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ABSTRACT

Current experimental modal analysis methods for identifying structures

are usually based either on very simple and flexible techniques, or on very

sophisticated computational ones. The former, implemented in interactive

computer programs, allow for a complete intervention of the user. The

latter tend to be used as black boxes, where the user does not have any

control of the identification process. The overall objective of the present

work is to combine the advantages of both approaches, developing

automatic means of performing experimental modal analysis. Here, the

intervention of the user is reduced to a minimum, while some

“intelligence” is incorporated in the computer programs so that “decisions”

can be taken automatically and results produced with an indication of the

quality or reliability of the analysis.

A survey and classification of the different modal analysis methods is

made; however, the focus of this thesis is placed on frequency-domain

methods. Some of these methods are examined in detail, including both

single-degree-of-freedom and multi-degree-of-freedom approaches using

single and global frequency-response analysis concepts.

The theory behind each of these various analysis methods is presented in

depth, together with the development of computer programs, theoretical

and experimental examples and discussion, in order to evaluate the

capabilities of those methods. The problem of identifying properties of

structures that possess close modes is treated in particular detail, as this is a

difficult situation to handle and yet a very common one in many structures.

It is essential to obtain a good model for the behaviour of the structure in

order to pursue various applications of experimental modal analysis,

namely: updating of finite element models, structural modification,
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ABSTRACT 4

subsystem-coupling and calculation of real modes from complex modes, to

name a few. This last topic is particularly important for the validation of

finite element models and foi this reason, a number of different methods to

calculate real modes from complex modes are presented and discussed in

this thesis.
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NOTATION

The list of symbols described below represents the standard notation used

in this thesis. However, the notation used in the description of the methods

presented in Chapter 2 should be read as a “local” one, although an effort

has been made to keep that notation as consistent as possible with the rest of

the work.

a

ak

%

g&Jr -

WI  -

[AsI -

PI
C

'k

ratio between two natural frequencies;

coefficients of the numerator polynomial of a(io) (real);

element of [‘ % *] for each mode r (complex);

residue of mode r, corresponding to a,(io) and its simplified

notation, respectively (complex);

constant related to the modal constant, for each mode r (real);

vector of coefficients + (real);

vector formed by RK, RM and fiik (complex);

state space diagonal matrix, from the orthogonal properties of [A]

(complex);

state space system matrix (real, symmetric);

system matrix (complex);

coefficients of the denominator polynomial of a(io) (real);

element r br -1, for each mode r (complex);

constant related to the modal constant, for each mode r (real);

vector of coefficients 4( (real);

state space diagonal matrix, from the orthogonal properties of [B]

(complex);

state space system matrix (real, symmetric);

shift in the reference number of a frequency data point;

coefficients of the numerator of the orthogonal polynomials (real);
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‘11 ‘R

Cr
(4
[cl

dk

d19 dR

D,, D,+

14

ei , e;’

{El, {Eli

'k

IFI
{fO>L (F(t))  -

‘I&

El  9 KU

Mm)

{Ag(jwi))

r l/g \I

[Agl

h,(t)  v h(t)

(hi(t)  1

WI
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origin intercepts of Im( l/o”,)  and Re( l/a>, respectively (real);

modal constant for mode r (real);

vectors of coefficients I+ (real);

viscous damping matrix (real);

coefficients of the denominator of the orthogonal polynomials (real);

origin intercepts of tI, tR, respectively (red);

coefficients defined in Eqs. (4-33) and (4-35 b), respectively (real);

vectors of coefficients dk (real);

error function and modified error function, at frequency CO.1

(complex);

error vector and error vector corresponding to the i* set of data

points (complex);

element of (F), at the input coordinate k;

vector defined in Eq. (4- 14) (real);

vector space vector of applied forces (complex);

state space vector of applied forces (complex);

vector of input force amplitudes (complex);

value of the denominator of either Eq. (5-9) or Eq. (4-65) for each

frequency data point (complex);

inverse of gi - acts as weighting function - Eqs.(4-64) and (5-23) -

(complex);

vectors defined in Eqs. (4-14) and (4-38),  respectively (real);

auxiliar vector, defined in Eq. (5-75) (complex);

difference of vectors (gCj0))  between two data points;

diagonal matrix formed by l/gi elements (complex);

matrix formed by (Ag(jo,)) elements;

impulse response function corresponding to a.&~) and its

simplified notation, respectively (real);

vector formed by hik(t)  elements (real);

hysteretic damping matrix (real);



MO1
Im

[II

[II'

j
J

kr

r k’ t] ,[‘ k-1

CKI

EK’I,  RI

WI
L

m

M

r m *I, [‘ m ~1 -

INI -

EMI -
N

“1, “R

NO

P

P’

P,

P*(t)

(p(t)) -

PI
9
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impulse response function matrix (real);

coefficient of the imaginary part of a complex quantity;

identity matrix,

modified identity matrix (Eq. (5117));

imaginary unit ( = fi ); also an index;

squared error;

modal stiffness of mode r (complex);

diagonal stiffness matrices of the damped (complex) and undamped

(real) system, respectively;

stiffness matrix of the system (real);

stiffness matrix after transformation by the real modal matrix

(complex) and its real part, respectively;

stiffness matrix of the system which includes [HI (complex);

number of measured frequency points taken into the analysis;

degree of the orthogonal polynomial y(o);

degree of polynomial;

origin intercepts of Im( l/Q and Re( l/a,), respectively;

modal mass of mode r (complex);

diagonal mass matrices of the damped (complex) and undamped

system (real);

mass matrix of the system (real);

mass matrices after transformation by the real modal matrix (real);

number of degrees-of-freedom of the system;

slopes of Im( l/or) and Re( l/a,), respectively;

number of runs;

number of measured degrees-of-freedom of the system;

number of measured response locationss;

number of pairs of data points;

amplitude of p,(t) - modal participation factor (complex);

state space pricipal coordinate of mode r (complex);

state space vector of the pricipal coordinates (complex);

matrix defined in Eq. (4-8) (complex);

number of force input locations;



qi

9a
h”L {P,) -
@I
r

Re

R,,R, -

NOTATION

weighting function for each frequency CIX;

variable defined in Eq. (5 17 1) (complex);

real general and principal coordinates of the undamped system;

matrix defined in Eq. (4-8 1);

subscript for mode counter;

real part of a complex quantity;

constants associated with R,(jo) - Eq. (5-135) (complex);

.
residuals corresponding to a,Cjo) and a,(jo), respectively

(complex);

{R,@N, IR&W) - vectors formed by R,(jo)  and R&o) elements, respectively;

{RI
S

S*

'1, 'R

r $-I
t
t.1.k

'1, tR

El

&I  7 [T,,J

PC]

ITsI

RI

&I

[T'l

At

‘k

‘I’ ‘R

b(t>)

mo1

vector in the relation between (d) and {b) - (Eq. 4-40 b) (real);

Laplace  variable;

eigenvalue of a system with viscous damping (complex);

origin intercepts of cl, CR, respectively;

diagonal matrix of eigenvalues sr;

time variable;

variable defined in Eq. (5 11) (complex);

slopes of Im( l/o.>  and Re( l/cc), respectively;

matrix defined in Eq. (4-8) (complex);

matrices relating {c) to {a) and (d) to {b) , respectively (real);

matrix formed by tin elements (complex);

matrix defined in Eq. (5-138) (complex);

transformation matrix (complex);

transformation matrix (real);

matrix relating (a) with Re (a) - Eq. (4-7 1) (real);

time interval,

coefficient defined in Eq. (4-33 a) (real);

slopes of tl, tR, respectively (real);

state space vector formed by {y(t)), (i(t)) (complex);

vector of the amplitudes of (u(t)) (complex);
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WI - orthogonal (or unitary) matrix of left singular vectors, in the SVD

technique (real or complex);

u-J,1 - matrix defined in Eq. (5-5 a) (real);

[‘,I, - [Uo]  for each FRF k;

&I - matrix formed by matrices [Uo] (real);

WI, - [U] corresponding to [A&IT;

BJI, - [U] corresponding to [A&IT;

‘I’ vR - slopes  of cI, CR, respectively (real);

vk’ vk+ - coefficients defined in Eqs. (4- 33 b) and (4-35 a), respectively

(real);

&) - vector defined in Eq. (5-5 b) (real);

&} - vector formed by vectors (Vo} (real);

WI - orthogonal (or unitary) matrix of right singular vectors, in the SVD

technique (real or complex);

WI, - [V] corresponding to [AEIT;

.

WI, - [V] corresponding to [AGIlT;

WI - vector defined in Eqs. (4-8) and (4-19) in terms of orthogonal

polynomials (complex);

'i('j> - free response at point i and time input tj (real);

[Xl 3 WI - matrices defined in Eqs. (4-14) and (4-38),  respectively (real);

(Y(0) - vector space displacement response vector (complex);

(3
PI

‘i,k

vector of the amplitudes of {y(t)} (complex);

matrix defined in Eq. (4-14) (real);

variable defined in Eq. (5-20) (complex);

element of (zy } ;

eigenvector (complex);

auxiliar matrix defined in Eq. (5-94) (complex);

matrix defined in Eq. (4- 14) (real);

matrix formed by Zip elements (complex);

null vector and matrix, respectively;

- amplitude of receptance at natural frequencies 1 and 2, respectively;
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a,(io>,a(iw) - receptance - response at point i due to a force at point k - and its

simplified form,  respectively (complex);

Io$iW, Mi@I - vector, formed by a,(jo) elements, for the same input reference k

and its simplified form, respectively (complex);

GI - vector formed by &w;) elements (complex);

{ Aoz(ioi)),  { A&joi)}  - difference receptance and mobility vectors between two data

points, respectively (complex);

receptance man-ix (complex);

matrices defined in Eqs. (5-164) and (S-184),  respectively

(complex);

[a] evaluated at frequency oi;

diagonal matrix formed by &.I~) (complex);
.

matrices formed by {Aa(ioi)} and {Act(ioi)}  elements,

respectively (complex);
.

recalculated [ACX] and [A;], respectively;

ratio between two damping factors;

variables defined in Eqs. (S-158) and (5164),  respectively

(complex);

common designation for cp,(o)  and e,(o);

force location vector and matrix, respectively (real);

ratio between two modal constants;

function of frequency, defined in Eq. (3-26);

tolerance for the modal constants;

phase angle of modal constant for mode r;

elements of {@r}, at the response coordinate i and input coordinate k,

respectively;



NOTATION 1 9

{4Q, {4q - vector space and state space normal&d  eigenvectors of mode r,

respectively (complex);

(@,I - undamped mode of the system;

hPJT - row vector, formed by & elements (complex);

Kw> W,l - complex modal matrix, formed by & elements, and real modal

matrix, respectively;

%,j - complex orthogonal polynomial of order j, evaluated at frequency

CO;,  associated with the numerator of a(io);

- ‘pi j defined for negative and positive frequencies, respectively;

cp,w - ‘pij  as a continuous function of 0;

Ii-91 - matrix of orthogonal polynomials ‘pi j (complex);

WI - matrix whose elements are Cp+ij;

h, - eigenvalue of mode r for a system with hysteretic damping

(complex);

[‘3L”\l - diagonal matrix of real eigenvalues;

[‘ h’-] - matrix of the identified complex eigenvalues;

- unscaled eigenvector element i of mode r (complex);

hf,l, WI - vector space unscaled eigenvector of mode r and corresponding

modal man-ix (complex);

WJ [‘y’l  - state space unscaled eigenvector of mode r and corresponding modal

matrix, respectively (complex);

V - threshold value for interference criteria;

8 - phase angle between response displacement and input force;

0 -ij complex orthogonal polynomial of order j, evaluated at frequency

oi, associated with the denominator of a(jco);
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8~ij , 0+’ -1J (Ii j defined for negative and positive frequencies, respectively;

e,m> - CIi  j as a continuous function of 0;

[@I - matrix of orthogonal polynomials Cli  j (complex);

0 - damping coefficient;

CT:.1 - singular values - elements of [ZZ]  (real);

PI - singular value matrix (real);

El, 9 PI& - [C] corresponding to [A&IT and [A;]‘, respectively;

cq$ PI, - [Cl, and [I& after putting to zero the small singular values;

sr - viscous damping factor of mode r;

Co - circular frequency;

0’r - damped natural frequency;

Cor - natural frequency of mode r;

‘i
- frequency value at data point i;

Pm, D&l - matrices defined in Eqs. (4-58) and (5-183),  respectively (real).

Operators

c
l-I

I I

II II

( ‘)7 ( “)

t IT, [ IT
{ 1*J.1*
{ lH, [ lH
[ I-’
[I’

- summation;

- product ;

- modulus ;

- Euclidean norm;

- first and second time derivatives;

- transpose;

- complex conjugate;

- hermitian transpose (complex conjugate + transpose);

- standard inverse;

- pseudo-inverse.
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Symbols

c-1 -

r*1 -

Abbreviations

CE

CEFD

DOF

DSPI

ERA

ERA-ID

FDPM

FEM

FRF

GHS

GRFP

IRF

ISSPA

LSCE

MAC

MCF

MDOF

MIMO

PRCE

PRFD

RFP

SDOF

SFD

SIMO

SISO

SSTD

SVD

experimentally measured quantity;

diagonal matrix.

autoregressive moving-average;

complex exponential;

complex exponential frequency domain;

degree-of-freedom;

direct system parameter identification;

experimental modal analysis;

eigensystem realization algorithm;

eigensystem realization algorithm in the frequency domain;

frequency domain Prony method;

finite element method,

fast Fourier transform;

frequency response function;

Gaukroger-Heron-Skingle;

global rational fraction polynomial;

impulse response function;

identification of structural system parameters;

Ibrahim time domain;

least-squares complex exponential;

modal assurance criterium;

modal confidence factor;

multi degree-of-freedom;

multi input multi output;

polyreference complex exponential;

polyreference frquency domain;

rational fraction polynomial;

single dgree-of-freedom;

simultaneous frequency domain;

single input multi output;

single input single output;

single-station time domain;

singular value decomposition.
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CHAPTER 1

INTRODUCTION

l- 1 General considerations

In current engineering practice, it is of major concern to be able to

incorporate vibration studies at the level of design as well as at the

prototype stage. The former involves prediction of the frequencies and

vibration levels at which the structure may experience high values of

stress, leading to failure or at least malfunction. This prediction is based on

the establishment of mathematical models which can be formulated on

analytical and/or numerical calculations. Due to the high complexity of

almost all engineering structures and machines, analytical solutions are

usually impossible to obtain and, therefore, numerical methods represent

the major percentage of all the calculations that have to be pursued. The

numerical methods widely used are the finite difference method, especially

in fluid mechanics, and the finite element method, in structural mechanics.

The construction of a prototype or the actual structure does not mean the

end of the uncertainties for the engineer. He is well aware that the

22



Chap. 1 Sec. l-l General considerations 2 3

theoretical concepts involved in the calculations have incorporated several

assumptions and simplifications that may not (and in general do not) reflect

the actual behaviour of the real structure. Experimental procedures start,

then, to play their role by evaluating the extent to which the theoretical

predictions compare to the experimental results. Some aspects of the

behaviour of the structure may not have been foreseen at all and are only

made clear by experimental tests. Provided sufficient care is given to the

experimental procedures, the results thus obtained are those that should be

understood as the most correct. These should be used in two ways: (i) to

make direct modifications to the structure and start an iteration process

based on modification-testing and, (ii) to provide information to correct

the theoretical models so that future structures can be more rigorously

designed. This last aspect is very important, especially if we think that it is

not always possible to test completely an already built structure, due to

many limitations, one of which is the cost inherent in experimental work.

To summarize, one must say that the theoretical and the experimental

procedures have a complementary role for the complete description and

understanding of the dynamic behaviour of a structure and that one cannot

be substituted for the other. In the present work, we shall be dealing with

the experimental side of the problem of evaluating the dynamic

characteristics of mechanical structures, by the use of experimental modal

analysis.

Experimental modal analysis is a vast area of study that comprises three

stages: (i) the testing of the stucture to obtain the relevant raw measured

data, (ii) the analysis of these data by the use of numerical techniques and

(iii) the post-processing of the results obtained. The overall objective is to

obtain a mathematical model of the structure that matches as closely as

possible the experimental results obtained in the tests. The post-processing

stage encompasses the use of the results to update previous theoretical

predictions, optimization via structural modification, subsystem coupling,
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calculation of real modes from complex modes, etc.

1-2 Testing a structure

1-2-l Measurement procedures

The measurement procedures must be established with great care in order

to acquire reliable response data for subsequent analysis. The structure

must be well positioned, either for a free-free test case - with soft

suspension - or for a grounded test, well mounted on a foundation block

that must be isolated from neighbouring machines. Depending on the type

of structure and on the kind of desired measurement, the size of the shakers

or impact hammers, the transducers (for force and response), charge

amplifiers and other devices must be chosen accordingly. Of paramount

importance is also the correct calibration of the transducers, and this must

be checked again after the completion of the measurements. Spectral or

sine-sweep analysers must be used according to the required type of

measurement. Also depending on the type of desired analysis, a judicious

choice of the excitation and response locations must be made. A careful set

up of all the instrumentation, including alignment of the shaker and

location of the transducers, must be made.

Another very important aspect is the signal processing, i. e., the choice of

the type of excitation signal, filters, type of windows to use, number of

averages to take into account, etc. After the measurement has been

completed, some checks must be made, for instance on the coherence

(whenever applicable), input auto-spectrum and signal-to-noise ratio.

l-2-2 Types of excitation signals

The type of excitation signal depends on the objectives of the study. We can
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have, for instance, excitation due to ambient phenomena, like wind, seismic

activity or traffic. Usually, this kind of excitation is very difficult or

impossible to measure and the analysis of the acquired data only provides

limited information. Another form of excitation is the transient type such

as can result from a load that is suddenly released or from an impact,

usually using a hammer. The use of a hammer is, nowadays, a very popular .

means of exciting a structure, due to the possibility of having easy access to

many points of the structure and also because a lot of data can be acquired

very rapidly. Another advantage is that in this case there is minimal

attachement  between the excitation device and the structure, thus reducing

unwanted interactions. The time response to the impulse will contain

information of all the modes of vibration of the structure, provided enough

energy has been put into the impact, for the frequency range one is

interested in. The use of two-channel Fast-Fourier-Transform (FFT)

analysers enables the time signals of the input and of the output (usually

measured with an accelerometer) to be transformed into the frequency

domain, from where the relation between the two signals can be calculated,

giving the so-called frequency-response-function (FRF) containing

information about the dynamic properties of the structure.

However, noisier results are to be expected using this excitation than those

obtained using, for instance, random excitation. Besides the hammer, we

can use an electro-magnetic shaker which, driven by a signal generator,

can excite the structure with a different number of excitation signals. The

most common is random excitation. A random input implies a random

output and again using an FFT analyser the FRF can be estimated. The

random signal provides an input with a spectrum in all the frequency range

of interest, but an averaging procedure is necessary to eliminate noise, due

to the fact that the signal is constantly varying and although it is not

periodic, each separate sample is assumed periodic by the analyser. The use

of a “window”, i. e., multiplication by a function that dies out in the

.,
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begining and at the end of the sample period, is usually essential. Tests

using random excitation are generally very fast. The main disadvantage is

that the FFI linearization procedure makes non-linear structures appear to

be linear. Alternative but similar excitations applied via a shaker are

pseudo-random, which is a periodic signal,but with a random amplitude

and phase within each period, and burst-random, which is a random signal

that starts shortly after the starting of the acquisition and ends well before

the completion of the data acquisition. Another form of signal is the

“chirp”, which is a fast sine sweep. It is quicker than the previously

mentioned signals because, as it produces flat spectra, fewer averages are

necessary. The noise is also reduced.

Sine-wave excitation does not necessarily require an FFI analyser, but

another type, to perform a sweep over the frequency range of interest and

to calculate the FRF. Although slower than random excitation, sine-wave

excitation is very good for analysing narrow frequency bands and for

characterizing  non-linearities. A disadvantage is that it may excite quite

strongly the structure at a resonance frequency, causing damage to it.

Practical considerations on measurement procedures and signal processing

can be found in Refs. [l] to [6], as well as in the Technical Review series of

Brtiel & Kjxr. Refs. [7] and [S] (for example) constitute more fundamental

and classical text books on this subject. In all these references the interested

reader can find many more articles and text books dealing with this matter.

l-2-3 Structural behaviour assumptions

In experimental modal analysis the structure usually is assumed to exhibit a

linear behaviour, meaning that the response to a combination of forces

applied simultaneously is the summation of the individual responses

corresponding to each force applied individually. This is, in general, quite
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a reasonable assumption to make, even if in practice the structure exhibits a

slightly non-linear behaviour. For higher degrees of non-linearity, though,

appropriate techniques must be used.

Another assumption is that the structure is time invariant, i. e., its dynamic

properties do not vary with time. A common example of time variance

concerns the dependence on temperature. A structure may be composed of

materials that can be sensitive to changes of temperature and, implicitly,

dependent on time. This can be quite a critical factor in some modern

structures, often composed of non-metallic elements, and gives credit to

the increasing tendency of creating rapid data acquisition systems that are

able to obtain a large amount of data in a minimum time. In our study we

shall consider that these two assumptions (linearity and time-invariance)

hold.

In Section l-3, a general classification of the various methods of analysis

(identification) of the measured data is given; the analysis of those data

constitutes the second stage of experimental modal analysis cited above and

is the focus of our attention in this work. One of the possible applications of

the post-processing of the results (third stage) is the calculation of real

modes from the identified complex modes (as afore-mentioned) and

methods of analysis for this purpose will be presented in Chapter 6.

l-3 Classification of modal analysis identification methods

During the last two decades or so, many researchers have devoted their

efforts to the development of techniques that aim to produce a reliable

identification of the dynamic properties of structures. Those efforts

have been fruitful due largely to the introduction of the Fast-Fourier-

Transform (FFT) (Ref. [9]) and to the development in recent years of very

powerful multi-channel spectrum analysers, dedicated desktop computers
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and instrumentation in general, that permit the acquisition and treatment of

large quantities of data. In this way, it was possible to evolve from very

simple techniques (e. g., Refs. [lo] to [ 131) where analyses were based on

data from single input excitation and single output response to highly

sophisticated ones (e. g., Refs. [14], [15]) where data from multi-input

excitation and multi-output responses are treated simultaneously. The

turning point in this evolution was made in 1971 by Klosterman (Ref.

[ 16]), introducing on-line testing controlled by mini-computers.

The current trend of experimental modal analysis (EMA) seems to be a

progressive abandonment of interactive analysis programs and a

development of completly automated systems of acquisition and analysis of

data, to accompany the developments in other areas of structural design,

like the Finite Element Method (FEM) and the Computer-Aided Design

(CAD). A perspective of the evolution and future of EMA is given in Ref.

u71.

Nowadays, the number of technical publications on EMA is such (to have

an idea, see Ref. [ 1 S]) that the task of classifying the available methods of

analysis (itself only part of EMA’s vast field of study) represents a great

effort. Previous surveys, Refs. [19] to [29], are a good starting point for

our investigation.

The major grouping concerns the domain in which the data are treated

numerically. There are time-domain and frequency-domain methods.

Tuned-sinusoidal methods are a special category and will be considered

separately. Early methods used to work in the frequency domain, but

problems associated with frequency resolution, leakage and high modal

densities led workers to start looking at time domain methods as a

promising alternative. The calculation of the impulse-response-function

(IRF) corresponding to an FRF involves the calculation of the inverse FFT,
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a standard feature in spectral analysers. In this case, however, leakage can

still be a problem, and to avoid this some methods use the force and

response histories directly. In general, time domain models tend to provide

the best results when a large frequency range or large number of modes

exist in the data, whereas frequency domain models tend to provide the best

results when the frequency range of interest is limited and the number of

modes is relatively small. However, time domain methods have a major

disadvantage in that they can only estimate modes inside the frequency

range of analysis, and take no account on the residual effects of modes that

lie outside that range. This is why, recently, people have returned to

frequency domain techniques, which can improve the accuracy of the

results by accounting for residual terms or by increasing the order of the

model. The eventual application of the resulting models has a major

influence on the importance (or otherwise) of these residual effects.

Time domain and frequency domain methods can be divided into indirect

(or modal) and direct methods. The former designation (indirect) means

that the identification of the FRF(s) is based on the modal model, i. e., on

the modal parameters (natural frequencies, damping ratios, modal

constants and their phases) which are the quantities in the characteristic

solutions of the dynamic equations of equilibrium. The latter designation

(direct) means that the identification is directly based on the spatial model,

i. e., on the general matrix equation of dynamic equilibrium, the primitive

equation from which all the methods are derived. In some of the methods

in this last category, the system matrices of the referred equation can be

evaluated and the corresponding eigenproblem solved in order to calculate

the modal parameters.

A further division concerns the number of modes which can be analysed.

In this respect, we can have single-degree-of-freedom (SDOF) and

multi-degree-of-freedom (MDOF) analyses. In the time domain we have

only MDOF analysis, while in the frequency domain we can have SDOF or
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MDOF analyses with the indirect methods. Direct methods only apply to

MDOF analysis.

When we have tested a structure in order to collect the measured data, we

usually have at our disposal a set of FRFs. These FRFs are the result of

exciting the structure at each selected point and measuring the response at

several locations across that structure. Some modal analysis methods can be

applied only to a single FRF at a time. These are called single FRF or

single-input-single-output (SISO) methods. Other methods allow for

several FRFs to be analysed simultaneously, with responses taken at

various points on the structure, but using one excitation point. These are

called global or single-input-multi-output (SIMO) methods. The

philosophy behind this category of methods is that the natural frequencies

and damping ratios do not vary (theoretically) from FRF to FRF (they are

global properties of a structure) and, thus, it should be possible to obtain a

consistent and unique set of those properties by processing several FRFs at

the same time. This procedure would automatically average out small

variations in those modal properties that will necessarily occur when

analysing one FRF at a time and it would, in principle, be preferable to a

simple or weighted average of the results from several single analyses.

Finally, there are methods that can process all the available FRFs

simultaneously, from various excitation and response locations. These

methods are usually called polyreference or multi-input-multi-output

(MIMO) methods. Fig. l-l shows a diagram with the various possible

categories of methods.

l-4 General objectives of the work

The main objectives of the present work are:

(i) to give a general classification for the modal analysis identification
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(ii)

(iii)

(iv)

methods, together with a detailed interpretation of the most

significant and most widely used ones, as a general review containing

such an information is not currently available;

to explore, in a critical sense, some of the most used frequency

domain methods, providing means of improving them and paying

special attention to the common problem of the recognition and

identification of close modes;

to explain and justify, whenever possible, either theoretical

procedures or physical interpretations that have not been clarified so

far, therefore contributing to the future development of modal

analysis technology;

to develop more automatic and “intelligent” procedures which, when

incorporated into the computer programs, can provide answers with

inherent indications of their quality, so that the intervention and

judgement of the user is minimized or even eliminated. In other

words, to extract valid modal properties from measured data.

I MODAL ANALYSIS I
1 IDENTIFICATION METHODS 1

SINGLE (SISO)
GLOBAL (SIMO)

Fig. l-l Classification of modal analysis methods
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l-5 Preview of the thesis
.

In Chapter 2, a description of the most widely used methods of modal

identification is given. In this exposition, we have tried to follow a certain

chronological order, usually accompanied by a logical (?) growth in the

complication and sophistication of the algorithms used. The emphasis of

this thesis is on frequency domain methods. This choice is due to several

reasons:

(9

(ii)

(iii)

(iv)

more facility in the incorporation of residual terms in the theoretical

formulation;

to avoid the calculation of the IRF via an inverse FlT;

current trend in modal analysis research;

more tradition, previous experience and available software, and

personal preference.

In Chapter 3, a discussion of SDOF methods is provided, seeking to

understand the limitations of this kind of method, namely in what concerns

the recognition and identification of close modes. Improvements on this

matter are proposed. This kind of method can provide a useful physical

understanding of the implications of the existence of close modes and is

shown to be quite useful and appropriate for a large range of applications.

In Chapter 4, the Rational Fraction Polynomial method is developed in its

SISO version and described in full detail. A new automatic procedure to

establish the existence of one or two close modes is proposed and

theoretical and practical examples are given. A new approach to the

identification of lightly damped structures based on the Rational Fraction

Polynomial method is made, and a discussion on the effects of the choice of

the data points to be used is carried out. The “best” results are found by an

automatic procedure. This approach is shown to be closely related to the
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Ewins-Gleeson method, described in the following chapter.

In Chapter 5, a 5240 version of the Rational Fraction Polynomial method

is described and alternative formulations to calculate the modal parameters

are proposed. Special attention is again given to the case of two close

modes. A method called Global is also described in detail and an

improvement is given in order to obtain results with indications of their

quality. Another method, the Spectral method is also discussed, some

improvements are tried and a comparison with the other two methods

presented.

