen that the new eigenvectors (mode shapes)
are simply formed from weighted summations of the original eigenvectors - equation
(2.69). Therefore, ultimately, the response of the modified structure is still described by
summation of the original measured modes. This assumes that the actual modified
response can still be described adequately by the original measured modes. If the
modification brings into play a higher mode of vibration, not incorporated in the original
measured set, then the modified response can no longer be described by the original set of
measured modes and the result predicted from the analysis will be erroneous. Elliott [7]
terms this effect ‘modal insufficiency’. Bolted beam stiffener type modifications tend to
cause these effects because the stiffeners restrain rotary motion which is a more important
feature than translational motion in the higher order modes -just those modes that are left
out of the base model.
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2.4.2 Equivalence of Coupling Methods

By comparison of the terms in equation (2.76) for a point SDoF modification, with
equation (2.82), it can be seen that:

=akk
. . . . . . . . . . . . . (2.83)

and hence that equation (2.76) can be m-written as:

; + a&2,) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.84)

with Q as the new natural frequencies of the modified system.

Now, it has been shown that using the impedance coupling method for a SDoF
modification, equation (2.1 l), leads to the following equation for the natural frequencies
for a system modified by the addition of an ideal&d single degree-of-freedom spring
component:

and therefore, ;+a, = o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.85)

Equations (2.84) and (2.85) are identical.

Provided complete representations of the systems are used, the impedance coupling and
modal coupling methods are equivalent.

2.5 Review of Chapter 2

In this chapter two methods for predicting the effects of a structural modification have
been presented - the impedance coupling method and the modal coupling method. Both of
these techniques can be used with data derived from experimental measurements of the
base structure and the modification component. The modal coupling method uses a more
concise form of description for the dynamic characteristics (a modal model) than the
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impedance coupling method (a response model; FRFs). However, the data required for
assessment of the performance of a modification are usually FRFs or a forced response
solution and thus the impedance coupling results are directly applicable.

The results obtained by use of either method will be identical providing that the dynamic
description of the base components is accurate and complete. When the dynamic models
are derived from measured data, the results of the coupling predictions can differ quite
substantially unless steps are taken to account for the effects of out-of-range modes.

Developments of the impedance coupling method have been made which improve the
computational speed and efficiency very significantly. These improvements reduce both
the number of matrix inversions and the size of the matrices for inversion and the effects
will be particularly apparent when there are relatively few interface coordinates compared
with the number of passenger coordinates. This situation is encountered frequently in the
assessment of modifications to aerospace structures where the physical modifications tend
to be localised but their effects must be investigated for the whole of the structure.
Actually, the ideal modification would be a small localised modification that had a major
beneficial effect on the dynamic behaviour of the whole of the structure. In this way the
modification would not reduce the available pay-load or accessibility by very much.

The new formulation of the impedance coupling method is not applicable for stiffness type
modifications because the method requires impedance descriptions of the components
which are not available for an idealised spring element. To overcome this restriction a
further refinement of the method was undertaken to yield a suitable form of the equation
that could accept the impedance description of simple spring elements directly.

By use of these new impedance coupling methods with data derived from experimental
structural measurement surveys there is no apparent deterioration in the accuracy of the
results but a very marked improvement in the speed of calculation.



Chapter 3

Sensitivity Analysis

3.1 Introduction

In the past, the initial selection and design of structural modifications to solve a vibration
problem have been dependent largely upon the expertise of people who have worked for
many years on the particular types of structures and their associated vibration problems.
Selection of a suitable modification is more a matter of “this worked before for a similar
problem” rather than design of a new modification for the particular case. The intention
should be to select the most efficient type of modification, at the earliest possible stage
and, for this, it is advantageous to know the sensitivities of the resonance frequencies to
particular types of simple modification.

3.2 Background

3.2.1 The Behaviour of Resonance
a Single Degree-of-Freedom

Frequencies on Grounding

When a single degree-of-freedom (coordinate) of a structure is grounded, the resonance
frequencies all shift downwards to what were the point anti-resonance frequencies for the
degree-of-freedom which has been grounded. Consider the impedance coupling equation
for a general spring type modification, equation (2.34)
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[Cl =[ 1;; ;::I -{Z;;} [P22]  [I+ A22P22]-l{  A21  A22 I

A refers to inertances of the unmodified structure; and,

p refers to impedances of the spring modification.

For a single degree-of-freedom modification equation (2.34) can be simplified to,

[Cl =[ ;;I  3 - (,, ~p22J;;s(  A21  A22 I . . . . . . . . . . . . . . . . . . . . . . . . (3.1)

Now, since

P 22 1=
1+ A22P22  L+ A22

P22

and as the impedance of the spring, pz, tends to infinity (the structure becomes grounded

at the modification point), -
p:2

tends to zero, so that equation (3.1) becomes -

[cl =[ ;:I ;;;I -&[ ;;;:: ;:;;I . . . . . . . . . . . . . . . . (3.2)

Thus, [Cl = [
All - A1;;221] Ku

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.3a)

(0) 0

In summary, by grounding a single degree-of-freedom, the order of the system is reduced
by one, and the remaining FRFs for the modified system may be calculated from the
matrix equation;

[Cd = h - A1i;221] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.3b)

The new resonance frequencies are given by the solution of A22 = 0 . It should be noted
that A22 = 0 is the equation for the anti-resonance frequencies of the point FRF for the
unmodified structure at location 2; i.e. the new resonance frequencies are identical to the
old anti-resonance frequencies of the point FRF at the location of the single degree-of-
freedom modification.
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3.2.2 The Behaviour of Anti-Resonance Frequencies on
Grounding a Single Degree-of-Freedom

The anti-resonance frequencies of certain FRFs do not alter when a structure is modified
in a single degree-of-freedom. In particular, the anti-resonance frequencies of FRFs
having at least one degree-of-freedom in common with the single degree-of-freedom
modification remain unchanged. All the other anti-resonances are affected by the
modification.

Example

The behaviour of the resonance frequencies and the point anti-resonance frequencies for a
structure with a single degree-of-freedom modification are illustrated by this following
example. A mass is attached at the tip of a free-free beam in one transverse translational
degree-of-freedom only. The point FRF for the modification degree-of-freedom is plotted
in Figure 3.1 for several values of added mass. It can be seen that there are no changes in
the anti-resonance frequencies but that the resonance frequencies all shift, progressively,
down towards the preceding anti-resonances. The maximum possible frequency shifts for
this modification are given by the separation of the anti-resonances and the resonances,
i.e. R,-AR,. If a grounded spring was attached in place of the mass, the resonances
would shift up towards the succeeding anti-resonances and the maximum possible
frequency shifts for this modification would be given by the separation of the resonance
and anti-resonance frequencies, i.e. AR,+r-R,.
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I Free-Free Beam with SDoF II888 iiodifkations.

Example - SDoF Mass Modification to the Tip of a F&e-Free Beam.
Figure 3.1

It is interesting to consider what happens at the limits, where the mass or stiffness of a
single degree-of-freedom modification is infinite. From a practical viewpoint there is no
difference between attaching an infinite mass at a point or connecting that point to ground
through a spring of infinite stiffness. In the above example however, the resonance
frequencies move in opposite directions for mass and stiffness modifications (as would be
expected), leading to apparently different states at the limits. Fortunately, it can be shown,
mathematically, that the results as the mass or stiffness modifications reach infinity are
identical. As an illustration of this point, consider the following simple 2DoF system:

2 DoF Mass-Spring System.
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For which the natural frequencies are given by;

CC+=
(krmz+kzrnz+kzrnr)*q  (krmz+k2mz+kzm$- 4mlm2klk2

2mlm2
. . . . . . . . . (3.4)

(i) ‘Ground’ the structure by letting ml tend to infinity, to obtain,

o2 = (k2 + kd
2 m2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.5)

k2Therefore, o2 = 6 or, 69 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3.6)

(ii) Now ‘ground’ the structure by letting kl tend to infinity, to obtain,

(m2_+ m2>69= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7)

Therefore, 02 = 00 or, CI$ = which is indeterminate.

k2In this case, L’Hospital’s Rule must be used to find the limit , giving 02 = E, the same

as for (i) above.

It should be noted, however, that the modes indicated as having natural frequencies of
0 Hz and 00 Hz are degenerate modes because the modal constants for these modes are
identically zero. The order of the system is reduced from two to one; grounding a degree-
of-freedom reduces the system order by one.

3.2.3 Physical Interpretation of the fact that Anti-resonances
of certain FRFs  do not move when Single Degree-of-
Freedom Modifications are made

In order to provide a physical explanation of this phenomenon it is first necessary to
understand the nature of an anti-resonance. An anti-resonance is defined as a frequency at
which the ratio of the response at a point to a force input tends to zero. This can happen
when there is zero response at location i, or when infinite force is required at location j.
Both these conditions can be related to nodal points (points of zero motion) in the
deflection shape of the structure at that particular excitation frequency. If the response
location is at a nodal point (Figure 3.2), then it is obvious that there will be an anti-
resonance at this frequency in the FRF. Alternatively, if the excitation location is at a
nodal point this will also give rise to an anti-resonance because an infinite force will be
necessary to achieve any response.
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In summary, the anti-resonances are the set of frequencies for which there are nodal
points in the deflection shape of the structure at either the response location i or the
excitation location j.

Now, consider the effects of a single degree-of-freedom mass modification at location k,
at a single frequency, for an arbitrary structure with the operating deflection shape at this
frequency shown in Figure 3.2. At this particular frequency the unmodified structure has
a nodal point in the deflection shape at location k.

Figure 3.2

There is no translational motion at location k and so a modification in this single
translational degree-of-freedom will have no effect on the structure and, hence, no effect
on any of the anti-resonances for FRFs with the force or response location at k, i.e. the
anti-resonance frequencies will remain unchanged for all the FRFs in the k* row and k*
column of the FRF matrix, Figure 3.3.

k

Figure 3.3 Figure 3.4

If the modification is made at a point (p) which is not at a nodal point, Figure 3.4, the
modification will affect the structural behaviour. There will no longer be nodal points at
the original locations on the structure and, hence, all the anti-resonances are shifted.

In this illustration, the single degree-of-freedom modification is considered to be the
translational motion of a mass. Consequently, all subsequent discussion relates to the
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translational motion of the structure and the mass. If the rotational motion of the mass had
been chosen as the modification degree-of-freedom, the relevant nodal points on the
structure would have been positioned very differently. The nodal points, referred to
above, are nodal points in the translational sense; they are not nodal points in the rotational
sense. The rotational nodal points are at positions of zero slope, at the peaks and troughs
of the operating deflection shape shown, whereas the translational nodal points are at the
positions of zero deflection.

As a useful indication of whether or not any given modification can be considered a single
degree-of-freedom modification, the converse of this criterion is used - if all the anti-
resonance frequencies for the FRFs involving the single modification degree-of-freedom
remain the same as for the unmodified state, then the modification is indeed single degree-
of-freedom. Otherwise, it can be stated that the modification is effective in more than one
degree-of-freedom. This test can be implemented very easily at the time of measurement
and can save a large amount of wasted effort by identifying, at an early stage, that the
modification is not in a single degree-of-freedom.

How is this of practical use? Various authors [23], [77] have proposed methods for
verification of a modal database by comparison of the predicted and measured results for a
simple modification - the assumption being that if the predicted and measured results
exhibit a high level of agreement, then the modal database is sufficiently extensive and
accurate. The simple modification often chosen is that of a single degree-of-freedom mass
addition. Now, if the actual modification made is not in a single degree-of-freedom the
two sets of results (predicted and measured) do not represent the same modified structure
and direct comparisons are meaningless. A simple check of the anti-resonance frequencies
for the measured FRF data will show whether the modification made is effective in a
single degree-of-freedom only and whether any further comparison of the measured and
predicted results is worthwhile. Careful inspection of the anti-resonances for the point
FRF data presented in [77] shows that there are noticeable shifts and, hence, that the
modifications assumed to be in a single degree-of-freedom are, in fact, active in more than
one degree-of-freedom and so the supposed validation of the modal database is fallacious.

As mathematical proof of this observation, consider equation (2.29) applied for a single
degree-of-freedom modification in degree-of-freedom number 2, where the elements A22
and B22 are single numbers.

[Cl = [ ;;; ;;;I - {it;}. [A22+B22t1  . I A21 A22  1 . . ..W)
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hence, [C] =[;;: ::I - Azz:Bz[::;;: :;::I . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.9)

Now the anti-resonance frequencies can be found for the modified system by solving the
equations individually for Cij = 0:

For Cl1 : the coordinates of component A that are not actively involved in the
modification at the coupling interface (the passenger coordinates for component A).

Cl1 = A11 - A22+B22
Am%1 = o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.10)

Anh
Since A22+B22 # 0 for all o, there will be new anti-resonance frequencies for the

modified FRFs associated with these passenger coordinates of component A.

For Cl2 and C2r.

Cl2
AxA

= A12 - A22+B22 =  A12 ’
A22

- A22+B22 1
= o . . . . . . . . . . . . . . . . . . . . . . . . . . (3.11)

Since B&O , A12 must be equal to zero for the identity to be true, and hence the anti-
resonance frequencies for Cl2 & A12 are the same. By’ symmetry, this also applies for
c21.

For C22.

c22
AnA

= A22 - A22+B22 = A22 ’
A22

- A22+B22 = o . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.12)

Again, B&O and therefore A= = 0 , hence the anti-resonance frequencies for C22 & A22
are the same also; i.e. the anti-resonance frequencies for the { C12), (C2r ), and { C22)
elements of the modified structure are identical to those of the ( Ar2) , { A21 } , and { A22)
elements of the component structure respectively. The anti-resonance frequencies remain
unchanged for all the FRFs that have at least one force or response coordinate in common
with the single degree-of-freedom modification (at location 2 in this case).
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As an example, consider the following simple 2 degree-of-freedom mass and spring
system shown in Figure 3.5.

Example 2 DoF Mass & Stiffness System.
Figure 3.5

The matrix equation of motion is -

from which, - w2wl]-’
kz 1 . . . . . . . . . . . (3.14)

(kr+k+dml

with, det = c#(mrm2) - &(krm2+k2mr+k2m2+ksmr) +krk2 +klks +k2k3 . . . . . . (3.15)

The natural frequencies are given by setting the determinant to zero; i.e. det = 0. The anti-
resonance frequencies are given by setting the terms in [c+,,,] to zero, individually.
Hence, there are no anti-resonances for the off-diagonal terms in this example, since
k2+0, equation (3.14).

CC,, has an anti-resonance at a frequency of dFads/sec. . . . . . . . . . . . (3.16)

and,

or, has an anti-resonance at a frequency of qFads/sec. . . . . . . . . . . . (3.17)

It will be noticed that equation (3.16) for the anti-resonance frequency for CX,, does not
contain either kr or ml ; the parameters that would be altered in single degree-of-freedom
modifications at point 1. Therefore, this anti-resonance frequency is unaffected by such
modifications at point 1. Similarly,equation (3.17) for the anti-resonance frequency of
O& does not contain either k3 or m2 , the parameters involved in single degree-of-freedom
modification at point 2.
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3.2.4 Insufficiency of Anti-resonance to Resonance
Frequency Separation Alone, as an Indication of
Sensitivity

Although it has been concluded that the separation of the resonance and anti-resonance
frequencies is important in deducing the sensitivity of a mode to a single degree-of-
freedom modification at a certain point, [51] and [52], the separations of the resonance
and anti-resonance frequencies in the point FRFs are not sufficient alone. The ‘effective
mass’ of the mode in that FRF (as defined by the Salter Skeleton [ZS]) also plays an
important role. If the separation between the resonance frequency of a mode and the
preceding anti-resonance frequency is the same for two point FRFs, then the point with
the smaller ‘effective mass’ for that mode will be the more sensitive. Consider the
following example for a 2DoF system, Figure 3.6.

let mr=2Kg  ; m2=1 Kg
kr=k2=1000N/m.

Example 2DoF System.
Figure 3.6

For free vibration, [“o’ :21{3+[ (kl;;) ;;I{;;} ={; }............... (3.18)

and the resonance frequencies (equivalent to the natural frequencies in this case) are
obtained by solution of the equation formed by setting the determinant of [[K] - W~[MJ]
to zero - a quadratic equation in 02.

&(mrm2) - c$(krm2+k2mr+k2mz) +krk2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.19)

This results in resonance frequencies of 2.7238 Hz and 6.5758 Hz. The anti-resonance

frequencies for the point FRFs for locations 1 and 2 are given by4s anddF

respectively. For the system with the properties shown above, the anti-resonance
frequencies are identical, and equal to 5.0329 Hz. A plot of the point FRFs for locations
1 and 2 is shown in Figure 3.7.
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= +Polnt FRF for LocatIon 1.
= +Polnt FRF for Locrtlon 2.
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Point FRFs for the Example 2DoF System.
Figure 3.7

Although the FRFs display the same resonance and anti-resonance frequencies, the
‘effective mass’ and ‘effective stiffness’ characteristics are different. For the 1st mode, the
effective masses (m,) are given by -

m,& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
02

(3.20)

where, b = effective stiffness; the low frequency asymptotic stiffness value.

At point 1, b = kr and at point 2, k, = a, giving the effective mass for mode

number 1 at point 1 as 3.41 Kg and the effective mass for mode number 2 at point 1 as
1.7 1 Kg. Therefore it is concluded that since the anti-resonance frequencies are equal,
because point 2 has the smaller effective mass for mode number 1 it will be more
sensitive to single degree-of-freedom modification than point 1. This reasoning is borne
out by the variation of the resonance frequency for mode number 1 to single degree-of-
freedom modifications at points 1 and 2 respectively, which is shown in the graph of
Figure 3.8. The modifications were achieved by connecting a further spring (k3) between
the point in question and ground.
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Variation of Mode 1 Resonance Frequency for Different SDoF Stiffness Modifications.
Figure 3.8

If we focus attention on mode number 2, the effective masses are; for point 1,2 Kg, and,
for point 2,1 Kg (the reciprocals of the high frequency asymptotic values of the inertance
in each case). Once again, point 2 has the smaller effective mass and therefore will be the
more sensitive location for the purposes of modification. The variation of mode number 2
resonance frequencies with different single degree-of-freedom stiffness modifications is
shown in Figure 3.9.

Vrletlon of Hode 2 Rmonrnce  Frequency

+kdlflcatlon et LOcrtlOn  1.
+flodlfls~tl~ at locltlm  2.

Mod et 2

tbd et I

Y J
to1

0
I 1 I 1 I i I 1

200 400 600 a00 1000
Modification Stlffness (N/n).

Variation of Mode 2 Resonance Frequency for Different SDoF Stiffness Modifications.
Figure 3.9
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Once all the sensitivities have been derived in this way, the degrees-of-freedom can be
ranked in order of ‘importance’ for single degree-of-freedom mass or stiffness point
modifications. To relieve a particular vibration problem, subsequent real modifications can
be designed which exploit fully the sensitive degrees-of-freedom identified in the ‘ranking
table’, thus providing an efficient solution.

3.3 Theoretical Development of Sensitivity
Analysis

3.3.1 Rational Fraction
Systems

Description of FRFs for Undamped

(i) A Grounded Structure

It has been shown in several papers, e.g. references [73] and [74], that any FRF of a
grounded undamped structure can be described completely in terms of resonance
frequencies, anti-resonance frequencies (although in some cases the anti-resonance
frequencies may be imaginary - see later) and a constant:

00

Point FRF for a Grounded Structure.

Frequency (Hz1 .

Point FRF for a ‘Grounded* Structure.
Figure 3.10a



Sensitivity Analysis 54

. . . . . . . . . . . . . . . . . . . . . . . (3.21)

where: Ijk(a) = hertance between pohts j and k.

cjk = Static Flexibility
o = Frequency
Q = rth resonance frequency.
Jkq = i* anti-resonance frequency for Ijk

N.B. The 1st anti-resonance is defined as that one following the 1st resonance.

The equation was first derived by Duncan [74] and, thus, will be referred to as Duncan’s
Equation.

If it is assumed that a system is undamped, then a measured driving point FRF cj=k),
e.g. Figure 3.10a, can be characterised  by this equation. Knowledge of only N
resonance frequencies, (N-l) real anti-resonance frequencies, and a single point on the
FRF curve (used to calculate C& is required. Although most systems have an infinite

number of resonance frequencies, quite accurate results for the inertance can be obtained

using a finite number of modes (N), providing that the ratio of is small: a situation

which is easily obtained in practical applications.

The static flexibility (Cjk) can be determined from the low-frequency asymptote of the
FRF or by use of equation (3.21), in a rearranged form, with the resonance and anti-
resonance frequencies and an inertance value (Ijk) at a frequency 0. The point chosen on

the FRF curve will be identified as a ‘reference point’. Comparison of the static
flexibilities derived using several different reference points with that determined from the
low-frequency asymptote provides a means for assessing the accuracy of the assumed
model.
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(ii) A Free Structure

Point FRF for a Free Structure.

4
0

I I 1 I 1 1 I I

lb.0
Frequency (Hz) .

Point FRP for a ‘Free’ Structure.
Figure 3.11a

For a free undamped structure, the inertance can be expressed as :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.22)

where: 5~ = Static Accelerance

N.B. In this case, the
resonance.

lSt anti-resonance is defined as that preceding the 1st non-zero

The main differences between a point FRF for a grounded structure and a point FRF for a
free structure occur below the first resonance frequency and can be seen by comparison of
Figures 3.10a & 3.1 la. The point FRF for a grounded structure is asymptotic to a
stiffness line at very low frequencies, whereas the point FRF for a free structure exhibits
an anti-resonance below the frost resonance and becomes asymptotic to a mass line for
frequencies below the anti-resonance.
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Imaginary Anti-resonance Frequencies

It has been stated above that any FRF of an undamped structure can be described
completely by equation (3.21) or equation (3.22), for grounded or free structures
respectively. For point FRFs,  resonance and real anti-resonance characteristics alternate;
there is always a real anti-resonance between each successive pair of resonance peaks. For
the situation where the force and response points are not the same - a transfer FRF - a
real anti-resonance need not occur between two successive resonances and there may be a
‘minimum’ instead of a ‘zero’. Practical difficulties arise in this situation, although there
are, mathematically, still N-l anti-resonance frequencies for a transfer FRF, some of them
are imaginary, and only the real anti-resonances can be extracted by visual inspection of a’
measured FRF.

An FRF with an imaginary anti-resonance frequency has been synthesised using
equation (3.21). The FRF is shown in Figure 3.10b and has the appearance of a transfer
FRF, i.e. no ‘anti-resonance’ feature between the resonances just a minimum. The input
data used in the generation of this FRF are identical to those used for the FRF of
Figure 3.10a, except that the original real anti-resonance frequency of 6 Hz has been
made purely imaginary, e.g. (0 + i6) Hz. This imaginary anti-resonance frequency could
not be determined from visual inspection of the transfer FRF.

FRFe  for a Grounded Structure.

Comparison for Real and Iaaglnary Antl-resonance Frequencies.
0 0

-Real Antl-reronance  F r e q u e n c y .
- Iaaglnrry Antl-resonance Frequency.

I
0 0

1.0 10.0
F r e q u e n c y  (Hz) .

Comparison of FRFs for Real & Imaginary Anti-Resonance Frequencies.
Figure 3.10b

, ,
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Figure 3.10~ shows the transition of the point FRF (Figure 3.10a) to the transfer FRF
(Figure 3.10b) as the anti-resonance frequency is changed from a real to an imaginary
value. The phase relationship is also plotted and the smoothing out of the 180’ phase
change associated with the real anti-resonance can be seen. The 180” phase changes at the
resonances remain unaltered.

IMAGINARY

ItlAGINARY

 0.0 0 . 2 0 . 4 1 0.6 0.6 1 .o

, , , , , ,
0.2 0.4 0.6 0.8 1.0

Log(Frequency)

3-D Plot Showing the Transition Between the FRF of a Grounded Structure with a Real
Anti-Resonance Frequency and that with an Imaginary Anti-resonance Frequency.

Figure 3.10~
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3.3.2 Resonance Sensitivity for a Point Single Degree-of-
Freedom Mass Modification to a Grounded Structure

The resonance sensitivities of a grounded structure for a point single degree-of-freedom
mass modification are derived using simple impedance coupling theory together with
Duncan’s equation (3.21). The derivation is set out below.

The impedance coupling equations for one coupling coordinate only reduce to,

1,’ l-=- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
oPr

(3.23)

Where a and p are the component point inertances (at the attachment location j) and y is

the point inertance of the coupled structure for coordinate j. The resonance frequencies of

the modified structure (Sr,) are given by L()
Y

and hence a+P=O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3.24)

Now, working with inertances, a is given by equation (3.21) for the point j, and p = k

for a mass modification, so that;

. . . . . . . . . . . . . . . . . . . . . . . .(3.25)

where RR are the modified resonance frequencies, and re-arrangement  gk!S,

mnR2($jE(l -$)-ir(l -s)=O . . . . . . . . . . . . . . (3.26)

Solution of this polynomial equation in fiR will yield the resonance frequencies for the

modified structure.

Definition of the Resonance Frequency Sensitivity Parameter

We shall define the sensitivity of the resonance frequencies to a mass addition in a

mRsingle coordinate, as the differential m

. _. i-
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Anti-resonance frequency.

0 Added Mass (m). + w

Definition of Sensitivity.
Figure 3.12

The sensitivity to be calculated is a mathematical sensitivity in that it is the slope of the
frequency vs added mass graph (Figure 3.12), for zero added mass. Actual, finite, mass
additions may have a different effect on the resonance frequencies to that predicted
through use of the sensitivity values.

Differentiating equation (3.26) with respect to mass, using the following formula for the
differentiation of a product,

&{il (1 - 5)}=&*[i1 (1 - lyr)]-:l (&) . . . . . . . . . . . . . . . . . . . . . (3.27)

leads to,

d%

dm =

N-l

QR Cjj n(Q2)  E
l=l

2
nN2 _ nR2 .~ N-l

W i=l
- &n (w - w)

R r=l I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.28)

for the sensitivity of resonance frequencies to single degree-of-freedom modifications (for
the full derivation of equation (3.28), see Appendix B). Evaluation of equation (3.28)
requires the resonance frequencies of the modified system and, hence, prior solution of
equation (3.26), or measurement of the modified system. However, for the purposes of
ranking the coordinates, solution of equation (3.26) is avoided because the ranking is
based on the initial sensitivities, i.e. for m tending to zero. Consider this limiting case
for one mode at a time, so that RR (the modified resonance frequency) tends to aP the
corresponding resonance frequency of the unmodified structure. After some algebraic
manipulation we find that,
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d& -Cjj.*p.fi(Q2).fi(j101i2  - i2p2)
I=1 i=l

dm m=O= N-l
2.n(-kJi2).fi(*~2 - Q,‘)

. . . . . . . . . . . . . . . . . . . . . . . . . . .(3.29)

i=l *P

This equation allows the sensitivities of each resonance frequency to be calculated for a
single degree-of-freedom mass modification at any position on a structure (i) for which a
point FRF is available. Arrangement of the sensitivities in decreasing order gives the
‘Order of Importance’ ranking of the coordinates for single degree-of-freedom mass
modifications.

This sensitivity parameter is expressed in terms of frequency shift/Kg of added mass. For
comparison of the sensitivities of several modes it has been found that a ‘percentage
sensitivity’ is of more direct use. The percentage sensitivity is simply the sensitivity
expressed in equation (3.29) divided by the resonance frequency of the mode under
consideration, and multiplied by 100, giving an expression in terms of percentage
(%) frequency shift/Kg of added mass. The relative importance of modification at one
point for various modes can be assessed more easily with this parameter.

3.3.3 Resonance Sensitivity for a Point Single Degree-of-
Freedom Stiffness Modification to a Grounded
Structure

An analysis, similar to that of section 3.3.2 for a mass modification, has also been made
for a single degree-of-freedom stiffness modification. The stiffness modification is
modelled as a spring, one end of which is connected to the point in question and the other
end is grounded. The polynomial equation giving the new resonance frequencies (&) for

the modified system is:

kCjj%!(l -i$)+~$-z)=O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.30)

or ;+ ajj(&) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.31)
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and the corresponding expression for the stiffness sensitivity is:

d% Cjj.fi(Q2).~QCOi2  - i2p2)
r=l i=l

dk k=o = 2.*p. &.ij6ji2)+fi(*r2 - $2~~)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.33)

i=l HP

3.3.4 Relationship Between Mass and Stiffness Sensitivities

It will be noted that there is a close similarity between the mass and stiffness sensitivities
of equations (3.29) and (3.32) - in fact they are related very simply:

d% = -1 d%
dk k=O np2’ d m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.33)
m=O

This relationship shows that the ranking of degrees-of-freedom from these sensitivity
calculations will be identical whether a mass or stiffness modification is to be made. A
simple explanation of this relationship is given below.

Consider the Salter skeleton mass and stiffness lines [28] for a single mode -

,

k

Salter Skeleton for a Single Mode.

By definition, $ = Ri

Figure 3.13

Now, if we require a shift in the resonance frequency from QR to &

are two possible ways this could be achieved.

There
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(a) Increase k while m is kept constant;

Skeleton for Increased Stiffness (k).
Figure 3.14

3!g+~l+s$)~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.34)

or, (b) Decrease m while k is kept constant;

k

Skeleton for Increased Mass (m).
Figure 3.15

[+f$]=H1+2)J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.35)

Now, equating equations 3.34 and 3.35;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.36)

. .
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gives, 1+Am A k  AmAkm+r+ rr& =  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.37)

Neglecting 2nd order quantities and using the definition of QR,

Am -Akm=-
m k and therefore, m= E =k -hk R2R

Hence, Ak-=-
Am G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3.38)

Now, when equation (3.38) is compared with equation (3.33) -

d& 1 d%
x k=O = -~dmxn=o for which, rearrangement gives, mR dk- _=_G

R dm ‘dnR

the similarity becomes clear.

3.3.5 Sensitivity Analysis for Free Structures

The sensitivity analysis so far has concentrated on single degree-of-freedom mass and
stiffness modifications to grounded structures. As shown in equations (3.21) and (3.22),
the rational fraction representation of grounded and free structures is quite similar and thus
the theory for the sensitivity analysis of free structures follows the same lines as those for
grounded structures presented in sections 3.3.2 and 3.3.3 above.

If a single degree-of-freedom mass modCation  (m) is made to a free structure at location
j, then by suitable manipulation of equation (3.22), it will be seen that the resonance
frequencies for the modified structure can be obtained from solution of the equation:

m.&.it(l -$$)+Ft(l -z)=O . . . . . . . . . . . . . . . . (3.39)

The sensitivity of the resonance frequencies to this single degree-of-freedom mass
modification is derived by differentiating equation (3.39) with respect to m,

and taking the limit as the added mass tends to zero, giving:
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s,&Q2) i(l -%) ..................  ( 3 4 1 )da,
dm m=O =

2&2, fi(nz - Qp2)
.

*P

As in Section 3.3.4, the resonance frequency sensitivities for a single degree-of-freedom
stiffness modification are directly related to those for a single degree-of-freedom mass
modification by:

GEE =_L dRD
dk g * dm m=O

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.42)
k=O

3.3.6 Internal Modification Between Two Points, and the Use
of Difference FRFs  (AFRFs)

In sections 3.3.2,3.3.3 and 3.3.5 above, the theory is presented which allows calculation
of the resonance frequency sensitivities for single coordinate mass or stiffness
modifications to free or constrained structures. It is important to remember that they are
the sensitivities to single degree-of-freedom modifications. A single degree-of-freedom
mass modification can be achieved by connecting a mass to the structure through a
suitable joint, i.e. a pushrod. A single degree-of-freedom stiffness modification can be
made by connecting one end of a spring to the structure and grounding the other end.
However, if a spring is connected between two points on the structure, which is a typical
forrn of structural modification, there are 2 degrees-of-freedom involved - independent
motion of each end of the spring - and the sensitivity analysis results derived from normal
FFWs will not apply. Consider the simple structure shown in Figure 3.16:

2DoF Mod.
(c)

First Mode of Vibration.
Figure 3.16

A single degree-of-freedom stiffness modification, as shown in Figure 3.16(b), will
affect the structure because there is relative motion between the ends of the spring.
Sensitivity analysis with data from the normal FRF will correctly predict the sensitivity of
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mode number 1 to modification at location j. If the 2DoF modification shown in (c) is
made, there will be no effect on the structure because there is no relative motion between
the ends of the spring. The simple sensitivity analysis results for locations i and j are not
applicable in this case. Consider next the effects of the same modifications on the 2nd
mode, Figure 3.17:

2DoF Mod.

Second Mode of Vibration.
Figure 3.17

The single degree-of-freedom modification, Figure 3.17(b), will have a similar effect on
the structure to that on the 1st mode but, the 2 degree-of-freedom modification will now
have a very significant influence on this mode - even greater than the single degree-of-
freedom modification - because there is a large relative motion of the ends of the spring.
This 2nd mode will be more sensitive to the 2 degree-of-freedom modification than to the
single degree-of-freedom modification for which the normal sensitivity analysis applies.

Difference FRFs

The sensitivity analysis for a particular coordinate is performed using the point FRF for
that coordinate (sections 3.3.2 to 3.3.5). By default, the reference for both the force and
response measurements is ground: the force is measured between the point and ground
and the response is measured relative to ground. If this reference were to be altered from
ground, such that the force measured was that between locations i and j, and the response
was that of i relative to j, then the resulting “point FRF” (point difference FRF, AFRF)
would be different to those for locations i or j alone. A sensitivity analysis using this point
difference FRF would predict correctly the sensitivities of modes 1 and 2 to the
modification shown in Figure 3.17(c).

As a specific example we shall use the simple undamped 2 degree-of-freedom system of
section 3.2.4.
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Figure 3.18

The matrix equation of motion for the 2 degree-of-freedom system, with the coordinate
system as shown, is given by equation (3.18):

The choice of the x1, x2 coordinate system is purely arbitrary and the following definition
of coordinate system (x1 and y) is equally valid. Instead of using x2 we adopt a new
coordinate, y, defined as the difference between x2 and xl; y=(x2 - xl). The matrix
equation of motion for this choice of coordinates is then,

[

m2

m2 (m~m2)l{~r}+[? L)rlIx’,}=I~/’
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.43)

The natural frequencies, which are global properties, are identical whichever coordinate
definition is used - and for an undamped system the resonance frequencies are equal to
the natural frequencies. The anti-resonance frequencies, however, will be different for
each particular FRF and for each choice of coordinates. For a system with the following
mass and stiffness properties:

and,
ml=3Rg mz=lKg
kl = k2 = lOOON/m.

the resonance frequencies are; 2.4263 Hz and, 6.0275 Hz

and the point anti-resonance frequencies are,
for the (x1,x1) coordinate system .............................................. 5.0329 Hz
for the (x2,x2) coordinate system .............................................. 4.1094 Hz

and for the ‘difference’ coordinate system (y,y) ...................................... 2.5165 Hz

The three point FRFs for the system are shown in Figure 3.19;

. ,
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+Polnt FRF for Locrtlon 1.
+Polnt FRF for Locatlon 2.
-+ Dlffcrance  FRF between 1 C 2.
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1 .o 10.0
Frequency (Hz) .

Point FRFs & Point Difference FRF for the Example 2DoF System.
Figure 3.19

By use of equation (3.32) the stiffness sensitivities of modes 1 and 2 have been
calculated for separate single degree-of-freedom modifications in coordinates xi, x2
and y.

Mode

!1

T
Sensitivity

%
N/m

dQ
dk

dQ2
ak

I
k-0

k-0

Xl
I

T

45.8e-3

4.28-3

Point FRF DoF.

x2

77.7e-3

22.38-3

Y

4.2e-3

45.8e-3

It will be seen that, as expected, modification in coordinate y has very little effect for
mode number 1, but a very significant effect for mode number 2. The variations of the
resonance frequencies for a range of the modifications are shown in Figures 3.20 and
3.21.
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Figure 3.20
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tbd between 1 6 2

+tllodlflc~tlon at Locrtlon  1.
+lbdlflcotlon @t Locrtlon  I.
-+- llodlf Is~tlon ktrwn 1 & 2. Hod et2

Hod et1

I 1 1 I 1 1 I I t
I 200 400 600 800 1000

Hodiflcation Stiffness (N/m).

Variation of Mode 2 Resonance Frequency with Stiffness KS.
Figure 3.21

Consequently, when considering modifications involving the use of stiffness elements
internally in a structure, the sensitivity analysis results based on the measurement
coordinate system should be treated with caution. It is possible, however, to derive the
“point difference FRFs” from the normal FRFs alone by a triple product transformation as
shown below.
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Consider the coordinate systems used in equations (3.18) and (3.43). Inertance matrices
[a] and [ p] can be formed from the modal properties as follows;

[a] = [e].[h,2- clP]‘l.[e]’

and, [P] = [4q.[b2- w2j1.[olT
The eigenvalues (natural frequencies) will always be the same regardless of the system of
coordinates used. However, the mass normalised eigenvector matrices are different; [e]
for the Xl, X2 coordinate system and [+I for the Y, X1 coordinate system.

Now, if we assume that these eigenvector matrices can be related by the transformation
matrix [Tl, such that;

[+I = rTl.[e]

Then,

and,

Now,

and therefore,

or,

[Tj.[a] = p-J.[e].[xr’- 02]-1.[e]T

[$I’= [ e]T. r-uT

m.[~].ruT= [e].[C- o’l-l.[e]T

rKl.[~].[rJT= [P]

The transformation matrix between the eigenvectors, m, is the same as the
transformation matrix between the two coordinate systems, in this case;

[ x’,]=[-; X;]
In summary, the difference FRFs may be calculated from;

[HDI = D’l.[Hl.VIT . . . . . . . . . . . . . . . . . . . . . . . . . . (3.44)

. .
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where: [HD] = n by n matrix of ‘difference FRFs’
[H’j = p by p matrix of measured FRFs

ITI = n by p transformation matrix.

As an alternative to this method of calculation, if at an early stage it is thought that this
additional difference sensitivity analysis might be necessary, it may be better to measure
and store the force and response spectra separately for each location. Any desired AFRF
can then be formed by appropriate combination of the force and response spectra directly.