Another important related field of investigation is the calculation of real

modes of vibration based on measured complex modes. This is also a very

important matter in the assessment of the validity of theoretical

calculations, usually using the finite element method. In Chapter 6 two of

the many existing methods for this type of calculations are compared and

some examples are given.

Finally, in Chapter 7, conclusions and contributions of the current work

are presented together with suggestions for future research.



CHAPTER 2

A DESCRIPTION OF MODAL ANALYSIS
IDENTIFICATION METHODS

2 - 1 Introduction

Based on the classification given in Fig. l-l, a wide range of modal analysis

identification methods are described in the present chapter. The most

relevant methods in the time and frequency domains are presented and a

historical note on the tuned-sinusoidal methods is also given. The objective

of this chapter is to provide the interested reader with a comprehensive

review of the various methods of identification, usually distributed over a

large number of publications and with a wide diversity in the notation used.

We have tried to keep the notation as consistent as possible. Moreover, it is

hoped that the review will be useful to those interested in investigating one

or more methods, to decide on which ones to study and to understand more

readily the similarities and differences amongst the several approaches.

For the thesis, the given description helps essentially to frarne the methods

on which focus is put in subsequent chapters of this work.

3 4
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2-2 Time domain methods

2-2-l Indirect or Modal methods

In this category, the most widely known methods are the Complex

Exponential (CE), the Least-Squares Complex Exponential (LSCE), the

Polyreference Complex Exponential (PRCE), the Ibrahim Time Domain

(ITD), the Single-Station Time Domain (SSTD), and the Eigensystem

Realization Algorithm (ERA). We shall describe each of these, providing

an explanation of the theory and the most relevant references, and seeking

to highlight the common features and the differences between them. In Fig.

2- 1, a diagram of the classification of time domain methods is shown.

I TIME DOMAIN
MJZHODS I

INDIRECT DIRECT
METHODS METHODS

I I

Fig. 2-1 Classification of Time domain methods.

The Complex Exponential method (CE)

In the frequency domain, the FRF in terms of receptance aik (displacement

:.
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at point i due to a force at point k) for a linear, viscously damped system

with N degrees-of-freedom @OF) can be given by (e. g., Ref. [l]):

q&o) =; [ rAik f%k*
1 (2-l)

14 6& +j( co - o,ll( 1 -cr2)) + 0,5, +j(o + e+d(l-5,“))

where or is the natural frequency, 5,. is the viscous damping factor and

rAik is the residue corresponding to each mode r; * denotes complex

conjugate. Another way of writing Eq. (2-l) is

a,(@) = 2 ,A,
14 w,& +j(o - or’)

(2-2)

where

or’ = 0, 4<1-&2)

(JJ ‘z-0’
r+N r

Ar+N ik = pik*

(2-3)

The CE method (Refs. [30], [31], [27]) works with the corresponding

impulse-response-function (IRF), obtained from (2-2) by an inverse

Fourier transform :

h&t) = ? fiik e srt (2-4)
I=1

or, simply

h(t) = ? A,‘esrt (2-5)
I=1

where s, = - o,& + jm,.’ and the properties (2-3) hold. Considering the

time response h(t) (real-valued) at a series of L equally spaced time
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intervals Af, we have

hQ = h(o)

h, = h(At)

. .

. .

. .

Sec. 2-2-l Indirect or Modal methods

= ;=” A ,
l=l

= g A,‘eSr’At)
r-1

.

.
2N l

. m . . s,(LAO
hL = h(LAt)  = t A,‘e

l=l

or, simply

b=?A,
r--l

2N

h, = c A,‘V,
X=1

. .

. .

. .

hL = 5 A,‘$
r-1

with

V,= e
srAt

3 7

(2-6)

(2-7)

w3)

It must be noted that in IQ. (2-7) the values of A,’ and V, are not known.

How can these values be calculated ? The solution is an ingenious technique

devised in 1795 by Prony (Ref. [32]) and known as Prony’s method.

Because the roots s, for a sub-critically damped system always occur in

complex conjugate pairs, so do the modified variables V,. Thus, there

always exists a polynomial in Vr of order L with real coefficients p (called

the autoregressive coefficients) such that Eq. (2-9) is verified:

. :
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po+p1v,+p,v,2+  . ..+p.vrL=  0 (2-9)

In order to calculate the coefficients p to evaluate Vr, it is necessary just to

multiply both sides of Eq. (2-7) by PO to p, and to sum the result. This

gives:

(2-10)

or

~Pihi = ~ [4_‘~piV,‘3
i=Q I=1 i=O

(2-l 1)

In this way, the inner summation in Eq. (2-l 1) is exactly the polynomial of

Eq. (2-9). As this polynomial vanishes for each value of V,, the

right-hand-side of Eq. (2-11) becomes null for each root of that

polynomial, becoming

~ P,h,=O , for each Vr (2-12)
i=O

From Eq. (2-12) it will be possible to calculate the coefficients pi which

will yield the solution of the polynomial (2-9) for its roots, V,. T o

calculate pi, we proceed as follows: L will be taken equal to 2N for

convenience and so we shall need 2N sets of data points hi, each one shifted

one time interval and pzN will be set to 1. The result will be:

h, h, h, . . . b
. . . .
. . . .
. . . .

=- +2N

62N+l.
.

h’4N-1

(2-13)
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or

[hl {PI = u-0 (2-14)
(2Nx2N)  (2Nxl) (2Nxl)

knowing the coefficients pi, we can use a polynomial solver (or, even

better, an eigensolver) to calculate the roots Vr. Using Eq. (2-8) and its

corresponding complex conjugate value, we can determine the natural

frequencies and damping factors. With the values of Vr, we can use Eq.

(2-7) to calculate the residues and consequently the modal constants and

phase angles. The residues A,’ are easy to calculate if we write Eq. (2-7)

as:

1 1 . . . 1 ’
v, v, . . . vm

v: v; l . . v&
. . .
. . .
. . .

2N-1v, 2N-1VT-l . . . v,

4’
AZI

A3’
.
.
.

4N

=- ho
hl
h2

.

.

.

h2N-1

(2-15)

where, for convenience (to have a square matrix), we have only taken the

first 2N-1 values of hi. In fact, we need use only N-l values, as V,. and Ar’

appear in complex conjugate pairs.

The CE method is an MDOF indirect method that falls in the category of

SISO methods, as it is designed to analyse a single RF at a time. It is a

simple method that does not require initial estimates for the modal

parameters and the only unknown is the number of modes that must be

considered in the analysis. An overspecified number of modes is usually

given and we shall have to distinguish later between genuine and

computational modes. Another way of determining the correct number of
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modes is to repeat the analysis several times, decreasing each time the

specified number of modes. A plot of the error between the original and

regenerated curves for each number of modes will give an indication of the

correct order of the model. A drop on this error graph corresponding to

the correct number of modes is expected to be visible. An alternative to the

calculation of the effective number of modes is the calculation of the rank

of the coefficient matrix used to calculate the eigenvalues. Another way

could be the use of different sets of data and analyse the consistency (or the

variation) of the solutions for the modal parameters. Both these kind of

techniques will be discussed in Chapters 4 and 5, applied to frequency

domain methods. One of the biggest disadvantages of the CE method

appears to be its sensitivity to noise (Ref. [27]).

The Least-Squares Complex Exponential method (LSCE)

The LSCE, introduced in 1979 (Ref. [27]),  is the extension of the CE to a

global procedure. It is therefore a SIMO method, processing

simultaneously several IRFs obtained by exciting a structure at one single

point and measuring the responses at several locations. With such a

procedure, a consistent set of global parameters (natural frequencies and

damping factors) are obtained, thus overcoming the variations obtained in

the results for those parameters when applying the CE method on different

IRFs.

The extension from the CE to the LSCE method is quite straightforward.

Referring to Eq. (2-14),  it can be seen that the coefficients p that provide

the solution of the characteristic polynomial (2-9) are global quantities,

i. e., they must be the same for every IRF used. Therefore, if we write Eq.

(2-14) for p IRFs, we obtain

,. ;, ., _, ..,
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(2-16)

[hGl {PI = Ih,‘}
(2Npx2N)  (2Nxl)  (2Npxl)

(2-17)

The least-squares solution can be found via the pseudo-inverse technique:

{PI = ([ho IT FG 1)-l [hG IT &J (2-18)

We can see that a solution of this type could already have been applied in

the CE method for Eq. (2-13). Considering more than 2N sets of points

would already have been an improvement in the averaging out of noise

disturbances in the data. Therefore, in Eq. (2-17) we can also have more

than 2N sets of data points. Knowing the coefficients {p}, we obtain the

values of V,. as before (solving Eq. (2-9)) and then, for each IRF, we can

calculate the residues A,.’ using again Eq. (2-15) and, consequently, the

modal constants and phase angles. For these later calculations, a frequency

domain algorithm could alternatively be used.

The problems associated with the estimation of the correct number of

modes still remain, as for the CE method. The calculation of the rank of

matrix [hc] in Eq. (2-17) can be used as an indication of that quantity (Ref.

[271).
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The Polyreference Complex Exponential method (PRCE)

The PRCE method, developed in 1982 by Vold et al. (Refs. [33], [34]),

constitutes the extention of the LSCE method to a MM0 version, i. e.,

including information not only from several output locations, but also

from several input reference points on the structure. Apart from being a

more general and automatic way of analysing dynamically a structure, this

overcomes the problem that sometimes occurs when using a SIMO method,

where one mode of vibration may not be excited because the excitation may

be located close to a node of the structure.

In the explanation that follows, we shall try to keep a similar notation as

used in the previous two methods, and a similar philosophy, to show as

clearly as possible how the PRCE is an extension of the LSCE method. In

this effort, we shall follow closely the development given by Deblauwe and

Allemang (Ref. [35]).

As we saw in Eq. (2-4), the IRF at a point i due to an input at point k is

given by

h,(t) = g ,Aik eSrt (2-4)

Considering q input reference points, we have

&l(t)  = F oil es+
I=1

l+*(t)  = E #ii2 es+
1=1

(2-19)

. .

. .

. .

h,,(t)  = Z ,Ais es+
I=1

But, for each mode r, the residues ,A, are related through a scaling factor
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Q, to the eigenvector elements rwi and ,.vk of the system by the
relationship:

r%k = Qr r% rvk (2-20)

So, if the first residue is given by

r*il = Qr r% rvl (2-21)

we can write for the residue at point k,

pik = rwkl r*il (2-22)

where rWkl is a weighting factor or a modal participation factor, given by:

w,w,, = =
r 1w

In this way, Eq. (2-19) will be

h&t) = Z ,W,, pi1 es”
I=1

. .

. .

. .

hi,(t) = S ,W,, A, es+
I=1

In matrix form, we can write Eq. (2-24) as

= 1 1 . . . 1

1 W 21 2w21 *a* 2Nw21
. . .
. . .
. . .

Fql W2 Wql *** 2N ql

(w2N)

T- Site
s2t

e 0.
0

. .
'2N'

e

(2Nx2N)

(2-23)

(2-24)

(2Nxl)
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or simply

1 0 .  es2N’

(2Nx2N)

where [W] is the modal participation

intervals,

thiCo>l = WI IAil

where

(2-26)

matrix. Considering L+l time

(2-27)

(2-28)

It must be remembered that in Eqs. (2-27) the elements of {h(t)} are the

only known quantities. As for the CE method (Eq. (2-g)), the 2N

eigenvalues can now be seen as solutions of a matrix polynomial, given by:

rP,i + [PJ [w3 r v-1 + m21 [WI r v-Y+...+ [p,i [WI r W= [OI (2-29)

where [P,l, . . . . &I are real, square coefficient matrices of order q (the

number of input references). How big must the order of the matrix

polynomial (L) be in order to obtain the 2N eigenvalue solutions? The
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number of eigenvalues of a matrix polynomial is equal to the order of the

polynomial times the dimension of the matrix coefficients, i. e., in this

case,

2N=Lq (2-30)

This means that in order to calculate at least 2N eigenvalues we must have

422~
hence,

(2-3 1)

L 2 2N/q (2-32)

If Lq > 2N, then there will be computational modes. As before, we shall

multiply each side of Eqs. (2-27) by [p,], . . . . [&I:

[PO1 thi(0) II = [P()l WI IAil)

llP11 {hi(At>l = [PII WI I? ’ -1 tAilI

[p21 {hi(2At>l = [&I [WI [\ V ‘I* {Ai, 1
. .
. .
. .

[PLI {hi(LAt>l  = [kl [WI r “IL tAi, 1

Summing each side of Eqs. (2-33), we obtain:

k=O

(2-33)

(2-34)

From Eq. (2-29), we see that the right-hand-side of Eq. (2-34) is zero, and

thus,

(2-35)
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Assuming [p,] to be the unit matrix [ I 1, we have

g [&I {hi(~t>l =- {hi(LAt)} (2-36)
k=O

We can consider now several sets of time data points (Nt sets of L points

each: N, 2 L), each set shifted by one interval At:

[PO1 {hi(O)} + a*. ***+ II&_11 {hi((L-l)At)  1 = - {hi(LAt)}

[PO1 {hiCAt>}  + a** ***+ [&II {hi&At)  1 = - {h,((L+l)At)}
. . . (2-37)
. . .
. . .

[PO1  { hi((N<l)At)  1 +***+ [pL_11  {hi((L+N,-2)At)  1 = - Ihi((L+N,-l)At) I

or

[&)I &I JP,,11 Ihi(

{hi(At) _I
.
.

{hiCAt) 1 . . . {h,((N,-l)At)} =

1 hi(2At)  1 . . . { h,(NPt) }
. .
. .

. . .

{hi((L-1)At)) {hi(LAt)} . ..{hi((L+N.-2)At)}

- [{hi(LAt)}  {hi((L+l)At)}  . ..{hi((L+N.-l)At)}] (2-38)

or

(2-39)

Considering now Eq. (2-39) for each response location, with i = 1, . . . . p,
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or

[BT1 [[h,l [$I .-- &,I] = [B-(1 BJ . . . &,'I]

G-lxLq) @P&P) w%.P)

or, in a short form,

[BT1  l3-J = m-J

47

(2-40)

(2-41)

(2-42)

from which

(2-43)

We should note that in Eq. (2-41) we must have N,p 2 Lq in order that in

Eq. (2-43) the resulting matrices are of full rank. Knowing the coefficient

matrix [B], we can return to Eq. (2-29), and must now solve it for the

eigenvalues [‘ V -1 . Rewriting Eq. (2-29) as

k=O
(2-44)

we can post-multiply each side of this equation by a unit vector of

dimensions 2Nx1,  composed of zeros except for unity at the position

corresponding to the eigenvalue to be calculated:
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i &I WI [‘ V-lk 1
k=O Ii

= i [&I (:lAt )k {w,}
0 k=O
. .

b = i [&I (:2At  )k {w,}
k=O

. ..

=  (0) (2-45)

.

k=O

.

i [ljkl[~[‘VNlk
.= i [&I (:2NAt  )k {w,} = (0)

k=O

where {W,>, . . . . {WZNI are the columns of the modal participation

matrix. For each eigenvalue r, and using the definition of Eq. (2-8),

[&I v: ] {w,} =  (0) r= 1, . . . . 2N
k=O

(2-46)

{W,} is a non-zero vector, independent of the summation in k. Each one

of the 2N possible equations (2-46) represents the same eigenvalue

problem, providing Lq solutions. Expanding Eq. (2-46) and

remembering that [&I = [ I 1, it follows that

[[i&l + IpI1 vr + [p21 v; +... + &J V,“-‘] {W,} = - V: {WJ (2-47)

_ If one defines

‘is.
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then,

or

- [PL_Il - &I *** - [Pll - [PO]

[II [O] . . .
. .
. .
. .

[Ol [O] . . .

a

49

(2-48)

(2-50)

@4x1) 0-W)

Eq. (2-50) is known as the companion matrix equation of the eigenproblem

of Eq. (2-47). This represents a standard eigenvalue problem of the type

[[A] - h[ I I](x) = (0). Knowing the Lq eigenvalues V,, it is easy to

calculate the natural frequencies and damping factors, using Eq. (2-S). We

can also calculate the Lq eigenvectors of Eq. (2-50) for each value of Vr.

The corresponding values of (zJ are the values of {W,} in Eq. (2-47)



Chap. 2 Sec. 2-2-l Indirect or Modal methods 5 0

(see Eq. (2-48)). Therefore, we also know at this stage the modal

participation matrix [W] and we now have to calculate the residues.

Returning to Eq. (2-27),

{hi&At)}  = WI I‘ V ‘lk IAil 1 k = 0, 1, . . . . L (2-5 1)

where

{ h,(kAt)}  = hi,(kAt)

h,(kAt)
.
.
.

hiqWt)

(2-52)

and [‘ V t] is given by Eq. (2-28). While in the CE or LSCE methods each

residue vector was calculated based upon one location of the input, now

there is information from several inputs for each time interval (Eq.

(2-52)). Varying k in Eq. (2-51),  we obtain:

{hi(O) I

{ hi(At>
.
.
.

I

{ hi(LAt)  I

=

or

tHil = WV1 I Aill
(&+lW)  (cL+lh-GN  (2NxU

from which

IAil

(2-53)

(2-54)
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{Ail} = (IHilH rW,l)-' IHilH {HiI

51

(2-55)

where the superscript H denotes hermitian transpose. This calculation will

be repeated for all the response locations, i. e., i = 1, . . . . p. Knowing all the

{A,,), Eq. (2-22) can be used to calculate all the residues. In summary, the

necessary steps to use the present method are as follows: first, to take all the

time records of the IRFs to enter in Eq. (2-38) and solve for the

coefficients [B] using Eq. (2-43); second, to calculate the eigenvalues and

eigenvectors of Eq. (2-50) in order to find the natural frequencies and

damping factors, and build the matrices [W] and [‘ V ~1; and finally, to

calculate the residues by making use of Eqs. (2-55) and (2-22).

Besides the fact of providing a more accurate modal representation of the

test structure, this method can determine multiple roots or closely spaced

modes of a structure, as claimed by its authors. The time required for the

analysis is reduced and the accuracy in the results increased. The major

disadvantages seem to be the sensitivity to nonlinearities and to any lack of

reciprocity in the frequency response matrix. It has also shown some

difficulties in analysing satisfactorily structures with more than 5% of

equivalent viscous damping (Ref. 1361). The problems associated with the

judgement of genuine and computational modes remain. Finally, it

requires a considerable computer capacity.

The Ibrahim Time Domain method (ITD)

This method was introduced by Ibrahim in the 1970’s (Refs. [37], [38]).

The formulation of the method included state vectors, where displacement

and velocity responses were needed and were calculated by integration of

the free acceleration response. Further improvements were given by the
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same author in 1977 (Ref. [39]), where only free acceleration responses

were used. This is a SIMO method that uses free decay responses instead of

IRFs, as in the previously described methods (the IRFs may benefit from

the fact that they are inverse FFIs of FRFs that could already have been

averaged, reducing the noise). For a system with N DOF, the free response

of the structure at a point i and for the instant of time tj is expressed as a

summation of the individual responses of each mode:

Xi(tj)  =
$ Vj

*Vi e
1=1

(2-56)

where rwi is the ith component of the eigenvector {w,} (complex, in

general). Considering q response locations and L time instants, we can

write:

or

c
I

!

Sltl Slt2 sltL .e e e
s2t1 S2t2 s2tLe e e

. . .

. . .

‘2Ntl ‘2Nt2 ‘2NtLe e e

(2-57)

(2-58)

where it is reasonable to admit

L2q22N (2-59)

If we consider a second set of L data points, shifted one interva At with
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respect to the first one, we have

2N

Xi(tj + At) = C rwi e
S,(tj + At)

I=1

Xi(tj + At) = T (rwi eSP’) esrtj
r=l

Defining

:iCtj) = Xi(tj + A t ) (2-62 a)

and

rbi =
s,At

rVi e

we obtain

*N * St.
;i(tj) = C fyi e rJ

l=l

5 3

(2-60)

(2-61)

(2-62 b)

(2-63)

and therefore, we can write a similar expression to Eq. (2-58):

kl = $I [Al

@XL) (qflN) CmxL)

(2-64)

We now define a square matrix [A,] of order q (usually called the “system

matrix” and, in general, complex), as

[AsI = WI +I
@FM (qx*N) QF*N)

(2-65)

Pre-multiplying Eq. (2-58) by [As], we obtain

, IiS.
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[A,1 [xl = CA,1 WI [Al (2-66)

(w-Q WN) (2NxU

Substituting Eq (2-65) in Eq. (2-66),  we have

(2-67)

Substituting Eq. (2-64) in Eq. (2-67),  we obtain

[A,1 [Xl = I%
(sxn)  (W) @NJ

(2-68)

From this equation it is possible to calculate [A,], as [X] and [X] are

known matrices. This can be done, via the pseudo-inverse technique, either

by post-multiplying Eq. (2-68) by [kJT or by [XIT. In the first case, we

obtain

[A,1 = (kl rG’> ml rtiT)-l (2-69)

In the second case, we obtain

[ASI  = (r% WIT) ml KIT)-’ (2-70)

Which of these two expressions should be used ? A combination of both

Eqs. (2-69) and (2-70),  known as Double Least-Squares (DLS), seems to be

preferable, as it leads to better estimates of the damping factors (Ref. [40]).

Thus, we use

[AsI = -$X] [Xl’> ([xl kT)-‘+ ([Xl [XIT) ([a [X-jT)-‘} (2-71)

From Eq. (2-62 b), each eigenvector &] can be written as

{\;l,] = {w,] eSrAt (2-72)
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and from Eq. (2-65), we can write

[AsI {w,l = {w,) es”
or

[[A 1S - espt [ 1 llIw,l = {Ol

(2-73)

(2-74)

which is a standard eigenvalue problem. Since [A,. is of order q, there

will be q eigenvalues and eigenvectors and if q>2N, there will be

computational modes. From the eigenvalues, it will be easy to calculate the

natural frequencies and damping factors. As noted by Ewins (Ref. [l]), the

eigenvectors cannot be mass-normalized, as we have only recorded

free-response data. This fact may or may not constitute a disadvantage,

depending on the purpose of the study.

As mentioned before, we shall obtain, generally, computational modes.

One way of distinguishing these modes from the genuine ones can be

established by means of the relationship (2-72). If we repeat the

calculations taking a different time interval shift, it is possible, for each

mode, to assess its authenticity by means of a Modal Confidence Factor

(MCF) (Ref. [41]); this factor compares the expected value of (\;I,> (from

the calculated { vr}) for one time interval with the calculated value of I&.}

for the following time interval. Thus, the philosophy of this method

provides a very useful and automatic check on the calculated modes of

vibration.

An extensive evaluation of the ITD method is provided in Ref. [42].

Among the advantages of this method are the need for little interaction,

effective calculation of closely spaced modes and the possibility of

verification of the quality of the results, via the MCF. The main

disadvantage seems to be the tendency to give nonconservative damping
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estimates with noisy data.

A variation of the ITD method, the Sparse Time Domain algorithm

(STD), has been proposed (Ref. [43]), making use of a sparse upper

Hessenberg matrix. The main advantages here are the reduction in

computer storage and time, and higher identification accuracy.

The Single-Station Time Domain method (SSTD)

This method was presented in 1980 by Zaghlool (Ref. [44]), and it is a SLY0

version of the ITD method. Matrices [X] and [X] in Eqs. (2-58) and

(2-64) are formed by shifting several times the response from one single

station. It will not be developed here, but the corresponding version in the

frequency domain will be explained in Section 2-3-2. The similarities

between the two domains are immediately obvious.

The Eigensystem Realization Algorithm (ERA)

This method is due to the work of Juang and Pappa (e. g., Ref. [45]). It is a

MIMO method and its derivation is based upon concepts associated with

control theory and, therefore, it differs from the usual developments found

in EMA literature. We shall try to give a concise but hopefully clear

explanation of the philosophy and main steps taken in this technique. Some

alterations to the notation usually given by the authors of this method

(following mainly Ref. [46]) will be made, in order to retain as much

coherence as possible with the general notation used in this and other

chapters of the thesis.

Let the dynamic equations of equilibrium for an N DOF viscously damped

system be expressed as
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[Ml I&l + [Cl {i(O) + WI {y(t)) = {f(y(t),t))

Defining  a state vector of dimensions 2Nx1, we have

57

(2-75)

(2-76)

Defining also

[A’] = PI I?1

- WI-’ [Kl - [Ml-’ [Cl 1
(2-77)

(2Nx2N)

(2-78)

WI = WI

[ 1M-l Fl (2-79)

0

where (6(t)} is the input vector at q locations and [F] is a matrix of input

coefficients, we can write Eq. (2-75) in the state space, as:

(2Nxl) (2Nx2N)  (2Nxl) (2Nxq)  ( q x l )

It will be possible to relate (u(t)} to the measured responses at p physical

coordinates {x(t)) through a transformation matrix [RI:

b(O) = [RI b.U (2-8 1)

WI (PXW Wxl)
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The solution of Eq. (2-80) to an input {6(t)}  is given by

(2-82)

for any time t after an initial time t, (Pt,). To give a discrete

representation of Eq. (2-82) we shall consider several equally spaced time

intervals, 0, At, . . . . kAt. We can consider then t = (k+l)At and t, = kAt:

9

{u((k+l)At)} = e [* lAt{u(kAt)}  + j
(k+l)At [A’]((k+l)At-2)

e [B’] { 6(z)}dz (2-83)
kAt

Assuming the input {6(z)} is constant during the time interval kAt I z I

(k+l)At, given by {S(kAt)}  , and making the change of variable z’ =

(k+l)At - 2, we obtain:

{ u((k+l)At)} = e [*‘IAt{  u&At)} -I”’ e[A”” dz’ [B’] {@At)}
0

(2-84)

Defining

[A’]At
[A] = e

1 *

[B] = _ j”’ e[AIT dz’ [B’]
0

{ u(k+l)} = { u((k+l)At))

(2-85)

(2-86)

(2-87)

(2-88)

we can write Eq. (2-84) as

{u(k+l)} = [A] {u(k)} + [B] {S(k)} fork = 0, 1,2 . . . (2-89)

Eq. (2-81) becomes, then
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b(k)) = [RI b(k)) (2-90)

Let us consider the response to an impulse at k = 0 and at one of the first of

the input variables. Like this, {6(O)}  = (1, 0, ...O}T  and {6(k)} = (0)

for k > 0. Substituting in Eq. (2-89),

b(l)1 = [Al {u(O)) + {W (2-91)

and hence,

{x(l)~ = [RI {uU>~ (2-92)

Substituting Eq. (2-91) in Eq. (2-92),  we obtain

b(l)) = [RI [Al W)) + [RI UV

Considering, for simplicity, {u(O)} = {0}, we have

(2-93)

Ml)) = {W

b(l)) = [RI UU
(px 1) (px2N)  (2Nx 1)

For the other time intervals, {6(k)} = (0) and we have

{u(2)) = [Al b(l)}

and so,

{x(2)1 = [RI WI W

Likewise,

(2-94)

(2-95)

(2-96)

(2-97)

143)) = [RI (u(3)) = [RI [Al ~~(2)~ = [RI [Al2 WI

and, in general,

(2-98)
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bW = [RI [Alk-’ UU (2-99)

@xl) (px2N)  (2Nx2N)  (2Nxl)

If we consider the impulse at all the q input locations, we obtain

PWI = IN [Alk-’ LB1 (2-100)
@xq)  @x2N)  (2Nx2N)  (2Nxq)

Matrices [X(k)] are usually called the Markov parameters. These are used

to form the generalized Hankel matrices, given by:

MWI =

b-w)

[X(k+l)l . . . [Wk+.i)l 1cww1

[W+l)
.
.
.

1 [X(k+2)1 . . . [X(k+j+l)]
. .
. .
. .

[X(k+i)] [X(k+i+l)]  . . . [X(k+i+j)]

(2-101)

where i = 1, . . . . r-l and j = 1, . . . . s-l, with r and s as integers. If there is

an initial state response measurement, we must simply replace [H(k-1)] by

[H(k)]. In Eq. (2-lOl), k will be greater or equal to 1. Substituting Eq.

(2-100) in Eq. (2-lOl),  we obtain

IHOI = IQ1 IAlk [WI k20 (2-102)

where

l-

[RI .

[RI [Al
.
.
.

1 [RI [Al r-1

pwl = [PI WI PI . . . [AIs-’  PII
Ww)

(2-103)
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[Q] and [W] are called the observability and controllability matrices,

respectively. It must be remembered that [H(k)] is a known matrix of the

responses. One of the advantages of this formulation is that in [H(k)] we

may include only good responses, i. e., responses with low levels of noise.

The objective is to reconstruct Eq. (2-100) from the experimental data.

This process is known as realization and implies the determination of

matrices [RI, [A] and [B]. There are an infinite number of sets of these

three matrices satisfying Eq. (2-lOO), i. e., there are an infinite number of

realizations. The objective is to obtain a minimum realization, i. e., the

realization corresponding to the minimum order of the state space

formulation that can still represent the dynamic behaviour of the structure.

In the first place, we shall look for a matrix [HI’ such that

Wl D-Cl [QI=[Il
(2Nxqs) (qsxpr) (prx2N)  (2Nx2N)

(2-104)

Let us pre-multiply and post-multiply Eq. (2-104) by [Q] and [WI,

respectively:

DHYl[H3’[Ql[Wl=[Ql[W1

But, from Eq (2-102),  we see that

[Ql [WI = D-W)1

Thus,

(2-105)

(2-106)

EWI P-U’ D-WI = D-WI (2-107)

Therefore, [H]’ is the pseudo-inverse of [H(O)]:

WI’ = bW)l+ (2-108)

We can calculate the pseudo-inverse of [H(O)] via the Singular Value

. , I.
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Decomposition (see Appendix D):

lJ-w)1  =  WI PI WIT (2-109)

@r=& @mpr) @mps) @sxqs)

Matrix [H(O)] will have 2N non-zero singular values (rank = 2N),

equivalent to the order of the space state system. [H(O)] can therefore be

recomputed using only the first 2N columns of [U] and [VI:

DW)l = W,l [qNl W,lT (2-l 10)

@WS) (prx2N) (2Nx2N) (2Nxqs)

with

[uu\rl T [“2N1 = &NIT &N1 = [ ‘1

Matrix [HI’ (= [H(O)]+) is therefore given by

(2-111)

(2-l 12)

To obtain the realization we are looking for, we shall start from Eq.

(2-loo), which can be written for k 2 0 as

[X(k+l)l = [RI Mlk PI (2-l 13)

and use the identity

[X&+1)1  = WplT DWI [E,]
(P=lI @xpr)  (Pr=& (qsx@

(2-l 14)

where

lqT=[[Il uu..011
(PxPr> (Pxp)  (Pxp)  @xp)

(2-115 a)

.-..._,. .
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LEgI = [II
@Pa WI

.

.

.

WI

(2-115 b)

[ I ] being the identity matrix. Substituting Eq. (2-102) in Eq. (2-114), we

obtain:

[X&+1)1  = &lT [Ql Wlk WI &I (2-l 16)

Introducing Eq. (2-104) in Eq. (2-116),  we obtain

[X(k+l)l = [E,lT CQI [WI P-NQll Mlk [IWI Wl’[Ql]  WI [Eql
(2-l 17)

Substituting Eq. (2-106) in Eq. (2-117),

W(k+l)l = [EplT DWI [HI’ [[Ql Wlk Wl] WI’ F-WI &l (2-l 18)

Using Eq. (2-112),

[X(k+Ul = [EplT EWI [W,l P2J1 W2NlT][[QI  [Alk WI] [W,l

[q# ru,lTl IWON [E41 (2-l 19)

Using Eq. (2-l lo), it follows

[Wk+Ul = [EJT [DJ,l &I rv,]‘] [W,l P&J1 EUmlT][[Q1  [Alk

WI] [ W,l PJ1 W,l’l [[Urn1 PJ W,l’] [Egl
(2-120)

Due to Eq. (2-l 1 l), it is possible to write
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[X(k+lN = [E,lT WzNl C&l E,J1 W,,lT [[Ql Mlk WI] WzNl

IqJ1 [~l.w~lT [Egl (2-121)

or,

[x(k+l)]  = [&IT WzNl L&l 1’2] [[C2Nl-“2  W2,1T [[Ql [Alk WI]

W,,l [qIql-‘/L  1 [[qJ’z [&IT &II (2-122)

From Eq. (2-122), some similarities with Eq. (2-113) (that we wish to

recover) are already apparent. Some modifications, though, need to be

made in Eq. (2-122), in the second block of matrices. Writing this block

for k=l, we have

[hl-ln W,lT [IQ1 [Al Wl] P&J [hl-“L

For k=2, we have

[~Nl-l/L  FJ2NlT  [[Ql [Al2 BYI] IV,1 E&/2

(2-123)

(2-124)

Trying to relate expressions (2-123) and (2-124), let us multiply

expression (2-123) by itself:

[~l-ln rv,l’ [[Ql [Al Wll &I &,JIR K&n [UrnIT [[Ql [Al

WI1 W,,l &JJ”2 (2-125)

Due to Eq. (2-112),  we obtain

[~2Nl-1n W,,lT [[Ql [Al WI] F-U’ [[Ql WI WI] W24 E~2,l-1’2
(2-126)

and due to Eq. (2-104),  we can write
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&,J1’ [UrnIT [Ql [Al EN WI [v,l &,J-IR

which is exactly expression (2-124). Therefore,

(B&’  [UrnIT  [ILQI IA1 WI]  W,l &,J-'~ >2 =

[~l-ln  WmlT [[Ql WI2 WI]  D&l [hl-ln

(2-127)

(2-128)

or, using Eq. (2-102),  and generalizing for any k,

(&J’n WmlT D-WI [v,l [~l-ln >k =

rqJ'n FJ,lT D-WI iv,1 [qJ'/z (2-129)

Returning to Eq. (2-122),  we can write it as

[X&+1)1 = [rEJT FJ,l  [~l’R][[~l-ln  KJ,lT P-WI Wml

&,J-‘“lk  [[c,l’D W2JT [EdI (2-130)

Comparing Eq. (2-130) with Eq. (2-l 13), we see that the desired

realization has been achieved, where

[RI = @lT W,l [~I”]

[Al = [[C,l-‘” KJ,lT D-WI [V,l [&I-‘/“]

WI = [[~l”z WmlT &lI

(2-131)

In order to determine the modal parameters of the system, we must solve

an eigenproblem based on the “realized” matrix [A], of the form

IA1 Iw,) = h {w,) (2-132)

To obtain the modeshapes in terms of the physical coordinates of the

system, we must use the transformation given by (see Eq. (2-90)):
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bvx~ = [RI b+q (2-133)

(PW W-W Wxr)

The modal parameters are easily calculated from the eigenproblem results.

In summary, the necessary steps to perform an analysis with the ERA are

as follows:

(1) choice of the measured data to construct matrix [H(O)];

(2) calculation of the SVD of [H(O)], to calculate [U,,], [VzN]  and
[ZZN] and to recalculate [H(O)] based on the value of the rank found

(order of the system);

(3) construction of matrix [H(l)] and calculation of the “realized”

matrices [RI, [A] and [B] (Eq.(  2-131)); and

(4) calculation of the eigenvalues and eigenvectors of matrix [A] and the

eigenvectors corresponding to the physical coordinates (Eqs. (2-l 32)

and (2-133)) and calculation of the modal parameters.

This method (like the ITD), also provides checks on the calculated modes,

to distinguish between genuine and computational modes, as the results

from the SVD, in some cases, may not be correct due to noise or

nonlinearities. The first check is known as the Modal Amplitude Coherence

and is defined as the coherence between each modal amplitude history and

an ideal one, formed by extrapolating the initial value of the history to

other points, using the identified eigenvalue. Another check is the Modal

Phase Collinearity, for lightly damped structures, where real mode

behaviour is expected. This indicator measures the strength of the linear

functional relationship between the real and imaginary parts of the

modeshape, for each mode. Model reduction is then possible, by truncating

the modes with low accuracy indicators. The final model can be assessed

by comparing the initial free responses with the ones calculated by
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Eq. (2-130).

An investigation on the effects of noise on the identified modal parameters

using the ERA is given in Ref. [47].  In Ref. [46],  the ERA is shown to be a

more general formulation for modal analysis identification, as some other

methods can be understood as particular cases of a unified approach. In the

same reference, an extensive bibliography on System-Realization Theory

can be found.

2-2-2 Direct methods

According to the classification given in the beginning Section 2-2-1, we

have in this category essentially two methods, the Autoregressive

Moving-average method (ARMA) and the Direct System Parameter

Identification method (DSPI).

The Autoregressive Moving-average method (ARMA)

This is a SILO method that is mainly based on the works of Gersch (Refs.

[48] to [57]). Once again, this is a method that comes from the control

theory. Here, we shall try to give the basic ideas and the interested reader

in invited to study the mentioned references, where the theory is explained

in detail and different variations of the algorithm are given. Calls to other

references and fundamental texts can be found in those works. Let us

consider the behaviour of a linear system with a single input f(t) and a

single output y(t) as described by the following linear differential equation

of constant coefficients:

W(t) d"-' y(t) dy(t) dmf(t)
an +  an-l +dtn-1 “* + a, - + a0 y(t) = b, - + . . .

dt?’ dt dtm
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Eq. (2-l 30).

An investigation on the effects of noise on the identified modal parameters

using the ERA is given in Ref. [47]. In Ref. [46], the ERA is shown to be a

more general formulation for modal analysis identification, as some other

methods can be understood as particular cases of a unified approach. In the

same reference, an extensive bibliography on System-Realization Theory

can be found.

2-2-2 Direct methods

According to the classification given in the beginning Section 2-2-1, we

have in this category essentially two methods, the Autoregressive

Moving-average method (ARMA) and the Direct System Parameter

Identification method (DSPI).

The Autoregressive Moving-average method (ARMA)

This is a X90 method that is mainly based on the works of Gersch (Refs.

[48] to [57]). Once again, this is a method that comes from the control

theory. Here, we shall try to give the basic ideas and the interested reader

in invited to study the mentioned references, where the theory is explained

in detail and different variations of the algorithm are given. Calls to other

references and fundamental texts can be found in those works. Let us

consider the behaviour of a linear system with a single input f(t) and a

single output y(t) as described by the following linear differential equation

of constant coefficients:

d”y(O d"-' y(t) dy(t) dmf(t)
an + + . . .

dt?’ +  an-l dtn-1 “* + a, -
dt

+ a0 y(t) = b, -
dtm
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wo
+b,----

dt
+ b,f(t)

If we calculate the Laplace transform

initial conditions as zero, we obtain

(2-l 34)

of Eq. (2-134) and consider the

(an s” + . . . + a,s + ao) Y(s) = (bm sm + . . . + b,s + be) F(s) (2-135)

where s is the Laplace  variable. The transfer function, defined as H(s) =

Y(s)/F(s),  will be

H(s) =
bmsm+...+bls+bO

a, sn + . . .
(2-136)

+a,s+%

In the frequency domain, putting s=jo, we obtain the frequency response

function

H(jo) =
b, (jo) m + . . . + b, (io) + b,

a, (jo) n + . . . + a, (jo) + a0
(2-137)

It is also possible (and appropriate) to establish a linear difference equation

corresponding to Eq. (2-134), when we have equally spaced time samples,

as the following time series:

a, Y(t-n) + an_ry(t-n+l)  +... + a,y(t-1)  + a,y(t)  = pm f(t-m) + ..,

+ Prf(t-1) + Pof(t) (2-138)

or
n

=  s &f(t-k)
k=o

(2-139)

where cxk and pk are known as the autoregressive and moving-average

L ,
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parameters, respectively; a, and PO are taken as 1. This model assumes

that the output y(t) is contaminated with a zero mean sequence of additive

noise and that the time series input set f(t) is a zero mean uncorrelated

history. The input and output histories are supposed to be known, and ak

and pk unknown.

If the sampled time interval is At, then by introducing the z transform,

where z=esAt, we can write Eq. (2-138) as

(a, z-” + a,_, z-“+l +... + a, z-l + a,) Y(z) = (P,z-rn + . . .

+ PI z-l + P,) F(z) (2-140).

Because Eq. (2-140) is the equivalent sampled representation

(2-134), the transfer function in terms of the z variable will be:

m

c pk z-k
Y(Z) k=O

H(z) = \I =

of Eq.

(2-141)\ I

F(z) i a, z-k
k=O

where the roots (poles) of the denominator polynomial are related to the

natural frequencies and damping factors of the system. For a system with

N DOF, those roots will be given by the solution of the characteristic

polynomial:

g % ,$N-k = 0
k=O

(2-142)

where ak are the same as in Eq. (2-141). The problem now arises as how to

compute the autoregressive parameters ak. To do this. Eq. (2-139) is

written for an N DOF system as
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2N 2N-1

a, y(t) + c ak y(t-k) = c Pk f(t-k)
k=l k=O

(2-143)

and, because a$, we can write the current observation y(t) as the sum of

its own past (the autoregressive part) plus a linear combination of

uncorrelated terms (the moving-average):

2N 2N-1

y(t) = - ck_l ak y(t-k) +F& pk f(t-k)

and, more realistically, by considering a prediction error e(t),

y(t) = { -y(t-1) . . . -y(t-2N) f(t) . . . f(t-2N+l)} 1 a, \+ e(t)
.
.
.

a2N

PO
.
.

\ i2,.,i

(2-145)

Collecting terms for t=2N+l,  2N+2, . . . . 2N+L, we have

. . . -y(l) f(2N+l)  . . . f(2)

. . . -y(2) f(2N+2) . . . f(3)
. .
. .
. .

. ..-y(L) f(2N+L) . . .

:(2N+l
:(2N+2

.

.

.

:(2N+L

O-xl) (Lx4N) (4Nx  1) (Lx11

or simply,

{y) = [Xl WI + (4

(2-144)

(2-146)

(2-147)
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from which

id= {yl - [Xl WI (2-148)

Minimizing the squared error {elT{e},  (e} will be given by

WI = (WIT Pa-’ FIT {Yl (2-149)

Knowing {e) and therefore the 2N values of ak, we can return to Eq.

(2-142),  and write it as

2N

c a, U2N-k  = h (u-uk)(u-uk*)  = 0
k=O k=l

(2-150)

where

SP
uk = e

uk* = e
sr*At

(2-151)

are the roots (poles) of the polynomial, from which it is possible to

calculate the natural frequencies and damping factors. Knowing the 2N

values of &, it is also possible to calculate the residues, using Eq. (2-141).

This method can also provide statistical confidence factors (coefficients of

variation). This method seems not to be very widely used by modal

analysts, as very few articles mention it.

The Direct System Parameter Identification method (DSPI)

This method is due to the work of Leuridan (Refs. [58], [14]), and is based

on the same kind of approach given above for the ARMA  method. The

basic ideas behind this method are as follows: let us consider the dynamic
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equilibrium equation for N, DOF, where N, is part of the N expected

number of DOF of the structure, as

where [Ml, [C] and [K] are N,xN,  real matrices, {f) (qxl) is the input

vector at q locations, and [l’J is an N,xq matrix whose elements eij are 1

when the input location j corresponds to the response location i and zero

elsewhere. Alternatively, Eq. (2-152) can be written as

{y(t)) + [Cl' {jr(t>l  + [Kl' {y(O) = D-1’  {f(O)

with

[Cl’= rw [Cl

(2-153)

(2-154)

D-‘l’= [W1  P-‘l

(Nox9) (NOXNO)  moxQ)

As for Eq. (2-145), we can write now Eq. (2-153) as an autoregressive

moving-average model:

{y(t>l = [A,1 {y(t-1)) +... + [ApI Mt-p>l + [Bol VW + LB,1 VW>) + -..

+ [BP_,1 Mt-p+W + M)) (2-155)

where the coefficient matrices [A] and [B] are of dimensions N,xN,  and

N,xq, respectively, and p is chosen so that pN,22N.  Considering m sets
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of inputs and responses, we have

[y(t)1 = [A,1 bW)I + . . . + [AP] [y(t-p)l + LB01 NO1 + . . .

+ [BP,1 If@-p+l)l  + WI (2-156)

where

[y(t)1  = HY(Ol~ *-* {YW,l

@0xm>

(2-157)

WI = [MN, . . . {e(t)},1

(N0xm)

Eq. (2-156) can still be written as

v

[y(t)1 = [[A,1 [41 . . . [ApI [BJ LB,1 . . . [BP,lI bW1 + INI
[Y (WI

.

.

.

i [Y&-P)1

[f(t)1 (2-158)

[W-1)1.
.
.

m-p+ 1 >I

Considering all the L sampled time intervals, t=p+l, . . . . p+L,
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[[y(p+lN  a** [Y(P+ull =
(N&m)

[[A,1 . . . [AD] [B,l .a. [BpJl

(NoxWo~+sp))

2-2-2 Direct methods

‘[Y(P)1 *a’ [y(p+L-l)l
. .
. .
. .

[Y(l)1 *a* [Y(L)1

Np+U *** [f(P+L)l
. .
. .
. .

In a compact form, we can write

[yl = WI El+ M

The minimization of [elT [e] leads to

WI = [yl KIT ml KITY’

7 4

+ lMp+l)l . . . [e(P+L)ll

(NoxLm)

(2-159)

(2-160)

(2-161)

Considering impulse response functions instead of free decay responses,

and using the z transform, with z=esAt, we shall have a similar expression

to Eq. (2-141) for the transfer function H(z):

[[ I] - [A,] z-r - . . . - [A,] z-p] [H(z)] = (At)-’ [[BJ + [B,] z-l + . . .

+ [BP-J z-v11 (2-162)

or,

[[ I ] zp - [A,] zp-l - . . . - [AJ] [H(z)] = (At)-’ [[Be] zp + [B,] zpl + . . .

+ [BP11 21 (2-163)
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where matrices [A,], . . . . [AJ and [B,], . . . . [Bp_l] are already known.

This equation can be written as

tz [ II - [All IW D-WI = PXz>l (2-164)

with

[Al =

@JoP%P~

L

[A,1 [41 -.L$,l

[II WI . . . [ 0 ]

WI [II . . . [ O]
. . .
. . .
. . .

[Ol UN . ..[I1 LO 1

[B(z)] = (At)-’

moPxd

zp [Bo] + . . . + z [BP11

WI
.

(2-165)

The N,p eigenvalues and eigenvectors are obtained by the solution of

b[WN~C~=IO~ (2-166)

with

I$ = [WI {WI
(Nopx 1) WOPXNO)  (NoPx~)

(2-167)

From the eigenvalues of matrix [A], the natural frequencies and damping

factors are easily calculated. (~1 are the eigenvectors we are looking for.
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From Eqs. (2-165) and (2-167), and for all the N,p eigenvectors [?I,

(2-168)

where [‘ z, t] = [‘ esPt t]. The last block of matrix [!I?] in Eq. (2-168) is

precisely [‘I’]. It is known that the impulse response function matrix [H(t)]

can be given by

(2-169)

where [W] is the matrix of participation factors, as defined in Eqs. (2-25)

and (2-26). This is the matrix that remains to be calculated to complete the

method. In the z domain, Eq. (2-169) can be written as

D-WI = WI II II - z-l r zr 41-l [WIT

(NOPX@ (N@oP) (N~P~~oP) WoP=l)

Pre-multiplying Eq. (2-164) by [$]-1, we obtain

(2-170)

@?I-’ b E II - [Al] [WI [H(z)1 = @‘IF1 [B(z)1 (2-171)

Substituting Eq. (2-170) in Eq. (2-171), it follows that

@II-’ b [ II - [Al] [WI PYl [[ II - 2-l r q -I]-’ [WIT = [ei-’ [B(z)] (2-172)

From Eq. (2-166),  we can write

or

(2-173)
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[Al = ~L’z~‘lll%l-~

77

(2-174)

Substituting Eq. (2-174) in Eq. (2-172), we obtain

[z r 1 I - r q <II Pm-’ l?(z)1 WI [[ II - z-l r q #’ l3vlT = rFl-’ P(z)]
(2-175)

where everything is known except the modal participation matrix [WI. By

taking limits on both sides of Eq. (2-175) when z +zr (see Ref. [14]), and

assuming that the 2N modes have already been sorted out from the N,p

modes, we obtain

for r = 1, . . . . 2N (2-176)

The model of expression (2-169) is therefore complete. The residue matrix

for each mode r is given by

[Al, = w, wT1, (2-177)

(%x9)  ~oxl) (lx@

Knowing the residues, it is easy to evaluate the modal constants and phase

angles.

This method is said to give very good results, even for almost repeated

modes. In Ref. [14] it is shown that this method can be seen as a

generalization of other methods, like the CE, PRCE and ITD.

2-3 Frequency domain methods

Frequency domain methods will be presented in this section. Simple and

very well known methods will be explained briefly; more advanced

methods will be explained in greater detail. Some of the methods will be
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the subject of detailed discussion later in this thesis and therefore will not

be presented in detail in this chapter. Fig. 2-2 presents a diagram of the

classification of the several methods that will be discussed here and in the

following chapters.

I FREQ.  DOMAIN
h4ETHODS I

INDIRECT DIRECT
METHODS METHODS

I
SDOF

I r--G--l r--h

Kennedy-Pancu
Circle-Fitting
Inverse _
Bendent

1 R F P

1
Fig. 2-2 Classification of Frequency domain methods.

2-3-l Indirect SDOF methods

In this category, we shall discuss the Peak Amplitude, the Quadrature

Response, the Maximum Quadrature Component, the Kennedy-Pancu, the

Circle-Fitting, the Inverse and the “Bendent” methods. All these are SILO

methods.
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The Peak Amplitude method

This is the simplest known method for identifying the modal parameters of

a structure (see Ref. [lo]). The natural frequencies are simply taken from

the observation of the peaks on the graphs of the magnitude of the

response. The damping ratios are calculated from the sharpness of the

peaks and the modeshapes are calculated from the ratios of the peak

amplitudes at various points in the structure. In order to take into account

the amplitude of the excitation force, the use of receptance represented an

improvement to this method (Ref. [59]). This method assumes that the

modes are real and, albeit being quite “crude”, it may provide reasonable

results if the modes are well separated and if the damping is not very high.

A critical comparison between this and the Kennedy-Pancu method is

given in Ref. [59], where some alternatives are suggested for the

calculation of the damping ratios.

The Quadrature Response

and Maximum Quadrature Component methods

These methods (Ref. [60]) differ from the Peak Amplitude method in the

location of the natural frequencies of the structure. The Quadrature

Response locates the natural frequencies at the points where the in-phase

component of the response (the real part) is zero. This corresponds to a 90

degree phase difference between the forcing function and the response.

The Maximum Quadrature Component considers that the natural

frequencies occur at the points where the quadrature component of the

response (the imaginary part) has a maximum (or minimum). This

component is 90 degrees out-of-phase with the forcing function.
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The Kennedy-Pancu (or Maximum Frequency Spacing) method

This method, first introduced by Kennedy and Pancu (Ref. [ 121) uses the

Argand plane to display the real and the imaginary parts of the receptance.

Around each natural frequency the curve approaches a circle and the

natural frequency is located at the point where the rate of change of arc

length with frequency attains a maximum. The model assumed for the

damping is the hysteretic one and the damping factor is evaluated from a

simplified half-power-points calculation and the modeshapes are calculated

from the ratios of the diameters of the circles, fitted around each natural

frequency for the various output responses. Here, it is still assumed that the

modes are real and that the damping is small. Some problems concerning

the existence of close modes were already encountered by these authors.

Pendered (Ref. [60]) made a critical comparison between this and the

previous methods cited above, concluding that the Kennedy-Pancu

method was the one that could resolve more accurately two close modes

and that the Quadrature Response Method was the worst one,

concerning this aspect. Woodcock (Ref. [61]) extended this method to

systems with viscous, non-proportional damping and without the

restriction of small amounts of damping. Klosterman (Ref. [ 161) continued

the investigation on the Kennedy-Pancu method, establishing more

efficient techniques for the determination of the modal parameters for

systems with general non-proportional damping, using either the viscous

or the hysteretic model. In 1973, Marples (Ref. [62]) gave a new formula

for the calculation of the hysteretic damping factor. A systematic use of

this formula (Ref. 1631) around the resonance region allows for the

calculation of the mean value for the damping factor and can also give an

indication of the presence of nonlinearities and other potential problem

areas.
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The Circle-Fitting method

Basically, after the cited work of Klosterman, the Kennedy-Pancu

method became known as the Circle-Fitting method, easy to implement

in small computers. A comprehensive study of the Circle-Fitting method

has been presented by Ewins (Ref. [l]). Although well established, this

method has recently been still the object of some refinements (Refs. [64],

[65]). Because it surely is the best known method used in EMA, we shall not

present it in detail here. Despite being well known, it is often disregarded

and said to only work well for widely separated modes and lightly damped

structures. This is probably because in some modal analysis packages and

analysers the versions used are the very basic ones, that coincide nearly

with the Kennedy-Pancu method. It is our opinion (and experience) that

the Circle-Fitting method works very well for the majority of situations

and even for highly complicated structures. Some works based on the

application of this method have demonstrated its robustness. (Refs. [66],

16719 KW.

One of the most important improvements associated with the

Circle-Fitting method is the possibility to subtract the effect of modes

already analysed before analysing the one we are interested in (Ref. [69]).

This leads to an iteration process that will be mentioned in Chapter 3. Some

efforts to obtain consistent sets of natural frequencies and damping factors

have been tried. The objective is to avoid variations on the estimates of

those parameters when several FRFs are analysed individually. The

simplest way of all is to average all the estimates obtained for each FRF.

This was applied with success by Talapatra (Ref. [70]). A weighted average

of the natural frequencies and damping factors was also proposed and

applied successfully by Kirshenboim (Ref. [71]).  The weighting factors

are given by the RMS errors obtained in the circle-fitting procedure

divided by the diameter, for each mode. The initial estimates of the modal
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constants are then corrected, using the averaged values. An intermediate

option is to use this last technique for correcting the modal constants, but

using simple averages instead of weighted ones. This alternative was used

in Ref. [67].

The Inverse method

The Inverse method was presented by Dobson (Ref. [72]) and relies on the

fact that the imaginary and real parts of the inverse of the receptance

(dynamic stiffness) are straight lines in the frequency and frequency

squared, respectively. Because it is based on the assumption that the modes

are real and relies on well spaced natural frequencies, we can say that it

represents the “inverse” of the Kennedy-Pancu method. More details are

given in Chapter 3. In that chapter it is also proposed an extension of the

method that works for complex modes.

The “Bendent” (or Dobson) method

Also developed by Dobson (Ref. [73]), this method is an extension of the

inverse method, considering complex modes and also automatically

compensating for the effects of neighbouring modes. It will also be

developed in more detail in the next chapter.

Other methods

The method proposed by Goyder (Ref. [74]) is a variation of the GSH

method that we shall present in the next section, applied for the SDOF case.

It considers hysteretic damping instead, and the extraction of the modal

parameters for each mode is also based on the minimization of an error
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function in a least-squares sense, but where the linearization of the error is

made through a weighting function instead of by truncation of the Taylor’s

expansion. This method was also formulated for the case of one force input

and several response locations, i. e., a global formulation but for one mode

at a time. It is therefore a SlA40 method. As the GSH method, it also

requires initial estimates and as the process progresses from mode to mode,

the ones already identified are subtracted from the initial FRFs, in order to

take out the influence of the residual terms. This process is repeated until

covergence is attained. Because this method is a particular case of an

MDOF method, applied to analyse one DOF at a time, it is not considered

as a true SDOF method. SDOF methods are usually designed specifically

for one DOF and therefore have particular characteristics. Otherwise, all

MDOF methods could be considered as SDOF ones. The same applies, for

instance, to the sometimes called SDOF polynomial, which is the RFP

method applied for one DOF (e. g., Ref. [75]). In Ref. [75], the author

applies the SDOF polynomial to several FRFs, each at a time, and calculates

average values for the modal parameters in a similar way as in Ref. [71].

The approach assumes, however, real modes.

2-3-2 Indirect MDOF methods

Indirect MDOF methods include the Gaukroger-Skingle-Heron (GSH), the

Ewins-Gleeson, the Frequency-Domain Prony (FDPM), the Complex

Exponential Frequency Domain (CEFD), the Eigensystem Realization

Algorithm in the frequency domain (ERA-FD), the Rational Fraction

Polynomial (RFP), the Global Rational Fraction Polynomial (GRFP), the

Global method and the Polyreference Frequency Domain (PRFD).
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The Gaukroger-Skingle-Heron method (GSH)

Presented in 1973 (Ref. [76]),  this method is based on a least-squares fit of

the receptance, considering several modes at a time, for one input and one

output locations (SISO). The model assumes viscous damping, and is an

attempt to circumvent possible difficulties associated with the graphical

techniques used in the Circle-Fitting method. It is, however, interactive,

leaving the possibility for the user to take decisions. As the procedure

needs initial estimates for the modal parameters, Circle-Fitting is

suggested at a first stage of the analysis.