3.3.7 Second Order Sensitivities

In the work presented by Vanhonacker [56] & [57] and VanBelle [76], sensitivity values
are used in series expansions to provide estimates of the modified structure’s new
resonance frequencies. It has also been shown that, to estimate the resonance frequencies
for finite modifications, the first order sensitivity parameters alone may not be sufficient,
i.e. using only the first two terms in the Maclaurin’s series expansion of equation (3.28).

00

Maclaurin’s Series: f(x) = f(0) + xf(0) +8(O) +...... = . . . . (3.45)
.

c-
x; ftr) (0)

x=0

Greater accuracy in the estimation of resonance frequencies for modified structures can be
achieved by including more terms in this series, but this necessitates the higher order
differential functions. Equations (3.28) and (3.40) have been differentiated once more
(Appendix B) to yield the following expressions for the 2nd order mass sensitivities for

grounded and free structures -
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For a Grounded Structure -

with,

N-1 N-l
(*)= n (a,’ - aR2)  +  ~$%’ - h2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.46a)

and, for a Free Structure -

3
dk =R
dm2 )+

with,

(ar2  - QR2)  -rEi$r(as2  - QR2)

s#i 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.46b)

It is clear that further differentiation to derive higher order differentials would be far too
complicated.

Similar long and complicated 2nd order sensitivity terms have been used successfully by
Vanhonacker, and Van Belle to give improved accuracy, but it is noted by Chou [58] that
calculation of further order sensitivities becomes yet more complicated and of dubious
practical use.

L ,
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3.3.8 Example - 1st and 2nd Order Sensitivities for a Beam

A ftee beam with a single degree-of-freedom mass modification at the tip has been used in
a numerical study to illustrate the variation of resonance frequency and its first and second
differentials with changes in the added mass. The unmodified beam is taken as the base
condition and a range of positive and negative mass additions to the tip of the beam have
been considered (negative modification masses represent mass removals). For each
modification the new resonance frequencies were found and used with the anti-resonance
frequencies (which remain unaltered) in equations (3.40) and (3.46b) for calculation of
the fmt and second differentials of the first mode frequency with respect to the added
mass. All the resonance and anti-resonance frequencies up to 5 kHz were used in these
calculations (7 modes) and the mass addition ranged from -0.5 Kg through to +0.5 Kg.
Since the mass of the unmodified beam is only 1.04 Kg the maximum positive and
negative mass additions represent significant structural modifications.

Free Beam rlth SOoF Hear
Modif rcrt iww. E-s

Frequency (Hz).

Free-Free Beam with SDoF Mass Modifications at the Tip.
Figure 3.22

A selection of FRFs for the total range of mass modifications is shown in Figure 3.22.
As mass is added, the resonance frequencies all drop relative to the unmodified state and
when mass is ‘removed’, the frequencies increase. In each case it can be seen that the
frequency shifts are bounded by the adjacent anti-resonance frequencies for the
modification coordinate point FRF. In Figure 3.23a the variation in resonance frequency
for the fast mode is shown for the full range of added masses. For negative mass
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additions the curve is asymptotic to the succeeding anti-resonance frequency and for
positive mass additions the cme is asymptotic to the preceding anti-resonance frequency.
The slope of this curve is the fiit differential with respect to mass, as calculated by
equation (4.40), and is shown in Figure 3.23b.

.

2

I Varlatlon of Resonance Frequency for Mode 1with Changtt In the Added Mete. I

Anti-Reeonence of tmrodifled  beem4I

7: :l
\I -I

Reeonence of unmodlf  led be!y_;I-,

AntI-Reeonencc of unmodified  bean.

I I I I I I I I i 5 I
4 . 5 4 . a 4 .1 0.1 0.8 0.5

Added Mass (Kg).

Flmt Olffuuttlrl.

bmd Olffawbtlrl.

Variation of Resonance Frequency and lst & 2nd Differential Sensitivities for Mode 1
with Changes in the SDoF Mass Modification.

Figure 3.23
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CiQPIn section 3.3.2 the sensitivity has been defined as dm ,,,,&, which is the point where theI

first differential curve crosses the Y-axis. As the mass modifications become larger and
larger (+ve or -ve) the incremental changes in the resonance frequencies become
progressively smaller and the fast differential becomes asymptotic to zero. It would
appear that, in this example, the slope has the largest value when the actual resonance
frequency of the modified beam is mid-way between the adjacent anti-resonances, i.e. at
approximately 22 Hz. The second differential of the resonance frequency with respect to
the added mass is the slope of the first differential curve and this is shown in
Figure 3.23~. All the curves are finite and continuous.

By consideration of Figure 3.24a it can be seen that if the resonance of interest for the
unmodified structure is close to the succeeding anti-resonance then predictions of the
shifts in the resonance frequency for positive mass additions will be under-estimates.
Conversely, if the resonance for the mode of interest for the unmodified structure is close
to the preceding anti-resonance (Figure 3.24b) the predicted shifts in the resonance
frequency for positive mass additions will be over-estimates. The transition between over-
and under-estimation of the frequency shifts occurs when the second differential curve
passes through zero.

(b)

\ \ \ \ . \ . \ \ \ \

AR :
0 Added Haan (Kg).

- Actual - - - - -  Flrrrt Order

Ut-
0 Ad&f+ Has8 (Kg).

\
Ssnoltlvlty Prrdlctlon

Consequences of lst Order Sensitivity Predictions for Stiffness-like and Mass-like
structures.

Figure 3.24

. .
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I Variation  of Resonance Frequency for Mode 1with Changes In the Added flass. I
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Maclaurin’s Series Prediction of the Modified Resonance Frequency using the First Two
Differential Coefficients.

Figure 3.25

For the unmodified beam (added mass = 0) the first resonance frequency is 15 Hz, the
sensitivity is -28.14 Hz/Kg and the second order sensitivity is 329.04 I-WKg*.These
values have been used in the Maclaurin’s series expansion (equation 3.45) for estimation
of the new resonance frequencies of the beam for a range of mass modifications. The
predicted variation of the modified resonance frequency is plotted together with the actual
variation in Figure 3.25. It can be seen that the parabolic form of the prediction only
agrees with the actual behaviour for modifications over the range -0.1 to +O. 1 Kg.
Outside of this range there are very serious discrepancies between the prediction and the
actual behaviour. Therefore, it can be concluded that for macro modifications, the use of
terms up to and including second order differentials in a Maclaurin’s series expansion for
the modified resonance frequencies is still not very accurate.
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of the new resonance frequencies of the beam for a range of mass modifications. The
predicted variation of the modified resonance frequency is plotted together with the actual
variation in Figure 3.25. It can be seen that the parabolic form of the prediction only
agrees with the actual behaviour for modifications over the range -0.1 to +O. 1 Kg.
Outside of this range there are very serious discrepancies between the prediction and the
actual behaviour. Therefore, it can be concluded that for macro modifications, the use of
terms up to and including second order differentials in a Maclaurin’s series expansion for
the modified resonance frequencies is still not very accurate.
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3.4 Anti-resonance Sensitivity for a Single
Degree-of-Freedom Mass Modification at a
Remote Point

The resonance frequency sensitivities to single degree-of-freedom point mass or stiffness
modifications are global sensitivities for modification at particular points - because
resonance frequencies are global properties. It has already been shown, in sections 3.2.2
and 3.2.3, that the anti-resonance frequencies of FRFs having at least one degree-of-
freedom in common with the modification point do not change, but anti-resonances in all
other FRFs will shift. In just the same way as resonances can be moved away from a
troublesome excitation frequency, it may be desirable to move a particular anti-resonance
characteristic to the troublesome excitation frequency. However, it should always be
remembered that anti-resonance characteristics are local properties of FRFs - dependent
upon the choice of force and response coordinates. Positioning of an anti-resonance of
one FRF at a particular frequency does not mean that there will be an anti-resonance at that
frequency in all the other FRFs - unlike the behaviour of resonances. For successive
sequential single degree-of-freedom modifications, it may be necessary to know the extent
to which the anti-resonances have shifted as a result of the preceding modifications. For
these reasons, a further analysis has been performed to derive the sensitivities of anti-
resonance frequencies to a single degree-of-freedom modification in a remote degree-of-
freedom. The analysis begins with the matrix form of impedance coupling theory and the
general form of Duncan’s equation, then follows similar steps to those taken for the
resonance frequency sensitivities.

Using the matrix form of the impedance coupling technique:

[a]% [PI-‘= [y]-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.47)

For a 2 degree-of-freedom system, with a point mass modification made in degree-of-
freedom number 1,

l 2 .[ _Qg2  zl2]+[  -;

%1(322  - a12

;]=[y]-l . . . . . . . . . . . . . . . . . . . . . . . . (3.48)

hence,
al$x9m

y22=@22+
1 - a&m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.50)
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Now, using the following forms of Duncan’s equation,

%b>
_c1q-6)

f; l - -02
r=l C 1w

_qJl-6)
fi l - -

69
r=l ( 1lnr2

c22.EJ -$J
-

f; l - -02
r=l ( 1w

. . . . . . . . (3.51)

eventually yields:

y22 =

c22@ (l -&))[g(l -f$)-02mC,ij (1 -+$)]+OZm[C$ (1 -$)I

i(l -$J[i(l -$)-~2mC$j+ -+$)I

. . . ..(3.52)

as the point FRF at location number 2 - the remote point - for the modified system.

Now, represent y22 as:

ye_ c*22* E(l - &)
02iti 1-z

r=l ( 1r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.53)

where, the * superscript here denotes values for the modified system

Now, choose to evaluate the equations (3.52) and (3.53) at the new anti-resonance
frequencies of the point FRF at location number 2, o = CO* = %i*, where y22 tends to
zero, leaving:

dJl-~)[~ (l-S)- %?mG~ (1- +]+%2n+12~ (l- S)T= 0

. . . . . . . . . . . . . . (3.54)
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Solution of this polynomial equation in oA will yield the point anti-resonance frequencies

at the remote location for the modified structure.

In the same way as for the resonance frequency sensitivity analysis, we shall define the

sensitivity of the anti-resonance frequencies to mass addition, as; d(22%)
dml n:tl=O

Differentiating equation (3.54) with respect to ml, using equation (3.27) and taking the
limiting case as m tends to zero (oA tends to 0,; the anti-resonance of the unmodified

structure) leads to:

doa
zii =ml=0

Some of the transfer FRF anti-resonance frequencies may not be real (section 3.3.1), and
so determination of these from a measured FRF is difficult. Therefore, we make a
substitution using equation (3.5 1) to obtain:

daa
I 2 (22COa) fi(*r2 - 22COa2) fi(24y’)

12 I=1 i=l
zi

m1=0 = 2Cu  220,3 a (~2~ ~(z’O.2  _ 22”i2)

. . . . . . . . . . . . . . . . . . . . . . . (3.56)

r=l i?sl

where: 1 (%I)_^ is the 1,2 transfer inertance evaluated at a frequency

corresponding to one of the 2,2 anti-resonance frequencies.

Once again, the sensitivity is given by a simple expression but, this time, it requires the
resonance and anti-resonance frequencies for the coordinates under consideration, and
specific values of the transfer inertance between those coordinates. Transfer
measurements of a structure are necessary so that these anti-resonance sensitivities may be
calculated.
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3.5 Application of Sensitivity Equations to a
Cantilever Beam

A theoretical model of a cantilever beam was developed, enabling FRFs to be derived for
the beam at positions 25%, 33%, 50%, 66% and 75% of the beam length from the
clamped end. The resonance and anti-resonance frequencies used were taken from these
calculated FRFs. In addition to the resonance and anti-resonance frequencies, the static
flexibilities for all the FRFs (Ci) are required in equation (3.29) for the calculation of the
sensitivities. The static flexibility values for each point FRF were calculated using
equation (3.21), and the resonance and anti-resonance frequencies and the value of the
inertance (I,) at a frequency of 1 Hz. The static flexibilities calculated in this way agree
well with the low-frequency asymptotes of the inertance functions - which could also be
used for calculation of the static flexibilities if it was so desired.

Resonance sensitivities have been calculated for the first four modes at each of the stations
along the beam, for translation/translation point functions. The results are shown in
Table 3.1.

The sensitivities from Table 3.1 have been ranked with the most sensitive first, and this is
shown in Table 3.2. This ranking for a single degree-of-freedom point mass modification
compares favourably with the ranking of Table 3.3 which was produced by ordering the
frequency shift values observed for 1 Kg single degree-of-freedom mass additions (N.B.
the cantilever beam mass is 1.04 Kg). The ranking is not identical, but this is due to the
fact that the ranking for Table 3.3 is based on

n,(m=O) - n,(m=lKg)
m ,

while the ranking for Table 3.1 is based on the resonance sensitivity, defined as
d&
dm m=e’

The differences in these slopes accounts for the differences in ranking

observed.

To confirm this explanation, frequency shift values were calculated and ordered for mass
additions progressively less than 1 Kg. As the mass addition became very small, the
ranking based on the calculated frequency shifts showed better and better agreement with
the ranking based on the sensitivity.

The cantilever beam model incorporates 1% hysteretic damping, but it will be recalled that
the theory upon which the sensitivity equations are based is for an undamped system.
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Damping of the level normally found in structural components (1% - 2%) does not seem
to influence the resonance frequency sensitivities to any significant extent.

M o d e,

:
3
4 t

Resonance Sensitivity (Hz/Kg) for the Cantik

Frequency @25% @33% @50% @66%

2.36 -0.043 -0.120 -0.534 -1.32
14.80 -4.94 -9.79 -14.8 -5.67
41.23 -41.6 -44.1 0.00 -33.5
80.87 -76.8 -10.2 -87.8 -3.10

Resonance Frequency Sensitivities for the Cantilever Beam.

, Mode 1 Position (%) M o d e Position (%I

rder of Importance Ranking, Order of Importance Ranking,
sed on Resonance Frequency Based on Resonance
fts for a 1Kg Mass Addition. Frequency Sensitivities.

(Most Sensitive First) (Most Sensitive First)

Table 3.2 Table 3.3

er Beam

@75%

-1.96
-0.619

-27.4
-65.5

Table 3.1
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3.6 Discussion of Theoretical Sensitivity Expressions

The sensitivity equations [(3.29), (3.32), (3.41) and (3.56)]  are all expressions
containing products of resonance and anti-resonance frequencies. All the calculations can
be implemented easily on a computer. Once the PRP measurements have been made, the
input data required are readily available without the need for modal analysis procedures.
Peak- and valley-picking routines can be used directly on raw PRP data plots to yield the
required resonance and anti-resonance frequencies.

Closely spaced modes of a structure will give rise to problems with this sensitivity
technique, as they do for other analysis techniques. The resonance frequency sensitivity
analysis relies on the use of resonance and anti-resonance frequencies from point PFWs.
Sufficiently high frequency resolution must be used for the measurement of such data in
order to define all the resonance and anti-resonance frequencies adequately.

Absorber structures are commonly used as a means of correcting vibration problems in
structures. The simplest absorber structure is a single degree-of-freedom mass/spring
system, and an attempt was made to derive a sensitivity expression for just such a simple
modification, in the same way as had been done for individual mass and stiffness
elements previously. However, it was found that this type of analysis is not applicable
because the absorber introduces an extra mode into the system, and the concept of relating
frequency shifts directly is no longer valid.

As a generalisation, the sensitivity analysis techniques developed in this chapter cannot be
used for anything other than simple mass or spring elements alone, because all other
modifications introduce extra modes. Nevertheless, if a particular modification can be
described adequately by mass or spring elements, albeit in a piecewise fashion over
various frequency bands, then these analyses will be valid for each particular frequency
band.

If this type of sensitivity analysis is undertaken using data from a preliminary survey of a
structure, then assessments can be made as to the suitability of certain locations for the
purpose of excitation for the full measurement survey. Ideally, the excitation should be
applied through a relatively insensitive degree-of-freedom. Identification of the sensitive
coordinates should ensure that sufficient care is taken during the full measurement survey,
so that the data are contaminated as little as possible by any of the measuring apparatus.
Conditions relating to the collection of experimental data are discussed further in chapters
4andS.
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3.6.1 The Influence of Damping

The sensitivity analysis study has been based on the use of rational fraction equations for
the FRF properties of undamped structures. In practice, though, all structures have some
damping. One effect of damping is to limit the level of the response at resonance and at
anti-resonance. At resonance, the ‘Q-factor’ is reduced from infinity, for an undamped

1
system9 to 26

-. At an anti-resonance, the magnitude of the response is a small, but finite,

value rather than zero. Furthermore, viscous damping alters the actual natural frequencies
and the anti-resonance frequencies. For an undamped system, the resonance frequencies
are equal to the natural frequencies of the system but, for example, for a proportionally
damped system the natural frequencies are the ‘damped natural frequencies’, given by,

The anti-resonance frequencies are affected in a similar way by the damping because they
arise from cancellation of all the individual modal contributions. When the damping is
small and evenly distributed throughout the structure, the resonance and anti-resonance
frequencies can be assumed to be approximately equal to the resonance and anti-resonance
frequencies of the undamped structure.

The rational fraction equations are interesting in that the effects of damping are not
included in the sense of limiting the responses at resonance and anti-resonance
frequencies, but they may be included, implicitly, in the definition of the resonance and
anti-resonance frequencies used in the equations. When resonance and anti-resonance
frequencies are derived directly from FRF curves, they are the properties of the damped
system. An FRF curve synthesised using the rational fraction equation with damped
structural data will have undamped resonance and anti-resonance features at the damped
frequencies. In the sensitivity analysis procedure it is only the resonance and anti-
resonance frequencies that are of any importance, hence, whether or not resonance and
anti-resonance features are damped or undamped is irrelevant, provided that all the
frequencies are correct. Furthermore, since it is intended that the sensitivity analysis
should be used only as a method for ranking modification sites in their order of
importance for influencing particular modes, discrepancies will be unimportant providing
that the ranking is not altered.
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3.6.2 General Comments on the use of Experimental Data

In many cases, even real anti-resonances are not defined clearly in measured FRFs, and it
is difficult to ascribe accurate anti-resonance frequencies. It is possible to use synthesised
FRFs in which the anti-resonances are defined just as clearly as the resonances. However,
at an early stage of the procedure, the creation and validation of a modal database is
wasteful. It is much more advantageous to have the anti-resonances defined more clearly
in the measured data. To try and obtain better quality data around the anti-resonances, it
has been suggested that greater care could be taken throughout the measurements. In some
circumstances improvements can be made by changing the type of testing method - such
as changing broadband testing to sine testing using a Frequency Response Analyser and
concentrating data points in the anti-resonance regions as well as in the resonance regions.
While this is possible for translational type measurements which are to be used directly, it
is impractical for ‘derived’ FRFs (such as difference FRFs) for which the specific anti-
resonance frequencies only emerge after processing. Only if some prior measurements
and calculations have been undertaken to deduce the approximate location of all the anti-
resonances will it be possible to concentrate the frequency data points in the correct
ranges.

3.6.3 An Alternative Definition of Sensitivity

The sensitivity parameter presented in the foregoing sections is the sensitivity of
resonance frequencies to changes at or between locations j and k on the structure,

!z%
e.g’ dKs K

s=
0 ’

Figure 3.26

1 .I._.
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The sensitivity to stiffness changes between two points will probably be the most useful
in practice because the most likely modifications will be internal stiffness changes to the
structure.

An alternative view of sensitivity is the sensitivity of the response at a remote location,
say i, to a change between locations j and k. It might be possible to calculate and plot a
response sensitivity such as,

&i
IdKs I+0

as a function of frequency. The function would be dependent upon -

. the single response location chosen (i);

. the pair of locations between which the modification is made (j and k); and

. the particular forcing function used (the response is dependent upon the
input).

Therefore, it can be seen that the sensitivity analysis would require interpretation of a large
number of frequency dependent sensitivity functions simultaneously. As an example,
consider a structure which has n points of interest -

Figure 3.27

The number of different 2-point spring modifications that can be made is given by
selecting any 2 from n, with the order unimportant; the combination

( >“Cr = r, (f!_ r)l , where r = 2..

For each of these different spring modifications there are n possible response locations
n.n!that could be considered. In total therefore, there are r, cn _ rl!  frequency-dependent.

,
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sensitivity functions that could be calculated for each forcing function chosen. A simple
system consisting of only 9 points of interest would produce 324 sensitivity functions for
each forcing function - a vast quantity of information. The amount of data can be reduced
substantially if interest is restricted to a very small frequency range, or to a single
frequency, but nevertheless, interpretation of r, !

. c:n_ rj!  single sensitivity values would

be no simple task.

In the resonance frequency sensitivity method developed in this chapter, the sensitivities
are single numbers (instead of frequency-dependent functions) and relate to global shifts
of the resonance frequencies. It is necessary to calculate the sensitivities for the particular
modes of interest only, for all the different 2-point spring modifications that can be made.
If the number of modes of interest is m, the number of sensitivity values to be assessed
will be m.n!

r! (n - r)., , potentially still a large number of sensitivities to be assessed. It

should be remembered, though, that the sensitivity function developed in this chapter is
independent of any forcing function and that the number of modes of interest (m) will
usually be considerably less than the number of points of interest (n).

3.7 Review of Chapter 3

Techniques for predicting the effects which given modifications will have on the dynamic
characteristics of a structure are well proven. Two of the prediction methods are reviewed
in chapter 2. The selection and design of modifications to overcome a particular vibration
problem are much less well documented. Usually, the modifications are designed from
previous experience with similar types of problems. Although the modifications chosen
may bring about an acceptable vibration performance, they might not provide the optimum
solution. For the majority of ground-based machinery, such as machine tools, washing
machines etc., the only real penalty of an inefficient modification is the cost of any
unnecessary material used in the modification. With an aerospace structure however, there
is the additional penalty that any unnecessary mass in the modification detracts from the
available payload.

The selection of the most efficient sites for modifications - termed “sensitivity analysis” -
at an early stage, has two main benefits -

(0 modifications can be designed to exploit the sensitive properties of the
structure; and
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(ii) the full measurement survey can be tailored to include sufficient quantity and
quality of data at the possible modification sites to enable accurate and
detailed prediction of the effects of the modification.

In this chapter a new approach to sensitivity analysis has been developed. The new
approach evolved from observations of FRF characteristics for a structure before and after
single degree-of-freedom modifications. It was found that -

. when a single degree-of-freedom modification is made, the anti-resonance
frequencies do not change for FRFs which have at least one coordinate in
common with the modification degree-of-freedom; and

. as the size of the single degree-of-freedom modification is increased the
resonance frequencies of the modified structure shift towards the (fixed)
anti-resonance frequencies of the point FRF for the modification degree-of-
freedom.

The emphasis is placed on the use of data measured during a preliminary measurement
survey so that the analysis can be performed at the earliest possible stage. It would be
possible to use data from an analytical or F.E. model of the structure at the design stage,
but the uncertainties associated with un-validated models may be too great for any
confidence to be placed in the results. Furthermore, at the design stage there is wide
freedom and scope for changes in the basic structure to solve potential vibration problems
and this would be far better than any of the add-on type modifications for which this
sensitivity analysis is intended.

The new approach to sensitivity analysis requires measurement of point FRFs for all the
degrees-of-freedom of interest, from which resonance and anti-resonance tkquencies are
extracted. These frequencies are substituted into simple equations for the sensitivity of the
resonance frequencies to single degree-of-freedom mass or stiffness modifications at
given points. From the sensitivity values derived, the modification degrees-of-freedom
can be ranked in their “order-of-importance” for influencing any particular mode. These
rankings can be used in the subsequent design and selection of a suitable modification to
move a given resonance away from an excitation frequency. An important fact to
remember is that the rankings are identical whether single degree-of-freedom mass or
single degree-of-freedom stiffness modifications are being considered.

The use of the sensitivity equations has been extended to allow consideration of spring
modifications between two internal points on a structure. In this case, the ‘point difference
FRFs’ are required for the calculations and, unless these AFRFs are measured directly, it
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is necessary to transform the standard FRF data or to record measured force and response
data separately, rather than combined into a single FRF as is normal practice. By this
means it is possible to calculate any AFRF at a subsequent stage. This extension to the
sensitivity analysis method is particularly advantageous because the majority of practical
modifications involve stiffness changes between internal points on structures.

Although the range of modifications for which the analysis is directly applicable is still
restricted, the identification of the sensitive degrees-of-freedom for modification is valid
in a general sense and can be used to guide the design of practical modifications. As noted
by Sobey, [63], it is assumed that the most effective individual single degree-of-freedom
modifications will be just as effective when applied together as a practical modification.

The main practical difficulties with this sensitivity analysis technique lie in the
determination of the anti-resonance frequencies - particularly when broadband testing
methods are used and the definition of anti-resonance features can be rather poor. In such
circumstances it may be necessary to adopt a stepped-sine testing method whereby the
anti-resonances can be defined much more accurately.

.



Chapter 4

Practical Considerations

4.1 Introduction

4.2 Overview of Testing Methods

There are several different approaches for measurement of the dynamic characteristics of a
structure. Historically, the approaches have been divided into Phase-Resonance methods
(Normal Mode testing or Sine Dwell testing) and Phase-Separation methods (Stepped
Sine Sweep and Broadband testing).

Phase-resonance methods rely on the ability to excite a single mode of vibration by use of
multiple shakers with independently variable force levels. The shakers each produce
sinusoidal excitation at the same frequency and are either in-phase or out-of-phase with a
reference source. The “normal-mode” excitation set-up effectively cancels the damping in
the structure - the exciting forces are distributed such that each energy sink is cancelled by
a corresponding energy source - and a single real mode can be excited. In this condition
of normal-mode vibration, the excitation frequency is the undamped natural frequency of
the mode, the response at all the points on the structure is in quadrature with the forces
and the structural responses relate directly to the mode shape vector. This method can be
very powerful and is popular for the ground vibration testing of aircraft structures because
of the ability to measure real normal modes (for direct comparison with F.E. studies) and
the ability to character&e non-linearities by study of the structural responses for a wide
range of force input levels. The main difficulties with normal-mode testing are the
selection of excitation locations, the tuning of the force pattern and the choice of excitation
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frequency. The complete process has to be repeated for each different mode and
consequently the testing time can be lengthy.

Phase-separation methods rely on the fact that the forced response of a linear structure is a
weighted linear summation of all the uncoupled modes of the structure. The forced
response to a known excitation is measured and then the modal parameters are extracted
by means of mathematical curve fitting techniques. Phase-separation methods generally
produce less accurate results than the phase-resonance methods and this is due, primarily,
to the mathematical assumption that the actual responses are formed from a linear
combination of the modes. In fact, the measured data may be inconsistent and contain the
effects of non-linearities. Nevertheless, with more and more sophisticated analysis
techniques and coupled with the fact that the phase-separation methods are much cheaper,
easier and quicker to implement than the phase-resonance techniques, the phase-separation
methods are now the predominant form of vibration testing.

Stepped sine testing and broadband testing are two types of phase-separation methods of
vibration testing that will be discussed further in this brief overview. The requirements for
extending the simple single point testing methods to multi-point methods are also
presented together with discussion of some of the multi-point testing techniques.

Although each method has specific advantages and disadvantages, the selection of a
testing technique is frequently based on the type of equipment available rather than its
suitability for a particular job.

4.2.1 Sine Testing

In the sine testing technique, a shaker is used to excite the structure sinusoidally at a
single, precisely controlled, frequency. The structure is allowed to settle under this
excitation and then steady-state measurements are made of the magnitude and phase
relationship between the input force and the response at the precise excitation frequency
for any desired response location. Division of the response by the force input gives the
value of the PRP at that particular frequency. The excitation frequency is then changed by
a small increment and the measurement process is repeated once the structure has settled at
the new frequency. By this means, the PRP can be constructed for any frequency range.
There are no restrictions on the frequency spacing imposed by the testing method,
although there may be restrictions due to the analysis methods to be used.
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At each excitation frequency the structure’s response is allowed to settle to remove any
transient effects associated with the step change in excitation frequency from the previous
measurement. This settling period is particularly important for excitation frequencies close
to resonances of the structure where transient changes cause the structure to ‘ring-on’.
The transient effects will be included in the measurement if insufficient time is allowed for
them to die away. A clear indication of whether the settling period is long enough can be
obtained by performing the measurement twice around a resonance peak, once with an
increasing frequency sweep, and once with a decreasing fkquency sweep. An example is
presented in Figure 4.1 where the resonance peaks occur at different frequencies for the
two measurements (the decreasing frequency sweep producing a lower resonance
frequency than the increasing frequency sweep), the transient effects have not had
sufficient time to decay and the settling time should be increased.

.6
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Example of Sine Sweep Rate Influences on Measured FRFs.
Figure 4.1

In a perfect environment, once the structure has had time to settle, a single measurement
of force and response should be sufficient to define the point on the FRF accurately.
However, in practice, noise is invariably superimposed on the signals to be measured and
it is prudent to make several measurements of the data and to calculate an average value.
Fortunately, one of the properties of random noise is that, considered over a long enough
period of time, the averaging process will reduce the random errors on the data to zero.
Averaging will only reduce the effects of random errors, it will not reduce the effects of
systematic errors introduced by the test set-up.
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A prime advantage of the sine testing technique is the large signal to noise ratio for all the
force and response measurements. This is a consequence of the single excitation
frequency for each measurement - there are no other significant sources of excitation to
contaminate the results. Furthermore, the input ranges for the force and response signals
can be adjusted automatically for each excitation frequency point, which allows the best
possible use of the measuring equipment.

The ability to concentrate data points in regions of greatest rates of change on FRFs is
particularly advantageous for efficient and accurate definition of resonance peaks and anti-
resonance troughs.

4.2.2 Broadband Testing

For broadband testing, the structure is excited with a signal containing energy over a wide
range of frequencies simultaneously. The time-domain force and response signals are
filtered, digitized and then passed through a Fourier analysis process to transform the
time-domain information to frequency-domain spectra. By appropriate combination of the
force and response spectra, the required FRFs for the structure can be derived, Because of
constraints imposed by the Fourier analysis process, the frequency point spacing is
constant across the whole measurement frequency range. This represents an inefficient
use of the limited number of frequency points available because they cannot be
concentrated in the regions of greatest change on the FRFs - around the resonances and
anti-resonances.

There are very many different types of excitation that can be used for broadband testing.
Probably the simplest form of excitation method is hammer testing. A specially-
instrumented hammer is used to impact the structure at the desired excitation point, A very
short sharp excitation pulse is produced - approximating a Dirac delta function - which
has a flat spectrum over a wide frequency range, although the amount of energy contained
in the impact pulse is necessarily small. By using hammer tips with different resiliences,
different pulse widths can be obtained. The main advantage of hammer testing is that the
excitation equipment (the hammer) is small, light and cheap. It is used mainly for
diagnostic purposes rather than for precise measurement of FRF properties.
Disadvantages of the hammer testing method are related to the inconsistency of the
excitation - the impact pulse is difficult to control accurately in size, in shape, in direction
and the duration of the pulse is very small compared with the measurement time frame.
Furthermore, pulse excitation is a major disadvantage when the structure contains non-
linearities.
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The most popular form of excitation is by use of an electromagnetic shaker driven with a
signal from the data acquisition system. The mechanical set-up is identical to that used for
sine testing. Two common types of broadband excitation signals - random and pseudo
random - will be discussed here.

Random

A true random excitation signal has a continuous spectrum which is flat across an infinite
frequency range. In practice, 25 kHz is considered as an infinite frequency range in some
data acquisition systems. The random time-domain excitation signal is a reasonable
approximation to the type of excitation found in many typical installations. The probability
distribution of the random excitation is approximately Gaussian (Normal), with a peak to
RMS ratio of about 3:l. Additionally, for a linear system, the probability distribution of
the response to this excitation is also approximately Gaussian. Due to the random nature
of the excitation the structural response does not tend to “peak-up” at resonance
frequencies to the same extent as it does with some other forms of excitation (e.g. swept
sine) and hence, this type of excitation does not cause undue problems when applied to
non-linear structures. However, because the force and response signals are random, a
weighting function (e.g. Hanning window) must be applied to these signals before the
Discrete Fourier Transform (DFT) is performed, otherwise the mathematical assumptions
of periodicity in the measurement time frame are invahd.

The force and response signals from the transducers contain energy at all frequencies (the
true spectra are continuous), but because the measurement time frame is of a finite length,
the Fourier Analysis produces spectra that are discrete, rather than continuous, functions.
Therefore, there is a ‘spreading’ of energy from the actual continuous spectra into adjacent
spectral lines - this phenomenon is known as leakage.

Pseudo Random

Pseudo random excitation is a special form of periodic excitation that has several benefits
for signal processing. Although called random, it is not random in the true sense of the
word. Within a time period equal to the analysis time frame, the signal is random, but the
same signal is then repeated continuously. Usually, the signals are generated inside the
data acquisition equipment in the frequency-domain. Once the measurement frequency
range and number of frequency lines have been selected, a flat excitation frequency
spectrum is generated by setting the magnitude of all spectral lines to the same value. The
phases of the spectral components are then randomised. By use of the Inverse Fourier
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Transform (IFI) this frequency-domain spectrum is transformed into the time-domain to
produce a random-like excitation signal in the analysis time frame. As a consequence of
generating the signal in this way, it is exactly periodic in the analysis time frame and hence
both the force and the response signals will be periodic in the analysis time frame also.
Therefore, there is no requirement for application of any window function to this type of
data. In fact, it has been shown [15] that it is detrimental to the quality of the results to
apply any form of window function to this type of data, other than a uniform window.
Because the signals are exactly periodic in the analysis time frame, they only contain
energy at the precise spectral component frequencies of the analysis and, therefore, there
are no leakage problems when pseudo random excitation signals are used.

Since the pseudo random excitation signal only contains energy in the frequency range of
interest, the signal-to-noise ratios for the measured force and response signals are much
better than they would be with pure random excitation.

Every different randomised arrangement of the spectral component phases will give a
different time-domain signal. If a large number of these signals are inspected, it is found
that the peak to RMS ratio is more often worse than 3:1, than better ( the peak-to-RMS
ratio for a pure random signal). However, it is possible to arrange the phase relationships
of the spectral components such that the time-domain signal has the special form of a
swept sine -

f(t) = sin (at)* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.1)

which has the instantaneous frequency given by [ $ ( (at)2) = 2a2t]. For this signal

the spectral components have the following relationship -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.2)

Providing that the sweep rate is not too rapid - each cycle is approximately a sine wave of
constant frequency - the peak-to-R&IS ratio of the signal will be very similar to that of a
pure sine wave, i.e. 1.41: 1. For measurement of the input signal, this low peak-to-RMS
ratio is advantageous. Unfortunately, by the nature of the excitation signal, the structural
response builds up very significantly in the resonance regions, leading to high peak-to-
RMS ratios in the measured responses. Furthermore, an excessive response range, such
as this, can cause problems when the structure contains non-linearities because these non-
linearities will be exercised to a greater extent than with a less well ordered excitation.
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Detailed derivations of the equations relating to the sine sweep excitation functions may be
found in the paper by White and Pinnington [7 11.

4.2.3 Single-Point Testing

The most common form of vibration testing used today is ‘single-point’ testing. A single
excitation input is used for each set of tests, although many response points can be
measured simultaneously if sufficient data acquisition channels are available. The standard
FRFs can be calculated simply, because the response at each point is due solely to the
single excitation force - which is the definition of an inertance type of FRF (see section
1.1.3). With a series of tests using a single excitation point it is possible to measure data
for one column of the FRF matrix. Data for the other columns can be measured
subsequently by repeating the measurements for a different excitation position.
Inconsistencies may occur in the measured data as the set of force and response
transducers are moved to all the required locations on the structure.

A deficiency with single point testing is that, by its nature, the energy input is very
localised. In large heavily-damped structures the excitation energy is quickly dissipated
before it has propagated far within the structure. In an effort to excite remote regions, the
single point forcing level is sometimes increased to excessive levels, thereby exercising
local non-linearities to a much greater extent than would otherwise be the case if the
excitation energy were distributed more evenly throughout the structure.

4.2.4 Multi-Point Testing

When testing large complicated structures with numerous joints, the undoubted presence
of non-linearities and the fact that the vibration energy is quickly dissipated within the
structure can indicate that the use of multi-point testing is preferable to a series of single-
point tests. By using multi-point excitation, a larger amount of energy can be fed into the
structure more uniformly than with single-point excitation and the vibration amplitudes at
various locations can be kept much closer to those found in operation. Energy is supplied
to the structure by several shakers, and so smaller and cheaper shakers can be used than
would be necessary for single-point testing. Furthermore, the effects of non-linearities,
which may occur with excessive single-point forcing, can be substantially reduced.
Connection of all the shakers to the structure before the start of the test also means that
systematic errors, which are a result of repositioning the shaker for a series of single-point
tests, do not occur. The influence of the shakers on the structure is not removed, it just
remains constant throughout the whole of the test programme - a static base-condition



Practical Considerations 95

error. Additionally, simultaneous measurement of multiple columns of the FRF matrix
means that the overall test time is shortened and there is less opportunity for structural
changes (with time, temperature or humidity) to affect the measured results.

The most commonly used multiple shaker technique is known as Multi-Point Random
(MPR). For all multi-point excitation techniques, more sophisticated computer programs
are necessary to extract the standard FRFs from the measured data. To comply with the
mathematical assumptions made in the analysis, it is important that the excitation inputs to
the structure are pure random and uncorrelated. Although it is possible to ensure that the
excitation signals driving the shakers are uncorrelated, it does not necessarily follow that
the excitation force signals are uncorrelated At the resonance frequencies, in particular, it
is found that the motion of the structure tends to correlate the actual multiple forcing
inputs, leading to degradation in the quality of the derived FRFs at these frequencies.

As a consequence of using broadband random excitation a window function (e.g. the
Hanning window) must be applied to the measured force and response signals before
Fourier transformation. Leakage is a potential problem and because of the large quantity
of superfluous high-frequency excitation energy, the signal-to-noise ratio is less than it
would be with a pseudo random type of excitation. Unfortunately, multiple pseudo
random excitation sources, as defined above, would be 100% correlated.