The method begins by considering the receptance response of an N DOF

system as:

N

a(i0.Q  = a, + [z A,+jo B, 1 ei@
l=l or*- co* + j 26x$&

(2-178)

where a0 is a complex constant and @ is a rotation angle that seek to reflect

the influence of out-of-range modes. Let e be an error function between

the theoretical values a(@~) and the measured values E(jo>l for all the

measured points L:

e = ii (~~Oi) - aCioi))* (G(jOi) - Ct(joi))
i=l

(2-179)

Simplifying the notation by writing ai and pi for aCiOi) and ~~Oi),

respectively, we obtain

e= i (oli* - ai*) (pi - “i)
i=l

(2-180)

We shall seek the minimization of this error, by taking derivatives with

respect to the variables and equaling to zero. It is shown in Ref. [76] that

the following relationship holds:
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N-l

BN= - C B, (2-181)
I=1

and, therefore, there will be 4N+2 unknowns to be calculated and we shall

need 4N+2 equations. As a, = Re(ao)+jIm(a,), we make

k, = Re (a,) k, = Im (a,) k, = 0

k, = 2q5, ks=A, k,=Br

k4N = %* k4N+l= 20NcN k4N+2  = AN

The 4N+2 equations will then be:

aa. ihi*
---‘+(&i-CXi)-] =O

?i
akj

(2-182)

(2-183)

for j = 1,2, . . . . 4N+2

These equations are nonlinear and an iterative procedure is sought.

Writing each of Eqs. (2-183) as a general function fj of the variables kj, we

have

ae
- = fj(kl, k,, *.*, kdN+2>  = 0
akj

for j = 1,2, . . . . 4N+2 (2-184)

Now, if we call ktj to the initial estimates of kj, we shall look for the

variations 8kj so that the following equation is verified:

fj(k’r + Sk,, k’2 + 6$, .*., k)4N+2 + 6k4N+2)  = 0 (2-185)

Doing an expansion using Taylor’s theorem, Eq. (2-185) can be written as
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4N’2
c

a fj(k’l, ...,  khN+, )

3%

Sk + higher order terms in Sk (2-186)
i=l

j = 1,2, . . . . 4N+2

The problem is now linearized by neglecting the higher order terms.

Applying Eq. (2-185),  we obtain

4N+2
fj(k’l,  ***,  k’4N+2  ) + C

a fj&,, . . . . k’4N+2  )

ski

ski = o (2-187)
i=l

j = 1,2, . . . . 4N+2

For each set of new estimates k’j, we can write

ik
- = fj~l, k’, ..., k’,N+,  ) # 0
akj

j = 1,2, . . . . 4N+2

and substituting in Eq. (2-187), we obtain

at3 4N+2 3%

-+ c
akj i = l  akjak

mc,=o j = 1,2, . . . . 4N+2

Expanding Eq. (2-l 89) in matrix form, we have

ra2e 3% 3%

ak,2 ak,ak,  ‘*’ aklak4N+2

3% Se
- . . .
ak,2 ak2ak4N+2

.
. .

. .

sm. a2e

ak4N+22

%

Sk4N+

ae
%

ae
ak2

.

.

.

&

3k4N+2

(2-188)

(2-l 89)
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This equation can be solved for the variations Sk,, and new estimates are

taken as the previous ones plus Sk,, until convergence is achieved. From

Eq. (2-183),  the second derivatives in Eq. (2-190) are given by:

a%!
= - &g*-(q) a2CXi &Xi* aai- - _

akj$ i=l akjah a& akj +

(hi - a,>
a2Cti*  aC$* aC$

-__

akj$ akj ak
1 (2-191)

If the data are not too noisy, (pi* - ai*) and (pi - ai) will be small and SO

an approximation for Eq. (2-191) may be used:

a%
ak,ak,

= i ( aai* aai + aai*  aai )

i=l ak akj akj ak
(2-192)

Good initial estimates must be provided, in order that the process

converges. It was found that initial zero values for a, and $ were

satisfactory. Initial estimates for the natural frequencies and damping

factors can be provided by a quick circle-fitting analysis. Then, A, and B,

can be obtained by a non-iterative least-squares analysis. All the modal

parameters will then be known and the iterative process will begin. Our

experience with this method showed that, although the identifications were

quite satisfactory, the whole process and in particular the iterative part

was, generally, very slow.

The Ewins-Gleeson method

Introduced in 1982 (Ref. [77]), this SISO method is dedicated to the

identification of lightly damped structures, assuming the hysteretic model.

In the referred article, the problem is presented in terms of inertance, but
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we shall derive it here for an FRF in terms of receptance.

Because the system is assumed to be lightly damped, the modes are taken as

real, i. e., with phase angles of 0 or 180 degrees. The mathematical model

is, therefore,

N

a(jo) =  c
cr

I=1 wr2- a2 + jo,%

(2-193)

In a first stage, it is considered that there is no damping. Hence,

Re(a(io))  =  z
Cr

I=1 oq- a2
(2-194)

If, in addition, we take the natural frequencies as the frequencies

corresponding to the peaks in the FRF receptance curve (which are

supposed, in such a structure, to be well separated and sharp and, thus, well

visible), we only have as unknowns the modal constants Cr.

To calculate the N unknowns C, , we need N equations. Thus, we take N

frequencies at, R,, . . . . % and the corresponding real part of the

measured receptances, that we shall write, shortly, as Re(“a,),  Re(&),

. . . . Re(c$).  Thus, The modal constants are given by:

1 1 1

1 1 1
al2 - i2z2 0z2 - a22 ON2 - i2z2

. . .

. . .

. . .

1

(2-195)
.
.
.

W&l
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or

{C} = [R] Re{G} (2-196)

(Nxl) (NW ml)

The sign of each C, tells us whether a response is in-phase or out-of-phase.

In a second stage, the damping factors are calculated from the peak

amplitudes. From Eq. (2-193), at each resonance, we have

from which,

(2-197)

(2-198)

The effects of residual modes can be introduced later and details are given

in Ref. [77]. An alternative to this is to consider N+2 points and calculate

N+2 modal constants. The matrix [R] in Eq. (2-196) would be of order

N+2.

This method works very well if in fact the structure is lightly damped. The

method is extremely simple and fast, and very easy to incorporate in small

computers (in fact, even in common calculators). The disadvantage is that

it is sensitive to the points chosen from the FRF, mainly with noisy

measurements. Some experience is required to make the proper choice of

points. To avoid this drawback, a new approach is proposed in Chapter 4,

where a comparison with the method now presented is made.

The Frequency Domain Prony method (FDPM)

This is also a SISO method and it corresponds to the complex exponential
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method in the time domain. It was introduced in 1980 (Ref. [78]).

For an N DOF system with viscous damping, it is possible to write the

receptance FRF as the ratio of two polynomials in jo, (see Section 4-2-l):

?N-1

C ak (j63)k
k=o

a(io)  =

!? b, (i@k

(2-199)

k=CI

In factorized  form, it is possible to write a(jo) as

2N-1

n (jo - zk)
k=l

a(jo) = 2N

n (ia - pk)
k=l

(2-200)

where zk are the zeros and pk the poles of the numerator and denominator

polynomials, respectively. From Eq. (2-199), and making b,,=l, it is

possible to write:

2N-1

c (i@k[l+@jm)-ak]  = -(ja)2Na(ja)
k=O

(2-201)

Separating into real and imaginary parts, we obtain:

2 (-l)k tJ32k-2  [ -b,,_, Re(a(io))  + ~b,,_,In’@(j@)  + a,,_,] =
k=l

(-l)N+l 02N Re(a(jo))

N
(2-202)

c (-l)k+’ a2k-2 [b2k_2  hIl(a(i@) + ~b,,_,Re(CX(@))  - aa2k_t] =
k=l

(-l)N+r 632N Im(a(jo))
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Eqs. (2-202) have 4N unknowns (coefficients ak and bk). They can be

obtained by considering at least 2N data points (because each one has real

and imaginary information), by solving the resulting linear system of

equations. After finding those coefficients, it is possible to solve the

denominator polynomial of Eq. (2-199) to calculate the poles and

consequently the natural frequencies and damping factors. The residues

and the modal constants and phase angles will be calculated afterwards, as

explained in Section 4-2-l for the RFP method. If we simply wish to

regenerate

substituted

procedure.

the original FRF, then the coefficients ak and b, can be

directly in Eq. (2-199). We shall explain next an alternative

Let us suppose now that only the magnitude of the FRF is available from

the measurements. The complex conjugate of Eq. (2-200) will be:

2N-1 2N- 1

I I  (-jo - zk*) II (io + zk*)
k=l k=l

a*(jo>  =  2N =2N
(2-203)

n (-jo - pk*) n (io + pk*)
k=l k=l

Multiplying Eqs. (2-203) and (2-200),  we obtain

2N-l

n [(jo + zk*)(jm - zk ) ]
k=l

Ia( =  2N

n [(ja + pk*)@ - pk)]
k=l

which can be written in a similar form to Eq. (2-199):

2N-1

(2-204)

k=3
la(j0)P =

g b’k(jo)2k
k=O

(2-205)
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By considering now b’2N--1, we obtain a similar expression to Eq.

(2-201):

2N-1

c (j@2k  [b’, la(j63)12 - a’,] = - (j(@2N la(j0)12
k=O

(2-206)

or

2N-1

c (-l)k m2k [b’, Ia( - a’,] = (-l)N+l a2N Ia( (2-207)
k=O

which corresponds to Eqs. (2-202). We have again 4N unknowns (a’, and

blk) and this time we need at least 4N data points to solve the linear system

of equations. With alk and blk, we can reconstitute Ia( using Eq.

(2-205) and by solving the denominator polynomial we can calculate the

poles. It should be noted that in this case we have 4N poles, instead of 2N

in the previous case. The 2N poles in excess are reflections of the other

ones, with respect to the imaginary axis, i. e., they will have positive real

parts, while the ones we are interested in have negative real parts. This fact

allows for the sorting of the poles we want. The calculation of the natural

frequencies and damping factors is therefore possible. For calculation of

the residues, that would lead us to the modal constants and phase angles, a

degree of ambiguity is expected, as we only have measured the magnitude

of the FRF. Thus, this alternative procedure is not convenient for the

calculation of those parameters. Comparison of this method with the CE

method showed a reasonable agreement (Ref. [78]).

The Complex Exponential Frequency Domain method (CEFD)

This method, due to Schmerr (Ref. [79]), is the corresponding frequency

domain version of the SSTD, which in turn is, as mentioned previously,

-
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the ITD method for the particular case of only one output measurement

(perhaps it should more appropriately be called SSFD). The CEFD is

therefore, like the SSTD, a SISO method. From Eq. (2-4), and

considering only one input and output locations, the IRF is given by:

h(t) = ;;” 4 2’ (2-208)
l=l

Applying a Fourier transform, the FRF will be

a(io) =
z 4’

(2-209)
-1 jo-s,

Considering a series of N shifted responses from the same IRF,

h,(t) = h(t+kT) k = 1, 2, . . . . N (2-210)

where T is an arbitrary time lag, the corresponding FRF will be

k = 1, 2, . . . . N (2-211)

Expanding Eq. (2-211) for all k values, we obtain

SIT s2T ‘2NT

qjo) =
A,‘e A,’ e A2N’  e

+ + +. . .
jo- sl jo- s2 j”, - s2N

sl2T
A,‘e s22TA,’ e

StN2T

a#@ =
A2N’  e

+ + +. . . (2-212)
jo- s1 jo- s2 j0 - %N

. .

. .

. .

SIW s2NT %NT

a,(io) =
A,’ e A,’ e A2N’ e

+ + +. . .
jo- sl jo- s2 j” - s2N
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or

A,‘e
SlT s2T %NTA,‘e ...A2N’e

jo- s1

1A,’ e
q2T

A,’ e
s22T ?2N2T. . . A,,’ e

jo- s2
.
.
.

1

(2-213). . .
. . .
. . .

A,’ eFT A,’ e?P ?zNNT. . . A,,’ e

(2Nx 1)

If each shifted sample contains L frequency points, then

SlT A,’ e s2T %tNT. . . A,,’ e 1 1 1. . .
jo, - s1 jo,- s1 joL - sl

1 1 1. . .
jai - s2 jw2- s2 jo,- s2

A,’ e
s12T

A,’ e
s22T %?N2T. . . A,,’ e

. . .

. . .

. . .

A,’ e
FT

A,’ e
S2NT %NT. . . A,,’ e

.

.. .
. . .

1 1 1
. . .

jml - %N jm2 - S2N jq - S2N !
(2-214)

or

(2-215)

If we repeat this whole procedure taking the responses shifted one interval
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of time At, Eqs. (2-211) will become:

m KeqTpt
a,‘(jo) = c

I=1 jo- s,
k = 1, 2, . . . . N

95

(2-216)

and if we shift 2 time intervals, we obtain

2N fY e+TiJAfaJj0) = c
r=l jo- s,

k = 1, 2, . . . . N (2-217)

For the series of N shifted responses and for the L frequency points, we

obtain the following matrix corresponding to Eq. (2-216):
-!

WI = C&l e
qbt

0 wm s2At 0 WI
e (2NL) (2-218)

0 **.
e9NAt

c

(2Nx2N)

or

WI = [A,‘1 IAl

Similarly, for Eq. (2-217),

[a”] = [AT]

or

WI = NJ 112-3

(2-219)

(2-220)

(2-221)
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Combining Eqs. (2-215) and (2-219),  we can write

bl = [ATI ml[I[ IWI 1&l
WXL) (2Nx2N)  (2NxL)

(2-222)

or

b*l = [AAl [Al (2-223)

(2Nx2N)  (2Nx2N)  (2Nx2N)

where, to simplify the exposition, we have assumed L=2N.  Combining

Eqs. (2-219) and (2-221),  we obtain[a’] = W-J EN[1[ IWI M-J (2-224)

@NW (2Nx2N)  (2NxL)

or

r&1 = &I WI (2-225)

(2Nx2N)  (2Nx2N)  (2Nx2N)

From Eq. (2-223), we can write

[A,$ b,,J = [Al (2-226)

Substituting Eq. (2-226) in Eq. (2-225),  we obtain

&I = &I [A/J1 ia,1 (2-227)

Post-multiplying by [a,]-‘,  it follows that

. .I.
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&I = &I [a,]-’  = &I [A/J1 (2-228)

where [As] is known as the system matrix. Post-multiplying Eq. (2-228)

by [A,], we obtain

[A,1 [A,1 = &I (2-229)

But each column r of [I,] is related to the corresponding

iA,1 by

r&J, = {AAjr  eSP’ r = 1, 2, . . . . 2N

Thus, we have the following eigenproblem to solve:

[[A 1S - es’? 1 I] {AAIr = w

one of matrix

(2-230)

(2-23 1)

from which the modal parameters can be calculated. The calculation of

mass-normalized modeshapes is not a problem in this case. A SIMO

version of this method could also be developed and this would be the

equivalent to the ITD method. Even as a SISO method, we can easily

establish a parallel with the ITD method. No experimental examples were

given in Ref. [79] and thus, no comments on the performance of this

method for real cases are possible. We have no information of other

articles about this method.

The Eigensystem Realization Algorithm

in the frequency domain (ERA-FD)

A new version of the ERA in the frequency domain was presented recently

(Ref. [go]). The procedure follows the same steps as for the time domain

version and the mathematical development is entirely similar. Therefore,



Chap. 2 Sec. 2-3-2 Indirect MDOF methods 98

we do not think it is worthwhile to develop it here. The frequency domain

version can also provide checks to distinguish between genuine and

computational modes. It features a reduced computational time and

storage, being appropriate for small computers and the examples tried

revealed its good performance, both on theoretical and experimental cases.

The Rational Fraction Polynomial method (RFP)

This is a US0 method that first appeared in 1982 (Ref. [Sl]). Like the GHS

method, it is based on the minimization of an error function, using the

least-squares technique. The main differences with respect to the GHS

method are:

(i) the formulation of the FRF is expressed in rational fraction form,

instead of the partial fraction form;

(ii) the error function to be minimized is established in such a way that

the resulting system of equations is linear, without requiring initial

estimates for the modal parameters.

Because the resulting linear system of equations involves matrices that are

ill-conditioned, the rational fraction form of the FRF is expressed in terms

of orthogonal Forsythe polynomials. For this reason, this method is also

known as the Rational Fraction Orthogonal Polynomial method (RFOP). A

variation of this method, the Complex Orthogonal Polynomial Functions

method (COPF), was described (Ref. [82]), but the theory was not

presented. Another variation was proposed (Ref. [83]), using Chebyshev

polynomials instead of the Forsythe ones, with the main objective of

obtaining a faster algorithm. The RFP method will be developed in detail

in Chapter 4.
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The Global Rational Fraction Polynomial method (GRFP)

This method is an extension of the RFP method to analyse globally a set of

FRFs, using one single input reference. It is, therefore, a SIMO method.

This extension of the RFP, already mentioned in Ref. [81], was developed

further in Refs. [ 841 and [ 851. The GRFP method will also be developed in

detail, in Chapter 5.

An extension of the GRFP method to incorporate multiple input locations,

i. e., its MM0 version is developed in Ref. [86].  This development follows

exactly the same steps as explained in Chapters 4 and 5 for the RFP and

GRFP methods, with the corresponding extensions to incorporate the

additional information from several inputs. It will not be presented here, as

we believe that a good understanding of the developments of the RFP and

GRFP methods will allow an easy comprehension of that MM0 version.

The Global method

The Global method (Refs.  [87], [88]) is a SIMO method, and the approach

used differs completely from the GRFP. It is based on the construction of

matrices of differences of receptances and mobilities, in order to avoid the

effects of neighbouring modes. In those matrices, the number of FRFs is

overspecified with respect to the expected number of modes existing in the

selected frequency range. Application of the SVD technique enables the

determination of the genuine number of existing modes. A detailed

explanation of this method is given in Chapter 5. A variation of the

method, allowing the structure to be excited simultaneously by several

input forces (with the condition that the input force vectors are linearly

independent), is proposed in Ref. [89], with the objective of having a better

excitation of all the modes that are to be identified.
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The Polyreference Frequency Domain method (PRFD)

This is a MM0 method, due to the works of Z&hang et al. (Refs. [go], [91],

[92]).  Considering p response locations and q input references, the impulse

response matrix in terms of receptance, for an N DOF system, can be given

by (see Eq. (2-169):

IH(Ol = FYI I? 2 -1 WIT

(pxq) (px2N)  (2Nx2N)  (2Nxq)

(2-232)

where [Y] is the modeshape matrix and [W] is the modal participation

matrix, as defined in Eqs. (2-25) and (2-26). The corresponding Laplace

transform of Eq. (2-232),  is

[H(s)] = WI [s[ II - [‘ s, -II-’ [WIT (2-233)

Defining

[G(s)1 = [s[ II - [‘ s, -II-’ WIT (2-234)
Wx@ (2Nx2N) (2Nxd

we can write

W(s)1 = WI [WI (2-235)
@x@ 0 (2WJ

Applying the Laplace transform to the first time derivative of Eq. (2-232),

i. e., to the impulse response matrix in terms of mobility, we obtain

[H(s)l, = L [Ii(t)] = @-WI - [Wt)l,, (2-236)

where the subscript M denotes mobility. From Eq. (2-232) for t=O,

rwS)l~ = @-WI - IY’l [WIT (2-237)
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The Polyreference Frequency Domain method (PRFD)

This is a MM0 method, due to the works of Zhang et al. (Refs. [go], [91],

[92]).  Considering p response locations and q input references, the impulse

response matrix in terms  of receptance, for an N DOF system, can be given

by (see Eq. (2-169):

I[H(t>l = WI r 2 -1 WIT

@x@ (PxW @NxW @WI
(2-232)

where [Y] is the modeshape matrix and [W] is the modal participation

matrix, as defined in Eqs. (2-25) and (2-26). The corresponding Laplace

transform of Eq. (2-232),  is

[H(s)1 = WI [s[ II - [

Defining

. s, \]I-’ WIT (2-233)

[G(s)1 = b[ II - [‘ s, -II-’ WIT (2-234)
(2NN (2Nx2N) (2Nxd

we can write

W(s)1 = B’l KWI (2-235)
@x@ @xW WxO

Applying the Laplace transform to the first time derivative of Eq. (2-232),

i. e., to the impulse response matrix in terms of mobility, we obtain

bwl, = L [I-i(t)] = @-WI - D-K01, (2-236)

where the subscript M denotes mobility. From Eq. (2-232) for t=O,

l3wl~ = @-WI - IYl [WIT (2-237)
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But it is also true that

Ir-r(s)l~ = M r s, xl [ws)l

ThUS,

#-WI - P’l [WIT= WI l-’ sr -1 [WI

Combining Eqs. (2-235) and (2-239),  we have

From Eq. (2-235),  we can extract the value of [G(s)]:

[WI = U’YIT W-D-’ P’lT D-WI

Substituting into Eq. (2-238),  we obtain

rmN, = [yll r sr -1 oYIT WV wlT rwl

or

W(s)l, = [A,1 [WI
@X0 @XP>  @=ll

where

[A,1 = P-‘l [\ sr ~1 W’lT Wl>-l WIT

101

(2-238)

(2-239)

(2-240)

(2-241)

(2-242)

(2-243)

(2-244)

is called the system matrix. Post-multiplying Eq. (2-244) by [Y], we obtain

[A,1 P’l = Wl F’ sr -1 (2-245)



Chap. 2 Sec. 2-3-2 Indirect MDOF methods 1 0 2

which represents an eigenproblem that will give us the modeshapes [Y] and

the natural frequencies and damping factors from [‘ s, -1. The problem is

now how to evaluate the system matrix [A,]. Eq. (2-245) can be written as

[- [A,1 [ 1 I] = [Ol

(2-246)

Post-multiplying both sides by [G(s)], we obtain

[- [AsI [ 1 I] B’l

i 1 KWI = [ 0 1

rYl r $‘I (2-247)

Substituting Eq. (2-240) in Eq. (2-247),  we obtain

[- &I [ III D-WI

[ 1 = WI

@-WI - P’l WIT

or

(2-248)

- [A,1 [H(s)1 + @-WI - F’l BYIT = [ 0 1 (2-249)

from which

‘[H(s)11 = s[Ws)l

[II (2-250)

Passing to the frequency domain by putting s=jo and considering L

measured frequencies, we obtain

IIA,;xz WIT1  i'W;Jl ;_._. [W;‘il

((P+qw4

= [WO’q)l 0.. FWJl1 x
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(2-25 1)

v-ww

from which it is easy to extract [As] and [Y] [WIT. After solving the

eigenproblem (2-245), [Y] will be known and therefore we shall know

[WIT, completing the mathematical model. The residues can be calculated

as in Eq. (2-177), from where it is easy to calculate the modal constants and

phase angles. The correct number of modes can be calculated by an SVD,

in a similar way as explained for the Multi-Matrix method, later in this

chapter. The PRFD method has given evidence of good performance when

dealing with close modes; it appears also to be less sensitive to

computational modes when compared to time domain methods and allows

for the use of unequal frequency steps. A more general version of this

method, including also information in terms of inertance, is presented in

Ref. [93].

Other methods

An enormous number of methods can nowadays be found, the majority of

them being just slight variations of the best known ones. We shall refer

briefly to some of those methods. One of them is the Constrained Global

Nonlinear (CGN) (Ref. [94]). In this SIMO  method, the curve-fitting is

reduced to a minimization problem with constraint equations, related to the

orthogonal properties of the modeshapes. An objective function is then

constructed, where the constraint equations are incorporated in the form of

Lagrange multipliers. All the modal parameters are derived from the

minimization procedure, and therefore in this method there is not the usual

two stage calculation (e. g., like in the RFP), where the natural frequencies
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and damping factors are calculated first and the modeshapes in a second

stage. The procedure is, however, restricted to real modes.

Recently, in Ref. [95], an improvement to the GRFP method was

introduced with the objective of determining the correct number of modes

present in a given frequency range. The analysis is repeated with an

increasing number of assumed modes and a statistical parameter is

introduced with the property that it stabilizes when the correct number of

modes is achieved; further increments of the number of modes will not

alter the value of that parameter. This parameter is a direct function of the

computed least-squares error of the fit.

In Ref. [96], the GRFP method is extended to a MIMO version, making use

of a matrix autoregressive moving-average model in the Laplace domain,

with the advantages of being appropriate for high modal density cases. A

complex mode indicator function (CMIF) is a plot of eigenvalues as a

function of the frequency and it is used to determine the number of modes.

2-3-3 Direct methods

In this category, we include four methods: the Spectral method, the

Simultaneous Frequency Domain method (SFD), the Identification of

Structural System Parameters method (ISSPA) and the Multi-Matrix

method.

The Spectral method

The Spectral method, introduced by Klosterman (Ref. [16]) with the

objective of identifying close modes, is probably the simplest of all the

MIMO direct frequency domain methods, where the matrices of the
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governing differential equation of the system are evaluated from the

measured FRF receptances, considering only two frequency points. The

theoretical background, discussion and an attempt to improve it are given

in Chapter 5.

The Simultaneous Frequency Domain method (SFD)

The SFD method (Refs. [97],  [98]) is a SlMO method where the aim is to

form the matrices of the system based on responses at several locations on

the structure. From a knowledge of those matrices, the eigenvalues and

eigenvectors are calculated. Because in the frequency range of interest

there will be N modes, only N DOF from the p measured ones will be

effective in the characterization  of the response of the system. These N

DOF form what is called the “independent” set of DOF. In this way, the

p-N measured responses will form a set of “dependent” DOF. These

designations are, in our opinion, somewhat unfortunate, as a DOF is - by

definition - an independent coordinate that reflects the behaviour of the

system, but we shall still use it for the sake of being close to the

terminology given by the authors of the method. The independent set will

have the subscript r and the dependent one, the subscript 2. Writing the

dynamic equation of the system for the N DOF, we have

[M-J {j;J + [Cl &I + [Kl {YJ = u7 F (2-252)

where F is the single applied force and {r} is the force location vector,

formed by zeros except for the input location coordinate, where it is 1.

Pre-multiplying Eq. (2-252) by [Ml-l,  we obtain

{j;,, + [M-j-l  [Cl {&I + [W IKI {yl) = Ml-’ U-1 F (2-253)

or
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rj;,, + [Cl’ IYJ + w IYJ = u-v

For sinusoidal excitation, we have

(2-254)

- ~{YJ + jW1’ (?,I + Kl {y,, = WY F (2-255)

where (yl} is the complex amplitude of (yl}. It may be assumed that the

dependent set of responses will be related to the independent one by a linear

transformation:

{Y,} = [Tl {y,} (2-256)

((P-NM) HP-MN N1)

where [T] will, in general, be complex. We can write Eq. (2-255) as

MCI {?,I + WI {?,I - U3’F = ~I&)

Writing Eq. (2-257) for L frequencies, we obtain:

(2-257)

(2-258)

or

[Cl’ Cru,,, {i92 A&l jol o

N2

0 "jq

(w-1

+ El [{y,>, {~&{~1~~1  -
WN) (NXL)

,
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{r}‘F 11 1 . . . 1) = [{j& {~&~j&l ml2
i 1

0 (2-259)
NJ) UXL) (NXL) u22

or

j [Cl’ [Yll I’ ~2 -I+ IN’ W,l - UT’ F W = &I I’ ~2 ‘I2 (2-260)

with

(2-26 1)

{v} = (1 1 . . . 1)

Because [Y,] is a complex matrix, Eq. (2-260) can be written in terms of

its real and imaginary parts:

j [Cl’ (Re &I + jh [Y,l) L’ Q -I+ Kl’ (Re  &I + _ih W,l) -

W  F W = (Re &I +.ih &I) L’ ~2 -I2 (2-262)

Separating the real and imaginary parts, we obtain:

- [Cl’ Im[Y1] [‘ 0 -1 + [K]’ Re[YJ - {I?}’ F {v} = Rev11 [\ L2 ‘I2

[Cl’ Re[Y,] [‘ &2 t] + [K]’ JmTyJ  = h-n&] [‘ &2 ‘I2 (2-263)

or

L ,
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[[Cl’ WI W’F] - InUll I’ W RerY1l E’ W

ww+l)) ReTY1l WY11- {VI Ku
((2N+l)x2L)

[Re[Y,l [‘ a ‘I2 hW,l  L’ Q \I”]
(Nx2L)

or simply

El [Al = PI

From Eq. (2-265), we can calculate [X] by a pseudo-inverse:

[Xl = PI [AITWl [AIT)-’

1 0 8

(2-264)

(2-265)

(2-266)

Thus, matrices [Cl’, [K]’ and the vector {lY}‘F are now known. The

homogeneous solution, in state space formulation, of Eq. (2-254), can be

written as (see Cap. 5):

WfiN) (2Nxl) (2Nx2N) (2Nxl) (2Nx 1)

(2-267)

From this equation, the complex modeshape matrix [a,] of dimensions

Nx2N and the 2N eigenvalues s, can be calculated, enabling the modal

parameters to be evaluated. The solution for (yr] can be written as

{y,} = [@J liw [II - r f+ w [@JT  WY F (2-268)

Wxl) W42N) (2Nx2N) (2NxN) (Nxl)
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Substituting Eq. (2-256) in Eq. (2-268),  we obtain:

{i2} = [Tl [Oil bw [II - E‘ s,-I]-~ P+lT {r)‘F

or

1 0 9

(2-269)

(2-270)

where

Pq = D-1 [@,I (2-27 1)

(@-N)::2N) (@-MIXN)  (Nx2N)

From this equation we see that the same linear relationship between

(Y,} and (ya applies for the modeshapes [<Dr] and [QJ. In order to

calculate the modeshapes corresponding to the set of “dependent” DOF, we

only have to evaluate [T] from Eq. (2-256):

ry,] = n-7 &I (2-272)

(@-N)xL)  KP-N)xN) (NL)

from which

ml = &I W,lT (W,l [Y,lTY’ (2-273)

and the complete modeshapes for all measured coordinates will be known.