A new multi-point testing technique that is gaining in popularity is the Multi-phased
Stepped Sine technique (MPSS) developed by SDRC [ 191. In essence, the technique is a
combination of the phase-resonance and phase separation methods of vibration testing. By
using multiple inputs with specific mono-phased force patterns (forces in-phase or out-of-
phase with each other), sweeps are made over the complete frequency range of interest.
The data are analysed and by use of the Multi-variate Mode Indicator Function (MMIF), it
is possible to identify the specific force patterns required to excite each normal mode.
Narrow frequency sweeps are performed around each resonance, using the appropriate
force patterns and the results obtained can be analysed easily by circle fitting methods. At
the undamped natural frequency the displacements of the system correspond to the
undamped normal mode shape - the basis of the phase-resonance technique of vibration
testing.

The benefits of the MPSS technique are the high signal-to noise ratio and the variable
frequency point spacing, all combined with a multi-point test configuration that allows full
identification of modes with a multiplicity greater than one. The FRF data obtained by this
method are generally smoother and easier to analyse than data from MPR type tests.
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Interleaved Spectral Excitation Technique (INSET)

Many of the disadvantages with present multi-point testing techniques (MPR and MPSS)
can be avoided with a new testing method known as INSET (INterleaved Spectral
Excitation Technique) [79]. The generation and use of the excitation signals is the main
difference between this technique and those presently available. The signal generation is
similar to that used for pseudo random signals described above. A single discrete
excitation spectrum is formed with spectral components of equal magnitude set at the
analysis frequencies. The frequency spectrum is then divided up into parts - one part for
each of the excitation sources, e.g. if there are to be 2 excitation sources the frequency
spectrum is split into 2 parts. There is no theoretical restriction on how the frequency
spectrum is split between the shakers, but for the best spatial distribution of excitation
frequency energy the individual spectra are formed by “combing” the complete spectrum,
e.g. for 2 excitation sources the 1st spectrum would consist of line numbers (2n), n=O to
Ny from the complete spectrum, and the 2nd spectrum would be formed from lines

(2n + l), as shown in Figure 4.2.

Complete Excitation Spectrum.

f
fl f2 f3 f4 f5 f6

Derivation of Excitation Spectra.
Figure 4.2
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“Combed” Excitation Spectra.

0B

Once the spectral content of each excitation source has been decided, the phase
relationships have to be fixed. An Inverse Fourier Transform (IFI) of each spectrum
produces the time-domain signals required. By careful arrangement of the phases of the
components in each spectrum it is possible to generate time-domain excitation signals



Practical Considerations 97

having a minimum peak-to-RMS ratio. This is advantageous in reducing the degree to
which non-linear elements are exercised.

So that each forcing location experiences the full excitation spectrum, the different signals
are fed to each shaker in turn. To avoid any transients associated with switching the
excitation signals it is necessary to have a settling period after each change before any
further data are collected, This is analogous to the settling period mentioned in reference to
sine sweep testing.

Derivation of the standard FRF properties is a simple process, best illustrated by a simple
example.

Consider a system with two points of interest and a two-point INSET test set-up,
Figure 4.3. The complete excitation spectrum is assumed to consist of 6 components
from which the two individual excitation spectra (A & B) are “combed”, as shown in
Figure 4.2.

A t Excltatlon Spectra f 9 B t Excltrtlon Spectra f A

Tranefer Response Spectru
i

Derivation of Frequency Response Functions from INSET Data.
Figure 4.3
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Initially, the excitation signal from the IFI’ of A is applied at location 1 and the signal from
B is applied at location 2. We shall consider the response at location 1 to this excitation.
Since the overall excitation contains energy at all the spectral frequencies the responses
will also contain energy at all the spectral frequencies. However, the response at
frequency fr must be due to excitation A because this is the only excitation containing
energy at fr. Excitation A is applied at location 1 and therefore it can be concluded that the
response spectral component at ft represents a point measurement; similarly for fs and fs.
Response at frequency f2 is the result of excitation B, applied at location 2, and hence it
represents a transfer measurement - as for f4 and f6. When the excitations are reversed, so
that signal A is applied at location 2 etc, the point and transfer response spectra can be
completed.

Mathematically;

(a) (b)
Figure 4.4

The Fourier Transformed response Yt,(f) of the system shown in Figure 4.4 is given by

Ydf) = Wl(f).&(f)

and for Y n,(f)

&b(f)  = Hdf).X2(f)  +

+ HdfVMf) .............................................(4.3)

H12GW1(f) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.4)

Now, Xl(f) is non-zero for, say, odd lines of the spectrum, i.e. fr, fs, . . . . etc, and X2(f)
is non-zero for
equation (4.3),

Y la(f1.3.

y laV2.4,

even lines of the spectrum, i.e. f2, f4, . . . . etc. Therefore, from

. ..) = Hrt.Xl(fts. * . . . ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.5)

. ..) = Hrz.Xz(f249 I .-. ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.6)

_,.
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and from equation (4.4) -

Ylb(fl 31 1 . . . ) = Hl2JWl39 . ..-)

Ylb(f2  49 9 . . . ) = Hll.X2(fi4,  . ..)

Combining equations (4.5) and (4.8)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.8)

Yla(fl3 )* 9 . . .

Now, (X I (fl3t . . . . )

before “combing”.

Therefore,

and the point FRF

+ X2(f2 49 . . . . )) is equal to the original excitation spectrum (say, X0)

+ ylb(f2.4. . ..) = HllJWl39 * . . .) + Hll.X2@24* * . . . ) . . . . . . . . . . . . . (4.9)

= Hll(Xl(fl  3* * . . . )  +  X2(f249 . . . . )) . . . . . . . . . (4.10)

Ydfl39 * . . . ) + Ylb(f2,4, . ..) = &1.x0 . . . . . . . . . . . . . . . . . . . . . . . . . (4.11)

HII = Yia(fl.3.  . ..) + Ylb(f2.4. . ..)
x0

. . . . . . . . . . . . . . . . . . . . . . . . . .(4.12)

Similarly, combining equations (4.6) and (4.7) gives the transfer FRF as -

H12 = Yla(f2,4. . ..) + Ylb(fl.3, . ..)
x0

. . . . . . . . . . . . . . . . . . . . . . . . . .(4.13)

Averaging of the excitation and response spectra can be done in exactly the same way as
with standard single-point excitation techniques. Because the excitation signals are
generated by IFI’ of finite discrete frequency spectra with components at the analysis
frequencies, the time-domain signals are exactly periodic in the analysis time frame and
there is no requirement for any windowing of the excitation or response signals (see
section on pseudo random signals).

Only two excitation points have been used in this example, but it is a simple matter to
extend the technique for as many excitation locations as required (providing suitable
equipment is available).

A disadvantage of the interleaved spectral excitation technique is that it cannot be
implemented with many of the vibration measurement systems currently available as it
requires multiple channels of Digital to Analogue Conversion (DAC) that can be
controlled, switched and synchronised with the analysis time frame. Most readily-
available vibration measurement systems only have a single channel of DAC and, even
then, there is insufficient facility for user control of the DAC itself or of the signals fed to
the DAC.
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Despite the obvious advantages of the interleaved spectral excitation technique, equipment
and time limitations inhibited its use for practical vibration measurements during the
course of this work.

4.3 Shaker - Structure Interactions

It is known that, on a log-log plot, the sharpness of the resonance and anti-resonance
features should be the same [25]. For broadband random testing, the frequency resolution
across the whole frequency range of interest is constant and, so, it is easy to assess
whether this criterion is met. Very often it is not, see Figure 4.5.

0 1
I I I1 11, I

3.0 10.0 32.0
Frequency (Hz) .

A Typical Measured FRF.
Figure 4.5

The anti-resonances are much less well defined than the resonances. In normal
circumstances this is not seen to be too much of a problem because interest is focus& on
resonances rather than anti-resonances. This is unfortunate because the anti-resonances
provide a highly visual and accurate check on the performance of any modal analysis and
the subsequent synthesis of FRFs.
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Comparison of Measured & Synthesised FRFs.
Figure 4.6

When measured and synthesised FRFs are compared directly, Figure 4.6, the anti-
resonances from the two sets of data will only match if all the modes have been analysed
correctly and any residual effects have been taken into account. This is because an anti-
resonance is a result of the contributions of all modes summing together to give zero. In
the vicinity of a resonance the structural behaviour is dominated by a single mode and the
contribution of all the other modes becomes relatively insignificant. In fact, this is the
assumption upon which the single degree-of-freedom analysis methods are based. When
the sensitivity analysis method, developed in chapter 3, is to be used it is important that
the measured anti-resonances are defined as clearly as the resonances, to facilitate direct
extraction of all resonance and anti-resonance frequencies by visual inspection or use of a
cursor feature available on the analyser. For this reason, it is necessary to understand why
the anti-resonance characteristics are not usually as well defined as the resonance
characteristics when broadband random testing methods are employed so that some effort
can be directed towards improving the situation. The explanation is based in the
relationship of the force and response signals through resonance and anti-resonance
regions and the maximum dynamic range of the measuring equipment.

It is possible to produce an excitation signal from the analyser that has a flat spectrum.
The signal is amplified and used to drive an electromagnetic shaker but the actual force

L  I
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excitation applied to the structure (measured with a force gauge) does not have a flat
spectrum, due to the mechanical interaction between the shaker, its suspension, and the
structure. This is illustrated by the following arbitrary example, Figure 4.7:

Example System used for Representation of Shaker-Structure Interaction.
Figure 4.7

The ‘structure’ is modelled as a grounded 2 degree-of-freedom mass and spring system.
The shaker model consists of 3 elements; a mass (m,) representing the moving
components such as the coil, the table and the pushrod etc., a spring (ks) representing the
stiffness of the coil suspension arrangement and a large mass (mR) equivalent to the total
reaction mass of the shaker. The force (F) generated inside the shaker has a uniform
spectrum and is considered to act between the moving mass and the reaction mass of the
shaker, i.e. in parallel with the suspension spring. The moving parts of the shaker are
connected to the force gauge on the structure by a pushrod.

We assume that for the ‘structure’;

kl = 1000 N/m
mr=3Kg

and for the shaker ;

m, = 0.0025 Kg
mR= 1OKg

k2 = 1000 N/m
mz=lKg

k, = 125 N/m
F = 6.68 N

The response vector {x) is given by solution of -

(x1 = [WI - 02M]-‘.  PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.14)



Practical Considerations 103

where, [MJ and [K] are the system mass and stiffness matrices and {F) is the forcing
vector.

The force transmitted from the shaker to the structure (FT) is given by -

FT = F - (&mS - ks)x2 - kSx3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.15)

The receptances that would be measured in an experimental investigation can then be
calculated by dividing the appropriate response parameter by FT. For this example, the

point receptance for location 2 has been chosen for illustration. The Force, Response and
FRF characteristics are shown together on a log-log plot in Figure 4.8. The resonance
and anti-resonance frequencies calculated for the structure are 2.4263 Hz, 6.0275 Hz
and 4.1094 Hz respectively (see the example of section 3.3.6) and they are shown
correctly by the derived FRF in this plot.

F I I I
Log (Frequency ; Hz 1

Force, Response and Receptance Functions for a Typical Test.
Figure 4.8

I.
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A careful study of these characteristics is instructive for understanding the interactions
between the structure and the shaker. At very low frequencies the transmitted force, FT,
and the displacement at the interface, x2, are in phase with each other. FT passes through

zero as the frequency is increased to the first resonance frequency. The maximum
response occurs at a frequency slightly higher than the resonance frequency. Between the
resonance frequency and the frequency of maximum response, the force FT and the

response x2 are out of phase. The force is working in opposition to the motion of m2. As
the response reaches a peak and passes from +oo to -00 the magnitude of the force also
reaches a peak, but passes from -00 to +oo. Since both the force and the response each
reach an infinite value simultaneously, the ratio of the response and force (the FRF) has a
finite value. The force, FT, and the response, x2, remain out of phase until the anti-
resonance frequency, where the response passes through zero. The phases of FT and x2

are now the same as they were at frequencies below the fiist resonance and the sequence
of phase changes is repeated for the second mode.

The key factors to note are that resonance occurs at zero force input and that an anti-
resonance occurs at zero response. At resonance, almost all the force generated within the
shaker is used to accelerate the moving parts of the shaker and almost nothing is
transmitted through to the structure. In the limit, the dynamic range of the force can be
reduced to zero (Figure 4.9) by setting m, and k, to zero (the size of the reaction mass is
then irrelevant). In this situation, the dynamic range of the response is identical to that of
the receptance function.

.-

,-

?-
Log (Frequency ; HZ)

Force, Response and Receptance Functions for m, and k, set to Zero.
Figure 4.9

I. ,. . .
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For most practical situations, where the dynamic range of the force function is greater than
zero, the dynamic range of the response function will be greater than the dynamic range of
the receptance function.

In cases where the moving mass of the shaker is large, there is little movement of the
shaker or the structure, and the dynamic range of the response can be reduced below that
of the receptance function, Figure 4.10.

.

.I

I Log (Frequency : Hz 1

Force, Response and Receptance Functions for a Large Shaker Moving Mass.
Figure 4.10

It can be seen that, provided that the shaker and reaction mass are selected correctly for a
given structure, the dynamic range of the force signal can be reduced to manageable
levels, whereas the dynamic range of the response signal remains comparatively
unchanged. Correct matching of the shaker to the structure means selecting a shaker that
has minimum moving mass and minimum coil support stiffness for the necessary force
levels. The reaction mass should be as large as possible, although, special care should be
taken when augmenting the reaction mass of a shaker by bolting on additional masses, as
the centre of gravity of the shaker must remain in-line with the forcing axis. If the centre
of gravity is displaced from the forcing axis, the reaction mass is less effective and
undesirable rotational motion of the shaker system will result from the excitation forces.

. .
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4.4 Preliminary Data Collection and Assessment

4.4.1 Preliminary Survey

There are so many factors which affect the final outcome of a coupling analysis that it is
believed strongly that an assessment of the expected results will only be possible from a
thorough, and possibly extensive, preliminary survey. The aim of such a survey is to give
some guidance as to the relative importance of different degrees-of-freedom at the
coupling points, for selected types of modifications, and the care with which they must be
measured.

Measurement Frequency Range

Usually, in structural modification exercises, the region of interest is focussed on a
relatively small frequency range, situated about a problem frequency at the operating
condition of the machine. This small frequency range should be considered in careful
detail both before and after the modification prediction, so that the precise effect of the
modification in that region can be properly assessed.

Although the main interest is concentrated in a narrow frequency range, it is still vital to
have a much wider picture of the situation. It may be that as a consequence of improving
the dynamic characteristics in one particular frequency range, detrimental effects occur
elsewhere. This should be known, so that the overall suitability of a modification can be
assessed.

It has already been mentioned that the final results will be judged over a small frequency
range around a particular frequency of interest. However, it is important to remember that
the input data may have to be collected accurately for a very much wider frequency range,
particularly if a process of modal analysis and subsequent synthesis of the FRFs is to be
employed. In principle, if the raw measured FRF data were to be used directly in a
coupling analysis, then it would be necessary to measure data only over the small
frequency range of interest because this data includes the effects of all the modes of
vibration. Nevertheless, it has been found that slight inconsistencies in the raw data
(brought about by taking several measurements sequentially rather than all
simultaneously) leads to predictions for the FRFs of the modified structure that are
contaminated by ‘breakthroughs’ from the original data [31]. This problem can be avoided
if all the data are measured simultaneously, or the if FRFs are synthesised from a modal
database. Practically, it is not possible to collect all the data for the complete FRF matrix
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in one simultaneous multi-point excitation measurement - such a measurement would
necessitate an excitation source and a response transducer at every degree-of-freedom of
interest, including rotational degrees-of-freedom.

If the FRFs used in a coupling analysis are to be synthesised from a modal database, then
either: (i) sufficient modes must be included in the measured frequency range to account
for the effect of out-of-range modes in the narrow frequency band of interest, or
(ii) residual terms must be accurately defined and incorporated for each FRF to be used in
the modification procedure. The question of what is a ‘sufficient number of modes’?
depends upon factors such as the local modal density and modal dampings, and whether
there are any dominant modes nearby. It will be highly specific to the particular structure,
and the modification sites chosen. Once a sufficient number of modes have been measured
and analysed for one row or column of the FRF matrix, then all the terms in the matrix
may be synthesised accurately from the modal database. However, while the agreement of
measured and synthesised FRFs serves as a check on the results for the unmodified
structure, there is still no guarantee that the model will be adequate for accurate prediction
of the effects of any given modification.

If an impedance coupling method is used, the effects of out-of-range modes can be
included by the addition of residuals to the synthesised FRFs. The residual terms
approximate the effects of the out-of-range modes in the frequency range of interest.
However, if a modal coupling
factors.

Frequency Resolution

method is used, it is not easy to add in such correction

Adequate definition of the resonance features of a FRF is most important since these data
points are highly influential in the modal analysis process. Circle-fitting of single modes
in the Nyquist plane presentation of an FRF provides a clear example of the need for
sufficient data points in the upper half of the Nyquist circle, i.e. between the half-power
points. From preliminary measurements and the following analysis, it is a relatively
simple task to calculate the frequency resolution necessary to define the circle adequately
for the purposes of modal analysis; consider the Nyquist circle in Figure 4.11:
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Real Axis.

Derivation of a Criterion for Frequency Point Spacing.
Figure 4.11

If we require a minimum of three points between the half-power points, 01, o, and 02,
to define the circle for analysis purposes, then the frequency spacing (&I$ is given by -

,................................................. (4.16)

It can be shown that for small levels of viscous damping,

(02 - q>cr=  2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.17)
r

where Cr = viscous damping coefficient for rth mode.
0, is the resonance frequency,
01 and w are the half-power points.

Therefore, by substituting equation (4.16) into equation (4.17), the point frequency
spacing (60) is found to be,

&I3 = L@r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.18)

For hysteretic damping and close to a resonance, ?& = 2& and the expression for the point
frequency spacing becomes,

SW=~  t& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.19)

‘,.
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For broadband random testing, the frequency resolution is generally dictated by the
properties of the lowest frequency mode of interest. Elsewhere in the frequency range, the
resolution is usually more than adequate - data points are used inefficiently. The
maximum number of data points for a test is limited by the data block size available in the
analyser. Thus, in combination, the necessary resolution (for the low frequency modes)
and the restricted number of data points limit the frequency range that can be measured in
any one test. If the frequency range of interest is larger than this, there are two options
available;

(i)

(ii)

measure the additional frequency range using zoom measurements; or,

reduce the frequency resolution and re-measure over a larger baseband
frequency range.

The choice is dependent largely upon the features of the analyser and the number of
channels measured simultaneously. Implementation of the zoom method requires
significantly more computational power and it is usual for either, (a) the number of
frequency points or, (b) the number of channels to be reduced by a factor of 2. Zoom
measurement has the advantage over extended baseband testing in that the data points are
used more efficiently - each mode is measured only once - however, zoom measurements
take longer than standard baseband measurements and there are some computational
difficulties (frequently zoom FRFs have a ‘spike’ at the centre-frequency). When using
extended baseband testing methods, the low frequency modes are measured several times
over, each with gradually increasing frequency spacing as the frequency range is
extended. In the subsequent modal analysis phase, only the highest frequency resolution
data for each mode is used - the lower resolution data is superfluous.

Any noise on the force signal is likely to influence the resonances whereas noise on the
response signal will affect the anti-resonances. To minimise these effects of noise,
different estimators of the FRF can be used; for the best estimate of resonances, where
there is noise on the response signal, Hr should be used, and Hz should be used where
there is noise on the force signal. The reverse applies for the anti-resonances. Derivation
of these results can be found in reference [BO].

Quantity of Data - Number of Degrees-of-Freedom to Measure

The quantity of data to measure depends largely upon the purposes for which the data are
required. If the data are only required to identify the resonance frequencies of the structure
a small number of FRFs is all that is necessary. To be able to characterise  the mode
shapes uniquely requires significantly more data. If the purpose of measuring the structure
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is to obtain data for use in a coupling analysis of the behaviour of the structure when
modified in some way, the measurements must include, as a minimum, FRF data for all
the degrees-of-freedom actively involved in the coupling. The minimum quantity of data
will enable the new resonance frequencies for the modified structum to be identified but it
is probably insufficient to define the new mode shapes adequately. Further discussions on
the type and quantity of data necessary for the accurate prediction of the effects of a
modification is left until chapter 5.

In chapter 3 the concept of a point difference FRF between two points on a structure was
introduced for the calculation of the resonance frequency sensitivities to stiffness
modifications between selected pairs of points. At the outset of a measurement survey it
should be decided whether investigation of internal spring modifications is appropriate
and, hence, whether these point difference FRFs will be required. If so, the data recorded
in the measurement survey should include the excitation and response spectra separately,
in addition to the normal FRFs. Calculation of the point difference FRF between any pair
of degrees-of-freedom is then a matter of appropriate combination of the separate
excitation and response spectra for the two degrees-of-freedom involved.

Presently it is envisaged that part of a preliminary survey may consist of making quick -
but not necessarily highly accurate - 6 degree-of-freedom point measurements for each of
the possible modification sites. This data would then be used together with similar data for
the modification component, to establish the relative importance of all the degrees-of-
freedom, hence giving some idea of the type and quantity of data to be measured for the
interface degrees-of-freedom.

Quality of Measured and Synthesised Data

During the preliminary survey, and indeed throughout the full modal test, some checks
should be done to assess the quality of the measured data. If the starting point for any
structural modification procedure - the synthesised FRFs - does not represent the
structure accurately, then erroneous results for the eventual predictions must be expected.

There are several techniques already in general use which can provide an indication of the
quality of the data, e.g. repeatability, reciprocity and coherence. However, application of
some of these techniques in a much more systematic, rigorous and critical manner will
give a better performance than is presently achieved. Almost always, repeatability and
reciprocity checks are done by ‘eyeballing’ sets of FRF curves to see if there are any
major differences. The comparisons are made significantly easier if difference function

.
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(AFRF) curves are plotted for the sets of data - in just the same way, the difference
functions can be used in the assessment of the performance of different modifications.

4.4.2 Difference Functions

The AFRF is defined as the following vector difference:

AFRF(o)  = FRF(o) for comparison - Reference FRF(o).

or AH(o) = H’(o) - H(o)

It has the same units as the original FRF, and the same ‘form’, i.e., Receptance, Mobility,
Inertance, etc., and indeed, exhibits the properties and characteristics of a multi-degree-of-
freedom linear system. A single AFRF curve is easier to read and interpret than small
differences between two FRF curves, once the various features of the difference curves
have been character&d and are familiar.

The AFRF is the vector difference of the two FRFs at each frequency o. This is shown

clearly in the Argand plane (Figure 4.12) where the functions are assumed to have
slightly different resonance frequencies. The vector joining the two response function
vectors is the difference, and the magnitude of this difference vector can often exceed the
magnitude of one of the constituent FRF vectors.

Real Axis.

Derivation of the Vector Difference Function.

Figure 4.12

The difference is given by the vector difference: A=(H2 - H1)
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Now, if we assume that IAI = IHrl , then 8 = grads (45’) and, H2 = a HI

On a log plot, the difference in the magnitudes of Hr and Hz would be 3 db in a total
range of the function of possibly 60 db and, therefore, not easily seen.

The difference between a half-power point frequency and the resonance frequency is
given by 5% (from equation 4.16). For a system with a viscous damping of 1% critical
there would only need to be a 1% shift in the measured resonance frequency for the
magnitude of the AFRF to be the same as one of the constituent FRFs, i.e. the difference
function is a very sensitive function. Without very careful inspection of the FRF Bode
plots, even differences as large as this can be difficult to see.

Use of the AFRF in Repeatability and Reciprocity Checks

Repeatability checks are a means of assessing the stability of the structural characteristics
over a period of time. It is always assumed that the structure does not change with time or
as a result of the excitation itself but there are a number of practical effects that can alter
the characteristics of a structure;

e.g. Bolts slackening,
Release of pre-loads,
Fretting,
Environmental factors, such as temperature and humidity.

For a linear conservative system, Maxwell’s Rule of Reciprocity applies: the measured
FRF for a force at location j and a response at location i should correspond directly with
the measured FRF for a force at location i and response at location j. The FRF matrix is
symmetric and this property can be used as a check on the quality of the measured data.
Additionally, the reciprocity check can give an indication of shaker and accelerometer
loading effects on the structure. When making reciprocity check measurements the
positions of the shaker and accelerometer are reversed. If the shaker and accelerometer
have negligible effect on the structure, then there should be good reciprocity (all else being
equal). But if the shaker and accelerometer do have a significant loading effect on the
structure, then the effects in the two configurations will be different and the reciprocity
check will reveal differences between the FRFs.

Repeatability and reciprocity checks are usually carried out over a frequency range
incorporating several modes, with the emphasis placed on the magnitudes of the
functions. In keeping with this practice, the magnitude of the AFRF is plotted alongside
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the two FRFs of the repeatability or reciprocity check for comparison. It is important that
the AFRF is interpreted with reference to the FRFs, from which it was derived, to
understand the possible causes of any large discrepancies indicated. If a large peak on the
AFRF corresponds with a resonance region of the constituent FRFs, then it is likely that
the difference is due to a slight shift in the natural frequency. When a peak occurs away
from resonance, it is usually caused by differences in the magnitudes of the FRFs.

AFRF Examples

The following examples show the benefits to be gained from the use of the AFRF in the
presentation of repeatability and reciprocity data. The measurements are all taken from a
survey of an aerospace structure, with the repeatability measurements made over a period
of one week The same level of input excitation was used for all the measurements and, in
the case of the reciprocity measurements; no attempt was made to keep the response at a
particular point the same for each excitation. Therefore, there could be the influences of
non-linearities included in these results.

The AFRF in Repeatability Checks

The two point FRF measurements, shown in Figure 4.13, were made at different times
as a check of the measurement repeatability. The vector difference between these two

--C Difference.

10.0
Frequency (Hz) .

32.0

Repeatability Check using the AFRF.
Figure 4.13
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functions has been calculated and forms the AFRF which shows clearly the large
differences between the FRF measurements around the resonance regions. Without the
AFRF it would be all too easy to dismiss the small differences in the magnitude plots of
the FRFs.

The AFRF is of little value on its own, only when it is plotted alongside the FRFs from
which it was derived can meaningful interpretations be made.

Title: RepeatabIlIty  (16 to 19 Hz).
Response 66Y+/Force 66Y+

Real (Inertance)
- 0 . 0 4 - 0 . 0 2 0 . 0 2 0 . 0 4

L 1 1
pO.OO

I - I 1 I I

Nyquist Plot of Repeatability Measurements (16-19  Hz).
Figure 4.14

In Figure 4.14, small portions of the same two FRF curves shown in Figure 4.13, are
plotted in the Argand plane around the 4th resonance (from 16 to 19 Hz). Although the
data points from the two FRFs are now widely separated, in the vicinity of resonance it
would be a reasonable assumption to say that they all lie on the same modal circle. The
differences are due to a slight shift in the resonance frequency and, because frequency
information is not usually displayed on an Argand plot, the resonance frequency shift is
not easy to deduce without further analysis.

The AFRF and Reciprocity Checks

The use of the AFRF in assessing the reciprocity of measured FRFs is shown in
Figure 4.15; two measured reciprocal FRFs are plotted together with the AFRF. It will be
noticed that the largest differences occur in the resonance regions. Once again, this is due
primarily to slight shifts in the resonance frequencies rather than to changes in the
magnitudes of the FRFs; the 3rd mode at around 11 Hz and the 4* mode at about 17 Hz
illustrate this clearly. An enlarged portion (16 to 19 Hz) of the plot is shown in
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Figure 4.16 where the shift in the resonance frequency can be seen clearly. Frequency
shifts such as this, caused through different loading of the structure by the measuring
apparatus for the two measurements, are not always quite so obvious but, nevertheless,
they can still give rise to problems at the modal analysis stage.

Title: Reciprocity Check.
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Reciprocity Check using the AFRF.
Figure 4.15
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Title: Reciprocity (16 to 19 Hz).
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Reciprocity Check using the AFRF (16-19 Hz).
Figure 4.16
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It is interesting to plot these FRFs and the AFRF for the 16 to 19 Hz frequency range in
the Argand Plane, Figure 4.17. The circles described by the two FRF measurements are
similar and without further analysis or inclusion of frequency information the frequency
shift is not obvious. However, the AFRF describes a cardioid shape, rotated 90’ from the
modal circles. This is a feature of the AFRF which is characteristic of a shift in the
resonance frequency between the two constituent FRFs [21].

Title: Reciprocity (16 to 19 Hz).

Real (Inettance)

+ Response 492+/Forte 66Y- ZJ+ Response 66Y-/Force 492* +
+Dlfference.

Nyquist Plot of Reciprocity Check using the AFRF (16-19 Hz).
Figure 4.17

Quality of Modal Analysis Data

A further use for the AFRF is in the assessment of the quality of modal analysis data. In
Figure 4.18, a measured FRF is compared with the same function synthesised, from a
modal database created from analysis of measured data. The first point to notice is that the
synthesised function is smooth, whereas the measured function is rather “noisy”,
particularly in the anti-resonance regions. This smoothing represents a large proportion of
the low-level AFRF. Again, in the resonance regions, the AFRF shows marked increases
indicating that the measured resonance and the resonance synthesised from the modal
database do not quite coincide. Nevertheless, in this case, the AFRF for the measured and
synthesised FRFs has a similar general appearance to the AFRF for the repeatability
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measurements of the same function, Figure 4.13. It can be concluded therefore, that the
synthesised FRF is a good representation of the actual FRF in this particular case.

Title: Comparison of Measured and Synthesized FRFs.
Response 66Y+/Force 66Y-

-_(
- Measured. c
-Jt Syntheslzed FRF. -

‘: + Difference. ‘:0 1 I I1 ,I, 0I
3 .0 10.0 32.0

Frequency (Hz) .

Comparison of Measured & Synthesised FRFs using the AFRF.

Note:

Throughout the complete assessment of measured and synthesised data, it should be
remembered that the quantity and quality of the data are being assessed for their suitability
for a particular purpose. The data may not have to be highly accurate in an absolute sense,
just sufficiently accurate for the required purpose; a fact which can contribute to
significant savings in cost and time.

4.5 Review of Chapter 4

Unless an analytical model or a F.E. model is available, the vibration properties of a
structure must be derived from experimental measurements. The theoretical sensitivity
analysis techniques and structural modification methods presume the availability of such
data, from whichever source.
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It is important to remember that the data obtained by different testing methods will not be
identical because of practical differences in the way in which measurements are made.
Many of the differences occur as a consequence of non-linearities in the structure which
are excited to a greater or lesser extent with each different testing technique. Moreover,
some testing methods allow variable frequency point spacing which enables data points to
be concentrated in the areas of particular interest and greatest rates of change.

In a brief overview of a number of vibration testing techniques, the practical consequences
of each method have been presented and discussed. It is possible to divide vibration
testing techniques into two basic categories; sine testing (or more specifically, phase-
resonance methods) and broadband testing (phase-separation methods). Both of these
categories may be further sub-divided depending upon the number of excitation signals
used, i.e. single-point testing and multi-point testing. Recent development of multi-point
broadband testing has resulted in the INterleaved  Spectral Excitation Technique (INSET),
which seems to have great potential, provided that sufficient user control is available for
multiple digital-to-analogue output channels in testing equipment.

An important point to remember when performing any vibration test is that, in almost all
forms of testing, the equipment used to carry out the test will itself exert some influence
on the structure under examination. There is interaction between moving parts of the
shaker and the structure which can lead to excessive dynamic range in the measured force
signal and, consequently, to poor quantification of the signal due to a limited dynamic
range of the measuring equipment. The dynamic range of the force signal can be confined
to manageable levels by appropriate matching of the shaker to the local structural
characteristics.

Many of the potential problems with vibration testing only become apparent during the
actual tests. Frequently, it is not possible to predict such problems beforehand either
because there is no analytic model or because the model of the structure is
unrepresentative. For this reason it is advocated strongly that a preliminary survey should
be performed prior to the full measurement survey. In the preliminary measurement
survey, which would consist of measuring at a small subset of the points for the complete
survey, the measurement frequency range, necessary frequency resolution and the likely
positions for structural modification can all be defined. The main advantage of the
preliminary survey is that more effective use can be made of subsequent testing time and
resources.

As part of the preliminary survey, and during the full survey, critical assessments of the
quality of the measured data should be made. Preferably, these checks should be capable
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of implementation at the earliest stage possible and they should be simple and easy to
interpret. Reciprocity and repeatability are two methods for assessing the quality of
measured data which have been used for many years. However, it has been found that
much of the information that could be derived from these checks is lost because the
respective FRFs are only compared by eye. Consequently, small differences between two
large quantities are invariably overlooked despite the fact that the differences may be
systematic and indicative of slight shifts in the structural resonance frequencies. To aid the
assessment of data quality by these methods, the use of ‘difference functions’ alongside
the actual FRFs has been found to be particularly beneficial.



Chapter 5

Incompleteness and Inaccuracy
of Dynamic Models

5.1 Introduction

The theory for the impedance and modal coupling methods has been presented in
chapter 2. Additionally, it has been shown that, providing each of the models used is a
complete description of the component to which it refers, the results obtained from
impedance or modal coupling methods are identical. In practice, however, the
mathematical models used as descriptions of the dynamic characteristics of the
components are incomplete and inaccurate.

In every experimental study there will always be a certain degree of inaccuracy and
incompleteness. When a perfect and complete model is not available for reference, the
degree of inaccuracy or incompleteness of an experimentally-derived model is very
difficult to quantify. The quality of a model is often assessed by the ability to predict the
effect of certain simple modifications, using the model as a description of the unmodified
state. Measured and predicted characteristics of the modified structure are then compared
and conclusions are formed as to the sufficiency of the base model used; [23] & [77]. In
fact, this approach to assessing the adequacy of the model only indicates the suitability of
the model for predicting the effect of the simple modification tested; the model may be
highly unsatisfactory when used to predict the effects of another type of modification.

The terms ‘inaccuracy’ and ‘incompleteness’ are often used together in all-encompassing
statements about why a particular modification prediction has been unsuccessful.
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Although both definitions may apply, it is unfortunate that the terms are used in such close
conjunction when the causes of inaccuracy and incompleteness in a model are very
different.

5.2 Incompleteness

There are two quite distinct forms of incompleteness that can be present in a model;

(i) spatial incompleteness - where there are insufficient or inadequate
measurement points on the structure; and,

(ii) modal incompleteness - where not all the modes of the system are included
in the model.

5.2.1 Spatial Incompleteness

Spatial incompleteness has two main consequences - first, the mode shapes of a structure
cannot be identified uniquely, and second, it may not be possible to incorporate certain
joint configurations in predictions of the effects of modifications. While spatial
incompleteness may not be a problem if all the relevant data are available for the degrees-
of-freedom actively involved in a coupling, it becomes a very severe limitation if the
incompleteness extends to some of the coupling degrees-of-freedom. The most frequently
encountered example of this involves models lacking in rotational FRF properties at the
coupling points. When such models axe used to predict the effects of actual modifications
that are coupled in both rotational degrees-of-freedom and translational degrees-of-
freedom, the results are an underestimate of the actual effects because the modification
attachment is less stiff in the prediction than in the actual case.

Rotational Degrees-of-Freedom and Spatial Incompleteness

For the majority of modal surveys, measurements are made of translational properties
only; usually the translational acceleration at a point divided by the translational force input
causing that response - the translational inertance FRF. Frequently, it is also the case that
only one of the 3 translational responses is measured at any particular point. When one
considers that all points have 6 degrees-of-freedom, it is evident that any model derived
from measurement of a single degree-of-freedom must constitute a gross
oversimplification for most structures. The rotational terms of the 6 degrees-of-freedom
are neglected largely because of the difficulties involved in their measurement and the fact
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that, progressing from, say, 3 translational measurements at a point, to all 6 degrees-of-
freedom, represents a fourfold increase in the number of measurements to be made, stored
and processed. There are, as yet, few proprietary rotational accelerometers or pure torque
exciters and any rotational excitation or response terms in the complete FRF matrix have
to be calculated from appropriate translational measurements.

Example of Spatial Incompleteness in the Coupling Degrees-of-Freedom

It has been mentioned earlier that a common source of spatial incompleteness is the
omission of rotational degree-of-freedom properties, simply because they are difficult to
measure accurately. In this example, the coupling of two free-free beams is considered,

6)

00

Coupling of Beam Elements.
Figure 5.1

the beams are coupled together in the translational and rotational degrees-of-
freedom in one plane. This represents a rigid joint between the beam
elements, giving a coupled structure equivalent to a single beam of length
L1+L2; and

the beams are coupled in a single transverse translational degree-of-freedom
only. This represents a pin-joint between the beam elements - the transverse
translational motions of the coupled ends of the beam are the same, but there
is no constraint on the rotational motions of the coupled ends.

(i) When points of interest are confined to degrees-of-freedom involved in the coupling,
the impedance coupling equation is in terms of 2x2 matrices, equation (2.34).

[Yl = bl - Cal ([~l+W’ bl
The point translational FRF for the interface of the coupled beams is plotted in
Figure 5.2a.

* ,
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(ii) For coupling of the transverse translational degree-of-freedom of the beams only, the
impedance coupling equation reduces to equation (2.11) -

1-= L+L
Y a P

when interest is restricted to the transverse translational behaviour at the interface point
and there are no passenger coordinates. The FRF for the beams, pin-jointed in this way,
is also plotted in Figure 5.2b, below that for rigid coupling of the beams.

It can be seen that the two FRFs are markedly different. In the frequency range plotted,
the rigidly joined beam (a) has 5 modes, whereas the pin-jointed beam (b) exhibits only
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4 modes. As expected, the fundamental mode frequency is higher for the rigid beam,
because the rigidly joined beam is stiffer than the pin-jointed beam.

For very stiff structures, measurement of the translational FRFs only for use in a coupling
analysis is quite often satisfactory. Unfortunately, a large proportion of today’s structures
are insufficiently stiff for the implicit assumption that the rotational motion is negligible
compared with the translational motion to be valid. In such situations, very careful
consideration of the structures and inclusion of selected rotational terms in a coupling
analysis becomes vital for valid predictions to be obtained.

Obviously, there are components and structures where symmetry indicates that there will
be no response in a particular direction. However, although this may be the case for an
individual component in isolation, it will not necessarily be the case when that component
is attached as a modification to a larger, more complex, non-symmetric structure. It is then
essential to have measured, or have available, all the FRFs of all the components.

Measurement of Rotational Degrees-of-Freedom

In vibration analysis, the rotational degrees-of-freedom are usually neglected when the
FRFs are measured experimentally. The main reason for their exclusion is that they are
difficult to measure and is not because they are unimportant. As shown above, the
rotational degrees-of-freedom can be vital in certain circumstances.

‘T-Block’ Method for Measurement of Rotational Degrees-of-Freedom.

Figure 5.3
T-Block Transducer.

--
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A T-block, shown schematically in Figure 5.3, is attached to the structure at the point of
interest and translational FRF measurements are made on the block itself. By mathematical
manipulation of the translational FRFs obtained, all the required FRFs, including those
for the rotational degrees-of-freedom, may be calculated and, at the same time, the mass
and inertia loading effects of the T-block on the base structure can be removed. The
derivation of an equation for calculation of the rotational degree-of-freedom properties
from T-block measurements is described fully in the work by Silva [9].

The transformation to produce the ‘rotational’ FRF data set for the attachment point from
measurement of translational FRF data on the T-block is:-

-’Ml = [T114Knl D21 - FIl.[Td.bl 1 . . . . . . . . . . . . . . . . . . . ( 5 . 1 )

where:-

[HI = ‘rotational’ FRF data set for the attachment point.

[Tr] = Transformation matrix containing information about the response positions
on the T-Block.

IHm] = Matrix of measured ‘translational’ FFGs.

[T2] = Transformation matrix containing information about the forcing positions
on the T- Block.

m = ‘Mass’ matrix for the T-Block; used in the removal of the loading effects of
the block on the structure.

Discussion of the Measurement of Rotational Degrees-of-Freedom

(i) T-Block Transducer

The main problem with this method is that of attaching the transducer to the structure with
sufficient rigidity such that the behaviour of the structure is transmitted to the transducer
faithfully, see Figure 5.4.

A further disadvantage of this method is the large physical size and mass of the T-block
transducer. The whole transducer, consisting of at least two accelerometers, a force gauge
and the T-block itself, can be prohibitively large and may have a significant mass-loading
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effect at the measurement point. Although it is possible to ‘subtract’ this effect at a later
stage, equation (5.1), the accuracy of the final results obtained depends to some extent on
the mobility of the measurement point. If the point is not very mobile, the effect of the
transducer will be comparatively small and the final results can be expected to be
reasonably accurate. However, if the measurement point is highly mobile, the effect of the
transducer may be so large that it dominates the structural response at that point, in which
case the process of removing the effects of the transducer is likely to produce inaccurate
results for the behaviour of the underlying structure. It is absolutely vital that accurate data
are obtained for the sensitive points on the base structure if any meaningful predictions are
to be made for the behaviour of a modified structure.

The only reason for using a T-block transducer is to enable calculation of the
rotation/rotation FRF. The rotation/translation FRF can be derived by measuring the
translation responses of two closely spaced points either side of the excitation position
and, providing that the short length of structure between the two response points is rigid,
calculation of the difference between the measured translational FRFs. By Maxwell’s
‘Rule of Reciprocity’, the translation/rotation FRF is identical to the rotation/translation
FRF. However, because it is difficult to apply a suitable pure torque excitation at the
measurement point directly, the rotation/rotation FRF cannot be obtained quite so readily.

Methods for measuring rotational or angular response are not new. In fact, the design for
just such an instrument,, based on a design similar to that of a moving mirror
galvanometer, is reported in [82] from about 1960. Today, it should not be too difficult to
adapt laser-based techniques for the (non-contact) measurement of translational response,
to measurement of angular response. The design of a device to apply a pure torque
excitation, of a reasonable amplitude, is more difficult to visualise.

(3 Cross Axis Sensitivity of Transducers

Another problem that arises when trying to derive the rotational FRF set by the ‘T-Block’
method is that of the cross axis sensitivities of the accelerometers. The cross-axis
sensitivities can be very important when differencing two FRF signals of similar size,
particularly when the motion in one of the transverse directions is large. In such cases, the
difference between the measured FRFs can be of the same order of magnitude as the cross
axis sensitivity component. This is just the situation that may arise in calculations of the
rotation/translation, translation/rotation and rotation/rotation FRFs, where the
transformation from measured translational FRFs essentially involves differencing
operations. A similar observation has also been made when calculating FRFs in the
coordinate directions fmm angled forcing inputs (see chapter 6).

. i”
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To minimise the effects of cross-axis sensitivities, it is necessary to align the maximum
cross-axis sensitivity direction of each accelerometer with the direction of minimum
transverse motion at the attachment point, However, a polar plot of cross axis sensitivity
is rarely available for each transducer and even if it were, exhaustive tests would be
required to ascertain the direction of minimum transverse response at each location.
Furthermore, it is not always possible to set a transducer at a particular angular
orientation. For accelerometers with a threaded base which are attached to the structure by
means of a stud, specific angular orientation can only be obtained by insertion of spacing
shims, of the correct thickness, underneath the bases of the accelerometers: precise
angular alignment is difficult to achieve (see section 5.3.1 for further discussion on cross-
axis sensitivity effects).

(iii) Use of Synthesised FRFs

In the calculations to determine the rotational degree-of-freedom FRFs from ‘T-Block’
measurements, it is theoretically possible to use any form of FRF, e.g. the raw measured
data, ‘smoothed FRFs’ or FRFs synthesised from a modal database. Although ‘smoothed
FRFs’ or synthesised FRFs are noise-free, they may not contain all the important
information inherent in the measured FRFs, e.g. exact residual information. If raw
measured data, Figure 5.4, or smoothed data are used in the calculations, the inconsistent
data gives rise to the phenomenon of ‘breakthrough’ [31]. The inconsistent resonance
peaks of all the FRFs used in the calculations breakthrough into the derived results for the
rotational degrees-of-freedom producing multiple peaks for each resonance.



Incompleteness & Inaccuracy 128

Tranelatlonal FRF Set fleerewed uelng T -B lock .

10.0
Frequency (Hz)

10.0
Frequency (Hz)

l b . 0
Frequency (Hz)

lb.0
Frequency (Hz)

FIC0.Q

Rotatlonal FRF Set Derlved using T-Block Data.

10.0
Frequency (HZ)

I

t

0 I,,,,,, I z
3.0 10.0 52.0

Frequency (Hz1

10.0
Frequency (Hz)

10.0
Frequency (Hz1

Comparison of Measured Translational & Derived Rotational FRFs.
Figure 5.4

i



Incompleteness & Inaccuracy 129

Implications for the Use of Measured Rotational Properties in Coupling
Procedures

The purpose of measuring rotational degree-of-freedom FRFs is so that they can be
included in predictions of the effects of modifications. The inclusion of rotational degree-
of-freedom properties allows more efficient use of modifying components through
rotational as well as translational restraints at the interfaces. However, the underlying
assumption in the modification prediction is that the interface joint between the component
and the structure is rigid. If it is not rigid, then any predictions will be erroneous. In
previous work, [36], and in the case study of chapter 6, it is shown that, the interface
joint between the measurement-block and the structure is often not rigid. Because the
joint cannot transmit the rotational motion adequately and since it may not be possible to
alter the particular method of attachment, it may be better to consider the design of
modifications which have pin-jointed
predicted more accurately.

end connections, the results of which can be

Consider the following procedures for prediction of the effect of a modification with
particular reference to rotational properties.

(0

Base Structure.

Actual Coupling. Theoretical Coupling.

Schematic Representation of Coupling when FRFs for Both
Components are Derived from Measurement.

Figure 5.5

FRFs for both the base structure and the modification component are derived from T-
block measurements, as described earlier. The T-block is assumed to be rigid and its mass
properties known. Therefore, it is possible to remove the effect of the T-block transducer
from the base structure, leaving the FRFs for a point on the external side of a ‘joint
component’, Jl, assumed to exist between the base structure and the T-block, Figure 5.5.
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The same will apply for measurement of the modification component, except that this
joint, J2, may have different properties from those of J1. When the actual modification is
made, the base structure and modification component can be considered to be separated by
yet another joint, J3. The theoretical prediction, using measured data, assumes a rigid
connection between the external sides of J1 and 52, as shown in Figure 5.5, and only if
Jl+J2=J3 will the theoretical prediction match the actual result. A special case of this
condition is if all the joints are rigid, which is probably the only practical way of achieving
good correlation between prediction and practice.

Base Structure.

Modification

Actual Coupling. Theoretical Coupling.

Schematic Representation of Coupling when FRFs for
Components are Derived from Measurement and Theory.

Figure 5.6

FRFs for the base structure are derived from T-block measurements as for (i) above.
Accurate theoretical FRFs are assumed to be available for the modification component.
When the actual modification is made, the components are separated by the joint
component J2, Figure 5.6. In the theoretical prediction, though, J1 separates the
components. If Jl=J2 the prediction and actual result will match. This condition is
probably easier to achieve practically than that for (i) above.

5.2.2 Modal Incompleteness

If measured FRF data are used directly as the vibration model of a structure, then modal
incompleteness does not arise because the contributions of all modes are automatically
included in the measured data. If the FRFs are synthesised from a modal database, then,
unless residual information is incorporated in the synthesis, only the contributions from a
relatively small number of modes are included.
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While this may be sufficient to describe the behaviour of the unmodified structure over the
frequency range of interest, it may not be good enough when a modification is made.

Modal Incompleteness and the Use of Residual Correction Factors.

With an experimental measurement survey of a structure there are always practical
limitations which prevent derivation of a complete model. Here, discussion is focussed on
the problem of modal incompleteness and how some allowance can be made for the
effects of out-of-range modes in the frequency range of interest.

Modal analysis theory is based on the assumption that the dynamic behaviour of a
structure can be described completely by a summation of all the modal contributions. For
a hysteretically damped model -

ajk(m)  = E Ak . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.2)
r-1 @-02+iq,Qt

Except for the very simplest lumped mass and spring systems the majority of practical
structures have continuous distributions of mass, stiffness and damping and,
consequently, have an infinite number of modes. The summation of equation (5.2)
extends to infinity.

It is common for the measurements to span only the “frequency range of interest”, i.e. a
frequency range covering modes of particular concern. Thus the measured frequency
range covers only a small fraction of the total number of modes. Modes above or below
the measured frequency range cannot be analysed and, therefore, they cannot be included
in the modal database. Collectively, these modes are known as the out-of-range modes.

Following a modal analysis process, FRFs can be synthesised from information contained
in the modal database. When the synthesised FRFs are compared with their measured
counterparts, the influence of the out-of-range modes in the frequency range of interest
becomes apparent. If the data are accurate and the modal analysis has been performed
correctly, the synthesised resonance features will be defined clearly and correspond with
the resonances on the measured FRFs.

C‘
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Representation of Residuals as Linear Functions.
Figure 5.7

In off-resonance regions, even though the data used in the synthesis are accurate, the
correspondence between the measured and synthesised FRFs depends largely upon
whether the out-of-range modes have any significant influence. If the actual out-of-range
mode contributions are large, the synthesised FRF (which only contains information from
the analysed modes) will differ from the measured FRF markedly. The most obvious
differences are in the positioning of the anti-resonance features.
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Equation (5.2) can be r-e-written in 3 sections to represent;

(a) the low-frequency out-of-range modes, (r-1 to L-l);

(b) the modes in the measured frequency range, (modes r=L to II); and,

(c) the high-frequency out-of-range modes, (i=H+l to N).

ajk(o) = y
r&c

r=l @-co2  +i?l,Qf

H
+c

r&c
l=L ~-w2+i~,Q2,

N
+ c rAik . . . . . . . . (5.3)

I=H+ @-a2 +iq,SZ!22,

The term representing the low-frequency out-of-range modes is known as the low-
frequency residual, and that representing the high-frequency out-of-range modes as the
high-frequency residual, see Figure 5.7. It can be seen that the residual terms are
dependent upon the force and response locations (i and k) and, hence, the residuals are
local properties.

It is interesting to consider this equation for a narrow frequency band around a single
mode. The centre term is the contribution of the singe mode of interest only. For well
separated modes, where the effects of the high-frequency and low-frequency residual
terms can be considered to be constant in the narrow frequency range of interest,
equation (5.3) reduces to,

~,d~) = rAik
C$-w2+iqrQ:

+D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4)

which is the basis of single-degree-of-freedom modal analysis methods.
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In the circle-fitting technique of single-
degree-of-freedom modal analysis, the
displacement (D) of the circle
(Figure 5.8) from the origin is a
reflection of the residual effects. At
resonance, the response is dominated by
the contribution of that single mode, the
constant residual effect can be
insignificant in comparison.

Resonance Point.

Real Part.

Figure 5.8

However, away from resonance, and particularly at anti-resonances, the response is
formed from similar-sized contributions from a large number of modes. If the
contributions from a series of modes are ignored, there will be a large error in the
estimated response and the synthesised anti-resonances will be incorrectly positioned.

The relative importance of residual terms varies throughout the FRF matrix - for some
FRFs the residuals are essential, while for others they may be insignificant. There are
some general trends for the relative magnitudes of different residual terms but discussion
of this aspect of residuals is left until later.

The assumption that residual effects are constant is only valid for narrow frequency bands
around each resonance. Over a typical frequency range of interest containing several
modes, residual effects will not be constant but, there are several ways in which they can
be represented,

(1)

(2)

(3)

as linear functions;

as the effects of two fictitious modes, one above, and one below the
measured frequency range; and

by incorporation of sufficient modes from outside the frequency range of
interest.

(1) Residuals as Linear Functions

By consideration of Figure 5.7, where the FRFs are displayed on a log-log plot, it can be
seen that the low-frequency residual term could be approximated, in the frequency range

.,..,  _
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of interest, by a mass line (Figure 5.7b)  and that the high-frequency residual term could
be approximated by a stiffness line (Figure 5.7d).

For the low-frequency residual, where o >> QL

i
rAik -1 . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5)

I=1 C2f-02  +iq,LIZ, . ,

where TM& = low-frequency ‘mass-like’ residual term.

and for the high-frequency residual, where 61 c QH

ii! rAik 1=-
@- co2 +iTjrRt K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r jk (5.6)

I--H+

where & = high-frequency ‘stiffness-like’ residual term.

The accuracy of this approximation depends upon how well separated the out-of-range
modes are from the frequency range of interest. The greater this separation, the closer the
actual residual effects are to the asymptotic characteristics and the better are the
approximations of linear functions for the residuals. As the out-of-range modes come
closer to the frequency range of interest, the approximation of the residuals as linear
functions becomes less and less valid.

Practical Implementation

Practical derivation of the residual terms involves the direct comparison of each pair of
measured and synthesised FRF curves, [43]. The low- and high-frequency residual terms
are then derived by fitting linear functions to the difference between the measured and
synthesised FRFs on a log-log plot. By this method, it is only possible to derive residuals
for terms that have a measured counterpart for direct comparison. This places a heavy
burden on the measurement programme because it is necessary to have measured all terms
in the upper or lower triangle of the FRF matrix if a complete set of residuals is to be
generated.

A modal database can be generated from measurement of one row or column of the FRF
matrix as an absolute minimum; for a system with N degrees-of-freedom, the minimum
number of FRF measurements required is N. In contrast, a complete data set for the upper
or lower triangle of the FRF matrix requires N (N+l)2 measurements to enable calculation

.
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of all the residuals. This represents a substantial increase in the size of the measurement
survey and can lead to difficulties with -

. the number of degrees-of-freedom which may become prohibitively large,
e.g. for a system with 12 degrees-of-freedom, the number of measurements
is now 78 rather than the minimum of 12 required to form a modal database;
and,

. restricted access to a number of locations may mean that it is not possible to
excite the structure at these locations and hence there will be some pairs of
degrees-of-freedom for which measured FRFs are unavailable.

For example, if it is not possible to excite at
locations j or k, the FRF terms in the two shaded
columns of Figure 5.9 cannot be measured
directly. However, it is possible to measure
terms in the ‘j’ and ‘k’ rows of the matrix - bar
those marked with a cross - and hence, invoking
the principle of reciprocity, all the FRF terms in
the matrix can be determined except the 4
marked with crosses (the ‘j’ and ‘k’ point FRFs
and the reciprocal ‘j : k’ transfer FRFs).

i k
:.:::.:::::::::.::‘::::::~:::~::~::.::. . . . . . . . ..i.._.  . . . . . . . . . . . . . . . . . . . .._
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Excitation.
Figure 5.9

(2) Residuals as the Effects of Two Fictitious Modes, One Above, and
One Below the Measured Frequency Range

The effects of out-of-range modes can be incorporated into the database by representing
the residual effects by one fictitious mode above the frequency range of interest, and
another fictitious mode below the frequency range of interest. There are two approaches
to the derivation of the parameters for these fictitious modes -

(i) a local method in which a measured and synthesised FRF are compared
with the aid of the AFRF. The tail of an undamped single-degree-of-freedom
FRF can be fitted to the AFRF (rather like that shown in Figure 5.17) to
produce parameter sets for low-frequency or high-frequency fictitious
modes. These parameters will be valid for the single combination of force
and response locations only, all other FRF terms must be analysed
separately;
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(ii) a global method in which parameters for the fictitious single-degree-of-
freedom modes are derived in an iterative way. The estimation task can be
performed with measured data from a single row or column of the FFtF
matrix to yield sets of modal parameters for the two fictitious modes- as
for standard modal analysis - that can then be incorporated in the synthesis
of all the FRF terms. One such method is reported by Cheung & Lee [72].

Practical implications for method (i) are the same as when using linear residual functions -
a complete set of measured FRFs must be available for all the residuals to be calculated.
For method (ii) a minimum of one row or column of measured FRFs is sufficient to
enable calculation of all the residual effects.

(3) Extension of the Measured Frequency Range to Include Modes that
have a Significant Influence in the Frequency Range of Interest
(Inclusion of ‘Buffer Zones’)

Inclusion of ‘Buffer Zones’ in the Measured Frequency Range
Figure 5.10
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In simple systems it is easy to understand that if two modes are well separated their effect
on each other is small. In contrast, if two modes are closely spaced, the effect of one
mode on the other can be substantial.

By extending the measured frequency range beyond the “range of interest”, two “buffer
zones” are created, Figure 5.10, and the remaining unmeasured modes are moved further
from the frequency range of interest. For the purposes of discussion we shall consider
only the effects of modes below the frequency range of interest. The unmeasured low-
frequency modes may have a substantial effect (LRr) on the response in the low-
frequency buffer zone, but their effect on the response in the frequency range of interest
will be small. Therefore, over the frequency range of interest, it is acceptable to ignore the
low-frequency residual due to the unmeasured modes. However, modes in the low-
frequency buffer zone will affect the response in the frequency range of interest and this
residual effect (LR2) cannot be ignored. Analogous arguments apply for the effects of
modes above the frequency range of interest.

The residual effects of buffer zone modes are incorporated in the frequency range of
interest by extending the measurement and modal analysis task to include these modes,
thus enlarging the modal database. In the buffer zones, the measured and synthesised
FRFs may differ, but over the central frequency range of interest they should be well
correlated.

Practical Implementation

This is probably the most straightforward method for improving the correlation of
measured and synthesised FRFs over the frequency range of interest. The improvement is
brought about by including more modes in the modal database. The correction is done in
the modal domain rather than by addition of individual correction factors to each FRF in
the frequency domain. Therefore, the measurement survey requirement returns to the
measurement of a single row or column of the FRF matrix, but over an extended
frequency range. The main difficulty with implementation of this technique is the selection
of the new measurement frequency range - how many extra modes should be measured?
Obviously this will depend on many factors such as the relative modal participation factors
and the modal density. Usually though, the selection is done on a trial-and-error basis,
whereby the number of modes is gradually increased until acceptable correlation of the
measured and synthesised FRFs is achieved over the frequency range of interest.

Unfortunately, standard measurement and analysis methods do not allow for the rigid
body modes of a structure to be incorporated in this way and they have to be included by
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use of technique (l), in which the residuals are modelled as linear functions over the
frequency range of interest.

Rigid Body Mode Residuals

At very low frequencies, unrestrained structures exhibit what is known as rigid body
motion. There is no elastic deformation of the structure, it moves bodily in each of the six
degrees-of-freedom at the centre of gravity. Mathematically, an unrestrained structure has
six zero-frequency modes which correspond with the rigid body motions of the structure.
As restraints are applied to the structure, the number of rigid body modes decreases,
e.g. a single pin-joint coupling the structure to ground would restrain one translational
degree-of-freedom and the number of rigid body modes is reduced to five accordingly.
Although these rigid body modes are at zero frequency, their effects extend across the
whole frequency range, in just the same way as do the effects of the elastic modes.
Therefore, it may be necessary to include rigid body modes in the synthesis of FRFs.
This is done, implicitly, when linear residual correction factors are calculated by
comparison of measured and synthesised FRFs (see method (1) above). However, if it is
known that the measured frequency range includes all the low-frequency elastic modes,
the residual effects of the rigid body modes can be calculated directly from the static mass
and inertia properties of the structure (if available) by application of basic rigid body
mechanics equations. By definition, all the rigid body modes are real - all responses are
either in-phase or 180’ out-of-phase with the response at a reference point.

Depending upon the accuracy of the mass and inertia properties used for the structure
[75], the theoretical rigid body residuals may be more accurate than those derived by
comparison of measured and synthesised FRFs and, certainly, they will be more
consistent.

Practical Example of the Need for, and the Incorporation of, Residuals

Figure 5.11 shows a measured FRF of a freely suspended aerospace structure together
with that synthesised from a modal database. The measurement was made for a baseband
frequency range up to 32 Hz and the transducers used had an operating frequency range
down to about 3 Hz. Modal analysis of the measured FRF data yielded the modal
parameters for 7 modes over the frequency range of interest from 3.2 Hz to 32 Hz. The
synthesised function shown in Figure 5.11 was produced using modal data for the fast 7
modes only.
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As expected, there is reasonable agreement of the measured and synthesised FRFs in the
regions close to the resonance peaks. However, away from the resonances, and
particularly in the anti-resonance regions, the correlation of the two functions is poor due
to the fact that the effects of out-of-range modes have not been included.

Title: Measured and Synthesized  (7 Modes).
Response 66Y+/Force  66Y-

I '

+ Measured.
‘p -Synthesized FRF (7 Hades).  ':
0 0I 1 I I", 1

3.0 10.0 32.0
Frequency (Hz).

Figure 5.11

A Measured FRF Compared with a Synthesised FRF
(only 7 modes used in synthesis)

Two methods have been used for the inclusion of residual effects -

(i) the modal database has been extended to include higher frequency modes;
and

(ii) theoretical low-frequency residuals have been calculated for the effects of
the rigid body modes.

(i) The structure was re-measured up to a frequency of 64 Hz and the modal database
extended accordingly. Four extra modes were found in the frequency range between
32 Hz and 64 Hz. The FRF was synthesised again (over the frequency range 3.2 to
32 Hz), but this time incorporating the contributions of all 11 modes up to 64 Hz. Over
the frequency range of interest, the FRF synthesised using all 11 modes, Figure 5.12,
appears virtually identical to that synthesised using only the first 7 modes. The difference
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(AFRF) between these two synthesised FRFs is also calculated and plotted and it can be
seen that it has the form of a tail to a single degree-of-freedom FRF. The significant
discrepancies between the measured and synthesised FRFs shown in Figure 5.11, still
remain. Therefore, it can be concluded that these differences must be due to the residual
effects of the rigid body modes.

Title: High Frequency Residual Ef fect .
Response 66Y+/Force 66Y-

L

i
- 0

+ Syntheslzed (7 Modes) . :: -
+ Syntheslzed (11 Modes). -
+ Difference. -m

3.0 10.0
Frequency (Hz) .

32.0

Comparison of FRFs Synthesised with 7 & 11 Modes.
The AFRF is used to Show the High-Frequency Residual Effect.

Figure 5.12

(ii) The mass and inertia properties of the structure were obtained from a F.E. model,
[83], and basic rigid body mechanics was then employed to derive expressions for all the

residual terms in the FRF matrix, i.e.
(” 1
J%IL for all the response and reference locations.Fref

These low-frequency residual terms were added to the FRFs synthesised using all 11
modes to produce the final set of FRFs; one of the point FRFs is shown in Figure 5.13.

The synthesised FRF including the low frequency residual terms now compares very well
with the measured FRF, Figure 5.13; they overlay almost exactly. All the resonances,
anti-resonances are correctly positioned and the only slight discrepancy is for the
resonance magnitude of mode 1. The low frequency residual is large for this FRF term
and, therefore, there is a large difference between the synthesised FRFs with and without
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the residual. Use of the synthesised FRF without the residual term in any form of
impedance coupling technique would give erroneous results for the characteristics of the
modified structure.

Title: Pleasured and Syntheslzed (11 Modes and LF Residual).
Response 66Y+/Force 66Y- c

-Jt Measured.
-i- Synthes I zed 1 I1 Modes)

‘: - S y n t h e s i z e d  (11 M o d e s  +  L F  R e s i d u a l ) .

t

‘p-0

7-0

‘:
lo

I I I I I’, I

3 .0 10.0 32.0
Frequency (Hz).

Comparison of Measured & Synthesised FRFs With
and Without the Low-Frequency Residual

Figure 5.13

The Relative Sizes of Residuals in the FRF Matrix

There are certain trends in the sizes of the residuals over the FRF matrix. The residuals for
point FRFs are generally larger than the residuals for transfer FRFs, with the differences
becoming larger as the physical separation of the points on the structure increases. This
can be explained simply by considering the signs of the modal constants in the summation
equation for an FRF, equation (5.2) -

For a point FRF, all the modal constants &Ajk) have the same sign and hence a residual is
the summation of a part of this series in which all the terms have the same sign. A
characteristic of transfer functions is that the modal constants GA,Q VARY in sign. As
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the physical separation of the points increases, there is a trend for the number of minima
to increase (and the number of anti-resonances to decrease), giving rise to more sign
changes in the series of modal constants. Summation of a part of this series results in a
smaller value than if the modal constants had all been of the same sign. Consequently, the
residuals for transfer functions tend to be smaller than the residuals for point FRFs.

This observation may be of use in reducing the number of FRF measurements necessary
if the comparison methods of residual calculation are to be used. Where it is known the
residuals will be small, it may not be necessary to measure the particular FRF for direct
comparison.

Incorporation of Residual Effects in Modification Predictions using
Impedance or Modal Coupling Methods

The theoretical basis of the impedance coupling and modal coupling methods has been
presented in chapter 2. It was shown that, provided that complete models for the
components were available, the predictions of the two coupling methods were identical.
The impedance coupling method operates in the frequency domain and the modal coupling
method operates in the modal domain.

Generally speaking, in an experimentally-based study, the models obtained will be
inaccurate and incomplete. One form of incompleteness is modal deficiency and the
preceding sections have examined some techniques by which the effects of out-of-range
modes may be included in the frequency range of interest. It is important to be aware that
the choice of residual correction technique can preclude the use of certain coupling
methods in predictions of the effects of modifications and, likewise, prior selection of the
coupling technique to be used has implications for the way in which residual effects are to
be included (if any).

Residual correction methods can be categorised by the domain in which the correction is
made;

(i) frequency domain methods - linear residual functions and/or the effects of
fictitious modes calculated individually for each FRF element, and

(ii) modal domain methods - the effects of global fictitious modes and/or the
extension of the modal database beyond the frequency range of interest.

Only recently has it been shown to be possible to incorporate frequency domain residual
information directly into the modal coupling equations [88]. However, because FRFs can
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be synthesised from a modal database, modal domain residual correction methods do not
restrict the choice of coupling method - modal coupling and impedance coupling methods
can be used equally well.

5.2.3 Illustrations of the Effects of Spatial and Modal
Incompleteness

As an illustration of the implications and effects of using incomplete models for the
prediction of the characteristics of a modified structure, we shall use the following
undamped 3 degree-of-freedom mass and spring example.

3 DoF Mass & Stiffness Example System
Figure 5.14

with, ml=m2=m3=1Kg.
kr = k2 = 1000 N/m and ks = 500 N/m.

The matrix equation of motion for the system, shown in Figure 5.14, is :-

[A;;]{;;} [ 2000 -1000 0 x1 0
” + -1000 1500 -500 x2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . (5.7)
” 0 II HI-500 500 x3 0

Solution of this set of equations yields the following eigenvalues and eigenvectors which
represent the modal database,

The natural frequencies are 2.12 Hz, 5.03 Hz and 8.45 Hz and the mode shapes are
given by the eigenvector matrix which can be shown more clearly in pictorial form,
Figure 5.15,
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Mode Shapes for Unmodified System
Figure 5.15

FRFs for points on the system can be generated by substitution of the eigenvalues and
eigenvectors in the following equation for an undamped system - modal synthesis.

N

ajk(w> = c (r$j).(r$k)

s&2 - 02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.9)

I=1

where, &Qj> = j* component of the rth mode shape vector.
0 = frequency.
Q = rti resonance frequency

Modelling Spatial Incompleteness

Spatial incompleteness will be simulated by assuming that there is no information
available for, say, location 2. In a practical situation, this is equivalent to omitting location
2 from the measurement survey.

For the system shown in Figure 5.14, the simulation of spatial incompleteness simply
means that no FRF is available for location 2, and therefore the mode shapes are deficient
for this location. At locations 1 and 3, the mode shape information is still correct. In terms
of the modal database, spatial incompleteness affects the eigenvector matrix only -
reducing the 1st dimension. In this example, row 2 is eliminated from the eigenvector
matrix, leaving -
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as the modal database simulating spatial incompleteness. The mode shapes of the spatially
incomplete model would now be shown as Figure 5.16;

Spatially Deficient Mode Shapes for Unmodified System.
Figure 5.16

The reduced resolution of the mode shapes means that for mode 3 there appear to be no
nodal points whereas there are, in fact, two.

It will be noted that it is still possible to synthesise exact FRFs using the data from
equation (5.10) in equation (5.9) for combinations of force and response points that do
not involve location 2, i.e. for jz2 and k+2 in equation (5.9).

Modelling Modal Incompleteness

Modal incompleteness will be simulated by assuming that there is no information available
for the 3rd mode. This is equivalent to the practical situation where high frequency modes
are omitted due to insufficient (a finite rather than an infinite) measurement frequency
range.

Modal incompleteness means that certain modes have not been measured. Usually it is the
very low frequency and/or rigid body modes, which are below the frequency range of
interest, and the high frequency modes which are above the frequency range of interest
that are missing. Both the eigenvalue  and eigenvector matrices are affected. In this
example, the order of the eigenvalue matrix is reduced by 1 and the 3rd column of the
eigenvector matrix is eliminated, leaving the modal database simulating modal
incompleteness as :-

-.285 -.577

[W [
2

177 0
= 1 and, [%ti] =

0 1000
[ -.520 -.577 1 . . . . . . . . . . . (5.11)

-.805 .577
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The mode shapes are exact for the 1s’ two modes, but it is no longer possible to
synthesise FRFs that correctly represent the behaviour of the structure from this database
even in the limited frequency range including modes 1 and 2. This is shown in
Figure 5.17 for the point FRF at location 1. At frequencies away from the 1st two
resonances, the FRFs for the complete model and the modally deficient model are
different. The most obvious indication of the differences is in the location of the anti-
resonances. If the two FRFs are subtracted to form the difference function (AFRF)
previously described in chapter 4, the result is a single-degree-of-freedom FRF curve
representing the contribution of the 3rd mode throughout the frequency range.

-1 Polnt FRF for locatlon 1.

Illustration of Modal Deficiency in the Synthesis of a FRF
Figure 5.17

Effects of Modification to the System

Now, consider the effects of a very simple modification - a mass of 1 Kg (rr~) added at
point 1; the mass ml is thus doubled from 1 Kg to 2 Kg.

Predictions Using the Complete Model

The exact solution can be found by direct solution of equation (5.7) with the modified
value for ml. Alternatively, the following equation may be used, derived from the modal
coupling method in a similar manner to equation (2.63) -
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[[a*] - ~*(Dl + [aIT {t) (t)T[Q] rmt)](W) = (0) . . . . . . . . . . . . . . (5.12)

iL* is a new eigenvalue, and,

( W) is a weighting vector defined such that -

(6) =[@I (WI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.13)

and PI is an eigenvector of the modified system and [a] is the eigenvector

matrix of the original system.

{t} is a tie vector representing the connection of the modification; in this case for a
single-degree-of-freedom mass modification at location 1.

(11

Equation (5.12) can be written more concisely as -

[[Al - ~*[Bl]W) = (01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.14)

with, in this case,

[Al =[ ‘; +O 28;o] and [Bl=[ t: _;i ;!i!] . . ..(5.15)

Solution of this system of equations yields the following eigenvalues for the modified
structure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.16)

The new natural frequencies for the modified system are 2.03, 4.30, and 7.31 Hz,
compared with the natural frequencies for the unmodified system of 2.12, 5.03, and
8.45 Hz, equation (5.8).

By use of equation (5.13), (e) =[a] (WI

-.285 -.577 .765 I .999 .231 .123

El 8 = -.520 -.577 -.630 ][ . .035 1_.9591 .435 I . . . . . . . . . . . . . . . (5.17a)

-.805 .577 ,136 -.015 .164 1.89211

. .
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and therefore, the new mode shape matrix is;

-.317 .613 .396

[I8 = -.531 .329 -.877 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.17b)
-.786 -.717 .273

It is instructive to look at the weighting matrix [WJ of equation (5.17a) to see the
contributions of the unmodified system mode shapes in the mode shapes for the modified
structure. The terms on the leading diagonal of the weighting matrix are close to unity,
indicating that the predominant mode shape contributions are the respective unmodified
mode shapes. However, it will be noted that, with increasing mode number, there is
progressively more and more contribution of the other unmodified mode shapes in each
new mode shape vector, i.e. the higher frequency mode shapes are affected to a greater
extent than the lower frequency mode shapes for this particular modification.

Predictions using Incomplete Models

(1) Prediction using the Spatially Deficient Model

The spatially deficient model is represented by the modal database of equation (5.10).
The eigenvalues are the same as those of the complete model, equation (5.8). In
substituting the reduced matrices into equation (5.12), it will be seen that the resulting [A]
and [B] matrices are identical to those for the full system matrices. Therefore,
eigensolution gives the same eigenvahtes and eigenvectors for the system of equations as
found for the complete model. The natural frequencies for the modified system are still
estimated correctly - a spatially deficient model produces correct results for the natural
frequencies of the modified system, providing that the spatial deficiency does not extend
to include the degrees-of-freedom actively involved in the coupling.

The effects of the reduced eigenvector matrix of the spatially deficient base model only
become apparent when calculating the mode shape vectors for the physical system using
equation (5.13). The new mode shape vectors are identical to those calculated using the
complete system model except that, in this case, there is no information for location 2.

Using equation (5.9),  FRFs for the modified system can be synthesised correctly for all
combinations of force and response locations that do not involve location 2.
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(2) Prediction using the Modally Deficient Model

The reduced modal database of equation (5.11) is used in equation (5.12). The whole
system of equations is reduced from a 3x3 set to a 2x2 set, with -

Eigensolution produces the
modified system -

r .277 .518 1

M [2
163 0

=
0 769 1 and [e] =I 5;; $81 . . . . . . . . . . . . . . . . (5.19)

1.081 0.164
and

IB1 =[ 0.164 1.333 1 . . . . . . . . . . . . . . . (5.18)

following eigenvalues and new mode shape vectors for the

The base system was assumed to have only 2 modes and therefore, the modified system
can have only 2 modes, each of which is a linear combination of the 2 unmodified mode
shapes. There are differences between this prediction for the modified system and that
using the complete model for both eigenvalues, equation (5.16), and the mode shapes,
equation (5.17), although, in this example, the differences are not very large. The natural
frequencies predicted for the modifkd system are now 2.03 and 4.41 Hz (compared with
2.03 and 4.30 Hz). The prediction of the first mode shape for the modified system differs
from the exact answer at location 1 only, the modification site. For mode number 2, the
errors in the mode shape prediction are larger and extend to location 2 as well.

w

1
1Kg Hasa Addltlon et location 1.
Folnt FRF for location 1.

x Flrrt 2 modes In mamotion only.

1’
Log(Frequency; Hz)

The Result of Modal Insufficiency on Prediction of the Effect of a Modification
Figure 5.18



Incompleteness & Inaccuracy 151

If the parameters of equation (5.19) are used to synthesise FRFs of the modified system,
significant differences can be seen when they are compared with the true FRFs. A
comparison is presented in Figure 5.18 for the point FRF at location 1. The two FRF
curves show different resonance frequencies as well as a different number of resonances.
To aid the comparison, the difference between these two FRFs - the AFRF - has been
calculated and plotted. It will be noted that it is no longer a simple single-degree-of-
freedom FRF shape, as it was for the comparison of the complete and modally deficient
FRFs of the unmodified system (Figure 5.17).

In this simple example, the effects of modal insufficiency have been compared with those
of spatial insufficiency where the spatial insufficiency does not extend to the modification
degrees-of-freedom. It has been shown that, under these circumstances, modal
insufficiency is a greater problem than spatial insufficiency for the correct prediction of a
modification. However, when the spatial incompleteness includes some of the degrees-of-
freedom actively involved in the modification (e.g. rotational degrees-of-freedom) all
results will be incorrect, illustrated by the example of joining two beams together, in
section 52.1. The actual modification and that modelled theoretically are not the same.
This can be a very much more serious problem than the spatial and modal insufficiencies
discussed above. The importance of the deficient degree-of-freedom in the actual coupling
is reflected by the sizes of the errors; if the deficient degree-of-freedom is very important
in a modification coupling, the errors will be large.

In summary; spatial incompleteness is a severe problem only if it includes degrees-of-
freedom actively involved in a modification. Spatial incompleteness is a local problem -
modal incompleteness is a global problem. Spatial incompleteness is a factor which is
independent of the type of model used, i.e. either raw measured FRF data or FRF data
synthesised from a modal database. In theory, modal incompleteness is only present if
modal analysis data are used as a description of the dynamic behaviour of the structure -
raw measured FRF data contain the effects of all modes. Practically, though, there are
several reasons why raw measured FRF data are rarely used directly in a modification
prediction and therefore modal incompleteness is always present, to some degree, when
the synthesised data are used instead.

5.3 Inaccuracy

Measurement inaccuracy is the inability to quantify the behaviour of the structure
precisely. This inability can be subdivided into 2 types;
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(i) the inability to transduce the motion of the structure without affecting its
behaviour, and

(ii) the inability to quantify the transduced signals.