We may also seek the conservative homogeneous solution of Eq. (2-254) in

order to calculate the real modes of the structure:

m - m21 III {YJ = WI (2-274)

The real modeshape matrix will be [@,I,,  of dimensions NxN and there

will be N eigenvalues s,, from which the modal parameters can be
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evaluated. The proportional viscous damping factors can be calculated by

using:

PJ,T [Cl’ [@,I, = r qo, -1 (2-275)

A similar relationship as in Eq. (2-271), between the “independent” and

“dependent” sets of real modeshapes exists:

[@JR = PI’ PJ, (2-276)

KP-N)xN) KP-N)xN) (NXN)

with the difference that now, matrix [T]’ must be real. This can be

imposed in Eq. (2-272),  writting

WY21 +.i In-U21 = El’ (ReW1l + _i WYJ)

from which

Re[Y,J  = [T]’ Re[Y,]

WY21 = [Tl’ IMY

or

[Re[YJ hn[YJ] =  [?1’ [WY,1 h&II
KP-N)x2L) ((P-WW (Nxw

Writing Eq. (2-279) as

[Y,l ’ = [Tl’ [YJ’ (2-280)

we obtain

[T]’ = [Y,l’ [YJT ([Y,l’ [YJTY’

(2-277)

(2-278)

(2-279)

(2-28 1)

.
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which, substituted in Eq. (2-276),  enables the calculation of the complete

set of real modeshapes.

The possibility of this method to evaluate the system matrices and therefore

the complex and/or real modeshapes is a great advantage. The main

problems are related to the correct choice of the “independent” set of

measured coordinates, as a different choice may lead to different answers.

A repeated analysis could be beneficial. In order to determine the correct

number of modes to consider in the “independent” set of coordinates, a

first view of the FRFs on the Argand plane can be pursued. Usually, the

number of modes taken are the visible ones plus two, to take into account

residual effects. Better results were found when several narrow frequency

bands were selected around regions of resonant peaks.

An improved selection method for the number of modes to analyse is given

in Ref. [98]. This method has been applied very successfully in complex

spacecraft structures. Craig and Blair (Ref. [99]) have extended this

method, in order to permit multiple exciter testing. The theoretical

development is entirely similar to the one just given above.

The Identification of Structural System Parameters method

(ISSPA)

Presented in 1978 (Ref. [loo]), this SIMO direct method is based on the

identification of the system matrices to solve an eigenproblem. Let us begin

by considering the differential equation of equilibrium for a SDOF system:

mi+cy+ky = f (2-282)

This method considers the more general case where there is also a moving

base exciting the system, like in Fig. (2-3).
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Fig. 2-3 Moving base SDOF system.

For this case, Eq. (2-282) becomes:

rni + c(; - i) + k(y - x) = f (2-283)

Defming the relative displacement between the mass and the base, as

yr = y-x (2-284)

we have, in terms of yr, the following equation:

mGr+x>+cir+ky,  = f

or

mir+cir+ky, = -rr&+f

For an MDOF system, it will be

EMI &I + [Cl {jr,)+ WI {y,) = - Ml {;I + IF)

(2-285)

(2-286)

(2-287)

For harmonic base and force excitation, we can write

[- ~2 WI + jo [Cl + [Kl] {%I = - 03 WI {xl + IF)

or, pre-multiplying by [Ml-‘,

(2-288)

[- & [ I ] + jo [Cl’ + [K]‘] {Y,} = - & {x} + [Ml-’ {F) (2-289)
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where {Y,, is the complex amplitude of (y,). Eq. (2-289) can still be

written as

[- 02 [ I ] + ja [Cl’ + [IQ’] {y,} = 02 {F}’

where

(2-290)

{F}’ = - {x} + CII-* [Ml-’ {F} (2-291)

At this stage, {F}’ and {YJ are supposed to be known for each FRF.

Supposing an N DOF system, the matrices in Eq. (2-290) have dimensions

NxN and the vectors, Nxl. From Eq. (2-291), we see that for pure

excitation of the base it is not necessary to know [Ml, but for an applied

force, [M] must be known, which usually is introduced from a theoretical

evaluation via a finite element analysis. Considering L measured frequency

points, we have, from Eq. (2-290),

- 02* &I2 + ja, [Cl’ C7J2 + Kl IYJ2 = (~32~ W (2-292)
. .
. .
. .

- q* &IL + jo, [Cl’ &IL + Kl {Y,&_ = q2 W

or

-
[IYI
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(2-293)

or

- [YJ [‘ S2 -I2 + j [Cl' [YJ r C2 -1 + [K]’ [YJ = [E;1”  [‘ S2 ‘I2 (2-294)

with

I
(2-295)

r*‘1 = al 0
el~.I0 .a%

Writing [Y,] as

(2-296)

Eq. (2-294) can be separated into its real and imaginary parts:

- Rery,] r a ‘I2 - [Cl’ Irnry,] r LI t] + [K]’ Re[Y,l  = IFI” r ~ ‘I2
-Im~~r~~12+~cl~R~rY,lr~-l+[Kl’~rYr]  = VI (2-297)

where [Cl’ and [K]’ are the unknowns to be calculated. Their calculation

gives:
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[Cl’ = [Im[YJ r R -I* Im[YJ+ - [Re[YJ + [F]“] [\ Q %]*R~[Y,I+]  x

[h&l E’ a -1 ReCY,l+ + RdYr] L’ Q \I WYJ+I-’

IN’ = b&l [\ Q \I - [Cl’ WY,] I[‘ Q -1 MYr]+ (2-298)

where Re [Y,]’ and Im [Y,]’  are the pseudo-inverses of Re [YJ and

Im [Y,], respectively, and are given by:

Re[YJ+ = RelYAT  (Rely ReLYIT)  -’

Im[YJ’ = WYJT (WYJ h[YJT) -l (2-299)

Knowing [Cl’ and [K]‘, the eigenvalues and eigenvectors can be

calculated. The general solution can be found by solving an equation

similar to Eq. (2-267) and the solution corresponding to real modes is

found by solving an equation like Eq. (2-274) in the SFD method.

In the ISSPA method we need to measure the input forces and to know the

mass matrix of the system This may not be very easy to introduce and

therefore this method is probably more suitable for base excitation tests,

usually with a shaker table. Although not referred to here, the SVD

technique is usually employed in this method to determine the effective

number of DOF of the system under study. For more details, see Refs.

[NO] and [loll.

The Multi-Matrix method

This is a MM0 direct method (Refs. [ 1021, [ 151,  [ 141) where a general

matrix input-output polynomial is estimated using frequency responses

from several input and output locations. Residual terms rather than
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additional modes are used to describe the contribution of out-of-range

modes. By a principal response analysis, the effective number of modes is

determined and the governing system matrices are identified, from which

the modal parameters can be evaluated. Using harmonic excitation, the

dynamic equilibrium equation is

[W”  [Ml + W-9 [Cl + Kl] bd = Irl IfI
@XP) @xl) (Pxc-0  W)

(2-300)

where {y} is the response at p coordinates, {f} the input force at q

references and [IJ is a transformation matrix relating the coordinate

location q with p. The effective number of modes in the frequency range

of interest is N (N<q). The N responses {y}’ must be related to the p

responses {y) by a linear transformation [T]:

{Yl’ = ITI 1~1

(Fxl) WXP) @xl)

(2-301)

The effective number of modes can be calculated using a pincipal  response

analysis, i. e., via an SVD analysis. Considering measurements at L

frequency points in the frequency range of interest, we can write

PI = [ReIy}l~Iy}lRe{y}2~mIy)2  . ..R4yl.Wy~J G-302)
@XL)

and Eqs. (2-301) becomes

(2-303)

where the composition of [Y]’ is similar to Eq. (2-302).We can also apply

an SVD to the product [Y] [YIT, giving (see Appendix D)
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M MH = WI El2 RJIH (2-304)
@PI (PXN)  (NW (NXP)

where [C] is the matrix of the singular values and [U] is a unitary matrix.

This decomposition will have N non-zero singular values, corresponding

to the number of modes. Matrix [ UIH can then be used as the

transformation matrix [T]. Because [U] is unitary, we can write

M = WI M’ (2-305)

@XV  (PW (N&1

and, for each measured frequency,

{Yl =  WI {Yl’

@xl) (PXN) (Nxl)

(2-306)

Substituting in Eq. (2-300),  we obtain

k.io>*  [Ml WI + O’N K-3 WI + El WI] (~1’ = D-l VI
(PW (Nxl) (Pxo (qxl)

(2-307)

For convenience, we shall pre-multiply Eq. (2-307) by [K]-l, giving

b>* WI-' EMI WI + W>  WI-’ [Cl WI + WI] {yl’ = Kl-’ D-1 {fl

@W (Nxl) ~1x1) (2-308)

Pre-multiplying Eq. (2-308) by [UIH, we obtain

[C.iw>*  BJIH Kl-' [Ml WI + (i@ CUIH WI-’ [Cl WI + II I] 1~9’ =

(NW (Nxl)

EJIH WI-' D-l IfI (2-309)

Wxl)

or

c
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[tiN* PI, + W PI, + [ 1 I] {yl’ = [PI, IfI

(NW (Nxl) w=d W) (2-310)

When more than 2N complex conjugate modes are contributing to the

response (say, 2N’), it is convenient to use a more general matrix equation

of order m to model the forced system responses. The order m will be

selected such that mxN is larger than 2N’ (Ref. [ 151). Thus, we shall have,

more generally,

[(jw)” [D], + . ..+ 0’0) [D], + [ I ]] {y}’ = [Cj~)~-l [P],_i + . . .

(2-311)

where m must be even. This equation can be considered as an

autoregressive moving-average frequency domain model for {y}‘. The

effect of out-ofrange modes is accounted for by using residual terms. The

substraction of this effect must leave us with the correct response in the

frequency range of interest. Considering here only upper residual terms,

[RIU,  Q. Q-31 1) must then be modified to

[Wm  PI, + . ..+ W PI, + E 1 II [W’ - Flu WI =

R_iam-l PI,_, + *a.+ (if@ PI, + [PI,1 IfI (2-3 12)

Developing Eq. (2-312),

bOrn PI, + . ..+ (i@ PI, + [ 111 W’ =

[WOrn PI, RI, + . ..+ W Dl, RI, + [RIU + W”-’ [PI,_,  + ..a

+ mo [PI I+ PI,1 IfI (2-313)

or
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kWrn PI, + . ..+ W  [Dl, + [ 1 I] IyY =

[CWrn  PI, MU + WJ>~-~ (Plm_1  MU+ [Plm_l>  + . . .

+ CM> (PI, [RIU + Ml) + [RIU + PI,] IfI (2-3 14)

or

[(i~)~ [Dim + ***+ 00) IDI, + [ 1 I] {YI’ =

[(jo~)~ [PI], + Cj~)~-l [P’],_, + . ..+ (io) [P’ll + [P’],] {f} (2-315)

where

PI, = D3, MU

P’l,., = Plm_l [RI* + [Plm_1

P’l, = Mu + PI0

(2-316)

Eq. (2-315) can still be written as

[(~cII)~  [D], + . ..+ 0’0) [D],] {y}’ - [(i~)~ [P’], + . . .

+ 0) P’ll+ P’IJ Ul = - b4’ (2-317)

For all the L measured frequencies, we have

[PI m . . . PI, [P’l, . . . U”l,l

W(Nm+q(m+lN

(Wm+dm+lNW

.,.
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(2-318)

This equation can be solved by a weighted least-squares procedure for the

matrices [D] and [P’]. Now, the modal parameters must be solved. If the

receptance matrix is given by

where [A&

(2-3 15) that

Kl )‘0 m

(2-319)= g [*I’ + [RI,
r = l  ja-s,

0 0

is the Nxq residue matrix for mode r. It is clear from Eq.

[aCj c0)] also satisfies

Dl, + . ..+ (id PI, + [ 1 I] k%W =

[(jo)m [PI], + . ..+ [P’],] (2-320)

Matrix [RI”  can be calculated from the first of Eqs. (2-316) and matrices

[PI can be calculated from the other Eqs. (2-316). Therefore, according to

Eq. (2-312), Eq. (2-320) can be written as

bNrn PI, + . ..+ W> PI, + [ 1 ll[MW - [RIUl =

[tiMm-l PI,., + ..*+ [PIJ

This equation can be written in companion matrix form as

(2-321)

[-@.I)  [D]’ + [ I ]][a(jo)]’ = [P(io)]”

where

(2-322)
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-PI, -PI, . . . - PI,

[II [O] . . . WI

WI [ I ] . . . VI
. . .
. . .
. . .

[Ol WI .  ..[I1 [Ol
L

[a(io)]’ =

WJmxq>

(2-323 a)

(2-323 b)

[P(io)]” = Wlrn-l [PI,_1 + .a.+ mm11 + PI,
wn=o WI

. (2-323 c)

.

rh

If [‘ s, \I-’ are the eigenvalues of [D]’ and [Y]’ the eigenvectors, we can

write

[Y’j’ [‘ s, t1-l = [D]' [yl’ (2-324)

(NmxNm) (NmxNm) (NmxNm) (NmxNm)

where

(2-325)

. .
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Once the eigenvalues are known, the natural frequencies and damping

factors can be calculated. We have still to calculate the residues [A& in

order to calculate the modeshapes. From Eq. (2-324),  we can write

ID]‘-’ = [‘YJ’  r s, .I-’ [yll’-’ (2-326)

Substituting Eq. (2-326) in Eq. (2-322),  we obtain

[-(jo3)[Y]’  [‘ s, + [Y]‘-l  + [ I ]] [a@$]’ = [P(io)]” (2-327)

Pre-multiplying by - [‘ s, t] [‘I’]‘-l,  we obtain

[C~CJJ)[Y]‘-~ - [‘ s, -1 [Y]‘-l] [a@$]’ = - [‘ s, -1 [Y]‘-1  [P(jG)]” (2-328)

or

[(jo>[ I I - 1‘ sr -I] [Y]'-l [a@)] = - [‘ sr \] [Y]‘-l [P(jc$]” (2-329)

Assuming now Nxm=2N’,  Eq. (2-319) can also be written as

b(i@l - MU = WI [o’o>[ II - C’ s, 41-l WIT (2-330)

(NXO (Nad (Nmfln-4 (Nmx@

where [W] is the modal participation matrix, as defied in Eqs. (2-25) and

(2-26). It is shown in Ref. [15] that each row of [WIT  is given by the

corresponding row of the right-hand-side of Eq. (2-329), at the pole s,.

The residue matrix for each mode r is given by

from which the modal constants and phase angles can be evaluated.
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This method has the ability of handling a large amount of data, being stable

and robust, and has proven to be able to deal with closely spaced modes and

highly modal damping and/or high modal density. In Ref. [ 1021 a favorable

comparison with the PRCE method is carried out. The main disadvantages

of the Multi-matrix method are the considerable computational

requirements and complexity for an easy computer implementation. It is,

however, one of the most significant contributions in the direction of a

more automatic processing and analysis of large amounts of data.

2 - 4 Tuned-sinusoidal methods

These methods are a special class of modal identification methods in

general. They are essentially based upon the experimental “isolation” or

tuning of real modes of vibration, by means of the excitation of the

structure at each natural frequency by a set of exciters appropriately

distributed in space and time. The a priori need of approximatly locating

the natural frequencies of the stucture  to be analysed, implies that another

identification method must be used in advance. This justifies Ibrahim’s

comment (Ref. [25]) that this category of methods cannot be considered as

genuine identification methods. Nevertheless, these methods constitute one

of the oldest approaches to the study of the dynamic properties of

structures and are still widely used nowadays in the aeronautical industry.

Lewis and Wrisley (Ref. [103]) were the first to recognize that real modes

of vibration - i. e., those of the undamped structure - could be found if

applied forces by several exciters could balance the dissipative forces in the

structure and that this could happen if the measured displacements were in

quadrature with those applied forces. In such conditions, the dynamic

equations of equilibrium are reduced to their homogeneous solution at the

undamped natural frequencies of the structure. Moreover, those authors
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state that the magnitude of the applied forces at the natural frequencies

must be proportional to the product of the mass of the structure on which

they act and to the amplitude of that mass in the mode being excited. Once a

mode is tuned, it is a simple matter to determine the modal parameters - the

excitation frequency is the natural frequency and the measured motion is

the modeshape. Damping can be evaluated by cutting the excitation and

measuring the rate of decay of the response. The correctness of the tuning

could be assessed by the absence of beating (due to the presence of another

mode) in the free decay response.

In 1958, Asher (Ref. [104]) provided a mathematical description to

calculate the natural frequencies, by zeroing the determinant of the real

part of the FRF matrix, and to calculate the force distribution among the

several shakers that must be applied to tune the desired mode. Since then,

this procedure has become known as the Asher’s  method, although, also in

1958, Trail-Nash (Ref. [lOS]) had published a similar procedure, where it

was shown that the number of exciters to be used was a function of the

effective number of DOF of the structure, and suggested the

Kennedy-Pancu method for the localization of the natural frequencies.

A description of the basic theory of Asher’s  method is given in Chapter 6,

when we apply it to solve the problem of calculating the real modes of a

structure from a knowledge of its measured complex modes. Because

subsequent work related to this type of methods are - in general - variations

and improvements to Asher’s method, we shall only present in this section

a brief historical note on the evolution of that method.

The necessity for considerable data acquisition capacity for practical

applications justified that only in the seventies these methods have started to

be more widely used. In 1974, Craig and Su (Ref. [106]) carried out a study

on the number and localization of exciters on a structure, in order to

i
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properly tune the real modes of vibration. Considering that the number of

measured responses, p, is always greater than the number of exciters, q, it

is not usually possible to have all the p responses in quadrature with the

forces. Those authors introduced the concept of Modal Purity as a criterion

to decide whether or not the measurements obtained at the p locations

represented a true mode of vibration. This criterion establishes a tolerance

for the phase angle of the response with respect to the force and if the phase

deviates from 90 or 270 degrees by the amount of the given tolerance,

then the test is rejected, meaning that either more exciters are necessary or

that their position on the stucture must be altered. As already mentioned,

the natural frequencies are calculated in Asher’s  method by putting the

determinant of the real part of the measured FRF matrix to zero, where

each element is obtained by exciting the structure at one point and

measuring at another point. Craig and Su, in the same work, proposed a

method for the localization  of the exciters, by taking several sets of FRFs

for different exciter locations and so forming different FRF matrices.

Each of these matrices gave results for the natural frequencies and an

analysis of their repeatability provided the most desirable locations for the

shakers. The influence of varying the number of shakers was also

investigated and numerical cases with close modes analysed with success. It

was also found that the force distribution necessary to tune a mode does not

agree with the conditions given by Lewis and Wrisley.

In 1975, Smith et al. (Ref. [ 1071) presented a computerized system for the

automatic acquisition, processing and analysis of structural dynamic data.

In 1976, Ibtiez (Ref. [ 1081) proposed an extension of Asher’s  method that

consisted basically of considering more responses than exciters, with the

advantage of reducing the occurence  of spurious resonant frequencies that

sometimes happens in the standard method.
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In 1978, Hallauer and Stafford (Ref. [log]) presented a detailed revision

and discussion of Asher’s  method, showing its strengths and weaknesses.

Systems with non-proportional damping and close modes are discussed,

and numerical techniques are presented. Problems associated with the

incompleteness of the FRF matrix are also discussed. Numerical

simulations are given, where the normal modes calculated by theory are

compared with the normal modes regenerated after calculating the force

distribution.

Following this work, Gold and Hallauer, in 1979 (Ref. [ 1 lo]), proposed an

analytical application of Asher’s  method, calculating the modeshapes after

evaluating the force distribution vector. However, the calculation of the

FRF matrix was not given directly from the measurements, but was

generated after having identified it using a least-squares curve-fitting

method. This procedure sought to avoid the storage of large amounts of

acquired data, storing instead the identified modal parameters. Numerical

simulations worked well, but experimental cases failed due to the poor

quality of the measured data.

Also in 1979, Ensminger and Turner (Ref. [ 1111) proposed a variation of

Asher’s  method, again with prior curve-fitting of the measured FRFs,

called the Minimum Coincident Response method. The real part of the

FRF matrix could be rectangular and by minimizing (by a least-squares

technique) the sum of the squares of the in-phase (real) displacements

subjected to a normalization constraint on the quadrature (imaginary)

response, it was possible to calculate the force vector as a function of the

frequency and also the error (again, a function of the frequency). Plotting

the error function for each measured frequency, the natural frequencies

are obtained from the minima on the graph. For these natural frequencies,

the force distributions can be calculated and the real modeshapes too. This

plot showed to be more efficient in the detection of close natural
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frequencies than the plot of the determinant of the real part of the FRF

matrix, because it is visually clearer. This approach also replaces the

multi-shaker test by an analytical simulation. However, in 1981, Craig and

Chung (Ref. [ 1121) concluded essentially that Asher’s  method has greater

capability for identifying close modes than the Minimum Coincident

Response method.

In 1983, Rades (Ref. [113]) proposed the use of the SVD technique to

localize the natural frequencies of the structure when the FRF matrix is

rectangular, i. e. when there are more responses than exciters. A matrix is

formed by the product of the transpose of the real part of the FRF matrix

by itself and the plots of the singular values of such a matrix with the

frequency shows minima at the natural frequencies. It was shown that those

plots give clearer indications of the localization of the natural frequencies

than the usual plots of the determinant of the real part of the FRF matrix.

An automatic procedure, the force appropriation for modal evaluation

(FAME) was proposed by Ibanez and Blakely in 1984 (Ref. [ 114]),  being

essentially the automatic implementation of the extended Asher’s  method

developed in Ref. [ 1081.

In 1984, Hunt et al. (Ref. [115]) presented an automatic method based on

the perturbations of the exciting frequencies and force ratios to minimize

the ratio of coincident response to quadrature response.

An overall review on this type of method can be found in Ref. [ 1161. The

pratical  implementation of these types of procedure to actually test a

structure is very expensive and time consuming, as it requires a lot of

equipment and because of the difficulty of the tuning process. As Ibrahim

notes (Ref. [25]),  it can be very dangerous to have a structure in resonance

for several minutes, as damage or failure may occur. It is our opinion that

nowadays, with the advanced computer technology and graphic
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visualization, there is no reason why these methods could not be entirely

simulated instead of actually testing real structures, experimental data

being acquired as usual for the identification using other EMA methods.

2-5 Conclusions

From all the methods described in this chapter, we can note that in many

cases the similarities among them are very clear, namely between the time

and frequency domains. This is not very surprising, as all of them start

from the same basic dynamic equations of equilibrium. If a “best” method

exists, it is surely still to be discovered as, from the information we have

collected, some methods work better for some applications than others. At

the present time, the “best” method depends on the available resources, on

the available timing, on the objectives of the study, on the personal

experience of the user, gained when applying a particular method, etc.

Although, in general, more experience exists on frequency domain

methods, where more feeling about the vibration phenomena is possible

due to an easier visualization, some time domain methods are also very

popular and quite reliable. In this thesis, we shall dedicate special attention

to frequency domain methods, for the reasons already stated in Section 1-5.



CHAPTER 3

SDOF MODAL ANALYSIS METHODS -
CAPABILITIES AND LIMITATIONS WHEN
DEALING WITH CLOSE MODES

3-1 Introduction

In the identification of the dynamic properties of structures via

experimental modal analysis, single-degree-of-freedom methods continue

to play an important role due, mainly, to two factors: simplicity of use and

ready physical interpretation of the results. These two factors allow the

user to have complete control of the identification process and a deeper

understanding of the dynamic behaviour of a structure. The price to pay is

in terms of time consumption, and therefore it may become an expensive

choice for typical large-scale industrial modal tests. It is very important,

however, to have a clear understanding of the capabilities and, probably

even more important than this, of the limitations of this type of method. In

general, from our experience, it can be said that the only limitation is

encountered when the structure under consideration exhibits close modes

which, on its own, may constitute a severe restriction. Apart from this, all

129
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methods ( and not only SDOF ones) give satisfactory results, although

some may be more appropriate for some cases than others. In fact, it can be

stated that the existence of close modes is often the major problem that one

has to face in the modal identification of a structure (assuming that it is

linear).

In this chapter, we shall explore the possibilities and limitations of SDOF

methods when applied to close modes. Two major questions arise: first,

how can we recognize the existence of two close modes, and second, how

should we analyse them to obtain a satisfactory modal identification?

3 -2 Indicators of close modes

A survey of modal analysis literature concerning methods of identification,

reveals that in the great majority of them the problem of close modes is

considered. Either it is stated “provided the system does not exhibit close

modes . ..‘I or examples contemplating their existence are presented to

demonstrate the capabilities of a particular method. It can be said that the

consideration of close modes is the ultimate test for any method. But, in

fact, what can be considered as close or separate modes ? We shall discuss

this problem considering the most common case of two close modes.

Intuitively, the concept of close modes is associated with the proximity of

the values of the natural frequencies. In fact, it is inadequate to discuss the

problem only in these terms. It seems more correct to say that two modes

are close if their mutual influence is such that the results from an analysis

of each mode separately are afflicted by large errors or, in other words, if

the usual assumption (that the contribution of the modes other than the one

under consideration is constant) is no longer true. If the errors obtained in

the modal parameters are due to the presence of a close mode, it makes

sense to admit that all four modal parameters of this neighbouring mode
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are interfering on the mode under consideration, and not only its natural

frequency.

3 -2- 1 Interference criteria

A number of studies have already been published on this matter (e. g.,

Refs. [60], [ 1171, [62], [64]). In this section the interference criteria

between two modes given in Ref. [64] are reviewed and the main

conclusions presented. However, the numerical study and examples

presented here constitute new material that is believed to provide a better

understanding of the phenomenon of two close modes and to justify the

frontiers of what can or cannot be considered as close modes. A further

contribution given in this section is the implementation of the resulting

interference criterion in a modal analysis computer program.

Let us consider the response of a 2 DOF system, and suppose the magnitude

of the receptance , la($~$j,  as given in Fig. 3-l.

W-

Fig. 3-1 Receptance magnitude of a 2 DOF system.

Let us indicate the separate contribution of each mode, la,(jo)l and

lqml - which will be denoted by a, and a2 for simplicity - as in

Fig. 3-2, where o1 is the natural frequency of mode 1 and oll and ozl



Chap. 3 Sec. 3-2-l Interference criteria 132

are the frequencies of the half-power points; one of the criteria states that

there is no interference of mode 2 on mode 1 if the variation of the

amplitude of a2 in the frequency range orI to CQ is small compared with

the amplitude value of a, at its natural frequency, i. e.,

*a,
-Iv (3-l)
a1

where v is a small quantity, to be defined later in the text. Likewise, there

will be no interference of mode 1 on mode 2 if

Aa1
---Iv (3-2)
a2

around the frequency range of the half-power points of mode 2.

Fig. 3-2 Separate contribution of modes 1 and 2.

Taking the expression of the receptance for a 1 DOF system with hysteretic

damping, we have

(3-3)

According to Ref. [64], expressions (3-l) and (3-2) become, respectively:
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(condition of non-interference of mode 2 on mode 1)

1 -

1 - (l/a)2
- (W2)2+  (l/~)~

rl2

1
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133

(3-5)

d( 1 - (l/a)2
+ (l/G2)2+  (l/~)~

rl2 i

(condition of non-interference of mode 1 on mode 2)

where

0, rl2a =-, y=-, 6 c-2=-
02 % Cl

Also in Ref. [64], it was shown that the errors obtained in the identification

of the modal parameters were small if v was inferior to 0.5 %.