5.3.1 Transduction Inaccuracy

Selection of Transducers

The size and mass of the transducer has implications for its influence on the behaviour of
the base structure. Careful selection of the accelerometer such that its mass is small when
compared with the local mass of the test structure can help to avoid frequency shift
problems. Almost all transducers have some effect on the structure and it is a matter of
engineering judgement as to when the influence can be considered to be negligible, and
hence, which transducer is appropriate.

It is very much better to use a signal directly from a transducer that has minimal effect on
the structure than to try and compensate, at a later stage, for the effects of an inappropriate
transducer. The greatest care and attention should be directed towards the acquisition of
transducer signals giving a faithful representation of the actual behaviour of the structure
in its base condition.

To some extent, the vibration frequency range influences the size of the transducer. For
piezoelectric accelerometers, it is usually the case that the lower the frequencies to be
measured the larger the transducer - because a large seismic mass is required to produce
sufficient deformation of the crystal and thence a reasonable output charge signal.
Alternatively, much smaller transducers based on miniature strain gauged cantilever beams
are available, but these require careful handling and different drive and amplification
equipment.

For FRF type measurements, there must be at least one force input transducer and one
response transducer. The force transducer is often overlooked in transducer selection
considerations because it is quite usual for there to be just a single force gauge, but a large
number of response transducers. Since the force transducer signal is used in all the ERF
calculations it is particularly important that the transducer responds to the true force input
to the structure.

Instead of using a force gauge to measure the force input into the structure, the force can
be calculated from measurements of the current fed to an electromagnetic shaker. From

. .
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basic electromagnetic principles it is known that a current-carrying conductor in a
magnetic field experiences a force given by the expression -

F = B.1.L.N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.20)

where: F = force (N)
B = magnetic flux density (Webers/mz)
I = current (amps)
L = length of conductor in flux field (m)
N = number of turns of length 1 in flux field

B, L and N remain fixed for a given shaker and hence the force applied to the structure is
directly proportional to the current flowing in the coil of the shaker. When a constant
current amplifier is used to drive the shaker, the force generated in the coil is constant and
there is no need for any on-line measurement of current. The relationship between coil
current and force applied to the coil can be derived fi-om D.C. calibration measurements
with subsidiary force measuring equipment.

Although this would seem to be an ideal solution to some of the force measurement
problems, several important details must be borne in mind -

a constant current amplifier with suitable capacity must be used. At
resonance frequencies high powers may be required,

the constant current drive arrangement provides very little inherent damping;

the large amplitude range may cause problems with unwanted excitation of
non-linearities; and

the moving components of the shaker and the pushrod are all considered as
part of the structure. The force calculated is the force applied to the coil and
not that actually transmitted through the pushrod-structure interface. If the
mass of the moving components of the shaker is small compared with the
structural mass (e.g. in ground vibration testing of aircraft structures) the
errors caused by this assumption will be small. However, with lightweight
structures the errors can be significant and here a force gauge is essential

Transducer Attachment Considerations

The purpose of a transducer is to convert one form of energy into another that can be
quantified by remote instrumentation. In the case of an accelerometer, the energy of
motion of component parts in the accelerometer is used to produce an electrical charge, or
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to control an external electric current, which is then measured. The signal produced is a
representation of the motion of the transducer. The implicit assumption is made that the
motion of the transducer is identical to that of the structure. This will be the case providing
that the transducer is rigidly attached to the structure. The attachment stiffness must be
sufficiently high that, throughout the frequency range of interest, the motion of the
transducer is identical to that of the attachment point on the structure. For low-frequency
work, it is quite acceptable to attach the transducer with bees’ wax or double-sided
adhesive tape, but for high-frequency measurements, the transducer must be bolted to the
structure firmly [25-J.

In a large measurement survey, a further consideration is whether all the transducers are to
be fixed to the structure before the start of the test, or whether a small number of
transducers are to be moved around the structure to all of the test points in turn. This is
largely dictated by the size of the test, the number of transducers and the number of
simultaneous data acquisition channels that are available. In a test where all the
transducers remain fixed in place throughout the complete measurement phase, the
structure does not change as different response points on the structure are measured. The
structure will be slightly altered from the base condition, but the important point here is
that no further changes occur throughout the measurement phase. When the measurements
are made in a series of tests where a small set of transducers are moved around, the
structure is altered differently for each test - a systematic error. The errors are most easily
seen as different positions of the resonance peaks for each successive set of measured
FRFs. Although the errors introduced in each test are potentially smaller than the overall
error caused by attaching all the transducers at the start, the systematic errors make the
task of analysis of the measured data significantly more complex.

Transducer Cross-Axis Sensitivity Influences

Transducers are designed to measure a particular quantity in a specific direction in relation
to the construction of the transducer, e.g. acceleration in a direction perpendicular to the
base of the transducer. Transducers are carefully designed and built such that motion of
the transducer in directions other than the specified measuring direction has little effect on
the output. Nevertheless, there is always some degree of cross-axis sensitivity which may
influence the results adversely [13]. With care, this can be minimised by suitable
alignment of the transducer, but it is necessary to have a polar plot of the transducer cross-
axis sensitivity which identifies the cross-axis sensitivity of the transducer as a function of
the direction of cross-axis excitation, Figure 5.19.

,: -_
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Vectorial Representation and Polar Plot of Cross-Axis Sensitivity.
(Figures courtesy of Brtiel and Kjaer)

Figure 5.19

For minimum cross-axis effect, the direction of minimum cross-axis sensitivity should be
aligned with the direction of the maximum cross-axis response of the structure. There are
several difficulties with implementation of such a procedure;

(i) a polar plot of cross-axis sensitivity is seldom supplied with each
transducer;

(ii) a preliminary measurement survey is necessary to deduce the directions of
maximum cross-axis motion at the measurement points;

(iii) the directions of maximum cross-axis motion will alter with the excitation
frequency as different modes become more prominent; and

(iv) it can be quite difficult to set a particular angular orientation of the transducer
because of the fixing methods used.

In the light of these difficulties, it is unusual for much consideration to be given to cross-
axis sensitivity influences.

Cross-axis sensitivity effects can be of particular importance when trying to calculate
rotational degree-of-freedom properties from two sets of closely spaced translational
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degree-of-freedom FRF measurements. The calculation of the rotation/translation,
translation/rotation, and rotation/rotation FRFs from the translation/translation data
essentially involves differencing operations. When the motion in one of the transverse
directions is large, the difference between the measured FRFs can be of the same order of
magnitude as the cross-axis sensitivity component, so that the calculated rotational degree-
of-freedom properties will contain significant errors.

5.3.2 The Use of Dummy Transducers

The systematic error incurred as a result of moving the transducers around on the structure
during the course of the test can be turned into a single error by the use of dummy
transducers. Instead of instrumenting the whole structure with transducers at the outset of
the test program, dummy transducers are used. The dummy transducers are designed to
have similar mass properties to the real transducers. The dummies are systematically
replaced (temporarily) by the real transducers for the measurements, until all of the
measurement locations have been covered. The results from this type of test should be the
same as if a complete set of real transducers had been attached to the structure at the
outset. The use of dummy transducers for response measurements is an established
practice; what is rarely considered is the use of dummy force transducers at the excitation
locations. These may be just as applicable as dummy response transducers when a series
of single point tests are performed to measure several columns of the FRF matrix. It is
suspected that the use of dummy force transducers is generally overlooked because of the
very much smaller number of forcing locations compared with the number of response
locations in the majority of vibration tests. Additionally, the conception of exactly what a
dummy force transducer has to represent is somewhat obscure - unlike the response
transducer counterpart. To understand this problem, some background details of the
construction of force and response transducers is appropriate. The diagrams of Figures
5.20 and 5.21 show typical cross-sections of a piezoelectric accelerometer and a
piezoelectric force gauge.



Incompleteness & Inaccuracy 157

A Piezoelectric Accelerometer

Total Mass of Accelerometer
= 139 (B&K4367)

Piezoelectfic  Crystal.

Seismic Mass.

Cross-Section of a Piezoelectric Accelerometer
Figure 5.20

The cross-section of a typical piezoelectric accelerometer is shown in the above diagram,
Figure 5.20. There are four basic components; a base/case, a centre post, an annular
section of piezoelectric ceramic and an annular seismic mass element. The piezoelectric
ceramic and seismic mass are arranged concentrically around the centre post. The base of
the accelerometer moves with the motion of the structure to which it is attached, and to
cause equivalent motion of the seismic mass, a force must be applied - Newton’s 1st
Law. This force is transmitted through the piezoelectric crystal which deforms as a
consequence. The deformation produces a charge in the piezoelectric crystal which is
proportional to the deformation and hence, ultimately, to the acceleration of the seismic
mass and the structure.

The important point to note here is that the apparent mass of the accelerometer, as seen by
the structure, is the same in the axial and lateral directions and equal to the total mass of
the transducer.
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A Piezoelectric Force Transducer

Total Mass of Force Gauge
= 21 g (B&K8200)

Force Input.

I

Typical Mass Distribution.

18 g above crystal.

VmI#mm-IIIIIII*
3 g below crystal.

Piezoelectric

Cross-Section of a Force Transducer
Figure 5.21

The force transducer, Figure 5.21, works on the same principle as the accelerometer, but
more directly - the deformation of a piezoelectric crystal produces a charge output
proportional to the force transmitted. The shaker applies a force through the case of the
force gauge to the top of the piezoelectric crystal. The lower end of the crystal is fixed to
the base of the transducer which is, in turn, attached to the structure. In the axial direction,
the force applied to the structure is that transmitted through the piezoelectric crystal
(measured) minus the force that is required to accelerate the base of the force gauge. For
this reason, the mass of the base of the force gauge is kept as small as possible to
minimise the effect on the structure. The mass of the transducer case is irrelevant in the
axial direction. Lateral motion of the structure causes lateral motion of the whole force
gauge and since no forces are measured in the lateral directions, the total mass of the force
gauge has an effect on the structure.

The ratio of the apparent mass of a force gauge in the axial and lateral directions, as seen
by the structure, is small; &g for the B&K 8200 Type of force gauge, Figure 5.22.

Lateral: 21 g.
Axial: 3 g.

Figure 5.22
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The problem with the use of dummy force gauges arises because the structure “sees” the
mass of the force gauge differently in the axial and transverse directions. Axially, only the
base mass of the force transducer is seen by the structure; in the transverse directions, the
full mass of the force transducer is seen by the structure. An inert dummy force gauge
cannot represent these different effects.

If the force gauge were to be mounted upside-down (incorrectly), with the larger mass
attached to the structure, then there would not be such different apparent loading
influences on the structure in the axial and transverse directions. The ratio of axial and
lateral apparent masses is now g g, Figure 5.23.

A Axial: 18 g.

Figure 5.23

With this arrangement, it is possible to use dummy force gauges, in the same way as
dummy accelerometers, to obtain consistent measurements of the structure as the force
and response locations are moved around. However, to deduce the true FRF
characteristics of the underlying structure, it will be necessary to subtract the effects of all
the point mass additions at the force and response locations once a model of the measured
structure has been produced.

As the amount of transverse motion increases, the lateral motion of the force transducer
has a greater effect on the response. Normally, when the predominant motion is in the
axial direction of the force transducer, the cross-axis motion of the force transducer has
only a small influence on the measured FRFs. However, when two sets of closely spaced
translational FRF measurements are made, with the intention of using them in calculations
to derive rotational degree-of-freedom FRF properties, the cross-axis motion of the force
transducer can have a large effect on the final derived results, despite the fact that there is
only a relatively small influence on each of the measured translational FRFs (see
section 5.2.1). This is especially evident if there is a high degree of rotational motion.
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5.3.3 Errors in Quantification of Transduced Signals

Once the transducer and conditioning equipment has converted the force or response
quantities into electrical signals, the signals have to be quantified. Nowadays, the
measurement instrumentation is primarily digital in nature and a large proportion of the
errors in quantification of these signals are associated with details of digital signal
processing. There is a large quantity of published literature relating to digital signal
processing techniques and it is not proposed to enter into any lengthy discussion of these
topics here.

Calibration errors are also a common source of inaccuracies in measured data.

Dynamic Range of the Measuring Equipment

The force and response signals returning to the analyser from the transducers are analogue
signals. The analysers work with digital representations of these analogue signals. The
interface process is called Analogue to Digital conversion. The signals are sampled at
regular intervals and the instantaneous value of the analogue signal is compared with
fixed, discrete, digital levels in the analogue-to-digital converter (ADC). The digital level
which most closely approximates the instantaneous value of the analogue signal is
selected. ADCs have a fixed number of discrete levels - usually expressed in terms of the
number of binary bits used to describe the levels. A 12 bit ADC is typical of the type
found in many analysers today. The dynamic range of the ADC is expressed as the ratio
of the maximum to the minimum signal level that can be resolved, in db. For a 12 bit ADC
there are (212 - 1) = 4095 possible levels, i.e. anything smaller than &fi of the

input range cannot be resolved. The dynamic range of a 12 bit ADC is 72.25 db.

Before the start of a measurement, the input range for each signal is scaled to make the
best possible use of the dynamic range available. The ranges are set using the peaks of the
input signals. Providing that the dynamic range of the analogue input signal is less than 72
db, the digital representation will be quite adequate. However, if the analogue signal has a
dynamic range greater than 72 db, very small levels in the signal cannot be resolved and
they are all represented as zero.

Lightly damped structures can produce analogue response signals with a dynamic range
greater than 72 db, in which case, the range is truncated upon conversion to a digital
signal. The errors become evident at small response levels, i.e. at the anti-resonance
frequencies. Where the response levels are high, at resonance frequencies, the



Incompleteness & Inaccuracy 161

quantisation of the analogue response signals is quite adequate. The same analogue-to-
digital conversion is applied to the force signals, only, in this case, the conversion errors
are more apparent at low force levels, i.e. at the resonance frequencies. Therefore, in the
absence of noise, the definition of the resonance and anti-resonance features will be
equally poor if the analogue force and response signals have similar, excessive, dynamic
ranges. If the response signal has an excessive dynamic range while the range of the force
signal is much less, errors will occur at anti-resonances and not at resonances.
Alternatively, if the force signal has a large dynamic range, the errors occur at the
resonances and not at the anti-resonances. For more detailed discussion on how the
dynamic range of the force signal can be influenced by the interaction of the shaker with
the structure under test, see section 4.3.

5.4 Review of Chapter 5

All vibration models - analytic, F.E. or experimentally-derived - are incomplete and
inaccurate representations of the dynamic behaviour of real structures. The analytic or
F.E. model can describe completely and accurately the behaviour of the ideal&d ‘paper
model’ of the structure. The overall insufficiencies of the model are a direct result of the
paper description of the structure. Joint conditions may be incorrectly modelled and the
distribution of damping is often ignored or crudely approximated. With an experimentally-
derived model the incompleteness is caused by insufficient measurement points -
structural responses are only measured at a few discrete points - and by analysis of only a
small subset of the structural modes.

In this chapter, attention has been focussed on the causes of incompleteness and
inaccuracy in experimentally derived models, how these deficiencies can be minim&d
and the consequences of using incomplete models in predictions of the effects of structural
modifications. The terms spatial and modal incompleteness have been defined to describe
the two forms of incompleteness commonly found with experimentally derived models.
Spatial incompleteness is discussed with particular reference to the measurement and use
of rotational FRF properties which are notoriously troublesome to measure and, for this
reason, they are frequently overlooked in measurement surveys. However, this absence
of rotational degrees-of-freedom in a coupling analysis can provide a convenient
explanation of the subsequent inability to predict accurately the effects of a modification!
The procedure for calculating rotational degree-of-freedom properties from translational
measurements made on a T-block transducer is examined carefully and some probable
causes of errors have been identified. It has been stated that the only reason for using a T-
block is to facilitate the collection of sufficient data for calculation of the rotation/rotation
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FRF. If the structure is locally stiff, the angular response can be derived equally well from
closely spaced transducers placed directly on the structure. With this arrangement and a
linear excitation position mid-way between the response transducers, it is possible to
derive the translation/translation, the rotation/translation and, by reciprocity, the
translation/rotation FRFs at the measurement point. The rotation/rotation FRF cannot be
derived with this arrangement and it is for this reason alone that the T-block appendage is
used. As yet, there are no simple and direct methods for applying a pure torque excitation
which are unaffected by any translational motion of the structure that may occur. A
fundamental problem which has emerged is related to the attachment of the T-block
transducer to the structure and, indeed, the subsequent attachment of any modification.
Usually it is assumed that these joints are absolutely rigid In practice, however, the joints
will not be rigid and the results for the rotational degree-of-freedom properties will contain
some influence of the joint. Only if the joint conditions for the T-block transducer are
identical to those of a subsequent modification -which is a rather unlikely event - will the
model used in a prediction of the effects of the modification be an accurate representation.
It would be possible, theoretically, to include separate ‘joint components’ between the
structure and the T-block or the modification, but the practical difficulties and uncertainties
involved in the determination of the dynamic properties of these joint components are
likely to be prohibitive.

Modal incompleteness arises from the use of modal analysis data where insufficient
modes have been measured, analysed and included in the modal model. Various methods
have been described which allow for compensation of the effects of the out-of-range
modes. The main purpose of residual correction methods is to provide a better basic
model of the dynamic characteristics of the structure that can be used in predictions of the
effects of modifications. A practical example is used to show how the need for residual
corrections can be identified and the improvement in the FRF model that is possible by
inclusion of residual terms.

Further examples have been presented which illustrate the effects of modal and spatial
incompleteness on the results of a simple coupling analysis. It is shown that the most
serious effects occur when the spatial incompleteness of the model extends to include
some of the degrees-of-freedom that are actively involved in a modification coupling.
Modal incompleteness has, potentially, the next most serious effect, followed by spatial
incompleteness where the incompleteness is confined to passenger coordinates only. In
this last case of spatial incompleteness the results that are obtained will be correct, it is just
that they are insufficiently extensive to describe the behaviour of the modified structure
completely in a spatial sense.
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The question of inaccuracy has been divided into two distinct areas; transduction
inaccuracy; and quantification inaccuracy. These forms of inaccuracy arise at opposite
ends of the measurement chain. The transduction inaccuracy is the inability to obtain some
form of signal that describes accurately the force input or the response output of the base
structure. Several factors may contribute to this inaccuracy - loading of the structure by
the measuring equipment, inappropriate attachment of the transducers to the structure and
the influence of cross-axis motion on the outputs from the transducers. Once the signals
have been produced, environmental interference can corrupt the data before it reaches the
measuring apparatus. The data acquisition equipment can introduce inaccuracies in the
data as a consequence of digitisation processes. It has been shown that this can be a
particular problem with lightly damped structures that have large dynamic ranges in the
force and response signals.



Chapter 6

Case Study;
A Helicopter Structure

6.1 Introduction

The vibration environment of a helicopter is probably ‘one of the most severe of any
aircraft. The excitations are primarily due to the periodic change in the velocity and
incidence of the airstream seen by the rotor blades when the helicopter is in forward flight.
Additionally, there are excitations due to the interaction of each blade with the wash of
preceding blades and the tail rotor. Yet further sources of excitation arise from the gearbox
and transmission between the engines and rotors. All of these excitation sources are
largely avoided in fixed wing aircraft. Overall, the excitation frequencies tend to be
relatively low, but the forcing levels are very high.

A helicopter airframe has been used in detailed investigations of many aspects of vibration
measurement, modal analysis and sensitivity analysis, leading on to the prediction of the
effects of various modifications.

A preliminary survey of the structure was performed in which more stringent methods
than nortnal were used to check the repeatability and reciprocity of measurements. This
was followed by a full measurement survey where attempts were made to derive FRF
properties for rotational degrees of freedom. Modal analysis of a full set of translational
degree-of-freedom FRF data was performed and the final resulting synthesised FRFs,
including residual terms, are compared with the original measured FRFs.
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One of the difficulties encountered in the present exercise was an inability to measure
certain FRFs directly due to inaccessibility of points for excitation - a problem frequently
encountered with experimental measurements. The idea of forcing at an angle and then
calculating the desired FRF using other additional FRF information was explored. It is
shown that this technique can yield acceptable results for those FRFs that cannot be
measured directly but that the method has many problems in common with those found
with the measurement of rotational degree-of-freedom properties.

Measurement of rotational degree-of-freedom FRF properties using the T-block method
was also investigated, and the results highlighted the importance of a ‘rigid’ joint between
the T-block and the structure in order to obtain a full set of high quality rotational FRF
data. Application and measurement of a pure torque excitation for derivation of FRFs
relating rotational response due to rotational excitation is still the main obstacle in the
measurement of a complete set of rotational FRF data at the present time since the
measurement of rotational response is comparatively easy.

The sensitivity analysis method (chapter 3) has been used to indicate the sensitive degrees-
of-freedom and hence the places where modifications could be made most efficiently. The
predictions of sensitivity for Single Degree-of-Freedom (SDoF) modifications have been
verified experimentally. Additionally, more practical modifications - adding a mass
(3 coupled translational degrees-of-freedom) and adding a spring between two points -
have been made and the measured and predicted FRFs for the modified structure are
compared.

Some simplified predictions of the new resonance frequencies of the modified structure,
based on the sensitivity analysis results, have been found to compare well with the
measured results for the modified structure.

The helicopter structure used for all the work reported here is currently located in the
Dynamics Laboratory at the Royal Aerospace Establishment (R.A.E.) in Farnborough.
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6.1.1 Details of the Helicopter Test Structure

Photograph of the Helicopter.
Figure 6.1

The test structure is based on a standard helicopter which has had all the internal electronic
equipment, cabin seating and doors removed. The main and tail rotor blades have also
been removed. To prevent rattles of the transmission system, the tail rotor hub and links
are attached to a wooden clamping fixture, and the four main rotor blade attachments are
bolted to the arms of a cruciform structure made of steel beam sections. The whole
helicopter is freely suspended by a steel hawser between the cruciform and a purpose-built
gantry frame, Figure 6.1.

To allow comparison of the results of this work with previous experimental measurement
and F.E. analysis surveys, [83] & [84], and current F.E. analysis work at R.A.E., the
coordinate axes and location of points have been defined in the same way. Only two
points - 49 and 66 - have been used for this work, but multiple degrees of freedom have
been included. Point 49 is mid-way along the leading edge of the tailplane and point 66 is
located on the intermediate gearbox at the base of the tail fin, see Figure 6.2.
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Wire Model of Helicopter

Wire Model of the Helicopter Structure.
Figure 6.2

A further reason for choosing the points used previously was that the excitation futures
(steel blocks) and triaxial accelerometer blocks (aluminium) were already in position on
the helicopter.

6.2 Experimental Set-Up

6.2.1 Details of Measurement Equipment

The measuring equipment is centred around a Gen-Rad 2515 Computer Aided Test
System. The excitation signal is generated in the Gen-Rad 2515, from where it is fed
through a Kemo bandpass filter unit to an H.H. Electronics power amplifier, and then on
to a Ling Dynamics shaker. It has been found necessary to install a filter unit in this signal
path to smooth out the excitation signal generated within the Gen-Rad 25 15. If this is not
done, a large amount of high frequency energy associated with step changes in the digital
signal is fed to the structure unnecessarily, leading to noise on the measured force and
response signals. Furthermore, filtering out the low frequency components of the
excitation signal (less than 3 Hz) reduced the extent to which the shaker bounced around
on its suspension throughout the excitation sweep. Because the helicopter is a massive
structure compared with the Type V409 shaker used, the shaker was bolted to a reaction
mass of approximately 50 Kg to achieve reasonable force levels at the low frequencies. To
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keep the rocking excitation to a minimum, efforts were made to try and keep the centre of
gravity (C.G) of the whole arrangement in line with the forcing axis of the shaker.

A wire pushrod was used between the shaker and the force gauge (PCB Type 208B)
attached to the helicopter. The pushrod decouples the structure and the shaker system in
all degrees-of-freedom except the primary translational excitation degree-of-freedom. For
the majority of the tests, a pushrod 100 mm in length and made of 1 mm diameter ‘piano
wire’ was used.

The vibration response of the helicopter was measured using Entran type EGA 125-F
accelerometers. These are very small and light, and are based on miniature strain gauged
cantilever beams with seismic masses at their tips. Each accelerometer has a mass of just
1 g, and hence the loading effect of all 6 accelerometers on the helicopter is negligible.
The accelerometers are connected to Vishay strain gauge amplifiers (Type 2120) which
amplify the strain gauge bridge signal to a suitable level for input to the Gen-Rad 2515.

The Gen-Rad has 12 bit Analogue to Digital Converters (ADCs) on the inputs, which limit
the dynamic range of the equipment to 72 db. Resonances are captured well because the
auto-ranging facility enables the ADCs to be used to their full extent. However, the anti-
resonances, which are frequently 3 or 4 orders of magnitude (60 or 80 db) smaller than
the resonance peaks, are sometimes lost due to insufficient resolution in the ADCs.

A schematic diagram of the measuring equipment set-up is shown in Figure 6.3.
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Helicopter Structure.
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Schematic Diagram of the Measuring Equipment.
Figure 6.3

6.2.2 Calibration of Measurement Channels

Before any measurements were made on the helicopter, channels were calibrated using a
ratio calibration technique. All the accelerometers were fixed to a freely suspended mass
which was then excited by a shaker driving through a force gauge in just the same way as
measurements are performed on the helicopter itself. The strain gauge amplifier gains
were adjusted until the measured inertances all had values equal to (l/calibration mass)
across the whole frequency range. There are several advantages to this type of calibration
over alternative methods such as absolute calibration:-

. it is a relatively simple method,

. the complete measurement chain is checked out and calibrated; and

. the possibility of error is small.
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6.3 Measurement of Translational FRF Properties

A single-point random testing method was selected for these measurements to make the
best possible use of the response channels and to allow use of the ‘repeated random’
excitation signal available as part of the Gen-Rad RTA (Real Time Acquisition) data
acquisition program. For the modal analysis stage an SDRC program, MODAL PLUS,
was used.

The helicopter is situated in a fairly quiet environment and all the possible sources of
rattles inside the structure have been removed and, with the use of repeated random
excitation, good quality FRFs were achieved with only four averages. For most of the
measurements, the FRFs hardly changed at all throughout the averaging process. It must
be noted, however, that any transient behaviour associated with starting the excitation,
had had sufficient time to decay while the input levels were being adjusted (either
manually or by auto-ranging).

6.3.1 Preliminary Phase

(0 Excitation Source Level Effects

R e s p o n s e  66Y+/Force 66Y+
T i t l e :  D i f f e r e n t  F o r c e  L e v e l s . I

;
0 0

0

* O / P  slgnal l e v e l  0.1~
+0/P s l a n a l  l e v e l  0.2%.
+0/P s i g n a l  l e v e l  0.5.

7 ‘:
0 0

I I I , I I I I

6 . 0 1 0 . 0 6 4 . 0
Frequency (Hz) .

FRF Measurements for Different RMS Forcing Levels
Figure 6.4
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In the preliminary measurement phase, the effect of using different excitation levels was
investigated together with the repeatability of measurements. The purpose of this was to
try and discover whether there were any major non-linearities and whether the structure
was stable over time.

A baseband frequency range of 64 Hz was used for all these measurements which were
made exciting at point 66 in the Y-coordinate direction with a 100 mm long pushrod, for
excitation source levels of 0.25 v, 0.5 v, 0.1 v and then a repeat measurement at 0.25 v.
The point FRFs measured are superimposed in Figure 6.4. for comparison. With
reference to previous experimental work [84] and the F.E. analysis [83], the following
natural frequencies (Table 6.1) can be identified;

Natural
Mode Frequency Description

* VW

6.54
6.64

12.00
14.04
17.17
22.34
23.93
26.21

Fuselage 1st lateral bending.
Fuselage 1 St vertical bending.
Tailplane 1 St vertical bending.
Fuselage 2nd vertical bending.
Tailplane 1 St F/A bending.
Cruciform.
Torsion of tailcone assembly.
Fuselage 3rd vertical bending.

Table 6.1

Several observations can be made from the FRFs shown in Figure 6.4;

(a>

@>

6)

Cd>

the frequency resolution (0.125 Hz) is insufficient at low frequencies,
i.e. below 20 Hz;

there appears to be little difference between the FRFs measured at different
excitation levels; but

the minimum and maximum excitation level FRFs bound all the FRFs; and

there does not seem to be any shifting of the resonance frequencies with
differing excitation levels.

As observations (b) to (d) are concerned with the differences between FRFs, it is
instructive to calculate and plot the AFRFs. The FRF made at an excitation source level of
0.25 v is used as the reference FRF; Figure 6.5 shows the difference for 0.5 v excitation.
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It should be noted that the scales for the FRF and the difference function am the same on
the plot and that the difference is the magnitude of the vector difference between the
FRFs, calculated at each frequency point. From Figure 6.5 it can be seen that the average
difference across the whole frequency range is about 10% of the maximum inertance of
the FRF. However, in the regions close to the resonances at 11 and 17 Hz the difference
function shows sharp increases (rising to about 50% of the resonance peaks) which are
indicative of slight shifts in the resonance frequencies since the magnitudes of the FRFs in
the resonance regions appear to be unchanged

0
0

level 0.2%

5.0 10.0 32.0
F r e q u e n c y (Hz) .

AFRF Plot for Measurements at Different Forcing Levels
Figure 6.5

The broad peak in the AFRF at around 24 Hz indicates that the difference is not only
caused by a shift in resonance frequency, but that there are also differences in the
magnitudes of the FRFs in this region. This can be seen by careful inspection of the
original FRFs.
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-S- Difference.
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Repeatability Check with the AFRF
Figure 6.6

In Figure 6.6 the FRFs measured using nominally the same excitation source levels are
compared. As would be expected, the differences are smaller than those measured with
different excitation levels but there are still identifiable peaks in the difference function
corresponding with the resonances. Nothing has been changed on the structure between
the two measurements. The differences are caused by variation of the structure with time.
There is little that can be done to improve this aspect of testing.

(3 Reciprocity Checks

One of the reciprocity checks is shown in Figure 6.7, comparing FRFs R49Z+/F66Y-
and R66Y+/F49Z : measurements between different points and in different coordinate
directions. Once again, the measurements suffer from insufficient frequency resolution at
the the low frequency region and this could have some bearing on the poor results around
6.5 Hz. The reciprocity looks good for the mode at about 11 Hz, but there is obviously a
frequency shift of the 17 Hz mode which is clearly indicated by the difference function.
The FRFs themselves do not show that there is also a frequency shift for the 11 HZ
mode, but this is shown by the difference function.
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Title: Reciprocity Check.
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Reciprocity Check with the AFRF
Figure 6.7

It will be seen later that the poor reciprocity between coordinates 492 and 66Y in the
region of the 11 and 17 Hz modes is a result of shaker loading effects on the structure at
point 49. The inconsistent loading was brought about as a consequence of space
limitations which necessitated the use of a 20 mm pushrod for excitation in the Z-direction
at point 49, rather than the 100 mm pushrod  used elsewhere.

(iii) Definition of Frequency Range and Frequency Resolution

It has already been mentioned (in (i)) that the baseband measurements up to 64 Hz (using
512 lines; resolution 0.125 Hz) had insufficient frequency resolution for definition of the
low frequency modes. It was decided that doubling the resolution, to 0.0625 Hz (a
32 Hz baseband measurement), would be adequate to define all the FRF terms for
analysis of the high frequency modes and for the purposes of estimating high frequency
residual terms. Baseband measurements to 16 Hz and 8 Hz with frequency spacings of
0.03125 Hz and 0.015625 Hz respectively, will be used to define specific FRFs in
sufficient detail for modal analysis of the low frequency modes.

_.  ‘. _. __
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6.3.2 Full Measurement Survey for Translational Degrees-
of-Freedom

It was intended that the complete FRF matrix shown in Figure 6.8 should be measured in
the full survey, despite the fact that modal analysis only requires a minimum of one row
or column to identify fully the modes tested. However, it is usual to measure more FRFs
than the minimum set required to ensure that none of the modes has been missed by poor
choice of excitation location. Measurement of the complete matrix, or even just the upper
triangle, is excessive from the modal analysis point of view, but it is vital if a full set of
residual terms are to be calculated from comparison of synthesised and measured data.
Residual terms cannot be calculated for the whole matrix through knowledge of only one
row or column.

Excitation

FRF Matrix Representation for the Helicopter Case Study
Figure 6.8

At the start of the full survey, six accelerometers were bolted to triaxial mounting blocks
already attached to the structure and none of the accelerometers was moved throughout the
tests. A single force gauge was moved to each excitation coordinate in turn. For the
majority of measurements a pushrod 100 mm in length was used, except for excitation at
point 49 in the Z direction where, because of space limitations, it was necessary to use a
pushrod only 20 mm long.

Several difficulties with the excitation arrangements soon became apparent;

(i) point 66 is located on the side of the intermediate gearbox which is usually
concealed beneath fuselage fairings. This made excitation at point 66 in the
X-direction (66X) very awkward and, additionally, excitation in the Z-
direction could only be achieved by using a short extension tube added on to
the pushrod; and,
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(ii) point 49 is located on the leading edge of the tail-plane at mid-span.
Excitation in the Y direction (along the leading edge of the tailplane) was
only possible with the aid of a pushrod  extension of about 1 m length. There
was a resonance of this extended pushrod arrangement within the 32 Hz
measurement band and the resulting FRFs were all rather poor, with
generally low coherence levels.

As a result, measurements involving excitation at either 66X or 49Y were abandoned for
the initial phases of this study. As a consequence of this, it was not possible to obtain
measured FRFs for the 3 elements marked with an ‘X’ in the upper triangle of the matrix
shown in Figure 6.8 and, hence, residual terms for these elements of the matrix could not
be derived by comparison of measured and synthesised functions.

Excitation in the Y-direction at point 66 produced a set of FRFs in which all the modes
were reasonably well defined and hence 66Y was chosen as the reference degree-of-
freedom for the set of FPFs to be used in the modal analysis procedures. The shaker was
returned to coordinate 66Y, and measurements for all of the 6 response positions were
performed four times using baseband measurements to 8,16 ,32 and 64 Hz. Point FRFs
for coordinate 66Y, for all the four frequency ranges, can be seen in Figures 6.9 to 6.12.

i i
0 0

1 I I I

Frequency (Hz) .

Figure 6.9
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Figure 6.11
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32.0
Frequency (Hz) .
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Figure 6.12

6.3.3 Excitation at an Angle to the Coordinate Axes

Although the point FRFs for excitation at 49Y and 66X could not be measured easily by
direct means, it was thought that it might be possible to derive them from additional
measured data made with the excitation direction inclined to the coordinate axes. The
following simple example shows how this can be done; the full analysis to produce FRFs
in the coordinate axes from such measurements is given in Appendix C. Satisfactory
results proved to be difficult to obtain when experimentally measured input data were
used.

4
Y

Angled excitation direction (W)

Definition of Axes for Angled Excitation.
Figure 6.13
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For example, referring to Figure 6.13, assume that it is not possible to excite in the X-
direction and that normal FRFs have already been obtained for excitation in the Y-
direction. For angled excitation tests, the force is measured in the direction W and the
responses are measured in the X- and Y- coordinate directions. FRFs produced from
these measurements are Y/W and X/W. Now, combining these angled excitation FRFs
together with the normal X/Y FPF it is possible to derive Y/Y and X./X FRFs (Appendix
C). The Y/Y FRF, which, it is assumed, has already been measured in the normal way is
available for comparison with the derived Y/Y FRF.

(i) Excitation at Point 66

Shaker.

ziibJy~~32”

Fuselage.

X

Schematic View of Angled Excitation at Point 66.
Figure 6.14

The shaker was set up as shown in Figure 6.14, with the forcing direction at an angle of
32’ to the X-axis. Even with the shaker in this position, it was necessary to use a 200 mm
pushrod extension tube with a 20 mm pushrod to gain access and to avoid resonances of
the pushrod arrangement in the measurement frequency band. The excitation force was
measured in the direction of the excitation (W) and the responses were measured in the X,
Y and Z coordinate directions, as before.

Movement of the shaker during these tests was found to be more of a problem than it had
been before. The reason for this was that since the shaker had been rotated in its gimbals,
the centre of gravity of the shaker and reaction mass arrangement was now no longer in
line with the excitation axis. This resulted in quite severe rocking of the shaker on its
suspension, particularly at low frequencies.
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Results for Point 66

Point FRF results for coordinate 662 are presented in Figure 6.15. There are 3 functions
superimposed on this plot; the point FRF measured directly, the point FRF derived from
angled forcing and the vector difference between these two FRFs. Over the range 3.2 to
11 Hz, the derived FRF compares favourably with the FRF measured directly, although
there are differences in the location of the first anti-resonance. Above 11 Hz, the derived
result is not particularly good compared with the FRF measured directly; the difference
function often being of the same magnitude as the FRF itself. Assuming this poor
correlation also extends to the derived point FRF for 66X (Figure 6.16),  for which there
is no measured FRF for direct comparison, the derived FRF will be of little use in any
modal analysis procedure.

‘:0
3.0 10.0 32.0

Frequency (Hz) .

Angled Excitation Result for Coordinate 662
Figure 6.15
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Angled Excitation Result for Coordinate 66X
Figure 6.16

(ii) Excitation at Point 49

Shaker.

Pt. 49.
c 1
Tailplane.

2
(Looking Aft)

Y

Tail
1 Fin.

Schematic View of Angled Excitation at Point 49.
Figure 6.17

Similar measurements were made at point 49, except that here the excitation angle was 45’
(Figure 6.17) and it was only necessary to use a pushrod extension tube of 90 mm on the
20 mm pushrod to gain access.

c /
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Results for Point 49

(a) 492

The results for coordinate 492 are presented in Figure 6.18 in the same format as used
previously for 662. This time, however, the level of agreement between the measured and
derived FRFs is generally much better, exhibiting a similar level of agreement to that
found for the reciprocity. In comparing the measured and derived FRFs, the positioning
of the anti-resonances between modes 2 and 3 is the most obvious discrepancy.
Furthermore, the difference function shows that there are large discrepancies at the
resonance frequencies. It would not seem unreasonable to expect the derived point FRF
for 49Y (Figure 6.19) to be equally as good as that for coordinate 492, in which case it
could be used quite successfully in a modal analysis procedure.

The peaks in the difference function at the resonances are, once again, indicative of
resonance frequency shifts caused by the shaker system loading the structure differently
for each of the measurements involved. It has already been noted that point 49 is
particularly sensitive to shaker loading in the X and Z directions.

*Angled Forcing Result.
_ -Measured FRF.
+ Difference.

-4 L

Title: Angled Excltatlon Result for 492.
7 7
0, - 0

3.0 10.0 32.0
Frequency (Hz) .

Figure 6.18
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Figure 6.19

(b) 49Y

The derived point FRF for 49Y has been plotted, Figure 6.19, together with the original
point FRF for 49Y measured using a 1 m pushrod  extension tube. Here, the quality of the
measured FRF is inferior to that of the derived FRF. The resonance at about 11 Hz is not
shown on the measured FRF, whereas it can be seen clearly on the derived FRF. The use
of the derived FRF could prove to be beneficial in this case.

6.3.4 Comments on the Use of the Angled Excitation
Technique

These examples of the angled excitation technique show considerable variability in the
results. The probable cause of the poor quality results for point 66 is that the FRF for
response in the X-direction (along the fore-aft axis of the helicopter) due to excitation in
the Z-direction (vertical axis) is used in the calculation. The responses measured along the
fore-aft axis of the helicopter at point 66 have all been very small and difficult to measure
accurately. This is probably due to the fact that the X-direction axis passes through both
the helicopter centre of gravity and point 66 and that the axial stiffness of the fuselage is
significantly larger than its flexural or torsional stiffness.
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The angled excitation results for point 49 are very much better than those for point 66.
Point 49 is located on a more mobile part of the helicopter and the measured FRFs used in
the angled excitation calculations am of a higher quality than those for point 66.

In general, by use of the angled excitation technique it is possible to derive FRFs which
cannot be measured directly due to difficulties of access for excitation. The technique
appears to work best for points on a mobile part of the structure where the FRF has
pronounced modal characteristics. The FRFs are derived using raw measured data which
include all the effects of out-of-range modes. Therefore, in theory, the derived FRFs
should also contain all the relevant information about out-of-range modes and this is the
primary reason for using this form of the data since comparison of a synthesised FRF
with its derived counterpart enables calculation of residual correction factors for the
synthesised FRF. This is of particular importance for point FRFs because these FRFs
usually require the largest residual corrections (see chapter 5).

6.4 Measurement of Rotational Degrees-of-
Freedom

The need for measurement of rotational degree-of-freedom FRF properties has been
discussed in chapter 5, where the possible consequences of their omission from a
coupling analysis are illustrated. One objective of this case study is a demonstration of the
ability to predict accurately the effects of a modification. Therefore, to have the best
possible chance of success in the prediction, it is necessary to measure the rotational
degree-of-freedom FRF properties. Once they have been measured in a preliminary
survey, the sensitivity analysis study will reveal whether or not they are of particular
importance and warrant more extensive investigation in the full measurement survey.

Attempts have been made to measure these rotational degree-of-freedom FRF properties
using the T-block method described in chapter 5 and in references [9] and [81]. The
dimensions of the T-block and its mass properties are given in Appendix D. Initially, the
measurements were made to enable calculation of Bx and 82 at point 66 but,
subsequently, the procedure was repeated for CIy at point 49 also.

6.4.1 Measurements at Point 66

The results for 8x and 82 at point 66 are very similar and, therefore, only those for 8x
will be described in detail in this section.

11,,  .._.....,....  _._. .-
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The translational FRF data measured on the T-block were assessed for quality in the same
way as the standard translational FRF data have been; by repeatability and reciprocity
checks. A typical repeatability check is shown in Figure 6.20. The two FRF
measurements were made on different days and the T-block was removed and the
transducers stripped off between measurements. The AFRF has been calculated and is
plotted together with the FRF curves. On the whole, the repeatability is good with an
average difference of about 10% across the complete frequency range. Once again there
are slight frequency shifts of the 11 and 17 Hz modes which give rise to the sharp peaks
in the difference function at these frequencies.

A typical reciprocity check for the translational FRF measurements on the T-block is
shown in Figure 6.21. The reciprocity is very good: there are the sharp peaks in the
difference function at the resonance frequencies, but elsewhere the differences are
approaching the noise floor for the measurements.

0
0

10.0 32.0
Frequency (Hz) .

Repeatability Measurements on the T-Block
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Reciprocity Measurements on the T-Block
Figure 6.21

Results for Point 66

Transformation of the measured T-block translational FRF data set, as described in
chapter 5 (section 5.2-l), produces the following rotational FRF data set for the point of
attachment of the T-block to the structure:-

(i) Translation./Translation FRF Results

The translation/translation FRF from the transformation can be seen in Figure 6.22, along
with the same FRF that was measured directly. There is good agreement between the two
FRFs, especially considering that they were measured on different days and by different
methods. However, the transformation to obtain this FRF is essentially an averaging of
the FRFs measured on the T-block,

1 RI R2 RI R2
a  F+F+E+E( 1

Any slight discrepancies, such as those found in the reciprocity and repeatability checks,
are averaged out.
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Translation/I’ranslation  Results for Coordinate 66Y
Figure 6.22

Translation/Rotation and (iii) Rotation/lhnslation FRF Results
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Reciprocity of Translation:Rotation FRFs
Figure 6.23
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These two, supposedly, reciprocal translation:rotation FRFs are shown in Figure 6.23.
The difference function is also plotted, but it is difficult to distinguish. The results are
very poor; they are so noisy that the resonance peaks are almost lost; there are no clear
anti-resonance features. Overall, the reciprocity is very bad - the magnitude of the
difference is almost the same as the magnitudes of the FRFs themselves throughout the
whole frequency range.

For these FRFs, the calculation formula is:-

where, S = separation of points on the block.

% andR2
F2

~1 are reciprocal terms whose reciprocity has been checked (Figure 6.21). The

difference function in Figure 6.21 plot essentially gives the value of ($2).

!&d$
Fl are the point FRFs on the T-block and they are shown with their difference in

Figure 6.24 below.

T i t l e : Translat ional  Point  FRFs tleasirred on T-Block.
0 0
0 08 1 I I I’, 1

i
0-4

+G Point FRF for 661Y.
+Polnt FRF for 6631.
+ Difference. i -

”

0

0

0

‘:0 0

3 . 0 10.0 32 .0
Frequency (Hz) .

Translational Point FRFs Measured on T-Block
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It will be noted that the difference functions of Figures 6.21 and 6.24 are largely noise,
each with a similar mean value. The translatiotiotation FRF of Figure 6.23 is given by a
scaled average of these two difference functions (Figures 6.21 and 6.24), and it is now
not too difficult to see why the translation/rotation FRF is so poor. The primary cause is
calculation of the small difference between two large numbers which have come directly
from measurements. The calculation is essentially the average of two differences.

(iv) Rotation/Rotation FRF Results

The formula for calculation of the rotation/rotation FRF can be expressed simply as:-

1 Rl R2
> (

Rl R2
3 F+ F2 - E+ F

In this formula the inner terms are the sum of the point FRFs and the sum of the reciprocal
FRFs respectively; shown in Figure 6.25. Each of these terms is smoother than its
constituent parts. The rotation/rotation FRF is essentially the scaled difference of these
two sums.

i-10

I I+ Sum of Point FRFs.
+Sum of Reciprocal FRFs.-
+ Difference. ‘:

-0

10.0 32 .0
Frequency (Hz) .

Sums of Point & Reciprocal FRFs Measured on the T-Block
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- RotatlonIRotatlon Result.
- A  S t i f f n e s s  C h a r a c t e r i s t i c .
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Rotation/Rotation FRF Derived from T-Block Measurements
Figure 6.26

The 0x rotation/rotation FRF shown in Figure 6.26 has a surprising characteristic - that
of a straight line. There is very little ‘noise’ and there are no resonance or anti-resonance
features. The line has a slope of +2 on a log-log plot of inertance, which means that it is a
stiffness line - indicating a pure torsion spring. There is no detectable modal behaviour.
By using the information from a point on this line, the torsional stiffness represented by
this FRF was calculated as 6.18E3  Nm/rad.

When the translational FRF measurements for 82 were transformed to the rotational set,
the results were found to be similar to those for 6~ above but, the rotation/rotation results
were identical to those for 0x, another perfect straight line of slope +2; a torsional
stiffness of 6.18E3 Nm/rad, again.

These results indicated that the rotation/rotation properties derived using the T-block at
point 66 on the helicopter had no modal characteristics and were independent of the
orientation of the T-block (0~ or 6z). Because such characteristics are highly unlikely for
the helicopter, it was strongly suspected that what had been measured was the attachment
stiffness of the T-block to the helicopter. In comparison with the local stiffness of the
helicopter, the attachment stiffness was small and would have to have been increased very
substantially before the true rotational behaviour could be measured accurately. Similar
measurements were made at point 49, for the ey rotational properties, in the hope that the
local stiffness at this point would be low enough for the T-block attachment stiffness to be

c I
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adequate for transmission of the structural motion. Unfortunately the T-block attachment
stiffness was again insufficient and poor results were obtained.

At this stage it was decided that, to avoid the need for rotational FRF data and to save a
considerable amount of time and effort, any subsequent modifications to be made to the
helicopter would have to be pin-jointed. This simplification is often made implicitly when
measurement of the rotational FRF properties is not even considered, or just overlooked.
Furthermore, the discussion presented in section 5.2.1 has exposed some fundamental
discrepancies between the assumptions made in the theory and in the practice of coupling
rotational degrees-of-freedom.

6.4.2 Bedplate  Measurement

To confirm the suspicion that the T-block attachment stiffness had been measured, the T-
block was moved to a large bed-plate and bolted down in a similar way to that used to fix
it to the helicopter. Translational measurements were made on the T-block and then
transformed to form the rotational set. The rotation/rotation FRF again had a perfect
stiffness line characteristic, but this time it had a value of 7.18E3 Nm/rad, slightly higher
than that measured on the helicopter. A smaller attachment stiffness on the helicopter can
be explained by the fact that the T-block is bolted to an excitation block which is stuck to
the helicopter with ‘Plastic Padding’ whereas the T-block is bolted to the bedplate directly.
The Plastic Padding interface is the source of the extra flexibility measured.

Further confutation  that the rotational stiffness measured was, in fact, the attachment
stiffness of the T-block was provided by some theoretical calculations of this stiffness;
Appendix E. Although the theoretical rotational stiffness does not agree exactly with that
measured, it is of the right order and the discrepancies can be accounted for by some of
the assumptions made regarding key dimensions and material properties used in the
analysis.

6.4.3 Discussion of the Measurement of Rotational Degrees-
of-Freedom

(i) T-Block Transducer

The results obtained here demonstrate clearly the difficulties associated with measurement
of rotational degree-of-freedom FRFs using the T-block transducer method. The main
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problem was attaching the transducer to the structure with sufficient rigidity that the
behaviour of the structure could be correctly detected by the transducer.

Cross-Axis Sensitivity of Transducers

The influence of accelerometer cross-axis sensitivities on the rotational FRF results
derived from T-block measurements has already been discussed in chapter 5. It was
suggested that the cross-axis effects could be minim&d by careful angular orientation of
the accelerometers, but this is not always possible. In this instance, the triaxial
accelerometer blocks and the T-block were all pre-drilled to accept the accelerometers
aligned with the coordinate directions. With accelerometers having a threaded base and
attached to the structure with a stud, specific angular orientation can only be obtained by
insertion of spacing shims of the correct thickness underneath the bases of the
accelerometers: precise angular alignment is difficult to achieve.

(iii) Use of Synthesised FRFs

All the calculations made here to determine the rotational degree-of-freedom FRFs have
used the raw measured translational FRFs. It has been suggested [25] that ‘smoothed
FRFs’ or FRFs synthesised from a modal database would be better. This would
necessitate a modal analysis of the measured data first and, although the synthesised FRFs
are noise-free, they may not contain all the important information inherent in the measured
FRFs, e.g. exact residual information. It is important to remember that the synthesised
FRFs can only represent, at best, what has been measured by the transducers; any
attachment flexibility effects will be included in the synthesised FRFs, just as they are
included in the measured FRFs. There is no way of differentiating between the component
of the response caused by the base structure and that caused by the attachment flexibility.
Therefore, the use of synthesised FRFs in these calculations may have resulted in smooth
well-defined rotational degree-of-freedom FRFs, but it is doubtful whether the underlying
characteristics would have changed significantly.

6.5 Modal Analysis of the Translational FRF Data
Set

A SDRC program - Modal Plus, implemented on the Gen-Rad 2515 - was used for
Modal Analysis of the measured translational FRF data set.
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6.5.1 Polyreference Analysis

Four different force input locations have been used, one at a time, for the 32 Hz and
64 Hz baseband measurements; i.e. a series of single-point tests have been performed
rather than one multi-point test. The use of multiple single point tests has led to some
inconsistencies in the measured data due to different loading effects of the excitation
system on the helicopter at each of the forcing locations. For 8 I-Iz and 16 Hz baseband
measurements, F’RF data are available for only one forcing location, 66Y.

The Polyreference analysis method has been used over the 8 and 16 Hz baseband
frequency ranges with a single reference location - equivalent to a Complex Exponential
analysis. For the 32 and 64 Hz baseband data, two out of the four reference locations
have been chosen for the analysis; 66Y and 492. The reference locations are at different
points on the helicopter and in different coordinate directions.

In this analysis a total of 11 modes were extracted from the 64 Hz baseband frequency
measurements. There are two close modes at around 6.5 Hz which proved to be quite
difficult to separate, requiring the highest frequency resolution data to achieve reasonable
results. Another problem which compounds the situation is that the second of the two
close modes has a damping value of about 0.3%, less than half that of the first mode
(-0.7%). Above 32 Hz the modes are generally more highly damped, less well defined
and consequently more troublesome to analyse than those in the frequency range of
interest (3.2 to 32 Hz). Since the modes above 32 Hz are only used to account for high
frequency residual terms in the frequency range of interest, the exact values of the
parameters are not of prime importance as long as the overall residual effects are correct.
The parameter and mode shape data are presented in Tables 6.2 and 6.3.

Throughout the modal analysis process, analytical FRFs were generated and compared
with measured FRFs in the resonance regions. The quality of the analysis was assessed
by the level of agreement between the analytical and the measured FRFs. This was judged
by eye. In the off-resonance regions, there can be large discrepancies because, at this
stage, no account has been made for the effects of out-of-range modes. The reliability of
the results was checked by performing the complex exponential analysis for several
slightly different narrow frequency bands around each of the resonance peaks, with
different numbers of roots in each of the analyses. If the answers for the non-
computational roots (frequencies) were within 1 or 2% for each analysis and the damping,
mode coefficient [78] and phase compared favourably, then the results were taken as
acceptable estimates.
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J Label 1 Frequency 1 Damping 1 Amplitude 1 Phase 1 Ref. I Res. [

1 6.57 .009 3.12E-3 1.571 66Y- 66Z+
2 6.74 .003 2.58E-3 -1.571 66Y- 66Z+
3 11.92 .006 9.06E-3 1.571 66Y- 66Z+
4 17.06 .006 l.l6E-2 1.571 66Y- 66Z+
5 22.17 .017 1.49E-2 -1.571 66Y- 66Z+
6 24.08 .021 1 .Ol E-2 1.571 66Y- 66Z+
7 26.24 .015 9.70E-2 -1.571 66Y- 66Z+
8 42.47 .025 1.62E-2 -1.571 66Y- 66X+
9 51.14 .045 2.19E-2 -1.571 66Y- 66X+

10 52.26 .018 4.72E-2 1.571 66Y- 66X+
11 53.58 .035 0.11 -1.571 66Y- 66X+

Mode Parameter Table. Table 6.2

J Mode I Location I X Coeff. I Y Coeff. I ZCoeff. 1

1

2

3

4

5

6

7

8

9

10

11

49
66

49
66

49
66

49
66

49
66

49
66

49
66

49
66

49
66

49
66

49
66

2.214E-2 -5.431 E-2 5.308E-2
7.557E-4 -l.O55E-2 8.355E-3

1.690E-2 -7.201 E-3 -3.495E-2
2.783E-3 -1.453E-3 -1.834E-2

1.440E-1 -1.200E-2 -3.752E-1
3.492E-3 -3.706E-2 2.101E-2

-6.714E-1 -8.483E-2 -9.969E-2
9.016E-4 -8.416E-2 1.908E-2

3.862E-2 2.264E-2 5.890E-3
3.043E-3 -4.862E-2 -6.448E-3

7.172E-2 5.139E-2 1.353E-2
1.568E-2 -1.468E-1 3.199E-3

-2.657E-2 -2.649E-3 1.212E-2
-3.042E-3 -1.412E-2 -3.766E-2

2.435E-2 3.660E-2 -4.833E-2
-2.417E-3 -1.838E-2 -8.348E-4

2.260E-3 2.029E-3 2.385E-2
-1.526E-3 -2.738E-3 -1 .164E-3

-5.023E-3 -1.281 E-2 -4.158E-2
8.094E-3 4.200E-3 -2.601 E-3

4.066E-3 1.263E-2 4.541 E-2
-9.594E-3 6.541 E-4 4.148E-3

Mode Shape Table. Table 6.3
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6.5.2 Synthesis of FRFs  from the Modal Database

The modal database generated by the method described above was used to synthesise all
the FRFs in the upper triangle of the FRF matrix (Figure 6.8),  over the 32 Hz baseband
frequency range. The primary purpose of this was validation of the modal database by
comparison of synthesised and measured FRFs for excitation locations other than 66Y.
When this was done two trends immediately became apparent;

(i) the off-resonant characteristics of the measured and synthesised FRFs were
often significantly different; and,

(ii) for several sets of response and excitation coordinates there were differences
between measured and synthesised FRF resonance frequencies for modes 3
and 4.

Differences between measured and synthesised FRFs in the off-resonant regions are
almost certainly due to the effects of out-of-range modes which have not yet been
incorporated in the synthesised FRFs.

Errors in the 3rd and 4th mode resonance frequencies between the measured and
synthesised FRFs are a confutation of the behaviour noted earlier: that, with excitation at
point 49, the transverse loading effect of the shaker system on the helicopter causes shifts
in some of the resonance frequencies. By definition, all the synthesised FRFs have the
same resonance frequencies - those contained in the parameter table (Table 6.2) - and it is
the measured resonances which contain the changes.

Calculation of Residuals by Comparison of Measured and Synthesised FRFs

Within Modal Plus there is a facility for calculating residual terms for a synthesised FRF if
the measured counterpart is available for comparison. Here, calculation of low-frequency
residual inertance terms was required to account for the rigid body modes of the
helicopter. Rigid body inertances are all real - ( l/mass ) - but the program produces
complex residual terms by default. There was no direct way of calculating real-valued
residual terms and so it was necessary to calculate the complex residual inertances and
then truncate to the real part only (N.B. For all of the residuals calculated, the imaginary
parts were at least an order of magnitude smaller than the real parts). There were only 4
elements in the full 6x6 FRF matrix for which residual terms could not be calculated
because of unavailability of certain measured FRFs - 66X/66X; 49Y/66X; 66X/49Y and
49Y/49Y, see Figure 6.8.



The low frequency residual inertances can be seen in Table 6.4, where they are shown in
the matrix grid pattern.

Excitation.

Resp.I= 66X+ 1 66Y+ 1 66Z+ 1 49x- 1 49Y+ I 49z+

66X-
66Y-
66Z-
49x+
49Y-
49z-

N/A -. 1 OE-3
.34E-2

.59E-4
-. 17E-3
.18E-2

.45E-4
-.47E-3
.oo
-00

N/A
.31 E-2

-.31 E-4
.13E-5

N/A

-.64E-3
.66E-3
.43E-2
.oo
.oo
.oo

N/A = Not Available

Low Frequency Residual Terms from Comparison of Measured and Synthesised FRFs.

Table 6.4

It must be noted that the analyses to determine these low-frequency residual terms were
not very satisfactory. In many cases, significantly different results were obtained when
the measured and synthesised FRFs were compared over different frequency ranges. The
low-frequency residual results presented in Table 6.4 are those that gave the closest
agreement between the measured and synthesised FRFs. The positioning of the anti-
resonances in the synthesised FRFs was particularly useful in this assessment.

Theoretical Calculation of Residual Terms

In the above section the low-frequency residual terms have been found by comparing the
synthesised FRFs with their measured counterparts. There were 3 functions in the upper
triangle of the FRF matrix for which the measured FRFs were not available, hence low-
frequency residuals could not be calculated for these functions. It was felt that an
incomplete database of residual terms of questionable accuracy was not a good starting
point for predictions of the effects of modifications; recall the discussions in chapter 5 on
the effects of using incomplete and inaccurate models in modification predictions.
Fortunately in this case, the low frequency residual terms only represent the rigid body
modes of the helicopter - the lowest frequency flexural modes have been measured - and
it is possible to derive the low frequency residual terms from the rigid body properties of
the structure. In this case, the mass and inertia properties of the helicopter were obtained
from a F.E. model of the helicopter at the R.A.E. Famborough, and basic rigid body
mechanics was then employed to derive expressions for all the low-frequency residual
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terms in the FRF matrix, i.e. for all the response and reference locations. They are

all purely real valued and are shown in Table 6.5.

I Excitation.
Reso. 66X+ I 66Y+ I 66Z+ I 49x+ I 49Y+ I 497+ I

66X+
66Y+
66Z+
49x+
49Y+
49z+

.36E-3 .22E-5
.31 E-2

-.26E-4
-.13E-6
.28E-2

.36E-3
-.41 E-3
-.31 E-3
.46E-3

.27E-5

.37E-2

.16E-5
-.49E-3
.47E-2

-.31 E-4
-.24E-4
.34E-2

-.38E-3
.29E-3
.43E-2

Theoretical Low Frequency Residual Terms.
Table 6.5

For 66X/66X the residual term is very close to (l/total mass of test structure). This is
because coordinate 66X passes through the centre of gravity of the helicopter.

An initial comparison of the low-frequency residual results presented in Tables 6.4 and
6.5 reveals large discrepancies:-

(i) the signs of a number of the residual terms are different; and,

(ii) the residual values are frequently very different.

In mitigation though, the residual terms for each FRF from the two estimation methods
should be compared together with a measure of the overall inertance level for the FRF
term under consideration. For example, consider an FRF with a high overall inertance
which requires a comparatively small residual correction of, say, 0.1~10-~ Kg-l. Now,
assume that another residual estimation indicates a residual correction of 0.1~10-~  Kg-r.
On initial comparison of these residual terms in isolation, the difference between 0.1~10-~
Kg-l and 0.1~10-~ Kg-l looks to be very significant but, in fact, compared with the size
of the FRF itself, both estimates of the residual are negligible.

6.5.3 Comparison of Measured and Synthesised FRFs

In Figures 6.27 and 6.28, a selection of measured FRFs are plotted alongside the
synthesised versions, with and without low frequency residual terms added. As a general
rule, correlation of measured and synthesised FRFs in anti-resonance regions provides a
much better check on the whole analysis than correlation in the resonance regions where

L.
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the response is dominated by a single mode and good results may be achieved by using a
single degree-of-freedom approximation (this is the basis of SDoF modal analysis
methods). In anti-resonance regions, the contributions from all the modes combine and
cancel out. Even if only one of the modal contributions is estimated incorrectly, the
position of the anti-resonance will be altered.

(i) Response 66Y+/Force 66Y-, (Figure 6.27)

i
0

T
0

3.0 10.0 32.0
Frequency (Hz).

Comparison of FRFs With & Without Residuals (66Y+/66Y-)

Title: Coaparlson of Data With and Wlthout Reslduals
Response 66Y+/Force  66Y-

0
0 0

Figure 6.27

The low-frequency residual correction term is most important for this FRF, as shown by
the marked effect it has on the FRF characteristics in the low-frequency part of the range.
The most obvious effects of the residual addition are the appearance of an anti-resonance
at a frequency just below the fust resonance and the shift of the anti-resonance between
modes 3 and 4 from about 7 Hz to about 10 Hz. The residual correction has virtually no
effect in resonance regions. With the residual correction applied, all the synthesised anti-
resonance features are positioned correctly and the synthesised FRF agrees very well with
the measured FRF right across the frequency range.
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00 Response 66Y+/Force 49X+, (Figure 6.28)

Title: Corparlson of  Data Wl;h and Ulthout Residuals.
Response 66Y+/Force 49x+

i
0

70

‘:
0

* Heasured.
-I- Svntheslzed Wlthout Resldual.

Figure 6.28

1 + Sintheslzed With Residual. ‘:
0

I I I1 I’, I

3 . 0 10.0
Frequency (Hz) .

32.0

Comparison of FRFs With & Without Residuals (66Y+/49X+)

For these FRFs the agreement between the measured and the synthesised FRF with the
low frequency residual term is seen to be generally good. The level of agreement tends to
become better with increasing frequency. The amplitude estimates for modes 1 and 2 are
slightly incorrect and this is probably the cause of the poor correlation of the measured
and synthesised anti-resonance between modes 2 and 3. At the low frequency end of the
range, the residual has a large effect on the synthesised FRF, but as the frequency
increases, the magnitude of the FRF increases generally and the residual has
proportionally less effect.

There is a small difference between the resonance frequencies for mode number 3 of the
measured and synthesised FRFs. This is a problem with the measured FRF, not the
analysis or synthesis; there was some loading of the helicopter by the excitation system at
point 49 which has cause the small increase in the frequency for mode number 3 in the
measured FRF.

_J.
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6.6 Sensitivity Analysis

The sensitivity analysis procedure developed in chapter 3 has been applied to data
collected from the modal survey of the helicopter. Where synthesised data are required,
those derived from polyreference analysis together with theoretical residual terms have
been used.

6.6.1 Extraction of Input Data for Sensitivity Analysis

All the necessary information can be extracted from the point FRFs; the resonance
frequencies, the anti-resonance frequencies and a data point on each of the FRFs to fix the
curves in the Y-axis. The resonances are obvious features which are not too difficult to
determine reasonably accurately, even by simple cursoring. The anti-resonances can be
troublesome to locate however, if raw FRF data are used. The first anti-resonance for
many of the FRFs would have been particularly difficult, or impossible, to locate using
raw data for the helicopter. There are no reliable data available for frequencies less than
about 3 Hz since frequencies below this were filtered out from the excitation signal.
Additionally, the piezoelectric force gauge was at the limit of its operating range at 3 Hz.
The poor quality of the FRF data in the anti-resonance regions is closely linked with the
input magnitude resolution of the measuring instruments used, see chapter 5.

In this analysis the problem was overcome by the use of FRFs synthesised from the
modal database where the anti-resonances are defined just as clearly as the resonances.
Nevertheless, great care had to be taken to ensure that the synthesised anti-resonance
frequencies matched those measured. The anti-resonance frequencies were found from
these synthesised FRF curves using a ‘valley picking’ routine available within Modal Plus
and the resonance frequencies were taken from the modal analysis parameter table,
although use of data obtained with a ‘peak picking’ routine would have been equally
valid. The resonance and anti-resonance frequencies for all the point FRFs are listed in
Table 6.6, together with several coordinates on each of the curves, to be used as reference
points. The information was then entered into the sensitivity analysis program to produce
all the mode sensitivities for each of the location points and directions.
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Anti-resonance

I

Resonance
Frequency (Hz) Frequency (Hz) Reference Points

Location 66X

6.50 6.74
11.81 11.92 1)0.235 l lO-3 Kg-' @ 6.31 Hz
23.38 24.08 2) 0.212 l lO-2 Kg-' @ 6.81 Hz
25.75 26.24 3) 0.707. lO-3 Kg-' @ 8.31 Hz

Location 66Y

6.25 6.57
10.13 11.92
13.38 17.08
18.19 22.17
22.69 24.08
26.00 26.24

1)0.195*  lO-2 Kg-' @ 8.13 Hz

2)0.567  l lO-2 Kg-' @ 11.50 Hz

3)0.551 l lO-2 Kg-' @ 15.31 Hz

5.31 6.74
11.69 11.92
16.88 17.06
20.69 26.24

Location 4

1.50 6.57
6.63 6.74
7.19 11.92

12.50 17.06
21.88 22.17
23.69 24.08
25.81 26.24

1)0.545*  lO-2 Kg-' @ 6.13 Hz
2)0.719  l lo-2Kg-'  @ 8.31 Hz
3)0.618*10-2  Kg-' @ 12.38 Hz

1)0.298  l 10-l Kg-' @ 9.19 Hz

2)0.892  l 10-l Kg-' @ 13.81 Hz

3)0.855  l 10-l Kg-' @ 16.50 Hz

4.50 6.57
11.81 11.92
16.38 17.06
21.27 22.17
23.38 24.08

1)0.531*  W2 Kg-' @ 5.31 Hz
2) 0.755 l 10-l Kg-' @ 6.38 Hz
3)0.139' 10-l Kg-' @ 9.81 Hz

2.81 6.57
6.63 6.74
8.19 11.92

16.94 17.06

1)0.148 l 10-l Kg-' @ 4.88 Hz
2)0.292'  10-l Kg-' @ 7.50 Hz
3)0.368  l 10-l Kg-' @ 11.30 Hz

Input Data for Sensitivity Analysis Table 6.6
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6.6.2 Sensitivity Analysis Results

(i) Low Frequency Asymptotes

In addition to the mode sensitivities for each point, the analysis produces a theoretical
value of the low frequency asymptote for the FRF curve - either mass or stiffness,
depending upon whether the structure is free or grounded. The value of this asymptote is
calculated from the same input data as are used in the calculation of the sensitivities;
resonance and anti-resonance frequencies and a reference point. The theoretical asymptotic
value can then be used as a check on how well the assumed model approximates the actual
data. If the theoretical and measured values have a close correlation then the assumed
model is reasonable and the sensitivities produced can be expected to be reliable. If they
do not agree, then some explanation must be sought. The low frequency asymptotic
values for different reference points were calculated and compared with each other and
with the values derived from the measured FRF curves.

Sensitivity Analysis Results.
Theoretical

Point Value 1 2 3

66X
66Y

66Z
49x
49Y
492

.36E-3

.31 E-2

.28E-2

.46E-3

.47E-2

.43E-2

Theoretical values for the low frequency residual properties of the helicopter were
calculated as part of the modal analysis. These residuals are the low frequency asymptotes

.51 E-3 .47E-3 .60E-3

.30E-2 .31 E-2 .31 E-2

.30E-2 .29E-2 .27E-2

.73E-3 .73E-3 .74E-3

.48E-2 .45E-2 .51 E-2

.44E-2 .46E-2 .49E-2

Static Accelerance Results (Units: Kg-l)
Table 6.7

of the FRFs - the Static Accelerances and they have been used for comparison with the
static accelerance results from the sensitivity analysis. The calculations have been repeated
three times, with different reference points, for all the point FRFs. The results can be seen
in Table 6.7. There is generally close agreement of the sensitivity analysis estimates of the
static accelerances for each of the point FRFs. The largest variation is for the 66X degree-
of-freedom and this is a reflection of the difficulties with measurement and analysis of the
data from this coordinate, which is comparatively immobile. On the whole, the sensitivity
analysis static accelerances agree quite closely with the theoretical residual values. There
are two exceptions; coordinate 66X and coordinate 49X. In both these instances the
theoretical residual value is lower than that calculated in the sensitivity analysis. It will be

h ,
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noticed from the listings of Table 6.6 for the anti-resonance frequencies that the fmt anti-
resonance in the point FRF for degree-of-freedom 49X is at 1.5 Hz - very much lower
than the first anti-resonance frequency in any of the other point FRFs. The calculations are
sensitive to the positioning of this first anti-resonance and this affects the results
calculated.

It has also been found that the choice of reference point (which is used in the calculation
of the static accelerance) can influence the results from the sensitivity analysis. It is
believed to be better to choose reference points where the measured and synthesised FRFs
have close agreement; i.e. close to, but not at, resonance frequencies and away from anti-
resonance regions of the FRF curve.

(ii) Resonance Frequency Sensitivities

The resonance frequency sensitivities for each coordinate are shown in Table 6.8. Only
the mass sensitivities are given. The stiffness sensitivities follow directly from these mass
sensitivities (see chapter 3) and the ranking of coordinates for single degree-of-freedom
mass or stiffness modifications is identical. The different reference points (Table 6.6)
gave rise to small variations in the sensitivity values, but this was not considered to be too
important since the sensitivity analysis is only intended for use as a means of ranking the
degrees-of-freedom in their order of importance for modification. Provided that variations
in the sensitivities are not sufficient to alter the ranking order, the analysis is satisfactory.
Prediction of the effect of a mass or stiffness modification with the sensitivity analysis
data is considered to be of secondary importance and always liable to some degree of error
because of the definition of sensitivity as the initial rate of change of the resonance
frequency with point single degree-of-freedom mass or stiffness alterations.

SDoF Mass Sensitivity (%/Kg)

Natural
Mode Frequency 66X 66Y 66Z 49x 49Y

7
492 4

6.57
6.74

11.92
17.06
22.17
24.08
26.04

-.002
-.oooi

-.OOl
-.002

-.Oll

-.021
-.047
-.091
-.247
-.046

-.087
-.009
-.003

-.167

-.044
-.069
-.313

-2.92
-.172
-.227
-.269

-.260

-.009
-.040
-.038
-.061

Resonance Frequency Sensitivities for the Helicopter.

-.168
-.333

-1.91
-.067

Table 6.8
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The extent of variation found in the sensitivity values tended to increase with increasing
frequency. This is to be expected because the theory presented in chapter 3 is based on
the use of an expression involving the product of terms for all modes which is truncated
to include only the measured modes. The effects of the high frequency modes, which
have been excluded, are felt most strongly by those modes at the upper end of the
frequency range of interest and, therefore, it is these mode sensitivities that are determined
least accurately.

From the sensitivity results, Table 6.8, it is immediately obvious that point 66 is
insensitive to any form of single degree-of-freedom modification, whereas modification at
point 49, in the X and 2 directions, will produce comparatively large shifts in the
resonance frequencies for modes 4 and 3 respectively. Modification at point 49 in the Y
direction (along the axis of the tailplane) is ineffective for all but the first mode - lateral
bending of the fuselage.

6.6.3 Comparison of Theory with Experiment for a SDoF
Mass Modification

The sensitivity analysis technique has been developed as a means for ranking the
coordinates in their order of importance for single degree-of-freedom modification. As a
method for predicting the actual shifts in resonance frequencies from given modifications
the technique can only be expected to yield accurate answers if the modification is small or
if the variations in resonance frequencies are linear for the particular modification (see
Figures 3.12 and 3.24). Single degree-of-freedom mass modifications were made
experimentally and the actual resonance frequencies for the modified structure were
compared with those predicted from the sensitivity analysis results to establish the size of
errors associated with these predictions.

(i) SDoF Mass Modification at Point 492

The sensitivity of mode number 3 (11.916 Hz) to mass modification at point 492 is -
1.9%/Kg.  Therefore, to achieve a reasonable shift in the resonance frequency - say 1 Hz
- the single degree-of-freedom mass change required is 4.42 Kg. Using laboratory
weights bolted together, a modification with a mass of 4.62 Kg was constructed. This
mass modification was attached at point 49 (in the Z-direction) by means of a standard
excitation pushrod  18 mm long by 1 mm in diameter. This ensured that the mass had little
effect in any coordinate other than 492 and would act as a single degree-of-freedom
modification. Re-calculation shows that the actual mass modification of 4.62 Kg should



produce a downwards shift of 1.05 Hz for mode number 3, resulting in a resonance
frequency of 10.87 Hz for the modified structure. The next largest frequency shift
predicted is -0.104 I-Ix (1.5%) for mode number 2.

t
L

- - Unnodlf led.
‘: - Measured tlodif ied. ‘:

0 , - 0

10.0
Frequency (Hz) .

Effects on the Point FRF for 66Y of SDoF Mass Modification at 492

The modified helicopter structure was excited in the Y-direction at point 66 and
translational response measurements were made in the X, Y and Z coordinate directions at
points 66 and 49. The point FRF curves for coordinate 66Y of the modified and
unmodified structure are shown in Figure 6.29, from which it can be seen that there was
indeed a marked shift (1.1 Hz) in the resonance frequency for mode number 3, but little
change in all the other resonances, except that modes 1 and 2 now appear as a single peak
on the FRF plot. The resonance frequency of mode number 3 for the modified structure
has been measured as 10.8 Hz, which compares well with the 10.87 Hz predicted.

It should be noted that, for the FRFs measured with excitation at 66Y and single degtee-
of-freedom modification at 492, there are shifts in all the anti-resonance frequencies.
Another series of FRF measurements were taken with the excitation applied in the Z-
direction at point 49; the same degree-of-freedom as the modification. The point FRF
from this series of measurements is shown in Figure 6.30 together with that for the
unmodified structure. The major anti-resonance frequencies for this degree-of-freedom ate
not changed as a result of the modification and this confirms that the modification made
was indeed a single degree-of-freedom modification, effective only in the Z-direction at

_ , Id.. ,
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point 49 (see chapter 3). If the modification had had significant effects in any degree-of-
freedom other than 492, then the anti-resonance frequencies of the point FRF at 492
would have shown changes also.

70

- Unaodlf led.
- tleasured Hodifi

3 . 0 10.0
Frequency (Hz) .

32.0

Effects on the Point FRF for 492 of SDoF Mass Modification at 492

Inspection of the point FRFs for 492, Figure 6.30, shows that there is a discrepancy
between the resonance and anti-resonance frequencies in the region of 17 Hz. The
sensitivity of mode number 4 to single degree-of-freedom modification in the ZX.rection
does not account for the shift observed. The problem is a result of the different pushrods
used for the two measurements. For the original measurement of the unmodified
structure, a pushrod of length 20 mm was used because of space limitations, but, when
the single degree-of-freedom mass modification was made at 492 the whole helicopter
pitched tail down sufficiently to allow use of the 100 mm pushrod. It was the lateral
restraint of the helicopter by the short pushrod used in the original measurement, that
caused the 4th mode frequency to be raised slightly. The preceding anti-resonance
fkquency is also raised by a similar amount.
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point 49 (see chapter 3). If the modification had had significant effects in any degree-of-
freedom other than 492, then the anti-resonance frequencies of the point FRF at 492
would have shown changes also.