Comments on expressions (3-4) and (3-S)

It should be noted that, in practice, expressions (3-4) and (3-5) can only be

applied using the estimated values of the modal parameters, i. e., after

having identified once each mode. As indicated in Ref. [62] and confirmed

in Ref [64], the use of the estimated values instead of the theoretical ones

does not modify the results significantly. Studying expressions (3-4) and

(3-5), we can see that, in fact, several parameters other than the frequency

spacing contribute to the interference phenomenon. Thus, besides the
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frequency ratio, a, there is the damping ratio, y, the modal constant ratio,

6, and a combined factor involving the frequency ratio and the damping of

the mode under consideration, (l-a2)/q.

In addition, attention is called to the fact that the existence of interference

of mode 2 on mode 1 does not necessarily mean that there is interference

of mode 1 on mode 2 (or vice-versa). For example, observing Fig. 3-2, it

can be understood that even if the frequency spacing is small, the ratio of

the damping factors and/or modal constants can be such that one mode

suffers a big interference while the other is almost unaffected. In Fig. 3-2,

it is obvious that mode 1 is “stronger” (possibly due to a light damping

factor) than mode 2 and therefore is bound to influence mode 2 much

more than this one does on mode 1.

This indicator of the mutual influence between two close modes has been

implemented in a modal analysis computer program, with an automatic

warning that a more careful analysis must be carried on whenever the

value of v exceeds 0.5 % .

It should be noticed that expression (3-4) (or (3-5)) has only considered the

variation in magnitude of the FRF and not the variation in phase. Due to

this restriction, it is not possible from this expression to conclude anything

about the relative importance of different situations of close modes, i.e.,

two different cases of frequency spacing may lie in the interference range,

but it is not possible to tell if one is worse or better than the other. In fact,

in the limiting case of a=l, the left-hand-sides of expressions (3-4) and

(3-5) give a zero value, implying that there would be no interference! The

reason why the variation in phase of the FRF has not been applied is beause

it was not possible to establish a correlation between the values obtained for

the interference factor and the errors obtained in the identification of the

modal parameters, whereas with expression (3-4) it has been possible to

establish a threshold value of 0.5 % for v, making this criterion a very
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useful indicator of the quality of the results of the modal parameters.

Provided that v I 0.5 %, we can be sure that the modal parameters need

no more correction due to interference from neighbouring modes.

Examples

Let us suppose 6 = y = 1. We are looking for the minimum frequency

spacing we must have when varying the damping factor, so that v 5 0.5 %.

The results are shown in Table 3-l.

rl a

0.05 0.708
0.03 0.791
0.01 0.913
0.005 0.953
0.001 0.990

Table 3-1 Minimum values of a, so that v I 0.5 %.

We can conclude from Table 3-l that, if CC+  is set as 100 Hz, no correction

is necessary provided the values of 6.1~ are as given in Table 3-2. For

example, when TJ = 0.01 (and considering 6 = y = l), the SDOF analysis

will always have to be refined if the frequency ratio a is higher than 0.913

or, for or = 100 Hz, if 6.1~ is equal to or smaller than 109.5 Hz.

ri a Ol O2

0.05 0.708 100 141.2
0.03 0.791 loo 126.4
0.01 0.913 loo 109.5
0.005 0.953 loo 104.9
0.001 0.990 loo 101.0

Table 3-2 Minimum values of o2 if o1 = 100 Hz, so that v I 0.5 %.
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As mentioned previously, when the factor a approaches 1, expression (3-4)

tends to zero, so we could be misled by the resulting value of v if the

frequency ratio is close to 1. It will be shown that, for v = 0.5 %, this does

not constitute a problem, because the expression is only less than 0.5 % if

the frequency ratio is practically equal to 1. So, for the values of 6, y and q

as before, we obtain (Table 3-3):

rl alX4X (5 O2 min

0.05 0.999830 100 100.01700
0.03 0.999900 100 100.01000
0.01 0.999964 100 100.00360
0.005 0.999983 100 100.00170
0.001 0.999996 100 100.00036

Table 3-3 The criterion only fails if o2 I o2 min (6 = y = 1)

The results shown in Table 3-3 mean that problems would only arise if or

and o2 were closer than the values presented. This is not a big restriction

for formula (3-4),  as amax is almost equal to 1.

The effect of 6 and y being different from 1 will now be investigated.

Taking the value of 6 (= C, /Cl) greater than 1 is the same as decreasing the

value of v (see expression (3-4)),  and so, the net effect will be to decrease

the values of a in Table 3-2, meaning that there will be no interference of

mode 2 on mode 1 for a wider spacing of the natural frequencies. This

makes sense because if C, > C,, the peak of mode 2 will be higher than the

peak of mode 1. A value of 6 less than 1 will have the opposite effect. It is

also expected that the variation of the factor y = q2/q r will be in the

opposite sense to that of factor 6, because q2 > q1 means a smaller peak in

mode 2 by comparison with mode 1. Increasing or decreasing both 6 and y
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should make the results invariant, if their relative incidence is identical.

The variation noticed in this case will show which of them is dominant. The

cases to be analysed are shown in Table 3-4 and the results in Table 3-5.

Case 6 y

:.
1.25

A8
3 i.25 1:25

Table 3-4 Example data.

0.05 0.688
0.03 0.774

1 1.25 1 0.01 0.904
0.005 0 .948
0.001 0 .989

0.05 0.707
0.03 0.790

2 1 0.8 0.01 0.912
0.005 0 .953
0.001 0 .990

0.05 0.688
0.03 0.774

3 1.25 1.25 0.01 0.904
0.005 0.948
0.001 0.989

Table 3-5 Minimum values of a, so that v I 0.5 %, for different values of 6 and ‘y.

Comparing these results with the ones in Table 3-l we confirm what was

expected for case no. 1, but it can be seen from case no. 2 that the influence

of y is very small and, in fact, in case no. 3, the results are, to three decimal

places, the same as for case no. 1. Therefore, the factors that contribute

most to the interference between two modes are 6, a and (l-a2)/q.  For

case no. 1, the values of amax may also be calculated (as in Table 3-3 for
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6 = y = l), so that expression (3-4) is verified. Results for the case when

6.1~ = 100 Hz are presented in Table 3-6.

a (3 O2 amax Ol O2 min

0.05 0.688 100 145.3 0.999858 100 100.01420
0.03 0.774 100 129.2 0.999915 100 100.00850

1.25 1 0.01 0.904 100 110.6 0.999971 100 100.00290
0.005 0.948 100 105.5 0.999985 100 100.00150
0.001 0.989 100 101.1 0.999997 100 100.00029

Table 3-6 Results for case no. 1.

With these values, it is concluded that the effect of a neighbouring mode

starts to be significant whenever o2 is smaller than the value presented in

Table 3-6. In such cases, expression (3-4) always gives that indication, as

its value is higher than 0.5 %, provided that o2 is not smaller than the

corresponding value of o2 min.

Although, as said before, the criterion concerning the change in phase does

not provide a correlation with the errors in the identified modal

parameters, it can be used as a comparative tool for the degree of

interference. This criterion will be explained briefly: usually, it is

considered that the effect of neighbouring modes can be represented by a

constant complex vector. The other criterion that has been considered

analyses the influence of a variation of this vector in magnitude, but

keeping the same direction, while in the region within the half-power-

point frequencies of the mode under consideration. The other criterion

considers that this complex vector can also modify its direction in that

same region, and it states that if the length of the arc corresponding to the

angle swept by the vector (response of mode 2) is small compared with the

diameter of the circle of mode 1, there is no interference of mode 2 in

mode 1. Fig. 3-3 gives a representation of both criteria.
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Fig. 3-3 Representation of the interference criteria.

In Fig. 3-3, A and B represent the half-power-points of mode 1. Vector 1

represents the response of mode 1 and vector 2 the response of mode 2.

The first criterion compares the change in magnitude of vector 2 - from C

to D - with the magnitude of vector 1 at the resonance frequency or. The

second criterion compares the arc DE described by vector 2 with the

diameter AB. To draw a conclusion about the level of interference we

must consider both criteria together as, in general, vector 2 will vary in

both magnitude and phase.

From the previous numerical study it was shown that the magnitude

criterion tends to zero as the ratio of natural frequencies (a) approaches 1.

If the phase criterion is also considered, it can be seen that it increases when

a approaches 1, meaning that when the two natural frequencies come very

close, the effect of one mode on the other is governed by the variation in

phase and not in magnitude.

Expressions (3-6) and (3-7) give, for this criterion, the conditions for

non-interference of mode 2 on mode 1 and mode 1 on mode 2,

respectively:

L
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26affy
SV

[(_L_C)‘+ y - aa] J(!-2T)2+ y
rll %

1 4 0

(3-6)

6 a4y K 1 - (l/a)2 2

v2

) + (l/y)2 - (l/ar ]J(’ - (1’a)2)2+ (l/~)~
712 (3-7)

In Table 3-7 the results of v for expression (3-6) are presented,

considering various values for ql, y and a.

Y

a % 1 1.25 1.5

0.05 9.0240 2.4076 1.2826
0.990 0.01 0.2 157 0.2240 0.2203

0.001 0.0002 0.0003 0.0004

0.05 13.8536 2.6976 1.3696
0.992 0.01 0.4004 0.3814 0.3474

0.001 0.0005 0.0006 0.0007

0.05 23.4308 2.9798 1.4485
0.994 0.01 0.8605 0.6991 0.5643

0.001 0.0011 0.0014 0.0017

0.05 46.9439 3.2329 1.5 155
0.996 0.01 2.3542 1.3642 0.9128

0.001 0.0038 0.0047 0.0056

0.05 137.6947 3.4324 1.5670
0.998 0.01 10.9891 2.5883 1.3524

0.001 0.0302 0.0358 0.0405

0.05 355.9152 3.5047 1.5859
0.999 0.01 44.4411 3.2435 1.5260

0.001 0.2228 0.23 15 0.2277

Table 3-7 Study of the influence of the phase criterion (results of v for different

values of a, q1 and $.
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The effect of 6 is only a multiplicative one. From these results it is

concluded that the interference increases as a increases and for each value

of a, it increases with the increase of qr. On the other hand, for each a, the

interference decreases with the increasing of the damping ratio q2/qI  (y),

except for low values of qr, but the variations are very small meaning that

the factor y is not very important in this case.

Discussion

This study of the interference between two modes shows that the magnitude

criterion is useful as it enables us to know if it is necessary a more careful

identification of the two modes. This is possible because a limit for the

value of v could be established by relating it with the errors obtained in the

modal parameters: anything beyond 0.5 % needs correction. The phase

criterion does not give this indication, but allows a comparison between

different cases, and it can be concluded that more interference exists

whenever a, q1 and 6 increase and y decreases. So, the worst possible

situation when there are two modes is to have high values for a (maximum

equals l), qr and 6 and a small value for ‘y. From Table 3-7, the worst case

corresponds to a = 0.999, qI = 0.05 and y = 1.

If it is considered that the modal constants and the damping factors are

aproximately the same for both modes (6 = 1, y = l), the interference

values of mode 2 in mode 1 and of mode 1 in mode 2 are very similar.

This is found many times in practical situations and in this case, it is always

true that the closer the natural frequencies are, the more interference exists

between the modes. So, the usual connection between the existence of close

modes and the proximity of natural frequencies pre-supposes that 6 = 1

‘,_
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andy-1.

It is important to notice that these criteria suppose that the existence of two

modes has previously been recognized.  They are not indicators of their

existence, but of the necessity of correction of the analysis.

3-2-2 The circle centres

A possible indicator of the existence of close modes can be found from the

analysis of the Nyquist plot in the vicinity of these modes. Let us consider

first of what happens when there is only one mode and theoretical data, and

a circle is fitted around the resonance (Fig. 3-4). In this case, the

least-squares Circle-fitting procedure would give exact values for the

coordinates of the centre, x0, y, and the radius r. , no matter how many

or which points have been taken into account to do the circle-fit. Instead, if

some noise is added to the theoretical data, and if several circles are fitted

considering different sets of data points (4 at least, as a least-squares

method is used), different answers for the values x, , yO and r,, are

obtained and if the centres of the circles are plotted, a small “cloud”

around the true value of the centre (Fig. 3-5) will be observed.

Fig. 3-4 Nyquist plot and Circle-fitting of a 1 DOF system.
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Fig. 3-5 Plot of the circle centres for a 1 DOF system (theo. data + noise).

The least-squares fit considering all the points together will supply a kind

of average of all the possible values for the centre. If this idea is extended

to the analysis of two close modes, when successive sets of 4 points along

the frequency range encompassing the two modes are considered, it is

expected that two distinct “clouds” will be seen, one around each centre

(Fig. 3-6).
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Fig. 3-6 Plot of the circle centres for a 2 DOF system (thee. data).

This could be a good and simple indicator of the existence of two close

modes and moreover an indicator of the range of frequency that should be

used around each mode, keeping only the ranges where the centres hold
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together. This indicator works quite well with noiseless theoretical data

(Fig 3-7).

I REAL + VC.)

WST
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X

X

Fig. 3-7 Region of a 2 DOF system where the centers hold together (theo. data).

Unfortunately, it can fail when as li :tle random noise as 1 % is added,

because the scatter of the circle centres can make the plot difficult to

interpret (Fig. 3-8) and so, is not very useful to use when dealing with

experimental data.

1 REAL  + VC.)

X-END X-ST
X

X

x

X

X

Fig. 3-8 Plot of the centres for a 2 DOF system with noise.
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Although this method does not seem very useful in practical circumstances,

we thought that it was worth presenting it because of its basic simplicity. It

has been incorporated in a modal analysis computer program, for its

academic interest.

3 -2-3 The inverse of receptance

Eq. (3-3) is the receptance for a SDOF system with hysteretic damping. If

the inverse of that expression is considered and writing a, instead of

a,(jo) for simplicity, we obtain

oc, c ,j%
r

(3-W

Real modes case

If real modes are assumed, the phase angle of the modal constants, 0, , will

be either O” or 180°, and expression (3-8) will be:

1 6+ to* + jqror2-=
act 'r

(3-9)

where C, will be positive or negative for $, = O” or 180°, respectively.

Separating into real and complex parts, we have

Re(‘) = $-- (tir%$)
% r

(3-10)

(3-l 1)
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Expression (3-10) represents a straight line in o2 and expression (3-11)

represents a horizontal line (constant value) in o or 02. Figs. 3-9 a) and b)

are the graphical displays of these two expressions.

t
Re(ll%)

+
Im(llcQ)

a) b)

Fig. 3-9 Real and imaginary parts of the inverse of receptance, for real modes.

The case shown in Fig. 3-9 is for Qr = O”, as the slope of Re(lla,)  is

negative and Im(l/ar) is positive. For 4, = 180°, the slope of Re(l/aJ

will be positive and Im(l/a,)  negative. It is easy to see from Eq. (3-10)

that the intercept of Re(l/a,) with the horizontal axis gives the value of CI+

and that the reciprocal of the slope gives the modal constant. From the

imaginary part, the damping factor is obtained. One of the advantages of

this representation is that there is a clear separation of the modal

parameters, as the damping factor appears only in the imaginary part of the

display. If a viscous damping model had been considered, instead of Eq.

(3-l l), we would obtain

(3-12)

A display of the imaginary part with o would be a straight line
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with slope 2c1&/C,, and not a horizontal line as before and so it is possible

to have an indication of the existing type of damping. In practice, however,

this is not so clear, as the presence of neighbouring modes and

non-proportional damping can cause distortions on the plots and no

obvious conclusion can be drawn. Nevertheless, if the modes are well

separated, and the existence of real modes is a reasonable assumption to

make, this method can have some advantages over the Circle-fitting

approach, namely (i) because it is easier to obtain the natural frequency just

by fitting a staight line and calculating the intercept with the horizontal axis

and (ii) because the fitting can easily be based on the points away from the

immediate vicinity of the natural frequency, whenever the definition

around that value is not good due to a light damping factor and/or to the

existence of noise.

Complex modes case

Because in practice one has, in general, to deal with complex modes, the

limitations of the previous case will be relaxed, and the expressions revised

for the case of complex modes. Rewriting expression (3-8) as

1 6+ o2 + jq, or2
-=
% Ar+jB,

where

Ar = Cr cos $,

B,=c,~in$~

it follows that

(3-13)

(3-14)
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Re(l) =
(A, + Brq)q2 - Arm2

a! h2+B,2

In@) = (A,rl, - B,)@ + B,m2
% h2+B,2

of receptance 1 4 8

(3-15)

(3-16)

In this case, both real and imaginary parts are straight lines in 02, of the

form

Re(L) = mR+nRti2
%

In&) = mI + n102
a,

(3-17)

(3-18)

with

(A, + ql,Nq
m, =

h2+B,2
(3-19 a)

(+I, - B,)q
mI =

b2+B,2
(3-19 b)

A,nR = -
h2+B;

BrnI =
h2+Bz

(3-19 c)

(3-19 d)

After fitting the graphs of Re(lla,)  and Im(l/a,)  to straight lines, mR  ,

ml, nR and n1 are known and by convenient manipulation of Eqs. (3-19),

we can determine the four modal parameters:

0, = 4 -mR nR - mI nI

nR2 + n12
(3-20 a)
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mRnI-mInR
rl, =

-mRnR-mInI

or = tg-1 -(- Irl
nR

)
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(3-20 b)

(3-20 c)

(3-20 d)

In the case of real modes, nI = 0 and these expressions coincide with the

ones for the real modes case. Now, both slopes and intercepts of the real

and imaginary parts contribute to the calculation of the modal parameters

and so the imaginary part is no longer uniquely linked with the damping

factor. Also, the natural frequency does not correspond any more to the

intercept with the zero horizontal line.

The possibilities and usefulness of this method to identify a structure will

be discussed in more detail later, as now the interest relies on its application

as an indicator of the existence of close modes. Considering Eqs. (3-14)

and (3-19 c) and (3-19 d), we have

cos or
nR = - (3-21 a)

C,

sin 44
nI =

C,
(3-21 b)

Depending on the value of 9, , all combinations for the signs of the slopes

of the real and imaginary parts of l/a, against o2 are possible.

Considering two modes with O” < +r c 90° and -9OO < $2 < O”, the

display of the inverse FRF will be as shown in Fig. 3-10.



Chap. 3 Sec. 3-2-3 The inverse of recepttince 1 5 0

From the simple observation of these graphs, it seems easy to recognize the

existence of two modes, even if they are very close, due to the difference in

the slopes and intercepts with the vertical axis. It is known that from a Bode

Re(ll%) Im(llar)

\
.-

mode  1 __**’

\mode2

02 .

Fig. 3-10 Real and imag. parts of liar, for a 2 DOF system with complex modes.

or a Nyquist plot it may be very difficult to recognize the presence of two

modes, but since we are dealing here with straight lines, it is possible that a

good indicator of the existence of two close modes has been found. The

most difficult situation appears to be when all the parameters of the two

modes are very similar, in which case a situation like in Fig. 3-l 1 could

arise.

Re(llc% Im(lle+-:

-Y--__
==7

---cl-_ -_
--=T_

Fig. 3-11 Real and imag. parts of liar, for a 2 DOF system with complex modes

and similar modal parameters.
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In this case, it is possible that only one straight line is visible in each plot.

The shape of the dotted line between the two modes, however, is not easy to

predict theoretically, as the analytical expression for the inverse of the FRF

is a complicated function of frequency. If it is not a straight line, it may still

be possible to recognize the presence of two modes. For this study,

theoretical data with identical modal parameters for both modes have been

generated (Table 3-8). The display of the inverse FRF is shown in Fig.

3-12.

M o d e  or qr cr Qr

:. loo loo 0.01 0.01 1 1 0 0

Table 3-8 Data for a 2 DOF system, with identical modal parameters.

R e a l  P a r t Imagfnary  P a r t .

0

1
98.00  frrq. - 2 1 0 3 . 0 0 9 6 . 0 0  Freq. 6 2 1 0 3 . 0 0

Fig. 3-12 Inverse FRF plots for the data of Table 3-8.

In Fig. 3-12 the real part shows a variation between the two modes and the

imaginary part exhibits a “bump”. Figs. 3-13 and 3-14 show the Bode and

Nyquist plots, respectively, and one can verify that, in this example, it is

easy to recognize two modes in all the different representations shown.
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In Fig. 3-12 the real part shows a variation between the two modes and the

imaginary part exhibits a “bump”. Figs. 3-13 and 3-14 show the Bode and

Nyquist plots, respectively, and one can verify that, in this example, it is

easy to recognize two modes in all the different representations shown.
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Fig. 3-13 Bode plot of Fig. 3-12.
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Fig. 3-14 Nyquist plot of Fig. 3-12.

If the frequency spacing between the two modes is decreased, with all the

1 5 2

other parameters at the same values, for o1 = 100 Hz and o2 = 100.2 Hz

the graphs presented in Figs. 3-153-16 and 3-17 are obtained.
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R e a l  P a r t I m a g i n a r y  P a r t .

---

‘4
-

0 -~-

0_.__. - _____ _-_- .__. -
98.00  Froq. 6 e 1 0 3 . 0 0 9 8 . 0 0  Fraq. - 2 1 0 3 . 0 0

Fig. 3-15 Example of the inverse FRF of 2 very close modes.

60

d

2

f
:
d

20 0.00
F’rmquoncy  Hz.

Fig 3-16 Bode plot of Fig. 3-15.
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I R E R L  +  ve.>

Fig 3-17 Nyquist plot of Fig. 3-15.

From Fig. 3-15, it is still possible to see a “bump” in the imaginary part of

the inverse FRF, showing the presence of two modes, but not in the display

of the real part. From the Bode and Nyquist graphs (Figs. 3-16 and 3-17) it

is not possible to recognize  the existence of these two modes. The case

now presented, with or = 100 Hz and o2 = 100.2 Hz was the limiting

case. With values of o2 below 100.2 Hz, it was not obvious from the

inverse FRF that two modes were present.

Other examples with different values for the modal parameters showed, as

predicted, to be easier to interpret. For instance, with Q = 0.01 and Q =

0.015, we obtain the graphs of Fig. 3-18.

If the limiting case of Fig. 3-15 is considered with a level of 3 % of

random noise added to the data, the graphs of Fig. 3-19 are obtained, and it

still is possible to observe the “bump” in the display of the imaginary part.
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R e a l  P a r t I m a g i n a r y  P a r t .

0

155

98.00 Froq. - 2 1 0 3 . 0 0 9 8 . 0 0 Fraq. h 2 1 0 3 . 0 0

Fig. 3-18 Same case of Fig. 3-15, but with different damping factors.

R e a l  P a r t I m a g t n a r y  P a r t .

0

98.00 fraq. h 2 1 0 3 . 0 0 9 8 . 0 0 Frmq. 6 2 1 0 3 . 0 0

Fig. 3-19 Same case of Fig. 3-15, with 3% added noise.

Discussion

The inverse of receptance method has been generalized in order to

accommodate the complex mode case, the most common encountered in

practice. This development will be used in Section 3-3-l for the purpose of

identification of the modal parameters.

Simply by using the display of the real and imaginary parts of the inverse
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of a FRF, we have managed to obtain a simple but reliable indicator of the

existence of two close modes. If these two modes are very close indeed, and

all the other modal parameters of similar value, it has been shown that the

imaginary part of the display still exhibits a “bump”. The limiting value for

the frequency ratio was found to be 0.998 (aprox.) with a damping loss

factor of 1 %.  In these cases, the usual types of display (Bode and Nyquist)

appear to exhibit only one mode.

3-3 Identification in the presence of close modes

Supposing that it has been possible to establish the existence of two close

modes, the problem then is how to identify them using a SDOF analysis

method. It is known that the identification of a single mode in the presence

of another one close to it can lead to serious errors in the estimation of the

modal parameters, depending on the degree of “closeness”. Usually, the

least affected parameter is the natural frequency and then, by increasing

order of error level, the damping factor, the modal constant and the phase

angle. The question is “how to correct the estimated values?” Because the

phase angle is, in general, the most affected parameter, a technique to

correct the phase angles has been devised (Refs. [64], [65]), supposing that

the other parameters can be considered as acceptable.

If theoretical data for two close modes are generated, assuming real modes

so that the phases of the modal constants are equal to zero, it is possible

from the identification using the Circle-fitting method to obtain

satisfactory results for the natural frequencies, damping ratios and

magnitude of the modal constants even thought incorrect results will be

found for the phase angles (sometimes these are in error by more than

200), thereby suggesting that the modes are complex when, in fact, they are

real. Considerable care is necessary in the interpretation of the results
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when there are close modes, as many times the complexity indicated is not

genuine.

In general, not just the phase angles but all the modal parameters need to be

corrected and a more general technique must be used. The most

widely-used procedure is the one known as SIM (Ref. [69]).  The idea is

very simple: after a first identification of each of the modes individually,

the analysis is repeated for each mode, this time subtracting from the

original FRF data the contribution of the modes (besides the one under

study) that have already been identified. Mathematically, this can be

expressed as

N

a, = E-Ca,
S=l
s f r

(3-22)

where c is the initially measured FRF data, < is the resulting FRF of the

mode under consideration and a, is the regenerated FRF contribution

of each mode already analysed. This technique is very convenient for two

close modes in particular and an iterative procedure can be establish

between the two modes until convergence is obtained. This iterative

procedure is, in the majority of cases, convergent, although it can be quite

slow.

As a repetitive analysis between two modes can be very tedious by making

a call to each mode at a time, an automatic SIM option (AUTO-SIM) has

been implemented in a modal analysis computer program. This works as

follows: after a first analysis of each mode, an indication of the existence of

interference between two modes is given, based upon the amplitude

criterion described in Section 3-2-l. Then, the option AUTO-SIM appears

and after indicating which two modes need refinement, the program

automatically iterates between those two modes until convergence is
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attained. The criterion to stop this iterative procedure is that the difference

in the phases of the modal constants in two consecutive iterations is less

than a small quantity (O.lO, say), since, as mentioned before, the phase is the

most affected parameter.

3-3-l Circle-fitting and Inverse methods - which one to use ?

Basically, there are two methods for SDOF identification of a FRF: the

Circle-fitting method and the Inverse method described in Section

3-2-3. A third method (Ref. [73]) will be discussed later. The

Circle-fitting is, probably, the most applied technique and provided

there are enough points and good quality data in the resonance area and not

very low damping, it can be used without major problems. Nevertheless, it

is quite sensitive with respect to the calculation of the phase of the modal

constant, even for widely spaced modes. Concerning this modal parameter,

the Inverse method may give better results but, sometimes, it does not

give such accurate results for the other modal parameters, especially in the

case of close modes.

If the SIM technique (progressive isolation of mode to be analysed) is to be

used, then both methods show aproximately the same rate of convergence,

although the initial estimation of the phase angles can sometimes be more

accurate using the Inverse method, reducing the number of iterations

needed to obtain convergence. However, application of the SIM technique

has its own limitations, too. It must not be forgotten that,in order to apply

SIM, it is necessary to obtain a first estimate of the modal parameters in

order to carry on the iterative process. With the Circle-fitting method,

this can be difficult to obtain, because in this method the location of the

natural frequency is based on the increasing and decreasing of the angular

spacing between the points around each natural frequency. If two modes
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are very close in terms of natural frequency, not only do the two circles

appear to be just one circle, but also the referred property of increasing

and decreasing of the angular spacing may be lost, and it may become

impossible to perform the Circle-fitting around each mode. If this is the

case, the Inverse method may have advantages in obtaining the first

estimate of the modal parameters, since with this method the angular

spacing property is not used. But even if we manage to obtain the first

estimate for the modal parameters, and if the modes are very close, the

modal properties may come with such large errors that it is not possible to

obtain a convergence with the SIM technique. The problem of obtaining

the first estimate is not so acute if one mode is “stronger” than the other,

i.e, if the values of 6 and/or y are different from 1, because in this case the

less affected mode can usually be identified without any problems and then,

prior to analysis of the other one, the SIM technique can already be used to

obtain a better result. Another peculiarity when the relative “strength” of

the modes is similar is that the identified modal constants tend to be the

double of their real values, which is easily understood by analysing the

FRF of two close modes. In such cases, a good procedure (before starting

the SIM iteration) is to consider the modal constants with half the values

obtained in the first identification.

Examples

First, we shall demonstrate with a theoretical example how the

Circle-fitting method can give wrong results for the phase angles, even

for widely separated modes. Let us consider the error-free data of Table

3-9:
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1 10 0.01 1 0

2 20 0.01 1 0

Table 3-9 Example data.

Using the Circle-fitting method, the results are (Table 3-10):

1 9 . 9 9 9  0 . 0 0 9 3 9  0 . 9 3 9 2  5 . 8 2

2 20.000 0.00999 0.9989 2.26

Table 3-10 Identification using the Circle-fitting method.