0 0

0
0 0

0
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32.0

Effects on the Point FRF for 492 of SDoF Mass Modification at 492
Figure 6.30

Inspection of the point FRFs for 492, Figure 6.30, shows that there is a discrepancy
between the resonance and anti-resonance frequencies in the region of 17 Hz. The
sensitivity of mode number 4 to single degree-of-freedom modification in the Zdirection
does not account for the shift observed. The problem is a result of the different pushrods
used for the two measurements. For the original measurement of the unmodified
structure, a pushrod of length 20 mm was used because of space limitations, but, when
the single degree-of-freedom mass modification was made at 492 the whole helicopter
pitched tail down sufficiently to allow use of the 100 mm pushrod. It was the lateral
restraint of the helicopter by the short pushrod used in the original measurement, that
caused the 4th mode frequency to be raised slightly. The preceding anti-resonance
frequency is also raised by a similar amount.



Case Studv 207

SDoF Mass Modification at Point 49X

L
- - Unsodif led.
-‘: - Heasured Hodlf led. ‘:

0  0

3 . 0 10.0
Frequency (Hz) .

32.0

Effects on the Point FRF for 66Y of SDoF Mass Modification at 49X
Figure 6.31

The same 4.62 Kg mass modification was attached to point 49 by a pushrod in the X-
direction in the horizontal plane. In this situation however, the mass was freely supported
from an independent structure. FRFs were measured using excitation at 66Y and it can be
seen (Figure 6.31) that there is a large downwards shift of mode number 4 to 14.93 Hz
(-12.5%). The shift in the resonance frequency of mode number 4 (17.061 Hz) predicted
from the sensitivity analysis is -2.302 Hz (-13.5%), giving a resonance of 14.759 Hz
for the modified structure, which compares well with the measured results. There is little
change in all the other mode frequencies, as expected.

6.7 Prediction of Effects of Actual Modifications

Once a sensitivity analysis has been completed successfully, the next stage in the solution
of a structural vibration problem is the design and selection of a modification that most
effectively exploits the sensitive locations on the structure to bring about a desired
alteration in the dynamic characteristics. Once a modification has been designed, its effect
on the structure can be assessed mathematically (see chapter 2). By this means it is
possible to ascertain whether the modification will have the desired effect and whether or
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not it will be adequate. If the modification is not satisfactory, it can be redesigned and the
mathematical coupling process repeated.

In the typical sequence of events described above, there is one major assumption that is
often overlooked; that the mathematical prediction of the dynamic characteristics of the
modified structure is a correct and true representation of the behaviour of the modified
structure. The underlying theory for predicting the effects of structural modification is
fairly simple but this only serves to mask the difficulties that may be encountered when it
is used in a practical situation.

The following examples illustrate some of the problems found when using measured
FRFs for the base structure and theoretical FRFs for the modification component. The
effects of two different types of modification to the helicopter have been studied,

(i) a mass modification at point 49; and,

(ii) a stiffness between points 49 and 66.

The predictions of changes to the structure’s properties have been accomplished using the
impedance coupling technique which is discussed fully in chapter 2.

6.7.1 Mass Modification

Actual Coupling in 6 Degrees-of-Freedom;
Theoretical Coupling in 3 Degrees-of-Freedom

The effects of single degree-of-freedom mass modifications at point 49 have been
investigated (section 6.6.3) and the agreement between measured and predicted resonance
frequencies for the modified structure was quite reasonable. However, a single degree-of-
freedom mass modification is not a very practical case and would rarely be contemplated
in practice. The most likely implementation of a mass modification is to bolt the mass in
position - a coupling involving all 6 degrees-of-freedom (see chapter 5). Such a
modification has been attempted at point 49 where the mass was attached as shown in the
diagram of Figure 6.32. Measurements of the modified helicopter’s dynamic
characteristics were made and it was found that the modification had a greater effect than
when attached as a SDoF modification in either of the X- or Y- directions alone.
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1-1 Weights.

6 Degree-of-Freedom Point Mass Modification.
Figure 6.32

A computer program was written to perform the theoretical coupling analysis in 3 degrees-
of-freedom. The mass was considered to be acting equally in all three translational
degrees-of-freedom at point 49. FRFs for the unmodified and modified helicopter are
presented in Figure 6.33, where it can be seen that the modification has major effects on
modes 3 and 4 - the sensitive modes - and relatively little effect on any of the other
modes.

i
0

3.0 10.0 32.0
Frequency (Hz1 .

Comparison of Point FRFs for 66Y for the Bolted Mass Modification
Figure 6.33

For mode number 3 the actual modification causes a greater downwards frequency shift
than that predicted theoretically by the coupling procedure; a predicted resonance
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frequency of 10.86 Hz compared with a measured resonance frequency of 10.65 Hz.
The unmodified resonance frequency is 11.92 Hz

There is a much larger discrepancy between the predicted and measured resonance
frequencies for mode number 4. Once again, the measured resonance frequency for the
modified helicopter (13.84 Hz) is considerably lower than that predicted (15.04 Hz).
The unmodified resonance frequency is 17.06 Hz.

However, it was known that there was a major deficiency with the theoretical prediction;
no FRF data for the rotational degrees-of-freedom were available because they could not
be measured and, therefore, by default all the rotational degrees-of-freedom were assumed
to be free. It is common for such sweeping assumptions to be made in practice without
further consideration of the real implications.

Discrepancies such as these are probably unacceptable for real-life applications. The
predicted FRFs do not properly match the behaviour of the modified helicopter and could
be dangerously misleading.

When examining the FRF curves of Figure 6.33 it is important to compare the FRFs as a
whole, rather than just looking at the correspondence of predicted and measured
resonance frequencies for the modified condition. In Figure 6.33 the measured FRF for
the modified helicopter has an anti-resonance at about 16 Hz while the predicted FRF
has a resonance at the same frequency. There is a difference in the J?RF magnitudes near
this frequency of approximately 100 times. Although this is the worst situation, there are
many other areas where the differences in the magnitudes of the predicted and measured
FRFs are of the order of 10 times.

This mass modification used has quite a high rotational inertia about the X- and Y- axes. It
is suggested that it is the coupling of this rotational inertia by bolting the mass to the
tailplane that is the cause of the discrepancies. In the theoretical predictions using the
impedance coupling method, no rotational inertia effects are included and this is believed
to explain why the actual modification has a greater effect than that assumed in the
prediction.
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Actual Coupling in 3 Degrees-of-Freedom;
Theoretical Coupling in 3 Degrees-of-Freedom

(i) Short Mass

Since it was not feasible to include rotational degrees-of-freedom in the coupling
procedure the actual modification was altered to mimic the theoretical model, to find out
whether a better level of agreement could be achieved between the measured and predicted
results. This time, the mass was attached at point 49 via a very short (=2 mm) turned
down section of bar, which acted like a pin-joint; see the diagram of Figure 6.34. The full
effect of the mass (4.62 Kg) was felt by the helicopter in the Z-direction, while in the X-
and Y-directions the effective mass modification was much less (0.47 Kg). This was
calculated by assuming the mass modification to be a uniform beam pin-jointed at one
end. The rotational effects are decoupled, but so too is much of the mass in the X- and Y-
directions.

Excitation Block.

‘Turned down’
Attachment
Block.

k3 ‘Short Mass’.

Short Mass: 3DoF Point Mass Modification.
Figure 6.34

FRF measurements were made for this modification. Throughout the tests, the mass could
be seen moving in relation to the helicopter, proving that the link was indeed flexible.
Slight alterations were made to the computer program to allow different mass effects to be
added in each of the coordinate directions. The results from this new theoretical prediction
for the point FRF at 66Y may be seen in Figure 6.35. Comparison of the theoretical
results with those measured for the actual modification indicates a much higher level of
agreement than beforehand. All the new resonances and anti-resonances are estimated
fairly accurately. However, when the results for the modified structure are compared with
those for the unmodified structure, it will be seen that there is only an appreciable
alteration for mode number 3; all the other modes remain largely unaffected. The results
for this modification are very similar to those for a single degree-of-freedom modification

:
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in the Z direction, because most of the effect in the X- and Y-directions is removed by the
pin-joint connection.

f0
- Unmodlf led.
+ Pleasured tbdlfled.
-+-Predicted tbdifled.

‘:
0

3.0 10.0 32.0
Frequency (Hz1 .

Comparison of Point FRFs for 66Y for the ‘Short Mass’ Modification
Figure 6.35

(a Extended Mass

The reason why, for the previous modification, the apparent mass in the X- and Y-
directions is so small is that the mass is too concentrated and too far away from the
attachment point. It was not possible to raise the mass any closer to the attachment point,
so another modification had to be designed. The criterion was that the modification should
have a high moment of inertia in the X- and Y-directions about its centre of gravity. This
was achieved easily, as shown in Figure 6.36. The total mass of this modification was
4.87 Kg and the effective mass in the X- and Y-directions was calculated to be 2.1 Kg.
To check this result a point FRF measurement was made at the attachment point on the
extended mass. The resulting FRF should have been a horizontal line, but the
measurements showed a characteristic rolling off indicative of an anti-resonance just
above 32 Hz (the measurement frequency range). Over the frequency range 5 to 20 Hz,
the apparent mass was calculated as between 1.667 and 2.222 Kg. In preference to using
the theoretical effective mass, an average measured value of 1.9 Kg has been taken as the
effective mass in the X- and Y-directions for the coupling prediction.
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It is interesting to compare the measured resonance frequencies for the modified structure
with those predicted using the full impedance coupling method, and those predicted using
the results from the sensitivity analysis. Predictions using the sensitivity analysis are set
out in Table 6.9. Sensitivities less than O.l%/Kg have been ignored.

II
49x

II

49Y

/I

492

Mass = 1.9Kg Mass = 1 .QKg Mass = 4.87Kg I I Predictions I Mea.QJred I

Unmod.

Mode Freq
(Hz) (%/Kg)

Sens. Shift Sens. Shift Sens.

(Hz) (%/Kg) (Hz) (%/Kg) (Hz)

6.57
6.74
11.92 -.31
17.06 -.29
22.17 -.17
24.08 -.23
26.24 -.27

-.07
-.09
-.07
-.lO
-.14

-.26 -.03 -.17
-.33
-.19

-.05 6.48 6.44 6.44 6.57
-.l 1 6.63 6.69 6.61 6.74

-1.11 10.74 10.91 10.76 11.92
16.11 16.09 15.94 17.06
22.09 22.14 22.16 22.17
23.97 24.03 24.07 24.08
26.10 26.19 26.21 26.24

CI

Frequency Predictions for the Extended Mass Modification.
.Iable 6.9

The effects of modification in each of the coordinate directions have been assumed to be
completely independent of the modifications in the other directions. It can be seen that
there is good agreement between the sensitivity predictions, the impedance coupling
predictions and the actual measurements for all the modes apart from mode number 4,
where the sensitivity analysis prediction gives a significant overestimate of the frequency
shifts. This is not unexpected because the sensitivity analysis only gives the initial change
in frequency with single degree-of-freedom mass modification. Nevertheless, the
sensitivity-based prediction is a simple method that can be used for preliminary
determination of the resonance frequencies for a modified structure. These results show
that quite accurate results are indeed possible. In practice, though, it would be prudent to
treat all of the predictions based on the sensitivity analysis results with caution.

6.7.2 Stiffness Modification

The second type of modification to the helicopter selected for investigation was a stiffness
modification between the tailplane and the fuselage. In this case, the stiffness modification
was achieved by stretching a single strand of thin stainless steel wire between points 49
(on the tailplane) and point 66 (on the intermediate gearbox). A tensioned wire has several
practical advantages for this investigation; it can be considered to be pin-jointed at the ends
- no rotational FRF properties are required - and it has a negligible mass compared with
the mass of the helicopter. The theoretical coupling analysis procedure for this
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‘Extended Mass’.

Extended Mass: 3 Degree-of-Freedom Point Mass Modification.
Figure 6.36

Measurements of the actual modified structure were made as before and the 66Y point
FRF result is shown in Figure 6.37a together with the theoretical prediction and the
unmodified condition. In Figure 3.37b the AFRF is plotted alongside the measured and
predicted FRFs for the modified structure. It can be seen that the predicted and measured
results for the modified helicopter show better than those for the short mass described in
(i) above. The resonances and anti-resonances are predicted more accurately, and there is
now an appreciable shift in the resonance frequency for mode number 4 as well as that
for mode number 3. Away from resonance the AFRF has a magnitude of about 20% of
the FRFs themselves and much of the variation in the AFRF is due to the irregularities in
the measured FRF. When viewed with Figure 6.5 (a AFRF plot for different forcing
levels) the two AFRFs are seen to be quite similar. Therefore, it can be concluded that the
mathematical models of both the helicopter and the modification are adequate in this case,
producing a very satisfactory result for the properties of the modified structure -
especially when it is noted that this modification produces frequency shifts of almost 10%
for mode numbers 3 and 4, and these frequency shifts are predicted accurately.
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modification will be described first, followed by a discussion of the practical
implementation of the modification and measurement of the modified helicopter.

Measurement of the Axial Stiffness of the Wire Modification

Experience with the mass modification has shown that it is much better to measure the
properties of the modification component rather than make assumptions to obtain
theoretical values. For the tensioned wire modification, it was necessary to measure its
axial stiffness, including that of the loops formed in the ends of the wire for the purposes
of attachment.

400

300
z
3 200
s

100

0

Stiffness of Single Wire Modification.

0 1 2 3 4 5
Wire Extension (mm)

Experimental Results for the Stiffness of the Single Wire Modification
Figure 6.38

The wire was suspended from a support frame and loaded with laboratory weights.
Extension of the wire was measured with a dial gauge positioned between the frame and
the weight carrier. After pre-conditioning, where the wire was left fully loaded overnight,
the load-extension graph of Figure 6.38 was measured (measurements include both
loading and unloading of the wire). The stiffness of the wire is the slope of the load-
extension graph line, i.e. 89.1 kN/m

Theoretical Coupling

The tensioned wire was assumed to act exactly like a pin-ended spring. There are a total of
6 translational degrees-of-freedom involved in the coupling, 3 at each end of the spring.
However, before the impedance coupling technique could be applied it was necessary to
transform the synthesised FRFs for the helicopter and the spring into a consistent global
coordinate system. The global coordinate system chosen was that of the helicopter.
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An inertance or receptance matrix for a free spring element does not exist, but an
impedance matrix can be defined directly. The impedance matrix for the spring
modification component was defmed initially ‘in a coordinate system in which the X-
direction lay along the spring axis. From knowledge of the coordinates of points 49 and
66, a transformation matrix was formed from the direction cosines of the local X-, Y- and
Z- axes in the global coordinate system, Appendix F. This transformation,
equation (6. l), was then used to produce an impedance matrix for the spring in the global
coordinate system

Kg1 = [qTral [A] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(6.1)

where, [Zj = Impedance matrix for spring.
(subscripts g and 1 refer to global and local coords.)

[Ih = Transformation matrix.

Adding the impedance matrices for the helicopter and the spring modification produced an
impedance matrix for the coupled structure which was then inverted and the resulting
FRFs for the modified helicopter were then transformed back into the coordinate system
used for the original measurements.

The order in which the transformation and inversion processes are carried out should not
make any difference to the final results. Three slightly different coupling procedures were
tried and the results compared as a means for checking that the modification prediction
methods had been applied correctly.

(a) Coupling in Helicopter Coordinate System (method described above)
(i) form stiffness matrix for spring in local coords;
(ii) transform to datum coords;
(iii) read inertance matrix for helicopter in datum coords;
(iv) invert inertance matrix for helicopter in datum coords;
(v) add impedance matrices for helicopter and spring in datum coords; and,
(vi) invert to form inertance matrix for modified helicopter in datum coords.

(b) Coupling in Spring Coordinate System.
(9 form stiffness matrix for spring in local Words;
(N read inertance matrix for helicopter in datum coords;
(iii) transform inertance matrix for helicopter to local coords;
69 invert inertance matrix for helicopter in local coords;
69 add impedance matrices for helicopter and spring in local coords;
w> invert to form inertance matrix for modified helicopter in local coords; and,
(3 transform back to datum coords.
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(c) Coupling in Spring Coordinate System.
Reverse the transformation and inversion processes (iii) & (iv) and (vi) 8z
(vii) in method (b) above.

The results were all identical.

Practical Implementation of the Taut-Wire Modification

The modification is a 1 mm diameter single strand stainless steel wire 1.55 m in length,
with loops formed at the ends. Additional components were necessary to attach the wire to
the helicopter at each end, and to tension the wire once it was futed in place. At point 49,
on the tailplane, a shaped pad was stuck to the leading edge with Plastic Padding. The
wire was attached to this pad by a removable pin passing through the loop in the wire.
The other end of the wire was connected to a small turnbuckle attached to the intermediate
gearbox (point 66) through an angle bracket. The turnbuckle was used to tension the wire,
thus preventing it becoming slack at any time throughout the excitation sweep.
Measurements of the point FRF at point 66 in the Y-direction, for varying tensions in the
wire, demonstrated that the required tension was not very great and that once the
modification effect had been established, the behaviour did not alter as the tension was
increased quite substantially, Figure 6.39. The wire tension was set at about half the
maximum tried, and a full set of FRF measurements were made for the modified
helicopter, using excitation in the Y-direction at point 66.

Title: Effects of Changlng the Pre-tenslon In the Wire fiodlflcatlon.
Response 66Y+/Force 66Y-
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3.0 10.0 32.0
Frequency (Hz1 .

Effects of Changing the Pm-tension in the Wire Modification
Figure 6.39
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Comparison of Measured and Predicted FRFs for the Single Taut-Wire
Modification

FRF measurements for the modified helicopter have been made for only one excitation
(coordinate 66Y) and, therefore, comparison of measured and predicted results is limited
to FRFs for this reference location. A comparison of point FRFs for coordinate 66Y
before and after modification is presented in Figure 6.40 where it can be seen that the
stiffness modification has a large effect on mode number 4 and virtually no influence on
any of the other modes. Qualitatively, this is correctly predicted, but the frequency shift
for mode number 4 is overestimated; for the unmodified helicopter mode 4 has a natural
frequency of 17.06 Hz; the measured frequency for the modified structure is 18.93 Hz
(+10.9%) while the predicted frequency is 19.7 Hz (+15.5%). In turn, this
overestimation affects the positioning of neighbouring anti-resonance features.
Nevertheless, the results are encouraging in that none of the other modes shows any
frequency shift in either the measured or predicted FRFs.

Response 66Y+/Force 66Y-
Title: Single Taut Wire Modlflcatlon  (69.1 kN/m).
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0 0
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Comparison of Point FRFs for 66Y for the ‘Single Taut-Wire’ Modification (89.1 kN/m)
Figure 6.40

The prediction overestimates the effect of the modification: the actual modification is not

as stiff as that assumed in the coupling procedure. The sensitivity analysis results were
used to estimate a value of spring stiffness that would produce the same effect as as the
actual modification. After two iterations, a spring stiffness of 60 kN/m was found to
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produce predicted results that matched the measured modified results very closely. Since
the measured static stiffness of the modification was 89.1 KN/m, the modification appears
to be only 67% effective when it is in place. The new predicted point FRF for 66Y with
the 60 kN/m stiffness is shown in Figure 6.41 for comparison with the measured result;
the level of agreement is at least as good as that for the measured and synthesised FRFs
for the unmodified helicopter.

Reeponse 66Y+/Force  66Y-
Title: Single Teut Wire Modlflcatlon (60 kN/m).
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Comparison of Point FRFs for 66Y for the ‘Single Taut-Wire* Modification (60 kN/m)
Figure 6.41

Comparison of Measured
Modification

and Predicted FRFs for a Double Taut-Wire

Two strands of the same wire were used to produce a modification having twice the
stiffness of the previous case. The above procedures were repeated using a theoretical
stiffness value of 178.2 kN/m, and it was again found that the prediction gave an
overestimate of the measured resonance frequency for mode number 4; measured at
20.2 Hz (+18.4%) and predicted to be 21.1 Hz (+23.7%). Sensitivity analysis results
were employed to give an adjusted stiffness value of 102 kN/m (57%) for which the
prediction of the effects of modification agreed well with those measured, Figure 6.42.
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Reeponee 66Y+/Force 66Y-
Title: Double Taut Wire tlodlficatlon (102 kN/m).
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Comparison of Point FRFs for 66Y for the ‘Double Taut-Wire’ Modification (102 kN/m)
Figure 6.42

6.7.3 Discussion of Results for the Wire Modification

The discrepancies between the predicted and measured results were thought at first to be
due to incorrect theoretical values for the stiffness element. When the stiffness of the
modification was adjusted, very good prediction results could be obtained. Two
possibilities that could account for the lower actual stiffness of the wire modification have
been investigated and these are discussed below.

(i) Insufficient Tension in the Wire.

If the wire becomes slack at any time during the vibration, the modification constitutes a
non-linearity - a one-sided spring - and this could account for the discrepancies observed.
The operating tension level in the wire must always be positive.

The preliminary tests where the wire
(Figure 6.39.) have demonstrated that
characteristics of the structure did not
throughout the complete test.

pre-tension was varied over a wide range
this is not the cause of the problem. The
change when the wire remained in tension

i , . ._/. ..,_ . :
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Incorrect Wire Stiffness Assumed in the Prediction.

Care was taken to measure the stiffness of the actual wire modification for use in the
theoretical prediction. The static stiffness was measured several times and the results were
repeatable. Nevertheless, it was thought that with the tumbuckle as part of the
modification, the dynamic stiffness may be different. The following method was used to
measure the dynamic stiffness of the total wire modification.

Cantilever Beam.
1

Accelerometer.

-Tu rnbuck le .

Experimental Arrangement for Measurement of the
‘Dynamic Stiffness’ of the Single Wire Modification

Figure 6.43

A simple cantilever beam arrangement was set-up, as shown in Figure 6.43. A point FRF
measurement was made at a point about half-way along the beam. The wire modification
was then attached at the measurement point and tensioned with the turnbuckle. Another
measurement was made for the point FRF of the modified structure. The point FRFs
before and after modification of the beam can be seen in Figure 6.44 and there are several
points that it is worth noting:-

(i) the resonances are clearly defined,

(ii) there are significant shifts in the resonance frequencies when the
modification is made (e.g. 13.5 Hz to 26 Hz);

(iii) the anti-resonances are defined clearly, but limitations of the analogue-to
digital conversion process are evident;

(iv) the anti-resonance frequency does not change when the modification is
made. This indicates that the modification is in a single degree-of-freedom
and that it is made at the measurement point (chapter 3);
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(v) only a light pre-tension of the wire was necessary; and,

(vi) all the measurements were repeatable.

T i t l e :  S t l f f n e e e  Modlflcetlon to Beem.

Frequency (Hz) .

FRFs Before and After Modification to the Beam
Figure 6.44

With the assumption that the modification is a single degree-of-freedom modification at
the measurement point, it is a simple process to work back from the point FRFs for the
unmodified and modified structure, using equation (2.1 l), to find the FRF characteristics
of the modification itself;

1 1 1- _ = - + -
& a, ab

where,
and subscripts,

a = inertance

a=unmodSedbeam
b = wire modification
c = modified beam.

a, and a, have been measured, so

ab
= .a,a,

a,-a,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.2)

This calculation has been performed with the raw measured data shown in Figure 6.44
and the result is presented in Figure 6.45: a straight line of slope +2 on an inertance plot -

P
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a stiffness line, as would be expected for the properties of the wire modification. In the
frequency range around the anti-resonances of the unmodified and modified beam, the
results for the properties of the modification are very poor. This is a direct consequence of
the data acquisition digitisation errors that occur for the very small responses measured at
these frequencies. The approximate value of the stiffness was calculated as 87.8 kN/m;
once again very close to the static stiffness measured and used in the theoretical
predictions.

Frequency (Hz).

Calculated Stlffnese
Characterlstlc for Spring.

Figure 6.45
Calculated Stiffness Characteristic for the Single Wire Modification

Neither of these possibilities can account for the 30% reduction in apparent stiffness of the
modification when it was applied to the helicopter.

More Detailed Study of the Dynamic Behaviour of the
Tailplane

The search for an explanation of the discrepancies observed between the measured and
predicted results for the wire modifications led to a closer examination of the interface
between the tailplane and the fin of the helicopter. The tailplane is attached to the fin at a
single point, approximately a tenth of the base chord back from the leading edge. The joint
itself is some form of elastomeric bush arrangement and this fact has introduced the
possibility of non-linear behaviour as the cause of the discrepancies observed
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To investigate the possibility of non-linear behaviour of the tailplane joint for the 4th mode
of vibration (17 Hz, tailplane fore/aft bending), a series of sine sweep measurements, at
different levels of excitation input, were carried out using a Solartron 1172 Frequency
Response Analyser (FRA). The equipment was set-up with the excitation applied in the Y-
direction at point 66 and the response was measured at point 49 in the X-direction.

SnRl FFfa t 17.3 R
FWW FEQ : 16.8 M
lNcmfm : .a1 n
a@wcTRz:.25vfu6
raJTTL!E  t 18 s
ItnPawIQI:  LB x

L--T-_-- ---r-------7--1
16.9 17 17.1 17.2 17.3

FREQlENCY(Hr)

Sine Test FRFs for Mode 4, Measured with Different Excitation Levels
Figure 6.46

Measurements were made sweeping up and sweeping down over the frequency range
16.8 to 17.3 Hz and the results from the measurements were compared to ensure that a
sufficiently low sweep rate was used. The power amplifier was set to constant current
configuration and four measurement sweeps were taken for excitation signal levels of
0.25v, 0.5v, 0.75~ and 1.0~ from the FILL The results are shown in Figure 6.46, from
which it can be seen that;

(i) the resonance frequency drops as the forcing level increases;

(ii) the maximum inertance amplitude reduces with increasing force level;

(iii) the incremental reductions in resonance frequency and maximum amplitude
become progressively smaller as the force increases - it would appear that,
above a certain force, there will be no further changes in resonance
frequency and maximum amplitude (however, this aspect could not be
investigated any further due to the already large levels of response for the
tailplane); and,

.



Case Studv 226

(iv) the FRFs measured with force levels of 0.25~ and 0.5~ are not symmetric
about their resonance frequency points.

These observations lead to the conclusion that the tailplane joint is, indeed, non-linear and
has the characteristic of a softening spring; as force is increased, the stiffness (slope of the
line) reduces.

Stiff nesses given by
slopes of lines.

Extension.

A Softening Spring Characteristic.
Figure 6.47

A softening spring characteristic like that shown in Figure 6.47 helps to explain the
differences observed between the measured and predicted results for the helicopter with
the wire modification. Consider the following hypothesis in which it is assumed that the
wire modification acts in two stages; (i) the effect of the wire pm-load on the structure,
and (ii) the stiffness effect of the wire itself:

The wire modification acts across the tailplane joint and the effect of the wire pre-
load on the joint is to cause the stiffness of the joint to reduce (a softening spring).
The natural frequency of the tailplane fore/aft bending mode drops as a
consequence of the reduced joint stiffness. The base condition of the helicopter is
altered by the effect of the pre-load alone. Now, when the stiffness of the wire
modification is included, the effect is added to the new base condition created by
the pre-load, raising the natural frequency of the 4th mode again. The final
predicted result for the frequency of the 4th mode is not as high as when the pre-
load effect is ignored in the prediction.

In order to try and test the mechanism proposed in this hypothetical argument, some
further measurements were necessary. The object was to investigate whether application
of a pre-load to the tailplane would cause the natural frequency of mode number 4 to drop
sufficiently to account for the differences between the measured and predicted results for
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the wire modification. It was difficult to apply a pre-load force to the tailplane without
introducing any other modification effects. As a compromise, a long length of thin bungee
cord was tensioned and attached, at one end, to the tailplane. The bungee cord had a low
stiffness which, together with a length of approximately 8 m, meant that the force applied
to the tailplane was nearly constant throughout the vibration test. Furthermore, the thin
bungee had a mass of only 74 g and so the mass loading effect was negligible. A tension
of about 60 N was the maximum that could be achieved with this thin bungee cord and
this was considerably less than the estimated pre-load of 600 N in the wire. The results of
some sine sweep tests of the helicopter with and without the bungee in position are shown
in Figure 6.48.

!mn  Fm t 17.3 k
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Sine Sweep Test FRFs of the Helicopter With and Without the Bungee
Figure 6.48

Analysis of these two curves has yielded the following results;

Without Bungee With Bungee

Resonance: 17.010 Hz
Phase: 180.78’
Damping Loss Factor: 0.0115

(variance 0.1%)
Modal constant 7.69x10-3 Kg-’

Resonance: 17.000 Hz
Phase: 180.79’
Damping Loss Factor: 0.012

(variance 0.1%)
Modalconstant 6.97x1O-3  Kg’

The differences between the natural frequencies for mode number 4, with and without the
bungee, are very small. The tension in the bungee was considerably less than the
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estimated pre-tension in the wire and this could explain why there is only a small
difference between the measured natural frequencies with and without the bungee
modification. It was not possible to increase the tension in the thin bungee and, so, a
larger size of bungee cord was used. Unfortunately, although the larger bungee could be
tensioned to approximately 170 N, the mass loading effect of the bungee on the tailplane
was much larger than before (493 g), and it was difficult to assess what caused the
downwards shift in the natural frequency, the mass loading effect or the tension.

A further question to be addressed is why was this non-linearity effect was not picked-up
during the preliminary tests with the wire, when the pre-load was varied over a wide
range? This could be explained if the joint non-linearity was similar to a bi-linear softening
spring, e.g. Figure 6.49, rather than a progressively softening spring, as shown in
Figure 6.47. For a bilinear softening spring a small initial pre-load would move the
mean operating point from the high- to the low-stiffness regime. A further increase in the
pre-load would not produce any further change in the stiffness. The initial prediction of
the effect of the wire modification is based on the, incorrect, assumption that the joint
stiffness is linear and of the high stiffness value, because the measurements of the
unmodified structure only exercise the structure in the high stiffness regime. In fact, the
pre-load changes the base condition to a state which is not incorporated in the modal
database produced from the initial measurements. If it were possible to identify accurately
the new base condition of the helicopter, then it is probable that a prediction using the true
value of the wire stiffness (89.1 kN/m) would produce better results.

A

Force.

Extension.
*

Bi-linear Softening Spring Characteristic.
Figure 6.49

In the preliminary survey of the helicopter, measurements were made at different forcing
levels (section 6.3.1) to try and ascertain whether there were any non-linearities that could
cause problems. No indications of the non-linearity in the tail joint were found at that
stage. In hindsight, it is obvious why not. The initial checks using different forcing levels
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were made using a broadband random testing technique - any form of random testing on a
non-linear structure tends to linearise the results. Furthermore, the original random
excitation did not allow the structural response levels to build-up to such an extent as with
the sine testing method and, therefore, the non-linear&es, which are amplitude dependent,
were not exercised to the same degree.

6.7.4 Modification Prediction Using Raw Experimental FRF
Data

Impedance coupling methods for the prediction of the effects of modifications use FRF
data (chapter 2). The FRF data can be obtained from test, modal analysis, or F.E.
modelling and analysis. Modal analysis and F.E. analysis FRF data are subject to
assumptions made about the structure whereas test data contain all the information and no
assumptions are made about the nature of the structure. It is sometimes suggested that it
may be better to use raw measured FRF data in the impedance coupling procedures.
However, there are several major drawbacks to the use of such data:-

(i) it can be difficult and/or expensive to obtain a consistent data set.

(ii) it can be difficult to measure all the FRFs required (spatial incompleteness -
chapter 5).

(iii) limitations of the equipment used in random testing for FFT analysis can
lead to poor quality FRFs in the vicinity of anti-resonances.

Despite these drawbacks, a predominantly measured FRF data set for the helicopter has
been used in a prediction of the effects of the extended mass modification. Wherever an
FRF matrix term has been measured, it has been used, however, there were still 4 terms
for which measured FRFs were unavailable (R66X/F66X, R66X/F49Y,  R49Y/F66X,
and R49Y/F49Y, identified in Figure 6.8). Since the modal analysis had already been
performed, appropriate synthesised FRFs were available and these have been used
instead. There are a total of 36 terms in the FRF matrix for the helicopter, the measured
FRFs account for 89% of the matrix and the remainder are synthesised from the modal
database.

For the extended mass modification component, the same theoretical FRF data were used
as for the prediction described in section 5.1.2 (ii). The 66Y point FRF for the modified
structure calculated using:- (i) the raw data set, and (ii) the synthesised data set for the
helicopter are presented in Figure 6.50 together with the FRF for the unmodified state. It

~ 1 . , .I..



can be seen that the result using raw data agrees well with that using synthesised data for
the new resonances and anti-resonances of the 3rd and 4th modes. It is also apparent that
there are still major resonance-like peaks at the unmodified resonance frequencies in the
prediction using raw data. This phenomenon was observed by Henderson [14] and is
termed ‘breakthrough’.  It is caused because the raw data does not come from a consistent
data set - each resonance has a very slightly different natural frequency for each measured
curve. In this instance, it is the result of different interaction of the shaker with the
helicopter at different points and variation of the helicopter’s properties with time.
Simultaneous multi-point excitation tests may improve the consistency, but it is still very
unlikely that the whole FRF matrix could be measured at one time and so there will
always be some variation.

Title: Extended Mass Modlflcatlon PredIctlone
uelng Raw and Syntheelzed Data Sets.
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Comparison of Results Using Raw & Synthesised Data in Predictions of the Effects of the
Extended Mass Modification

Figure 6.50

Definition of the anti-resonances in the prediction using raw data is of a similar quality to
those measured for the unmodified condition. The prediction using synthesised data has
clear, sharply defined anti-resonances in the same way as the synthesised data for the
unmodified smmure.
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Using the raw data in this way provides confirmation that the modal analysis model of the
helicopter, from which the synthesised FRF data were created, is adequate for this
particular modification and that sufficient modes and residual terms have been included in
the synthesised FRF data set.

6.7.5 Presentation of Data

Composite Response Spectra

The ultimate aim of a structural modification process, such as that described here, is the
overall improvement in the vibration characteristics of the structure under its normal
operating conditions. Reduction of the vibration level at one point may be accompanied by
a severe increase elsewhere. Furthermore, the actual responses will be dependent upon the
magnitudes and location of multiple force inputs. While multiple forcing does not
influence the resonance frequencies, it does affect the off-resonance behaviour. For this
reason it is important to examine a weighted composite response spectrum to assess the
overall behaviour of a structure. An estimate of the magnitude of each force input is
required so that response spectra for each location may be generated. An indication of the
overall performance of the structure is obtained by forming a weighted sum of these
spectra. The weighting to apply to each response spectrum would reflect the importance
attached to the motion at each particular location, e.g. a location on the pilot’s seat in a
helicopter would have a much higher weighting than a location on, say, part of the
undercarriage. Integration of the composite response spectrum over a small, key,
frequency range yields a number which can be used as a performance indicator. Different
modifications will give different performance indicators and the best modification can then
be selected.

To investigate the use of composite response spectra, various FRF data for the helicopter
have been summed together:-

(i) raw measured data for the unmodified helicopter;
(ii) synthesised data for the unmodified helicopter;
(iii) raw measured data for the helicopter modified with the extended mass; and,
(iv) data predicted for the helicopter modified with the extended mass.

For each example, the magnitudes of the 6 FRFs for coordinate 66Y excitation are added
together to form the composite response spectrum, i.e. all the FRFs are given equal
weighting and no phase information is used. Comparisons of these composite spectra are
presented in Figures 6.54 and 6.55.

.
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Composite Response Spectra for Excitation at 66Y.
Measured 6 Synthesized for the Unmodified Helicopter.

':0 0

3.0 10.0 32.0
Frequency (Hz).

Composite Response Spectra for Excitation at 66Y
Measured & Synthesised Data for the Unmodified Helicopter

Figure 6.51

Composite Response Spectra for Excltatlon at 66Y.
Measured i3 Synthesized for the Hellcopter Hodlfled

wlth the Extended Mass.
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Composite Response Spectra for Excitation at 66Y
Measured & Synthesised Data for the Helicopter Modified with the Extended Mass

Figure 6.52
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It will be seen that these composite response spectra have typical resonance characteristics
of an FRF, but no anti-resonance features. This is simply due to the fundamental
difference between resonances and anti-resonances. Resonances are global properties -
they have the same frequencies regardless of where they are measured on the structure
but, not all FRFs have anti-resonances at identical frequencies. When the FRFs are added
the anti-resonance features disappear, while the resonance features are reinforced,

It will be seen from Figure 6.51, showing the measured and synthesised FRFs of the
unmodified helicopter, that there are now only small discrepancies in the off-resonance
regions for the composite spectra. The summation process has smoothed out the
irregularities in the individual raw data FRFs. The agreement between the composite
response spectra for the raw and synthesised data close to resonances is generally good.

The composite response spectra, shown in Figure 6.52, for the helicopter with the
extended mass modification are superimposed on the composite spectrum for the
unmodified state to indicate the substantial effects of this simple modification. There are
slight differences in the predicted and measured resonance kquencies for modes 3 and 4,
but these differences are small in comparison with the changes from the unmodified state.
The prediction has underestimated the actual effect by a small amount.
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Correlation Plots

Log(HEASURED  Inertance)
-1.5 -0.5

Correlation Plot of Composite FRFs for Excltatlon at 66Y
Heasured vs Synthesized for the Unmodified Helicopter

Figure 6.53

Another alternative method of presentation has been used for comparison of this data-
&relation Plots, Figures 6.53 and 6.54. When there is perfect correlation of the two data
sets, the points lie on a straight line of slope +l, passing through the origin. Deviation
from this line indicates correlation errors. It can be seen from Figure 6.53 that there is
generally good correlation between the measured and synthesised data for excitation in the
Y-direction at point 66. There are no obvious loop characteristics at high inertance values
which tend to indicate incorrect estimation of the natural frequencies.
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Log(PREDICTED  Inertance)
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Correlation Plot of Composite FRFs for Excitation at 66Y
Measured vs Predlcted for the Helicopter Hodlfled

with the Extended Mass. I

Figure 6.54

In the correlation plot of the measured and predicted data for the extended mass
modification (Figure 6.54) there are discrepancies around the natural frequencies which
show up as loops in the plots towards the top right-hand end of the correlation line,
i.e. the large inertance values at resonances indicating erroneous prediction of the
resonance frequencies for the modified structum. Similar ‘loop characteristics’ in this type
of plot were noted by Kirsenboim [90] for FRFs measured with sine excitation at different
force levels. In [go], estimation of the loop area is taken as a measure of the degree of
non-linearity exhibited by the test structure. The main disadvantage of this type of plot is
that there is no indication of frequency, so it is not easy to see which mode is incorrectly
predicted from this plot alone.
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6.8 Review of Chapter 6

There were two main objectives of the case study on the helicopter:

(0 evaluation of the data assessment and sensitivity analysis techniques with a
set of experimentally-derived data; and,

(ii) demonstration of the present ability to predict the effects of a modification.

From initial measurements of the helicopter it was found that the resonance frequencies
were approximately equal to those measured in previous tests, and comparable with the
frequencies predicted from F.E. models. The AFRF was used successfully in assessment
of measured data for repeatability and reciprocity. Small differences between response
functions were shown clearly by peaks in the AFRF. Visual comparisons of FRFs for
repeatability and reciprocity checks are a highly subjective method of assessment and
would not have yielded the same quality or quantity of information.

Restricted access to several points on the helicopter prevented measurement of the
complete FRF matrix. Such measurement restrictions are not uncommon and, in fact, it is
rarely possible to measure the complete FRF matrix. Fortunately this is not usually too
much of a problem because, by modal analysis and synthesis techniques, a full set of
FRFs can be generated from measurement and analysis of a single row or column of the
FRF matrix. Attempts were made to derive specific FRFs from FRF measurements made
at an angle to the coordinate axes. Where the point under consideration was situated on a
reasonably mobile part of the structure, derivation of FRFs in the Cartesian axis coordinate
directions from angled excitation measurements proved to be a viable proposition.
However, for a point on a comparatively immobile part of the structure, the
transformations to form the desired FRFs involved small differences of large numbers
and, together with the added problem of rather ‘noisy’ measured FRFs, the results were
of a rather poor quality and certainly not good enough for incorporation in any modal
analysis procedure.

It should be noted that although it is theoretically possible to use measured FRFs directly
in an impedance coupling procedure this is not often feasible because, as mentioned
above, the complete FRF matrix is rarely measured.

Difficulties were also encountered with measurement of rotational degree-of-freedom FRF
properties by the T-block method. Despite careful checks of reciprocity and repeatability
of translational FRFs measured on the T-block, transformation of these FRFs to a
‘rotational set’ yielded poor results for all terms involving at least one rotational coordinate
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although the point translational FRFs derived from measured T-block data matched
closely those measured in the traditional way. Some rotational FRFs were ill-defined -
due to use of measured data directly in the transformations - but, more seriously, the
rotation/rotation FRFs had no modal features, just the characteristics of a simple spring
element. Eventually the cause of this behaviour was traced to the flexibility of the joint
between the T-block and the helicopter. The interface joint was much less stiff than the
surrounding structure and motion of the T-block relative to the helicopter tended to
dominate the measured response. Unless the attachment can be made with sufficient
rigidity to ensure that motion of the structure is transmitted to the accelerometers faithfully
over the frequency range of interest, the measured FRFs will contain an unknown
contribution from the joint flexibility. In structural modification predictions it is sometimes
assumed that a rotational transducer block is joined to the structure in the same way as a
subsequent modification would be, and hence, that the unknown effects of the joint will
be the same in each case. Although successful modification predictions based on this
assumption have been reported, [9], there is little direct evidence to support this
assumption for general application. For this investigation, modifications were confined
largely to those in which rotational degree-of-freedom properties were not actively
involved in the coupling, i.e. pin-jointed modifications.

After a full measurement survey of the translational degree-of-freedom FRFs of the
helicopter, the Polyreference technique was used successfully for modal analysis of the
data. Two methods were then employed for evaluation of the low-frequency residual
terms associated with rigid body motion of the helicopter (there was no requirement for
high-frequency residuals because the measured frequency range extended sufficiently
above the frequency range of interest),

(i) by comparison of synthesised and measured FRFs; and,

(ii) by rigid body mechanics calculations with mass and inertia properties
supplied from a F.E. model of the helicopter.

It was not possible to generate residual corrections for all the FRF elements by the
comparison technique because not all FRFs had been measured and, also, it was found
that residual terms generated by rigid body mechanics calculations were more consistent
than those calculated by comparison of measured and synthesised FRFs. The low-
frequency residual corrections were added to the synthesised FRFs which then compared
very well with their measured counterparts with the exception of FRFs for excitation at
coordinate 66X - along the fuselage axis.
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The measurements for this case study of the helicopter confirm that it is quite feasible to
measure sufficient, consistent and accurate data for modal analysis and subsequent
structural dynamic modification prediction for a large and complex structure, by means of
successive single-point excitation tests.

The new sensitivity analysis method (developed in chapter 3) was applied to the point
FRFs and the results correctly identified that mode 3 was particularly sensitive to
modification at coordinate 492 and that mode 4 was sensitive to changes at 49X. Input
data for the sensitivity analysis - resonance and anti-resonance frequencies - were easily
obtained by use of peak- and valley-picking routines on the synthesised FRFs. Checks on
the static accelerance of each plot showed, repeatable and consistent results for all point
FRFs except those for coordinates 66X and 49X.

Two types of modification have been used in demonstrations of the ability (or failure) to
predict the effects of structural modifications on the dynamic characteristics of the
helicopter:

(9 several mass modifications; and,

a> a stiffness modification between two points on the helicopter.

Predictions of the effects of a single degree-of-freedom modification are trivial in
comparison to other, more extensive, modifications. However, a single degree-of-
freedom mass modification was used to demonstrate that anti-resonance frequencies
remain unchanged for all FRFs that have at least one coordinate in common with the
single degree-of-freedom modification.

When a mass modification was bolted to the helicopter - a coupling involving all 6
degrees-of-freedom - prediction of the effects based on models deficient in rotational
information was found to give incorrect results. The size of errors between the predicted
and measured FRFs for the modified structure gave an indication of the importance of the
rotational degrees-of-freedom in the coupling. However, when a modification which did
not involve any rotational degrees-of-freedom was made - the extended mass modification
- the predicted and measured FRFs showed a high level of agreement. For this
modification the actual major resonance frequency shifts were predicted reasonably
accurately from the sensitivity analysis results, but the theoretical analysis of chapter 3
indicated that all such predictions should be treated with the utmost caution.

A tensioned single-strand steel wire was used as a stiffness modification between the
tailplane and the intermediate gearbox on the helicopter. The actual modification
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approximated a pin-jointed stiffener between the two points, but, despite careful
measurements for the dynamic properties of the modification, it was still not possible to
predict its effects on the dynamic characteristics of the helicopter accurately. The single
mode frequency that would move significantly was correctly identified, together with the
fact that all other mode frequencies would remain virtually unchanged, however, the
magnitude of the single frequency shift was significantly over-estimated. Initially the
problem was thought to be with the dynamic characteristics of the wire modification or the
attachment fixtures but, subsequently, it was found to be a non-linearity in the tail-plane
joint which was only exercised sufficiently when the wire was connected and tensioned.
Motion of the tail-plane joint during testing of the unmodified helicopter was too small to
show-up the non-linear effects.

These coupling exercises have demonstrated that, although theoretical techniques for
prediction of the effects of a modification are well developed, practical implementation of
the methods is not simple and straightforward. The most serious problem is usually
incomplete, rather than inaccurate, dynamic models of the component parts. Nevertheless,
with care and attention to detail during the early planning and data acquisition stages,
many of the problems can be overcome or, at least, their effects minim&d. The success
of the ‘extended mass‘ modification predictions are an indication of what can be achieved.



Chapter 7

Conclusions

7.1 Conclusions

7.1.1 Collection and Assessment of Experimental Data

At the outset of any structural modification exercise based on the use of experimentally-
derived data, it is important that the general type and possible location of any
modifications are pre-defined and clearly stated. It is rare for there to be a completely free
choice of the type and location of modifications and the earlier that these practical
restrictions are recognised the better. Furthermore, careful consideration should be given
to the way in which the final modifications will be attached. If bolted, riveted or welded
joints will be used (involving considerable rotational restraint at the joint) then it is vital
that dynamic data for rotational degrees-of-freedom are also measured for incorporation in
modification predictions.

The use of experimentally-derived data as a basis for prediction of the effects of structural
modification has several advantages. The most important advantage is that measured data
are a record of exactly how a structure behaved during a particular test, whereas
theoretically-derived data constitute an ideal&d representation of the dynamic behaviour
of a structure based on a series of assumptions about structural detail and deformation
characteristics. It is important to remember that the dynamic model of a structure can only
be as accurate as the data from which it is derived (measured or theoretical). For this
reason a means for assessing the quality of measured data is desirable. In this work, the
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‘difference frequency response function’ (AFRF) has been used extensively in the
assessment of reciprocity, repeatability and synthesised data. The AFRF is a very simple
and versatile function that has the same characteristics as a standard FRF. It can be formed
from measured data directly and, consequently, any adjustments to the measurement
technique that may be necessary can be accomplished at the earliest possible stage. The
AFRF highlights differences between FRFs that may be overlooked normally. If a AFRF
peak coincides with a resonance frequency of the FRFs, a slight difference in the
resonance frequencies of the two FRFs is probably the cause. When a AFRF peak occurs
elsewhere in the frequency range it is unlikely to be as sharp as that found at a resonance
frequency nor to have such a large magnitude and it is probably the result of magnitude
differences between the FRFs.

The new sensitivity analysis technique is based on the use of resonance and anti-
resonance frequencies derived from measured point FRFs. Resonance frequency
information of sufficient accuracy can be obtained from measured FRFs with the aid of a
peak-picking routine. Anti-resonance frequencies can be more troublesome to locate
precisely than resonance frequencies and this is particularly true with broadband
measurements where amplitude resolution in anti-resonance regions is often poor and the
true anti-resonances may not be obvious. The definition of an anti-resonance can be
improved if the broadband test is conducted over a narrow frequency range or if a zoom
measurement technique is used - thus increasing the frequency resolution and possibly
reducing the overall dynamic range of the FRF in the measured frequency band. A more
efficient measurement technique is that of sine testing whereby measurements are made at
discrete frequencies. Sine testing has several distinct advantages,

. quantification of the response at each discrete excitation frequency is
completely independent of that at any other frequency: all frequency points
are defined to the same percentage accuracy;

. the structure only responds to a single frequency input and hence the signal
to noise ratio is very much higher than for broadband measurements; and,

. the measurement method does not restrict the distribution of points
throughout the frequency range. Data points may be concentrated in
resonance and anti-resonance regions, where the rates of change with
frequency are high. Where the FRF varies more slowly data points can be
spread out.



It is always important to remember the fundamental difference between a resonance and an
anti-resonance; a resonance is a global property and an anti-resonance is a local property.
Anti-resonance frequencies are dependent upon the choice of excitation and response
coordinates whereas natural frequencies are not. As a consequence, anti-resonance
frequencies of derived functions - such as AFRFs, rotational FRFs and FRFs in different
coordinate systems - will not have the same anti-resonance frequencies as the measured
FRFs used in their generation. Data points cannot be grouped in the frequency range as
necessary without some prior knowledge of where the anti-resonances of the derived
functions will be located.

The importance of a thorough and carefully planned preliminary survey of the dynamic
characteristics of all the components involved in a structural modification must be
emphasised. Results from the preliminary surveys enable identification of the sensitive
degrees-of-freedom, ‘tuning’ of modifications to exploit these most sensitive degrees-of-
freedom and optimisation of the full test program such that the most important data are
measured with the greatest accuracy.

The use of shaker excitation techniques in a preliminary survey can be time consuming
because the shaker has to be re-positioned and realigned for each separate measurement.
Usually, high quality data are obtained but, in proportion to the time taken for a complete
measurement survey, such a lengthy preliminary survey may not be justifiable. An
alternative method of testing is to use impact excitation but this also has disadvantages;
e.g. the low total energy input, poor repeatability and poor results when non-linearities are
present. However, further investigation is required, on a real structure, to ascertain
whether the results obtained from impact testing are acceptable for the purpose of ranking
the coordinates in a sensitivity analysis.

7.1.2 Refinements of the Impedance Coupling Method

With the growing complexity of structures in recent years, there has been a trend for the
size of dynamic models to increase. This has brought with it a penalty in terms of
computation time when the dynamic models are used in impedance coupling predictions.
A development of the impedance coupling technique has been found that decreases the
computation time very significantly by reducing both the size and the number of matrix
inversions necessary. Further development of this method has now extended it for use
with simple spring type modifications which do not have inertance matrix representations.
In addition to marked increases in computational speed, these new formulations are
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potentially more accurate than the original methods because there is less opportunity for
the build-up of errors with numerical inversion pf large matrices. The size of the matrix
for inversion is limited to the number of interface coordinates and, consequently,
improvements in speed will be greatest for systems which have a low ratio of interface
coordinates to the total number of coordinates.

7.1.3 Development of a New Sensitivity Analysis Technique
- A Guide to Structural Modification

Sensitivity analysis techniques are frequently used in theoretical (F.E.) studies to locate
the most suitable type and site for a modification to bring about a desired change in the
dynamic behaviour of a structure. In this study a relatively simple sensitivity analysis
technique has been developed that can be used with measured data from a preliminary
survey of the structure. This new sensitivity analysis technique enables the differential

5%sensitivity dm m=O of any particular resonance frequency to be calculated for single

degree-of-freedom mass (or stiffness) modifications. The value of this differential
sensitivity for infinitesimal single degree-of-freedom mass or stiffness modifications is the
criterion upon which coordinates are ranked in their order of importance for influence on
the resonance frequency of a particular mode. For many applications, particularly
aerospace structures, the smaller the modification that has the desired effect, the better -
unnecessary mass represents wasteful loss of revenue-earning payload. The coordinate
ranking information can be valuable in several different ways,

. identification of the coordinates at which modification is most appropriate;

. provision of guidelines for the design of a real modification to exploit all of
the most sensitive coordinates;

. identification of the coordinates at which the loading effects of the
measurement apparatus (transducers, shaker, etc.) on the structure are most
likely to affect the FRF results; and,

. help in production of a test schedule for the full measurement phase in
which limited time and resources can be used efficiently to collect only the
most important data.

This new technique is intended, initially, as a ‘guide to structural modification’ only.

,.. .._ :._. i-A_
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Resonance frequency sensitivity equations have been derived for both grounded and free
types of structure for single degree-of-freedom mass or stiffness modifications.
Additionally, it has been shown that the stiffness sensitivity equation can also be used
with difference FRFs between two coordinates for the sensitivities of modes to internal
stiffness modifications between two points. This is especially useful since an internal
stiffness modification is a much more practical type of modification than a single degree-
of-freedom spring modification in which one end of the spring is connected to ground. In
just the same way that resonances may be shifted away from an excitation frequency to
reduce a vibration problem, so it may also be possible to move a particular structural anti-
resonance to coincide with an excitation frequency. A similar analysis has been performed
for the anti-resonance frequency sensitivity at one point due to single degree-of-freedom
mass modification at a remote point (Note; for FRFs which have at least one coordinate in
common with the single degree-of-freedom modification, none of the anti-resonance
frequencies change). In addition to point FRF measurements required for the resonance
frequency sensitivity, transfer measurements are necessary for evaluation of the anti-
resonance frequency sensitivity. It should be noted that, in general, repositioning anti-
resonances may not be as efficient as repositioning resonances for the control of structural
vibration because anti-resonances are local, and not global, properties of a structure.

All of the sensitivity equations developed in this work (for resonances and anti-
resonances) are based on a rational fraction form of representation for an FRF. The exact
rational fraction representation of an FRF involves products of an infinite number of
resonance and anti-resonance frequencies. In practice, the number of terms in the products

cl9is limited to the number of modes measured. Provided that the ratio -
( 1sr,z

<< l,theFRF

synthesised from this rational fraction formulation is an accurate representation of the
actual FRF. The measured frequency range should extend to include several modes
beyond those in the frequency range of interest to ensure that this criterion is met.

All FRFs can be represented in rational fraction form. For point FRFs all resonances and
anti-resonances have real frequency values, but for transfer FRFs, some of the ‘anti-
resonance’ frequencies may be imaginary. An imaginary anti-resonance frequency
corresponds with a minimum between two resonance peaks instead of the zero of a real
anti-resonance.

It has been shown (section 6.7.1) that the new sensitivity analysis technique can be used
successfully to predict the most effective coordinates for modification but that, except
under certain circumstances (such as for small modifications), use of the 1st and 2nd order

.I
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sensitivity values in a Maclaurin’s series expansion should not be relied upon to give good
estimates of the new resonance frequencies for a modified structure, particularly when
predicting the effects of ‘large’ modifications. (It should be noted that similar restrictions
will also apply to the use of any sensitivity parameters howsoever derived). Theoretically
it is possible to continue the differentiation process to obtain higher order sensitivity
parameters but this is not really a practical proposition. For ranking of coordinates in an
order of importance it is not necessary to measure the resonance and anti-resonance
frequencies to a high degree of accuracy, provided that the overall ranking is not altered
by slight variations in the frequencies. The reliability of a ranking can be checked by
recalculations with small, but representative perturbations of the resonance and anti-
resonance frequencies supplied.

An important physical concept used during the development of the sensitivity analysis
technique is that none of the anti-resonance frequencies moves for FRFs with at least one
coordinate in common with the single degree-of-freedom modification made. This
phenomenon can be used as a very simple practical test of whether an intended single
degree-of-freedom modification is indeed active in only one degree-of-freedom.

7.1.4 Inaccuracy and Incompleteness of Experimentally-
Derived Dynamic Models

Any experimentally-derived mathematical model of the dynamic characteristics of a
structure will be incomplete and inaccurate; it is the degrees of incompleteness and
inaccuracy that are important. Some factors which affect the accuracy of measured
vibration data are as follows,

. selection of the most appropriate transducers for the application
(measurement capacities vs transducer size);

. attachment of transducers to the structure;

. cross-axis sensitivities of transducers;

. loading of the structure by the measurement equipment (transducers and
shaker system, etc.). It has been shown that, in some circumstances,
mounting the force gauge upside-down may make the loading effects of the
force gauge more consistent - particularly when there is large cross-axis
motion - and hence more amenable to subsequent loading corrections; and,

k.. /
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. accuracy of equipment used to quantify the transduced signals (e.g. limited
dynamic range and digitization errors).

Incompleteness in a dynamic survey can take two forms,

i> Modal incompleteness - where insufficient modes are included either by
poor choice of excitation point or frequency range; and,

ii) Spatial incompleteness - where measurements are made at insufficient
coordinates on the structure.

Modal incompleteness restricts the frequency range over which any synthesised FRFs are
valid. Spatial incompleteness in a set of measured FRFs means that structural mode
shapes cannot be defined uniquely. If the spatially incomplete data set is used in a
modification prediction, the quality of the results depends on whether the spatial
incompleteness extends to some of the interface coordinates, i.e. whether FRFs for all the
degrees-of-freedom actively involved in the coupling are included. If all the data for the
interface coordinates are included in the coupling, predictions for the characteristics of the
modified structure will be accurate in a global sense (modified resonance frequencies and
damping values) but still incomplete in the spatial sense (non-unique definition of mode
shapes). However, if the spatial incompleteness extends to the interface degrees-of-
freedom in a coupling prediction, the results will be incorrect in both the global and the
local senses. The degree of error will be largely a reflection of the relative importance of
the degrees-of-freedom omitted from the mathematical coupling procedure. The most
frequent cause of spatial incompleteness in measured data is the absence of rotational
information. Rotational type measurements are often ‘overlooked’ in measurement
surveys because there are relatively few transducers for direct measurement of rotations.
Furthermore, accurate derivation of rotational data from suitable translational
measurements can be difficult to achieve. Some work is being done on the development of
transducers for the measurement of rotational response data but, this alone, will not
facilitate direct measurement of the complete FRF matrix - methods for application and
measurement of a pure torque excitation are also necessary.

The lack of success with accurate measurement of rotational FRF properties of a test
structure has led to doubts about the incorporation of rotational degree-of-freedom data in
modification predictions. The traditional, implicit, assumption is that the interface joint
between the rotational transducer and the test component is either rigid or identical to the
condition that will pertain when the component and structure are joined. There is little



evidence to support such assumptions in the majority of cases. Measured rotational
degree-of-freedom FRF properties will, therefore, always contain an unknown
contribution from the joint flexibility which will propagate into any modification
predictions. Until an accurate reliable and easy-to-use method for the measurement of all
rotational degree-of-freedom FRF properties becomes available, the use of modification
components including rotational restraints should be questioned seriously. Pin-jointed
modification components have no rotational constraint and hence there is no need for
rotational degree-of-freedom properties. Pin-joints do, however, severely reduce the
potential effectiveness of certain modifications, e.g. a pin-jointed beam modification is
substantially less stiff than a bolted beam (encast@. Nevertheless, in the interest of being
able to predict the behaviour of a modified structure accurately and reliably, the reduced
effectiveness of such modifications may be an acceptable penalty in order to avoid
unforseen problems caused by inaccurate assumptions about joint characteristics.

7.1.5 The Helicopter Case Study

The inability to measure acceptable rotational degree-of-freedom FRF properties of the
helicopter restricted the case study to the use of simple pin-jointed modifications - mass
additions and wire stiffness modifications.

The case study of a helicopter structure has allowed a very limited trial of the data
assessment and sensitivity analysis techniques on real measured data. The modal database
for translational degrees-of-freedom, created from the measured data, was judged to be of
a good quality based on a comparison of measured and synthesised functions using the
AFRF. Very successful prediction results were obtained for the helicopter modified with a
mass, but the results for the taut wire modification were not quite so good. The prediction
correctly identified the mode with the greatest shift in frequency, but the extent of the
frequency shift was over-estimated. In subsequent investigations to ascertain the cause of
this over-estimation of the wire’s modification effect, it was found that the tailplane joint
condition altered as a result of the modification - the base structure became different to
that used in the mathematical prediction. Pre-tension in the wire caused the joint to operate
in a different stiffness regime. Measurements of the structure’s FRFs at low amplitudes of
vibration did not show up the non-linear characteristics of the joint which only appeared
with very large displacements. Furthermore, it is doubtful whether any non-linearities
would have been detected had it been possible to test the helicopter with the joint pre-
stressed. Once again, measurements at different dynamic force levels and relatively small
amplitudes, would have shown the structure to be linear, albeit with a different stiffness.
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7.2 Summary of Topics Investigated

In a fmal review of the work presented in this thesis it is considered that contributions to
the understanding of ‘Structural Modification from Experimental Data’ have been made in
the following areas;

. reformulation and refinement of the impedance coupling method to give very
much improved computational efficiency and the ability to cope with all
forms of modification component;

. the value of a preliminary survey;

. the use of a AFRF in the assessment of repeatability and reciprocity and for
comparison of measured and theoretical data;

. the development of a simple sensitivity analysis technique based on
experimentally-derived resonance and anti-resonance data for ranking
possible structural modification sites in their order of importance for
influencing each particular mode;

. the use of preliminary survey sensitivity analysis results in definition of a
full measurement test programme;

. illustration of the possible errors that can be incurred when 1st and 2nd order
sensitivities are used in prediction of the effects of ‘large’ modifications;

. the key importance that rotational degrees-of-freedom can play in the
outcome of a coupling analysis has been demonstrated once again. The
present practical ability for prediction of the effects of modifications
involving rotational restraint at the attachment points has been reviewed;

. demonstration of some problems with prediction of the effects of
modifications that can be caused by the presence of non-linearities - an
illustration of just how far removed experimental practice is from theory;

. discussion of the causes of incompleteness and inaccuracy in an
experimentally-based dynamic survey and the consequences for prediction
of the effects of modifications are discussed at length;

-.



7.3 Recommendations for Future Study

As a consequence of this study various aspects of vibration testing and theory have been
identified for future study to improve the understanding and application of the techniques
developed. Some general topics that should be considered in any further studies are
outlined below (N.B. some tasks in the following list are much more substantial than
others),

. investigation of impact testing as a quick and efficient method for collection
of preliminary survey data;

. development of techniques and equipment for accurate and reliable
measurement of rotational degree-of-freedom FRF properties - particularly
the design and development of a practical torque exciter,

. detailed investigation of actual joint conditions between; (a) transducer and
component, and (b) between two components;

. development of a simple assessment method to show when a given joint can
be considered to be ‘rigid’;

. research into alternative measurement or analysis techniques for the accurate
identification of anti-resonance frequencies - particularly with reference to
broadband type measurements (anti-resonance frequencies can be identified
accurately at present if a discrete sine dwell test method is adopted);

. development of ‘on-line’ methods for evaluation of the quality of measured
data in addition to the use of the AFRF with repeatability and reciprocity
data;

. investigation into whether suitable approximations can be found for the
sensitivity analysis equations that give acceptable results but use less of the
resonance and anti-resonance frequencies - noting the apparently simple
shape of the curve showing the relationship of resonance frequency to mass
added, Figure 3.23;

. the relationship of this new sensitivity analysis method to that known as
Vincent’s Circle;
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extension of sensitivity analyses for use with modifications other than single
degree-of-freedom masses or springs (or ‘internal stiffness’ modifications);

use of the sensitivity analysis techniques in tailoring a modification and its
dynamic properties to produce desired shifts in several resonance
frequencies of the base structure simultaneously;

incorporation of sensitivity analysis techniques into some form of
‘optimisation’ program for consideration of the best place to make a
modification to achieve alterations in several mode frequencies;

what is the physical explanation, if any, of an imaginary anti-resonance
frequency? and,

can any simplified approximation to the sensitivity analysis equations be
used to predict the resonance frequencies of a modified structure more
accurately than a Maclaurin’s series expansion with 1s’ and 2nd order
differential coefficients only (chapter 3 and Figure 3.25)?

L ,
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Appendix A

Algebraic Manipulations for the Reformulation of the
Impedance Coupling Method (see chapter 2)

Note: Equation numbers follow on from those in chapter 2.

The inertance of a coupled structure can be expressed as follows,

[C] = [BA] ([Bd + [A,J - [AAJ.[IpJ.IBd)-l  [APJ . . . . . . . . (2.17)

where,

[A/J=[ ;: ;: ;] ,,,=[ % Bj; Bjz] and [ I & = [  i ; ;] . . . . . . . ..(2.18)

Then,

[AAl. hil. Bil =[~~~~~].[~~~].[~~~~~]=[~~B~~B~~]

. . . . . . . . . . . . . . . . (2.19)

and, [BA] + [Ad - [A& [IA]. [Bd =

[ii:i~]+[~::d:p1-[~~I,%,1-[% Az:;z :s]

. . . . . . . . . . . . . . . . (2.20)

Now, it can be shown that:

[  i AZ:+ ;s ]=[ ; [A2z+gB2&’ -[A22+B;]-1.B23  ] . . . . . . ..(2.21)

I  -An[An+&d-l  A12.[An+&21-~.B23

which, on substitution into equation (2.17), gives;
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I  -AdA22+Bd1  AdA22+B2d-1.B23 I[ 141 A12  0

[Cl = bh+Bdl -[A22+B2d-1.Bn . A21 A22  0

0 I 0 01

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.22)

and therefore;
AII-A1>[AP+B&-1.A21 A,,-A,,.[Ap+Bu]-'.A, A1>[Az+B#.Bp

[Cl = B,.[A,+B&'&, Bm[A22+B&.Az -B,.[A,+B&.Bp+B,

B32.[Azz+B#.A21 Bs2.[Azz+B&'.Az -B3>[Az+BZJ-1.B23+B33 I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.23)

Now, this matrix may be split up into two matrices, the first of which contains inertance
properties of the unmodified components alone:

A12.[AU+B&-'.A,, A12[A22+B22]-1.A22 -A12[A~B22]-'.Bn

A21-Bz.[A22+B2;1-1.A21  Az-Bz.[A,+B&:A22  BD[A22+B22]-1.B23-B23

-B32[Ap+B&1.A21 -B32.[A22+B&J-1.AZZ B32[A22+B.&1.Bu I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.24)

and, by consideration of the terms in the middle row of the second matrix;

A21  -B22.W22+B2d-1.h = (I -B22.[A22+B221-l).A21
= ([An+Bnl -B22).[A22+B221-l.A21
= An.[An+B2d-1.A21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.25)

Similarly,

A22 -&2.[A~+B2d-~.h = AmiIAn+Bn1-1.A22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.26)
and

BdA22+B2d-1.B23 ‘B23 = -A22.Pb+Bd1.Bz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.27)

Equation (2.24) becomes:
A12.[A22+B22]-1.A21 A1p[Ap+B.#.A22  -A12[Az+B22]-1.B27

[Cl = AD[A22+Bz;l-?A21  A22[A22+B22]-1.A22  -Azz.[Azz+Bpl-'.Bn

-B32.[Ap+B&-1.A21  -B32.[A22+B&1.A22 B,.[Az+B&-'.Bz 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.28)



or, more concisely as:

[Cl = [A22+B22t1 . ( A21 A22 -B23 1 . . . . . . (2.29)
L 0 0 B33 J I-B~~J

Notes:

. only one matrix inversion is necessary;

l the matrix for inversion only contains information relating
coordinates of each component;

to the interface

l the first matrix of equation (2.28) is a representation of the unmodified
characteristics of the components, with ‘A’ as the reference component;

l the second matrix of equation (2.28) is a matrix of the differences between the
unmodified and the modified representations of the components.
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Intermediate Steps in the Derivation of the 1st and 2nd
Order Mass Sensitivity Equations for a Grounded
Structure (see chapter 3)

Note: Equation numbers without the ‘B’ prefix refer to those in chapter 3.

The resonance frequencies for a grounded structure modified with a single degree-of-
freedom mass (m) are given by solution of the following polynomial equation in &.

maR2cj E (1 - s)-s (1 - s)=o . . . ..(Bl) or (3.26)

The sensitivity of resonance frequencies to single degree-of-freedom mass modifications is
given by differentiation of equation (B 1) with respect to mass,

cjp+R2&{b!(l  -!$$)}+2~R~  %!(I -!$)]

+,,E(l  - $&{il  (1 - s)}=o . . . . . . ..(B2)

Now,

&{i(’ -$3}=2QR$$  b4 -33QR2;imi2) . . . . . ..(B3)

and, similarly,

~{~~(‘-~)}=2*R~~~(1-~)~~(*R21n2) . . . . . . . . . . (B4)

Therefore, by substitution of equations (B3) and (B4) into equation (B2) and after
rearrangement, we obtain,
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As the mass modification tends to zero, equation (B5) can lead to some computational
problems due to the form of the denominator. Expansion and further rearrangement of the
denominator eventually yields the following equation which is well behaved for all values
of mass addition,

d%

dm =

N-l
RR cjjn(.R,*) E

X=1
N-l

- Ln (a,* - RR*)
RR* r=l 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 036)

and in the limit as the mass addition tends to zero, RR tends to C$, leaving,

N N-l

dG
dm

-Cjj.sZp.~(Q*).~(jjOi*  - Cl,*)
r=l i=l=

2.fj(iiWi2).fi(Rr2 - Cl,*)

. . . . . . . . . . . . . . . . . .(B7) or (3.29)
m=O

i=l *P

For the 2nd order sensitivity, equation (B6) must be differentiated with respect to mass once
more. To simplify the procedure, we shall write equation (B6) as follows,

-’ . . . . . . . . . . . . . . . . . . . . . . . . . . . .@w

where,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (W
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Then,

d2szR
- =+fj(G2)[Qrt k!(l -$. &[(W1] +  O-‘&{&B g(1 -$]]
dm* i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (BW

Now, k{(D)-‘1 =-l(D)-*&{(D)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Bll)

and,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 03 12)

or, &ND>) =&(W +&NW) . . . . . . . . . . . . . . . . . . . . . . . . . . (B13)

Now,

&((D1)J =&da
N-1 N-l

RR dm *
-n (nr2 - RR’) +  c n&s2 - fiR2) 1 . . . . . . ..(B14)

r=i sfr
s#i

and,

_‘F
Qq2 i=l

sfi

. . . . . . . . . . . . . . (B15)
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Therefore, collect terms to obtain,

-& ((D>-1)  &g(D)-2

or, $ ((D)-‘} =-2$$ (D)-2. (*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(B17)

with,

(*) = (fir2 - nR2) + !,qr(Qs2 - aR2)
- s 1

+fiR  (1 - z)g [[,~~~~~~~jjai2  ! QR2 a(%2  - RR21  -g$Cas2  - “P’])

- 2 z (,~;-“n;;)&r2  - n,z,} . . . . . . . . . . . . . . . . (Bl8)

Also,

&{QR$(l  -s)} =  RR.2 +QR*$R21ii0i2)  +  &]-ql  -$)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B19)

Now, bring together equations (B6), (B lo), (B 17), (B 18) and (B 19) to give,

- =- dm 0-l ~*))+[~~[2~R.~dRZIj10i2)  +  &]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0320)
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and, eventually,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B21) or (3.46a)

Note:

l the analysis for a free structure is very similar but slightly more straightforward!
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Derivation of FRFs  in Coordinate Directions from
Measurements with Excitation at an Angle to the Axes

Angled excitation
direction (W)

Rx = axx Fx = axx Fw cos (0) Rx= axy F, = axy F, sin (e)

Rx = axy Fx = axy FW cos (0) Rx=ayy F, =ayy FW sin(O)

Hence,

and,

R, = a,, Fw c0s(e) + an FW sin(e)  = (a,,.cos(e) + a,,.sin(e)) FW

+ a,,.sin(e))

+ ayy.sin(e))

RX = (a,,.cos(e)FW

EY
FW = (a,,.cos( 0)

Therefore, total responses in the X- and Y- axes are :-

Rx = axx FW cos(e) + a,, FW sin@) = (CX,.cos(e)  + a,,.sin(e)) FW
and,

Providing either axx
knowledge of 2 ,

, axy or a,, is known, then the other terms may be calculated from
s and the angle of excitation 8.F

W
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T-Block Transducer Mass Properties, and
Transformations to Derive RotationalFRF Properties

_______
X

Dimensions in mm
Thickness =15mm

I

7
Material : Aluminium Alloy.

I
I
I 15mmIII
I
IL-< +
I 20mm

P;_ _ _ _ _ _
I X
‘1

20 m m I 7.5 mm

i

T-Block Transducer.

Ixx = 27.7 * 10-6 KgM2 & Iw = 8.7 * 10-6 KgM2

Therefore, since Ip = Ixx + I,, Ip = 36.4 * 10-6 KgM2



Inclusion of Accelerometer and Pushrod Adapter Mass in the Inertia Calculation.

Mass is assumed to be
concentrated at the 3%
geometric centre of the -
force gauge and adapter.

r ----_-__-----
I
I
I
L _ _ _ _ _ 1 r - -

I I
I I
I I
I I
:P I-*---I -

4 l
17.5mm

c

12.5mm

__ 1
I
I
I

_ _ J T
35mm

J Ip for force gauge = 89.7 * 10-6 KgM2

Therefore, total Ip = 126.1 * 10-6 KgM2

For this investigation, only a small amount of ‘rotational’ information was required, and so
the matrices were all (2x2), and the [T,] , [T2]  , and [M] matrices were defined as

follows:-

w-l= ;Io[ 1Pt ii
[Tll = 1 -1

[ 1zq?q

lrr21 = [ s: .g21

m = 47.2 * lo-3 Kg.
Ip = 126.1 * 10-6 KgM2

S1 = 21.5 * 10-3 M

S2 = 17.5 * 10-j M



Appendix E

Theoretical Calculation of T-Block Attachment Stiffness

T-block pivot point is
assumed to be on the

I I I
I I I
I I I
I I I

The applied torque is FsXs,  and for equilibrium, F&b = FsXs . . . . . . . . . . . . . . . . . . . . . . . . (El)

Now, T o r q u e  FsXs Fb.Xbrotational stiffness = Angle = 7 = - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8

W

52The bolt Stiffness  = Kb = eb

where eb = extension of bolt.

but, eb = X$ in rads for srnti angles, and therefore,

Fb&=-
Xb 8

, giving Fb = &, Xb 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E3)



Appendix E 2

and, substituting for Fb in (E2),

the attachment stiffness = xb~KbKbe=KbKb2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E4)

Now, consider the bolt alone,

Young’s Modulus S t r e s s  F L  F LE = m = x; = ~x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(E5)

and,

Stiffness K = F Lt h e r e f o r e  E=K.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E6)

and hence, E.AI,
Kb=r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(E7)

where, E = Young’s Modulus of bolt material
Lb = original length of bolt.

Substituting (E7) into (E4),
E.AbAttachment rotational StiffrieSS  =xb2.r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 033)

Assuming the following:-

& = 7.5 mm
E = 207 * 109 Nm-2 (for mild steel)
bolt core diameter = 3.5 mm

Therefore, Ab = 9.62 * 10-e m2
Lb=3Omnl

and hence, the attachment rotational stiffness = 3.73 * 103 Nm/rad.

This value for the attachment rotational stiffness is of the same order of magnitude as that
found experimentally, and it provides yet further confirmation that the experimental results
were just measurements of the attachment stiffness.



Appendix F

Coordinate Transformation Matrices for the Stiffness
Modifications to the Helicopter

Reference [86]: Theory of Matrix Structural Analysis
J. S. Przemieniecki
McGraw Hill.
1968.

The matrix equation relating displacements in the local coordinate system, WL], to those in
the datum SySteIn,  [VD], iSI-

[UDI

where, &,x=[bx mx noxl
&=[by may noyl
3bz=uoz m_z %&I

represents matrices of direction cosines for
the OX, OY and OZ directions
respectively, measured in the datum
system. [UD] represents element
displacements in the datum system.

The direction cosines for the X- axis in the local coordinate system have been calculated
from the coordinates of points 49 and 66:-

lex = 0.78216 mex = 0.45614 ncx = 0.42445

We now require direction cosines of Y- and Z- axes in the local coordinate system. The
orientation of the perpendicular Y- and Z- axes in the Y - Z plane is arbitrary.

To find the direction cosines for a Z- axis in the local coordinate system, choose an
arbitrary point, P=lj, and assume this point lies in the local coordinate X - Y plane. Then,
the vector product : x^ A P = z is a vector along the new Z- axis (N.B. The order of this
product retains a right-hand axis sense). The direction cosines of the local coordinate Z-
axis are found by normalizing this Z vector : 6 = S? , which leads to:-

. .