The results for 4, are clearly in error. For the same case, but using the

Inverse method, the results are (Table 3-l 1):

1 10 .000 0 .01000 0 .9969 0 .39

2  2 0 . 0 1 0  0 . 0 1 0 0 0  0 . 9 9 3 9  - 1 . 5 5

Table 3-11 Identification using the Inverse method.

The results for the phase angles are better in this case. If we consider +r as

30’ and Q2 as -30°, the results are as shown in Table 3-12 from which it

can be seen that the phase angles are again better with the Inverse method.

Next, we shall analyse a case with heavily coupled modes (Table 3-13),

with identical values for qr and C,, so that the mutual interference is

similar.
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Method Mode q

Circle-fitting
1
2

9.999 0.00970 0.9701 35.82

20.000 0.00999 0.9985 -27.74

Inverse
1 10.000 0.01090 1.0050 30.34

2 20.010 0.01090 1.0230 -31.06

Table 3-12 Identification using both methods, with phase angles of 30° and -3OO.

1 100 0.01 1 0

2 100.4 0.01 1 0

Table 3-13 Example data of close modes.

Looking at the display of the inverse part of the FRF, there is a clear

indication of the existence of two modes (Fig. 3-20).

R e a l  P a r t I m a g i n a r y  P a r t .

0

98.00 Freq. A 2 1 0 3 . 0 0 98.00 Freq. - 2 1 0 3 . 0 0

Fig. 3-20 Inverse FRF plots (example of Table 3-13).
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Analysing these modes separately using the Circle-fitting and Inverse

methods, we obtain (Table 3-14):

1 100.025 0.01389 2.4677 24.66
Circle-fitting 2 100.375 0.01423 2.6009 -24.61

Inverse
1 100.130 0.01210 2.0900 5.21

2 100.280 0.01150 2.0040 -4.57

Table 3-14 Identification using both methods.

Choosing the Circle-fitting results as the first ones for the analysis, and

taking the AUTO-SIM option, after 28 iterations the following results

were obtained (Table 3-15):

No. iter. Mode q qr cr %

28 1 99.998 0.01030 1.0860 5.04

28 2  1 0 0 . 4 1 8  0 . 0 0 9 8 0  0 . 8 8 8 3 -3.10

Table 3-15 Identification using the Circle-fitting method and AUTO-SIM.

Choosing the Inverse method results as the input results for the

AUTO-SIM option, the results are (Table 3-16):

No. iter. Mode q qr cr +r

35 1 99.998 0.01030 1.0850 4.70
34 2 100.415 0.00980 0.8971 -2.50

Table 3-16 Identification using the Inverse method and AUTO-SIM.
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Taking now @r = 30' and Q2 = -30°, the first analysis gives (Table 3-17):

Method M o d e  o.+ qr Cr %

1 100.145 0.01110 2.0865 8.65

Circle-fitting 2 100.235 0.01130 2.1790 -4.87

1 100.120 0.00950 1.7350 4.61
Inverse 2 100.280 0.00950 1.7390 -4.66

Table 3-17 Identification using both methods (same example, but with 30’ and -30’

phase angles).

The results are now in considerable error, even for the natural

frequencies. Using the AUTO-SIM option with each type of results as a

start, we obtain (Table 3-18):

Method No.  i te r .  Mode 6+

29 1 99.998 0.01000 0.9757 30.78

Circle-fitting 28 2 100.398 0.01010 1.0270 -29.17

1 - - - -

Inverse divergence 2 _ _ _ _

Table 3-18 Results after applying AUTO-SIM.

The results are very good using the initial values from the Circle-fitting

method, but divergence was encountered when using the results from the

Inverse method as a start. We shall try now to iterate from the results of

Table 3-17, but using half the values for the modal constants as a starting

point. The results are shown in Table 3-19.
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Method No.  i te r .  Mode Q+

16 1 100.007 0.01040 1.1380 32.42

@de-fitting 16 2 100.425 0.01000 0.9296 -37.78

Inverse
10 1 100.013 0.00990 1.0050 25.42

9 2 100.398 0.00980 0.9564 -26.14

Table 3-19 Results after applying AUTO-SIM, with 1st estimate for the modal

constants as half their value.

Discussion

From the examples presented, it can be concluded that for widely spaced

modes the Inverse method can have some advantages over the

Circle-fitting method, namely in the calculation of the phase angles of

the modal constants. When the modes are very close, both methods give a

similar amount of error level for the modal parameters, although in some

cases the phase angles can still be better with the Inverse method. The

Inverse method is a good alternative when it is not possible to obtain an

identification with the Circle-fitting method and the SIM technique

should always be used for very close modes. In order to improve the speed

of convergence, or even to avoid divergence, it may be convenient to

change the values of the modal constants to half of the values obtained in

the first attempt.

3-3-2 The “Bendent” method

Recently, a new SDOF method has been developed (Ref. [73]). Considering

that the receptance FRF of a system is given by

. . . A__._
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a(io) =
4+j%

+ Residual term
6+ o2 + jq,mr2

(3-23)

and that for a particular value m = CI close to the resonance, Eq. (3-23) is

given by

a(jC2) =
A,+$,

+ Residual term
or2 - R2 + jqrmr2

(3-24)

the residual term, considered constant over the chosen frequency range,

can be eliminated by subtracting each side of Eqs. (3-23) and (3-24):

a(io) - a(iQ) =

(A,+jB,)  [
m2- a2

(Or2 - 612)(Wr2  - Q2) - qr2Wr4 + jqr6Jr2(261r2  - a2 - Q2)1 (3-25)

Defining a function A as

6J2- a2
A =

a(jo) - a(jQ) =

A, - P,
b2+B,2

II
( r
o 2 - o~)(o,~ - a2) - qr2mr4 + jq,o,2(2mr2 - 02 - c)] (3-26)

it follows that

Re(A) = cR + ta m2 (3-27 a)

Im(A) = cI + tI m2 (3-27 b)

which are linear functions in 02, with the slopes given by

tR = -
1

h2+B;
[Ar(O,2 - 0’) + BrIJrmr21

t1 = -
1

h2+B,2
[Pqrlrmr2 - Br(cJr2 - n2)1

(3-28 a)

(3-28 b)

I ,
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and the intercepts given by

1
cR= 42+B; 1 [A, o,“(o,” - a2) - qr2mr4] + B,77,0,~(20, 2 - Q2)} (3-29 a)

1
‘I = 42+&2 1 A,rlrc0r2(2~r2  - a2) - B,[w,~<o, 2 - a2) - q,“w,“]  } (3-29 b)

By varying Q around o,, with R z 03, we obtain a family of straight lines

for Re(A) and Im(A). The existence of non-linearities or the influence of

neighbouring modes distort these straight lines and so we may have

qualitative information about those phenomena. Due to neighbouring

modes, we can usually observe curved lines instead of straight lines. This is

because the assumption made that the residual term keeps constant over the

frequency range around a resonance is no longer true. This effect is less

noticeable when a narrow frequency range is considered, and therefore the

shape of the lines can also be an useful indicator of frequency one should

use for the fitting. Unfortunately, in some practical situations, these lines

can appear so distorted that no easy conclusion is available. Returning to

equations (3-28),  we see that from these expressions it is not easy to derive

the modal parameters. However, noting that Eqs. (3-28) and (3-29)

represent straight lines in a2, such that

tR =  dR+uRd2 (3-30 a)

5 = d, + ur& (3-30 b)

and

CR = SR+VRR2 (3-31 a)

cr = SI +vp2 (3-31 b)
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4
uR =  42+BF

Br
LlI = -

b2+ B,2

(A, + ql,Nq
VR = -

A,2+B,2
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(3-32 a)

(3-32 b)

(3-32 c)

(3-32 d)

(3-33 a)

(3-33 b)

(3-33 c)

(3-33 d)

The modal parameters can be derived by using either expressions (3-32)

or (3-33) ( it is curious to note that vR = d, and vI = d,). Fig. 3-21 is a

theoretical example of the type of plots we obtain in this method.
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Fig. 3-21 Example of a “Bendent” analysis (theo. data).

The data used correspond to a real mode (0, = 0”). If the mode were

complex, the graphs on the right would have a similar shape of the ones on

the left.

Let us summarize the procedure: we have the display of Re(A) and Im(A)

from the measurements (top graphs of Fig. 3-21), which constitute,

theoretically, families of straight lines in 02, with slopes t, and t, and

intercepts cR and cl. These parameters can, therefore, be computed by

fitting Re(A) and Im(A) to straight lines. t,, t,, cR and c1 are, in theory,

themselves straight lines in Q2 (Eqs. (3-30) and (3-31)) and by a second

straight-line fitting it is possible to calculate the values on the

left-hand-sides of Eqs. (3-32) and (3-33) and then, the modal parameters.

But Eqs. (3-32) and (3-33) are alternative sets of expressions and so, we

shall use just one of them to calculate the modal parameters. Eqs. (3-32)

are chosen due to their simplicity, compared with Eqs. (3-33). Therefore,
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we shall fit straight lines to t, and tI (bottom graphs of Fig. 3-21).

On the other hand, by comparing Eqs. (3-32) with Eqs. (3-19), it is seen

that these are the same, apart from a minus sign in all of them. This also

means that Eqs. (3-28) are the same as the inverse of receptance (Eqs.

(3-15) and (3-16)),  again apart from a minus sign and so, Eqs. (3-27) can

alternatively be written as

Re(A) = cR - Re( ’
a,(.@)

)&

In-r(A) = cI - hn( l
a,(jn)

)d

(3-34 a)

(3-34 b)

Therefore, the modal parameters derived from “Bendent” method must be

the same as the ones derived from the Inverse method (Eqs. (3-20)). In

fact, comparing Eqs. (3-20) with Eqs. (17) to (20) of Ref. [73]?, it can be

confirmed that they are identical.

However, when we compare the results of “Bendent” and Inverse

methods, the results are slightly different. This is due to two reasons. The

first is because the Inverse method does not take into account the effect of

other modes (Eq. (3-13)), while the “Bendent” method does. The second

reason (referring to Eqs. (3-28)) is because in the Inverse method the

values of Re(l/aJ  and Im(l/a,.)  are used directly from the measurement,

while in the “Bendent” method, the parameters t, and t, are already the

result of a straight line fitting. This is a consequence of having subtracted

the effect of the residual term, which gives the possibility of having,

around each frequency point, a set of values for the inverse of the

t Note: in Ref. [73] there is an error in Eq. (18). According to the notation used in that
paper, it should be -Q, = (q - p)/(l + pq).
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receptance in the frequency range considered, from which average values

are calculated (tR and tr). In the Inverse method, we only have one value

for the inverse FRF for each frequency point, and so this method tends to

be more sensitive to the presence of neighbouring modes and/or the

existence of noise in the data. Briefly, the “Bendent” method considers

residual effects and passes through an intermediate process of refinement

that has, in general, the effect of improving the results. However, with

noiseless theoretical data and for 1 single DOF, the “Bendent” method

coincides with the Inverse method. For widely spaced modes the residual

effect is not very large and the results from both methods are very similar.

In any case, apart from the sign, the graphs of t, and t, in “Bendent”

method (Fig. 3-21) are very closely related to the display of the inverse

FRF (e. g., compare these graphs with Fig. 3-9, for @, =O”) and it can be

said that they are displays of an averaged inverse of the FRF. Adding 2%

of noise to the data of Fig. 3-21, we obtain the plots of Fig. 3-22, where the

fitting of t, is quite clear. In this case, the value obtained for er is 0.3O,

instead of O”.

Bendent  Method  o f  Ana l ys i s

*
4J

ri
2
fi!

99.75 Frsq. - 2 101.25 99.75 Frmq. * 2 101.2

Fig. 3-22 Example of a “Bendent” analysis (theo. data + noise).
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Having established this parallel between the Inverse and “Bendent”

methods, there is now a clearer notion of what, in fact, we are analysing

with this latter one, whereas before, the data analysed was somehow

“disguised” and the physical interpretation had been lost in the

mathematical formulation. Also, some of the disadvantages of the Inverse

method, when compared with the Circle-fitting method, have now

disappeared and in the great majority of cases, the “Bendent” method has

proven to be the most powerful SDOF technique available at present.

3 -4 Conclusions

Considering two fundamentally different alternative methods of SDOF

modal analysis, the direct (Circle-fitting) and the inverse (Inverse or

“Bendent” methods), it was shown that, within certain limits, it is possible

to deal with the problem of close modes using either approach.

In the first place, the discussion about the interference between two modes

led us to a better understanding of the parameters that govern this

phenomenon and how it is possible to have the indication that a refinement

of the identification was necessary.

The possibilities of having information about the existence of two modes

were also discussed and it was shown that, in the majority of the cases, the

observation of the graphs of the inverse FRF could be a reliable indicator.

Some examples were presented to assess the capabilities of the two basic

SDOF methods in the identification of two modes, and it was concluded

that for widely spaced modes, the Inverse method was more accurate,

especially regarding the phase angles, and that for very close modes the

level of errors was, in general, similar with both methods. For the most

current applications, the Inverse method usually provides better results
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for the phase angles, but less accurate results for the other modal

parameters.

It was also shown that the recent “Bendent” method is a refined version of

the Inverse method and coincides with this for the 1 DOF case with

theoretically-generated data, without noise. In practical applications, the

“Bendent” method gives better results than the Inverse method and is

generally better than the Circle-fitting method.



CHAPTER 4

AN INVESTIGATION OF SOME US0 MDOF
METHODS

4 - 1 Introduction

In this chapter, two indirect #SO MDOF frequency domain modal analysis

methods will be investigated: the Rational Fraction Polynomial method

(RFP) and a new approach for the identification of lightly damped

structures. As the overall objective of this thesis is the extraction of valid

modal properties from measured data, both methods will be developed

keeping in mind the concern of introducing criteria and means of analysis

which can allow for an identification that is able to provide indications

about the quality of the results; consequently, the user will be sure that the

identification obtained is the best possible one and, based upon the quality

indicators, he is confident in his acceptance or rejection of the analysis.

As mentioned in Section 2-3-2, the RFP method was first presented in

1982 (Ref. [Sl]) and is, probably, the most popular and widely used MDOF

frequency domain method nowadays, employed by many commercial

173
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packages of modal analysis software. In spite of its popularity, it is believed

that its theoretical background is not widely known. Concerning this

method, the objectives of the present investigation are:

(i) to provide a detailed and clear explanation of the theory of the RFP

method, so that the reader can easily make a direct use of it;

(ii) to write a computer program and implement it on a micro-computer;

(iii) to explore the capabilities of the method in the identification of close

modes, a common problem which occurs, for instance, in structures

that possess a degree of symmetry, like discs and cylinders;

(iv) associated with the problem of identifying a pair of close modes,

there is the need for an algorithm to “recognize”  whether such a pair

does exist, or whether it is only one mode that for some reason (e. g.,

noise) appears to be a double mode. This follows the philosophy of

Chapter 3, where indicators of the existence of close modes were

sought, based on SDOF methods. Here, with the RFP method, an

automatic, “intelligent” procedure for such an indication is pursued;

(v) Once the program has “decided” on the existence of one or two

modes, the results for the modal parameters will be accompanied by

quality indicators.

The other method that will be treated in this chapter is a new approach for

the identification of lightly damped structures. It is derived from, and a

particular case of, the RFP method. The original philosophy of the

analysis of lightly damped structures is that of the Ewins-Gleeson

method - Ref. [77] - (see Section 2-3-2) and it will be shown that the new

approach now developed is an extension of that method, where the major

novelty lies on the fact that the results are obtained with the minimum of

intervention and experience of the user: the method is automatic and can be

made “intelligent”, in that it makes judgements and takes decisions.
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Concerning this method, the main objectives are:

method (RFP) 1 7 5

(9

(ii)

(iii)

(iv)

to provide an exposition of the theory,which is shown to be a

combination of the Ewins-Gleeson and RFP methods;

to justify more rigorously some empirical conclusions and

suggestions concerning the performance of the method given in Refs.

[77] and [118];

to develop an efficient computer program with the capability of

“judging” which results are the best ones and their quality, the

philosophy being similar to the one of the RFP method, i. e., based

upon the repetition of the calculations;

to evaluate the method, based on theoretically generated data and also

on experimental data, comparing the results with those obtained with

the previous approach.

4-2 The Rational Fraction Polynomial method (RFP)

In previous work (Refs. [ 1193, [ 1201) the RFP method has been applied

using a computer program specially written to identify two close modes of

vibration, including the effect of residuals outside the frequency range of

interest, as this is often necessary in practical applications. The RFP

method involves expression of the frequency response function as the ratio

of two polynomials (the numerator polynomial being related to the modal

constants and phase angles while the roots of the denominator polynomial -

the poles - are related to the natural frequencies and damping factors) and

on the minimization of an error function in order to obtain the modal

parameters. This minimization leads to a system of equations that are often

ill-conditioned. To overcome this problem, the polynomials are suitably

replaced by orthogonal ones, with very good results in accuracy and
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execution speed.

For the particular case of four modes (two modes plus two residual ones),

no ill-conditioning problems were found but for the general case with a

higher number of modes, or for the extension to a global analysis (as it will

be discussed in Chapter 5), such problems exist and so in the theoretical

development of the method the orthogonal polynomial methodology will

be employed.

It was found here that this method produced very good results, even for

very close complex modes. The “intelligent” procedure developed to

determine whether there are two genuine modes or only one, is based on

the repetition of the calculation several times, each one taking a different

sub-set of the complete set of measured data points. The reason for this

procedure is that - in theory - genuine modes tend to appear unchanged

from every run of the program, whereas the so-called “computational”

modes vary from run to run, as they are not characteristic of the system

and do not have a physical meaning. Analysing the repeatability of the

results (within a tolerance boundary) from the several runs, it is possible to

determine the true answers. Since several runs are considered, the fiial

answers will be average values and quality indicators may be given, based

on the standard deviation of the results from the various runs. More details

about the computer program will be given in Section 4-2-2.

Besides the theoretical background and the description of the algorithm,

discussions and examples based on theoretical as well as experimental data

are presented to illustrate the application of this method to the special case

we are particularly interested in: analysis of double modes.

4-2-l T h e o r y

As is well known from modal analysis theory (e. g., Ref. [l]), the FRF, in
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terms of receptance, for a linear system with N

can be given by the partial fraction form:

N

a(io) = c
A, + joB,

l=l fiI,2- a2 + j2m&
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DOF and viscous damping

(4-l)

where A, and B, are constants. It is also easy to show that expression

(4-l) can be written as a ratio of two polynomials in (jo), so that

2N-1

C ak(jc3)k
k=O

a(jo) =  2N

c bkCj@k
k=O

V-2)

in which format, the FRF is said to be in a rational fraction form.

Defining an error function between the analytical FRF (a(io)) and the

experimental values (;(jo)) at each frequency Oi , we have

2N-1

c ak(iai)k
k=O

ei = -
2N

G(j Oi)

C bk(jOi)k
k=4

If we work with a modified error fuction e,‘, given by

2N
el = ei C bk(jwi)k

k=O

and make b,, = 1, we obtain

2N-1 2N-1
q’ = C ak(jmi)k  - CuOi)  [ C bk(jWi)k  + uWi)2NI

k=O k=O

(4-3)

(4-4)

(4-5)
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This formulation will lead to a linear system of equations, avoiding the

necessity of initial estimates for the modal parameters, as happens in the

GSH method (see Section 2-3-2). Defining an error vector including all

the measured frequencies:

(4-6)

where L is the number of measured frequencies, equation (4-5) will

become, in full,

. . .

. . .

(iwl)2N-’
(@I,) 2N-1

.

.
0’&2N-1

&O,) qjo,) (io,) . . . a(&) O’01)2N-1

AWN) ajo,) 0’0,) . . . &(j 02) (jo2)2N-1

L

a(jci@  (jo,)2N

ii(jo,) (io2)2N
.
.
.

i&OIL) (joq2”

or, in matrix form:

b0

bl.
.
.

(4-7)
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{El = PI M - PI Ud - WI
(Lxl) (Lx2N)  (2Nx 1) (Lx2N)  (2Nxl)  (Lxl)

(4-W

To calculate the polynomial coefficients {a) and {b} a least-squares

procedure will be used, minimizing a squared error function J, defined as

J = {E*}T{E} (4-9)

where * denotes complex conjugate. Substituting (4-8) in (4-9), and after

some manipulations (see Appendix A), we obtain

J = blTWP*lT [PI) {al + IblTRGI’*lT VI) {W +
{W*}T {W} - 2{ajTRe ([P*lTIT]) {b} -

2{aJTRe([P*lT {W}) + 2{b}TRe([T*]T  {W}) (4-10)

To minimize J, we shall take its derivatives with respect to {a} and {b}

and set these equal to zero:

aJ

a{al
= -&- [~dTM?*lTEPI)  {all -

2 $-- [{a)TRe(P*lTD’lI  {WI -

2 -$$- [{alTRe(P*lT  {WI = 10)
a

aJ

au4
= & [{blTRe([T*lTITI)  {WI -

2 --& [{a}TReW*lT  [TI) {WI +

2 -&- [{b}TRe(LT*lT  {W)>l = (0)

Solving these equations, we obtain:

(4-l 1)
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Re(P*lT [PI) {al - WP*lT Kl) {W - WP*lT W> = W
(4-12)

ReUT*lT [Tl) {W - ReU*lT [PI) Ial + WD’*lT {W> = NV

or, in matrix form:

(4-13)

M = WP*lT PI)

m= - WP*lT ETI)

m = WD*lT [TI) (4-14)

WI = W?*lT VW

w = - WF*lT WI>

Eqs. (4-13) are the normal equations of the least-squares problem. It was

found (Ref. [ 811) that numerical problems (ill-conditioning) associated

with the resolution of (4-13) could be overcome if matrices [Y] and [Z]

were each an identity matrix. This means that instead of [Y] =

Re([P*lTIP])  and [Z] = Re([T*lTIT]),  they will have to be the product

of two orthononnal matrices. So, instead of [P] being given by

PI =

it will be replaced by

(4-15)
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(4-16)

where <pi4 means a polynomial of order j evaluated at frequency 6.1~.

Likewise, [T] will now be given by

rrl= $j($)B,,, cc(io,>e,,,  *-* aCj01)e,,2,-,
$i~2)B2,0  $02>e2,1 . . . %@2)e2,2N_1. . . (4-17)

. . .

. . .

or

8 1,l --’ 8 1,2N-1

02.1  *** e2,2N-  1
. .

1. .

8’ e,&,L,l ***
1

= [\ ii-] [O] (4-18)

and

(4-19)

So, it is necessary to find the complex functions <p and 8 such that

Re([P*lTIP])  and Re([T*lTIT]) are unit matrices. This is possible if cp
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and 8 are complex orthonormal polynomials (see Appendix B). The FRF

will then be written in terms of these polynomials, with coefficients ck and

d, as the unknowns, instead of ak and b,:

2N-1

& ‘k (pk

a(io)  =

? d&

(4-20)

k=O

After finding {c} and {d} (populated by coefficients ck and d,

respectively), {a} and {b} can be recovered to calculate the modal

parameters.

Calculation of orthogonal polynomials q and 8

From what we have just seen, it will be necessary to have

WW*lT [*I) = [ II
(4-21)

Re([O*lT[‘ 6* -1 [‘ 6-1 [O]) = [I]

According to Appendix B, this means that polynomials <p will be calculated

using a unit weighting function and 8 will be calculated using a weighting

function given by ];I”. Going back to Eq. (4-2) and developing it for a 2

DOF case (for example), it follows that

a(io) =
ao + arCjo> + a2(i6Q2+ a,(io)3

b, + b,(jo) + b2(jo)2+ b,(jo)3+ b&ju#
(4-22)

For this case we see that each polynomial can be regarded as a linear

combination of real and imaginary orthogonal polynomials, the real ones
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being even functions and the imaginary ones being odd functions, as

follows (for 8 the procedure is similar):

Real (even) Imaginary (odd)

‘PO = a’0 q1 = a’,W9

(p2 = aI2 + a’&ja)2 (p3 = a’,(jo)  + a’,(juQ3

<p4 = aI6 + a’7(jw)2  + a’,(jo)4 (p5 = at&o) + a’,oCiw>3  + a’,,Cj@
. .
. .
. . (4-23)

So, the numerator of (4-22) will be:

a0 + a,(jo) + a#0)2 + a3(jcu)3

= alo + a’,(jcu) + aI2 + a’,(jcQ2 + a’,@@ + a’s(jw)3

= alo + aI2 + (a’, + a’,)Cjo)  + a’3(jo))2  + a’5Cjo)3 (4-24)

This definition for the polynomials is not unique, but defining them as even

and odd functions, besides being directly related to the Hermitian nature of

an FRF, simplifies the calculations, as it will be shown later.

Once we are talking about even and odd functions, and if one wants

somehow to take advantage of them, it is necessary to consider both

positive and negative frequencies. If there are L points to be fitted, the

orthogonal property will be:

(4-25)

If cp is written as Re(<p) + jIm(q),  it follows that

*’ .
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~~ (i [Re(qik) - jh(Cp,)] [Re(Vij) + jIm(% = { ; 2;
i=-L

i [Re(qik) Re(pij) + ~(cPi~)h’n(cPij)I  = I y z
i=-L

1 8 4

(4-26)

(4-27)

In fact, the FRF is only defined for positive frequencies and so Eq. (4-27)

must be transformed so that only the positive functions for points 1 to L

are considered. Extracting the half-functions, negative and positive, from

(4-27) we obtain:

According to the definition of even and odd functions,

Re(cp-) = Re(cp+)

Im(<p-)  = - hM<p+)

Substituting in (4-28),

or

R e  (i <cp,‘,>* (cPi’j)>  = { i 5 2;
i=l .

(4-28)

(4-29)

(4-30)

For polynomials 8+ (corresponding to polynomials 0, in Eq. (4-20))

everything is similar but, as seen before, there will be a weighting function

equal to I~tiOi)12.  Hence,
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R e  (i (8&)* (0;) I~(iOi)12)  = { : 5 z
i=l .

(4-3 1)

The problem now is to generate cp+ and W automatically so that they satisfy

Eqs. (4-30) and (4-31). Out of many possible types of orthogonal

polynomials (Ref. [121]), the Forsythe ones were chosen due to their

computational advantages. The elementary theory of orthogonal

polynomials is well known and can be found in many books (e.g., Ref.

[ 1221). For Forsythe polynomials specifically, Refs. [123], [124] and [125]

are suggested. The Forsythe recursion formulae given in Refs. [ 1241 and

[ 1251 can be used very conveniently as they are easy to programme.

Firstly, the formula= for the general case (not only for positive

half-functions) will be presented, using a common notation of Y for either

cp or 8. Let qi be the weighting function and m the degree of the

polynomial. The recursion formula are given by:

(4-32)

where

i 0i[‘yk_1(wi)12  9i
i=l

Llk =

Dk-l

(4-33 a)



Chap. 4 Sec. 4-2-l Theory 1 8 6

i=l
vk =

D
(4-33 b)

k-l *

Dk = F’ &(Oi)* qi (4-33 c)
=

If, in Eqs. (4-33), the summation is extended from -L to +L, it is easily

recognized that uk is an odd function and vk an even function of o and so

uk will be zero and the summation

i. Then, Eqs. (4-32) become:
i=-L

Y;(w) = 1

Y;(N = (0 Y&N

Y;(w) = 6J Y&J) - vfro’(N
. .
. .
. .

in vk and D, will be 2x instead of
i=l

(4-34)

with

+ i=l
vk = (4-35 a)

Df, = 2 i $(“i)* qi (4-35 b)
i=l

This represents a major simplification (given in Ref. [81]) and it is the
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reason why the half-functions, defined for positive and negative

frequencies, have been considered. After calculating all the polynomials

yk+,  they must be normalized by dividing by &kT and to obtain the

complex polynomials,they  must be multiplied by jk (i = J-1). To multiply

in the end the resulting polynomials +yk+ by jk produces the same result as

calculating them for jo, instead of o, in Eqs. (4-34) and (4-35). To avoid

further numerical problems, the frequency range of interest is scaled by

dividing all the frequencies by their maximum value in the considered

interval, so that the maximum frequency value is 1.

Applying Eq.(4-34), polynomials cp’(o,) and e+(oi) can be calculated by

making qi=l or qi =l~o’Oi)12, respectively. Knowing Cp+(Oi) and 0+(oi)

it is possible to calculate the new [P] and [T] matrices, given by Eqs.

(4-16) and (4-l@, where <p and 8 must be understood as cp’ and 8’. Now,

Eqs. (4-13) will look like

(4-36)

with [X] and {G} defined as before in Eq. (4-14), but with [P] and [T]

now in terms of <p+ and 8+. From (4-31) it is obvious that the earlier

vector (F} = - Re([T*lT{W))  is now a zero vector. Multiplying both

sides of (4-36) by 2, we obtain

where

WI = 2rx1

@‘I = 2(G)

(4-37)

(4-38)
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Solving (4-37),  it leads to

Ml = - ([ I ] - [xy [Xl)-’ [X’]T {G’}

{cl = WI - WI WI

188

(4-39  a)

(4-39 b)

Calculation of the modal parameters

We may now return to Eq. (4-20) (where <p and 8 must be replaced by <p+

and Cl’), with the FRF expressed in terms of the coefficients (c} and (d)

and orthogonal polynomials cp’ and 8’. In order to calculate the modal

parameters, Eq. (4-20) must be rewritten in terms of coefficients {a) and

{b} (Eq. (4-2)). If the coefficients of polynomials cp+ and 8’ have been

stored , it is possible to find linear transformation relationships between

{a} and {c} and between (b} and {d) in the following form:

{al = [Tac3 {cl
(2Nxl) (2Nx2N)  (2Nxl)

(4-40 a)

{W = [Twl 14 + {RI
(2Nxl) (2Nx2N)  (2Nxl) (2Nxl)

(4-40 b)

As will be seen later, this formulation shows some advantages. Knowing

{b}, these values can be introduced into a complex polynomial solver

routine to calculate the rootst (e. g., Ref. [126]), which are directly related

to the resonant frequencies and damping ratios. With these results, the

other modal parameters can be calculated. To understand better this

procedure an example of a system with 2 DOF will be presented. For a

system with viscous damping, the roots of the denominator of (4-2)

(poles of the transfer function) appear in complex conjugate pairs as also

t This polynomial solver replaces the methods used before in Ref. [ 1191.
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do the corresponding constants in the numerator.Considering the Laplace

domain (or s-domain), the root pairs are given by

Q* = - Q+ & j ar - = a*jo,l (4-4 1)

and can be represented in the well-known s-plane (0,’ is the damped

natural frequency). As the FRF is the transfer function evaluated along the

jo axis, Eq. (4-2) can be written (for a 2 DOF system) as:

i a; Si

I
i=O -

a(s) =
s=jo

~ biSi
i=O _

a~ + a,s + qs2 + a3s3
=

(s - Si)(S - si*)(s - sJ(s - s2*)

s=jo

(4-42)

s=jw

or

Al’ A,‘” A, A2’”
-+ + -+
s-s1 s-sl* s - s ,  s-q

(4-43)
s=jo

It must be emphasized that, in Eq. (4-42), the real coefficients a,,, a,, a2

are known, as well as the complex roots sr , sr*, sZ , s2*. The complex

constants A' must now be calculated. They are called the residues and can

be evaluated using the method of partial fractions (see Appendix C). In

practical terms, each coefficient A,' is calculated by removing the factor

(s - s,J from the denominator of (4-42) and evaluating this equation at

S = sk. For instance,

A,’ =
au + ars + a2s2 + a3s3

(s - sr*)(s - s2)(s - s2*)
(4-44)

s=Sl

or
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A,’ =
a0 + alsl + a2s1 2 + a3s13

(4-45)
(sr - sr*)(sr  - s2)(sr  - s2*)

The same procedure is applied for all coefficients. Although in theory the

roots of the denominator of (4-42) always appear as complex conjugate

pairs, in practice real roots may also be obtained from an experimental

FRF, corresponding either to overdamped or to computational modes.

From the computer program point of view, it is generally preferable to

calculate all residues A' from all the roots and then choose the ones that are

complex conjugates, instead of deciding in the first place which roots were

in pairs. Knowing the root pairs, it is easy to calculate each set of four

modal parameters. From (4-41),

Re(s,)  = - go+

Thus,

q = q (Re2(s,> + h2(s,))

c = - Re(s,) / q

For a root sk and from (4-l),

a(s) =I A,+% ( Akl Ai+
= -+

s=jw s2 + s26& + 6+2 s=jw S-Sk s-Sk* 1 s=jo

- 2[Re(A,‘) Re(s,) + Im(A,‘)  em] + s 2 Re(A,‘)
= (4-48)

(s - sJ(s - Sk*) s=jo

from which,

(4-46)

(4-47)
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Ar=- 2 [Re(A,‘) Re(s,) + IrNAi) PI

Br = 2 Re(A;)

From Eq. (4-l), the modal constant will be given by

and its phase by

0, = tg-’ 03tB*

A,

191

(4-49)

(4-50)

(4-5 1)

4-2-2 Computer program description

The complete flow-chart of a program to execute the above procedure is

presented in Fig. 4-l with all the options that it contains. It is appropriate to

comment on a few aspects: the numerical values given are in accordance

with the numerous examples tried, both theoretical and experimental. For

instance, the tolerance allowed for the natural frequency when deciding on

the number of modes is 0.2%) which means that the program is able to

recognize  two modes with a maximum frequency resolution of 0.996. In

the experimental case presented in Section 4-2-3, the solutions have a ratio

of approximately 0.995.

A computer program was written for a 4 DOF case, being able to generate

theoretical FRF data polluted with random errors or to call previously

measured experimental data. In a first stage, the roots of the denominator -

the poles - are calculated, using a polynomial solver routine. From these

results, the natural frequency and damping ratio of each mode are obtained

directly and secondly, the modal constants and phase angles are calculated.

i
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I

Choice of
freq. range

I -l
Generation of
random set 4

1 of 16 points 1

f-lscaling of
frequencies

Calculation
of numerator

orthog. polyn. ‘pij

Calculationr-lof weighting
function qi

of denominator

Unsealing ofl-lfreq. to talc.
final (a}

I Calc. of denom.
roots (poles)

Calc. of modal const.
and phase angles

I
Calc. of reson. freq.

and damp. factors
I

Deleting of negative
damp. and out-of-range

results
I

Ordering of ’
reson. freq.

I Presentation of
intermediate results I

Fig. 4-1 Flow-chart of the computer program.

L ,
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How many of the

If 2 modes appear
more than 6 times * There are

2 modes

If 1 mode appears
more than 6 times
and 3 times more

than the other

Otherwise‘i
No conclusions

=S on the number
of modes

values and norm.

FinalIresults

Fig. 4-1 (cont.) Flow-chart of the computer program.

193
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When using the program with experimental data, some problems were

encountered, the most important due to the fact that the use of 4 DOF leads

to computational modes. As it is our aim to develop criteria which provide

the answer “there is just one mode” or “there are two modes”, we somehow

have to identify which modes are computational ones and which are the

true ones. One way of avoiding this question is to specify only two modes

to the polynomial in the denominator, and then to add more terms to the

numerator to take account of the residuals (Ref. [85]). However, it is

found that this procedure gives rise to larger errors in the results. So, two

procedures were followed: first, those results that come from the real roots

are deleted, as also are those that have a negative damping or do not lie

inside the specified frequency range. Secondly, the program runs several

times, each time taking a different set of 16 points (the reason for this

number will be explained in Section 4-2-3). The results from the various

runs are examined to identify any root(s) which are found in every case:

or, more precisely, to identify which roots appear repeatedly within a

narrow tolerance. In addition, a maximum tolerance is given to the

damping value. A decision as to whether there is one mode or two is based

on examination of how many times each eigenvalue (natural frequency and

damping factor) appears in the complete set of analyses. For example if,

after twenty runs, one mode appears 12 times and the other one 14 times,

the programme will indicate that there are two modes, as their relative

incidence is similar. If, however, one mode occurs 12 times and the other

once or twice, then there will almost certainly be only one true mode.

After this, the program averages the results found and gives the final mean

values and their normalized standard deviations.

Another problem is the choice of the 16 points with which to make the

analysis, particularly if we want to go through 20 runs and in the specified

range there are, for instance, a total of 40 points. A systematic change in
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each set of 16 points used may then be impossible, unless the differences

between sets is very small. Also, a set of points that do not embrace the two

resonant frequencies will not, in general, give good results. In other

words, a systematic change of the points will show poor results if

concentrated at the begining and end of the frequency range. To overcome

these drawbacks, the program can pick the points randomly (within the

range) in each run.

4-2-3 Numerical examples

Theoretical case . evaluation of the method

No added noise .

We shall begin with the data presented in Table 4-l. No noise is added to

the generated FRF, in order to give an idea of the errors obtained due only

to the numerical calculations.

1 90 0.005 1 0

2 100 0.005 1 0

3 101 0.005 1 0

4 110 0.005 1 0

Table 4-1 Data for theo. case (0% noise).

Choosing a frequency range between 97 Hz and 104 Hz, the results for

modes 2 and 3, are (Table 4-2):
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2 100.000 (0.001) 5.000x10-3 (0.001) 1.000 (0.001) 0.00

3 101.000 (0.001) 5.000x10-3 (0.001) 1.000 (0.001) 0.00

196

Table 4-2 Identification of modes 2 and 3.

where the values in brackets represent the normalized standard deviation.

As can be seen, the errors are negligible, but as we keep decreasing the

difference between the central two natural frequencies, the errors will

increase and the limiting case with admissible errors was found for o2 =

100 Hz and o3 -- 100.016 Hz. The results of this case are:

Mode or

2 100.000 (0.001) 5.001~10-~ (0.051) 9.970x10-‘(1.649) 0.64

3 100.016 (0.001) 5.001~10-~ (0.051) 1 . 0 0 3  ( 1 . 6 6 5 ) -0.44

Table 4-3 Identification of modes 2 and 3 using the data of Table 4-1,

but with o3 = 100.016 Hz.

Influence of the damning factors

It is also instructive to analyse the effect of increasing the ratio between the

damping factors . The data are shown in Table 4-4 and the results in Table

4-5.

1 90 0.005 1 0

2 100 0.005 1 0

3 100.016 0.010 1 0

4 110 0.005 1 0

Table 4-4 Theo. data to analyse the influence of the damping factors.
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2 100.000 (0.001) 5.001x10-3 (0.001) 1.000 (0.001) 0.00
3 100.016 (0.001) 1.000x10-2 (0.001) 1.000 (0.001) -0.00

Table 4-5 Identification of modes 2 and 3, using the data of Table 4-4.

Comparison between Tables 4-3 and 4-5 shows that better results are

obtained in the case where different damping factors are used.

Influence of the Dhase angles

Let us consider 9, = 180° (Table 4-6):

1 90 0.005 1 0
2 100 0.005 1 0
3 100.016 0.005 1 180
4 110 0.005 1 0

Table 4-6 Theo. data to analyse the influence of the phase angles.

The results are presented in Table 4-7.

2 100.000 (0.001) 5.000x10-3 (0.001) 1.000 (0.001) -0.00
3 100.016 (0.001) 5.000~10-~ (0.001) 1.000 (0.001) 180.00

Table 4-7 Identification of modes 2 and 3, using the data of Table 4-6.

Comparison between Tables 4-3 and 4-7 shows that a better identification

is obtained when different phase angles are used.

. I
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Added noise

As one is always faced with the presence of noise in the FRF data in

practice, we shall investigate the maximum possible natural frequency

resolution when 1%) 2 % and 3 % random noise is added. For the

reference values of &., C, and $I~, those of Table 4-l will be taken. The

values of the natural frequencies for which the program is still capable of

producing good results are presented in Table 4-8.

Table 4-8

N o i s e ( % )  o#Iz) CI+(HZ)

1 100 101

2 100 101.2

3 100 101.25

Max. nat. freq.  resolution with different levels

of added noise (freq. range = 97 Hz to 104 Hz).

Influence of the frequency range

So far, the frequency range 97 Hz to 104 Hz has been considered in our

analysis. However, the method is found to be sensitive to the frequency

range chosen. We shall now look for the maximum natural frequency

resolution as before, but taking the frequency range from 92 Hz to 108

Hz (with the same frequency spacing between the FRF points). The results

are presented in Table 4-9.

N o i s e ( % )  o#Iz) wg(Hz)

1 100 100.55

2 100 100.75

3 100 100.80

Table 4-9 Max. nat. f&q. resolution with different levels

of added noise (freq. range = 92 Hz to 108 Hz).



Chap. 4 Sec. 4-2-3 Numerical examples 199

Comparison between Tables 4-8 and 4-9 shows that choosing a wider

frequency range resulted in a better natural frequency resolution, i. e., the

program was able to analyse correctly two closer modes.

Influence of the number of noints L

From Eq.(4-20),  the minimum number of points to be taken is equal to

2N+l. As we are dealing with four modes, L would have to be at least 9.

Due to noise, better results were found when using 16 points and in fact

this has been the number used in all the examples so far. It was also found,

empirically, that there is no advantage in increasing this number beyond

16, as the results do not improve significantly. Therefore, the fixed

number of 16 points is used.

Discussion

For the theoretical noiseless case it was found that the RFP method works

extremely well, managing to identify two very close modes. When these

two modes have different values of damping and/or phase angles, the

results turn out to be even better.

In the presence of noise, as in a practical situation, some difficulties are

encountered, as the performance of the method shows dependence on the

frequency range chosen around the two close modes. It was found

empirically that considering a wider frequency range which still

encompasses only the two modes under study usually gives better results

than just a narrow band around those modes. This is certainly due to the

fact that a wider frequency range includes points that can provide more

information about the out-of-range modes, whereas a narrow range
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reflects that effect to a lesser extent.

The capability of recognising two close modes decreases with an increase

of the level of noise. Finally, although the influence of the number of

points considered in the analysis is not easy to understand from a

theoretical point of view, it was found empirically that increasing this

value is not, in general, a valuable option to pursue.

Experimental case

For the experimental example, results were taken from tests made on an

impeller, which is a symmetric structure and therefore bound to have

repeated modes - or, in practice, very close ones. The FRF presented in

Fig. 4-2 relates to the high frequency range from 3200 Hz to 6400 Hz.

7 0

%

d

E

i,

- 3 0
3 2 0 0 . 0 0

Frequency Hz.
6 4 0 0 . 0

Fig. 4-2 Bode plot of an FRF taken from a real structure (impeller).

. .
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The graph of Fig. 4-2 is expanded around the second visible peak, showing

in Fig. 4-3 a total of 30 points:

3324.00
Frequency Hz.

J
3 4 4 0 . 0 0

Fig. 4-3 Expanded Bode plot around the second double peak of Fig . 4-2.

Applying the program, the results are as follows (Table 4-10):

1 3377.223 (0.006) 1.368~10-~ (2.113) 3.286x10-l (3.108) -12.22

2 3396.003 (0.011) 1.061~10-~ (2.244) 1.155x10-’ (3.550) -14.80

Table 4-10 Identification of the modes of Fig. 4-3.

where the values in brackets again represent the normalized standard

deviations of the results obtained in the several runs of the program. The

original and regenerated curves are shown in Fig. 4-4.
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6 0

3 3 2 4 . 0 0
Frequency Hz.

3 4 4 0 . 0 0

Fig. 4-4 Original (dotted line) and regenerated (solid line) FRFs.

Fig. 4-4 and Table 4-10 show that the identification obtained is a good one,

not only because the regenerated FRF matches very well the original one

around the two modes under study, but also because the normalized

standard deviations are relatively small (for example, a value less than 5%

can be considered as very good for the modal constants).

4-3 A new approach for the identification of lightly damped

structures

As seen in Chapter 2, there are many methods used in modal analysis, and

some of these involve highly sophisticated algorithms. There are, however,

a number of applications that do not need a very complicated analysis, and

for which relatively simple methods are suitable and can give quite

accurate results. In this category are included the cases of structures or

components which possess light damping characteristics and whose modes

of vibration tend not to be very complex, i. e. whose phase angles are very
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close to O” or MOO.  For these cases, mathematical models that assume a

priori that the structure is “effectively undamped” and that the modes are

real may be used, introducing the damping characteristics afterwards.

Also, as a lightly damped stucture  exhibits the resonant peaks quite clearly,

the values of the natural frequencies can be established very confidently.

Therefore, the main effort of the algorithm will be focussed on the

calculation of the modal constants.

To address such cases, a special curve-fitting algorithm was developed

some years ago for multi-degree-of-freedom modal analysis: the

Ewins-Gleeson method presented in Section 2-3-2 (Ref. [77]). In the

present work, a different approach is used for the derivation of the final

expressions, and a new computer program has been written to try and

avoid some drawbacks that existed in the previous method, the new one

being more general, “intelligent” and automatic. Here, the FRF to be

analysed is curve-fitted using a least-squares criterion to minimize a

defined error function between the experimental and theoretical values, the

latter being expressed in a rational fraction form rather than the more

familiar, partial fraction, version. The procedure is similar to the one

followed for the RFP method and, once more, orthogonal polynomials

will be used to avoid ill-conditioning of the matrices involved. A

comparison with the Ewins-Gleeson method is made in order to

demonstrate the advantages of the new formulation and to illustrate the

feasibility of incorporating an element of “intelligence” in order to achieve

valid results.

4-3-l Theory

As seen in Section 4-2-1, the receptance FRF for a linear system with N

DOF and viscous damping, is given by the partial fraction form:
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N

a(jo) = c A, + MB,
I=1 or2- a2 + j26xi&.

(4-l)

or by its rational fraction form:
2N- 1

C ak(j6.Qk
k=O

a(io) =  2N

c bk(jo)k
k=O

(4-2)

In this study we shall be concerned with lightly damped structures for

which the damping factor will, in effect, be neglected in the mathematical

model. This is a valid assumption because when the damping is small, it

affects mostly data points which are very close to the natural frequencies,

and which are not considered in the analysis. The natural frequencies will

be defined in a preliminary phase since the peaks of the FRF are supposed

to be well visible. In such a category of structures, e. g. beams and other

structural components, it is also legitimate to assume the modes of

vibration to be real (phase angles of O” or 180”),  as any non-proportionally

distributed damping would be concentrated mainly at the joints.

Consequently, expression (4-l) is discarded of its complexity and

expressed simply as

(4-52)

where U+ is known (by inspection) and C, (modal constant, coinciding now

with AJ is the only unknown per mode. In rational fraction form, Eq.

(4-52) becomes:

N-l

c ak m2k
k=O

(4-53)
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where the denominator is known and therefore need not be expressed in a

polynomial form.

Defining an error function between the real analytical FRF (a(o)) and the

real part of the experimental values (Re(E(io)))  at each frequency Ri,

we obtain:

N-l

c ak &&2k
k=O

ei =
N

- Re(&(jL&)) (4-54)

II (0,” - Ri2)
I=1

Considering all the measured frequencies, an error vector is obtained:

I

(4-55)

where L is the number of measured

(4-55), we obtain:

W =  N ’ al* . . .
N

l-l (co,‘- n;, l-I @of- Rf,
r=l r=l

. .

. .

. .

1 QL2 . . .
l!i @of- nL’,

N

l-l (co;- nL’,
r=l r-1

frequencies. Substituting (4-54) into

Q 2N-2
1

N

l-l (co;- Rf)
r=l

.

.

RL
2N-2

N

n (cor2-  nL’,
r=l

I \

aO - Re&jQl))

al M&Q2))
. .
. .
. .

aN-l Re(~(jQL>)

(4-56)
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or

-! -

W=  N ’ 1 ill2 . . . cp-2

I-I @‘-a;) 0 1 Q,2 . . . p-2
r=l

1

0 N
l-l (co’- 0;) 1 QL2 . . . qy2
r-1

c

In matrix form, Eq. (4-57) can be written as

{El =  r l/g-l PI Ia) - ReIGI
&xl) 0-L) (LXN) (Nxl) G-xl)

aN-l

(4-57)

(4-58)

The least-squares method implies the definition of a squared error, J, given

bY

J = {E}T {E} (4-59)

Substituting (4-58) in (4-59),  it follows that

J = {a}T [QIT r l/g \I r l/g \I PI {a) - ReEGIT L’ l/g -1 PI {al -

{a}T [QIT [‘ l/g -1 Re{E} + Re{a}TRe{&} (4-60)

To minimize J, its derivative with respect to {a) is taken and set to zero:

aJ

a(a)
= 2 [QT [\ l/g ~1 r l/g ~1 [Ci] {a} - 2 [QT [\ l/g ~1 Re{ E} = (0)

(4-6 1)

hence,

{a} = [[aIT [‘ l/g -I[\ l/g -1 Ml1 [aIT [\ l/g -1 Re{$ (4-62)
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Knowing {a}, it is possible to calculate the modal constants C, using the

method of partial fractions. However, some ill-conditioning problems may

be encountered in the matrix Aversion in Eq. (4-62).

To avoid this inversion (and the problem), an orthogonal transformation

may be used, turning [[QIT [‘ l/g t] [‘ l/g \] [Q]] into a unit matrix. As

for the RFP method, this can be done by rewriting [&2] in terms of real

orthogonal polynomials cp and using a weighting function given by ]1/g12,

subjected to the orthogonality condition, a procedure which is explained

in detail in Section 4-2-l :

(4-63)

In fact, we only deal with positive frequencies and so the condition will be:

(4-64)

This expression is similar to expression (4-31),  for the RFP method.

Expression (4-53) now becomes, for each frequency Ri:

N-l

F4clc 42k

a(SZi) = -

i i  (Or* - Qi*)
I=1

The error vector will consequently be given by

{E} = [‘ l/g-] [*+I {c} - Re{&}
O-xl) WJ-) (LXN) @W (Lx11

(4-65)

(4-66)
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where

(4-67)

Formulae for the elements of [W] are given in Eqs. (4-34) and (4-35) (as

y+), where qi is now ll/gi12. Following a similar procedure to that used

before (starting from Eq. (4-59)),  one obtains, instead of (4-62),  the

following expression:

{c} = 2 [fi+lT r l/g -1 Re{&} (4-68)

where the factor 2 is due to the factor 0.5 in Eq. (4-64). The procedure for

calculating {c} is very similar to the one that is followed in the GRFP

method (as will be seen in Chapter 5), after having calculated the natural

frequencies and damping ratios, i. e., in the second step when one wishes to

calculate the modal constants and the phase angles. The present method can

be considered as a particular case of that more general method.

It is not difficult to estabilish a linear relationship [T,,] between

coefficients {c) and {a}, as

{a] = [TJ {4 (4-69)

and so, substituting (4-68) into (4-69),  we obtain

{a] = 2 [T,] [*+lT r l/g -1 R&j

Wxt) WW NV 0-L) 01)

(4-70)
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{a} = [T’] Re{E}

where
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[Tl = 2 [TX1 [fi+lT  [‘ l/g -1
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(4-7 1)

(4-72)

As mentioned before, the modal constants can be calculated from the

coefficients {a}.

Comparing expression (4-71) with expression (2-196) (Ewins-Gleeson

method), we see that they are alike, the main differences being that now

one can use more data points than there are modes and that the

Ewins-Gleeson method gives the modal constants directly. Knowing the

modal constants and natural frequencies, the other modal parameters -

phase angles and damping ratios - must be calculated. The phase angles are

known implicitly, as the system has been assumed to have real modes and so

the sign of the modal constants indicates whether the response is in- or

out-of-phase. The introduction of damping into the mathematical model is

also very straightforward, due to the characteristics assumed for the

system. It may simply be calculated from the response at the natural

frequencies, one at a time, assuming that the response at each resonance is

not affected very much by the neighbouring modes. Recalling expression

(4-52),  and including the damping, we have:

N

a(jo) = c cr
l=l or2- a2+j2w6&

At each natural frequency, the measured response is given by

(4-73)
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h&or) = cr * c+c s
j2q% s+rs-l 6.q - wr*

and so,

cr

I  C,I
z

2 6q $jo,> - S
I

CS

s=l a,* - wr* I
s f r

(4-74)

(4-75)

4-3 -2 Considerations on the choice of data points

The method presented above has been implemented in a micro-computer

and some details of the program and its performance will be discussed.

Perhaps the most important aspect to be considered is the choice of points

to be made from the measured FRF. Although the number of coefficients

to be calculated is equal to N, the orthogonal polynomials cp have to be

generated recursively up to order 2N-2 and therefore we shall consider

the minimum number of points, L, as being 2N-2+1 = 2N-1. But how

should these points be chosen? Are the answers dependent on this choice? If

yes, which ones might provide the best results ? Is there any advantage in

choosing more points than the minimum number required ? In fact, it is

known that the identification of the measured FRF depends on the location

of points, as has already been pointed out in Ref. [77].  First of all, it is clear

from the expressions that have been presented above that the points where

the natural frequencies occur cannot be used for the analysis (see, for

example, Eq. (4-54) with Qi = or). Assuming that these frequencies are

avoided, where should we locate the points?

Let us try to derive mathematically a criterion for selecting the “best”
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points. Once {c) and {E} are defined in Eqs. (4-68) and (4-66)

respectively, the squared error J = {E}T{E} can be calculated:

J = ({cjT [fi+lT [\ l/g \] - Re{z}T) (r l/g -1 [a+] {c} - Re{G})

= {c}~ [fi+lT r l/g -1 r l/g *] [a+] {c} - 2 {c}~ [.19+lT  r l/g ~1 Re{E} +

Re{ GIT Re{E} (4-76)

Due to orthogonality,

2 w+iT r i/g -3 r i/g 4 v+i = [ I I (4-77)

ThLlS,

J = 0.5 {c}~ {c} - 2 {c}~ [fi+lT [\ l/g \] Re{E} + Re{&}TRe{G} (4-78)

Substituting Eq. (4-68) in (4-78),  we obtain:

J = Re{&}T  [[ I ] - 2 r l/g -1 [fi+] [fi+lT [‘ l/g N]] Re{E} (4-79)

or

J = Re{E}T[Q] Re{&} (4-80)

where

1~3 = [I I - 2 r i/g \I [*+I w+iT r l/g -3 (4-8 1)

From expression (4-80) it is clear that a sufficient condition for J to be

zero is that the real part of the FRF (Re{ a}) is zero; points at resonances

and anti-resonances fulfil this condition. However, there may be other

values of Re{G} which can lead to values in [Q] such that J is also zero or

close to zero. Also, since in practice Re{G} is never exactly zero, [Q]
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could compensate and give a higher value for J. The matrix [Q] is a rather

complicated function of the frequencies of the chosen points and,

consequently, it is not easy to derive analytically the set of frequencies that

lead to the minimum value of J. The behaviour of matrix [Q] should be

checked first, as it certainly will not remain constant as different sets of

points are chosen, and so a numerical study is therefore appropriate. For

this task, a 2 DOF system was devised (Fig. 4-5) with the properties given

in Table 4-11.

Frequency Hz.
36.25

Fig. 4-5 Magnitude plot of a 2 DOF system.

Table 4-11 Theo. data of the 2 DOF system of Fig. 4-5.

In this case, the default value for L (the number of FRF data points to be

used) is 3, and as there are several FRF data points, one can choose

different sets of 3 points along the frequency range. The numbers quoted

in Fig. 4-5 represent the order of some points of particular interest

(extremes, resonances and anti-resonance). As the presentation of the
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detailed numerical results would be quite extensive and tedious to follow,

only the discussion and conclusions will be presented.

It was found that the variation of matrix [Q] with the different sets of

points chosen depends mainly on the difference between the frequencies of

these points and the resonant frequencies, i. e., on the elements of matrix

[‘ l/g \]. For example, if we choose points 50,51 and 52 and afterwards

points 53,54 and 55, [Q] will exhibit only a very small change, and the

same result is found if we choose points 80,350 and 650 and points 81,

351 and 651. In this case, points on the curve with smaller values of the

real part of the response imply smaller values for J. But what happens if

the elements of [Q] are small and those of Ret{;}  are large or, vice-versa,

when [Q] is large and Re{G} is small? It was found in the numerical

studies that the dominant element was the FRF vector Re{G} and that the

smaller (or larger) this is, the smaller (or larger) will be the value of J.

Therefore, the requirement that the real part of the response be zero is a

necessary condition for J to be zero. The points that best satisfy this

condition are the anti-resonances and also the resonances themselves: Fig.

4-6 illustrates these points for a 2 DOF system.

In the numerical study it was found that the smallest values of J occurred

when points near the anti-resonances and/or close to the extremes of the

frequency range were chosen. However, when points around resonances

were used, the results obtained were poor, in spite of the fact that some of

the elements of matrix [Q] were quite small in these regions. In the

example of Fig. 4-5, [Q] is a 3x3 matrix and, as it has been seen, its

elements depend mainly on the differences in frequency between the FRF

points used and the resonances. As a result, if we choose points 266,535

and 650, for example, elements 1,l and 2,2 of [Q] will be very small,

since the first and second points are close to resonances. How, then, can be

F
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-.80?5 ’ I
15.00 F r e q u e n c y  Hz. 35.00

Fig. 4-6 Location of the anti-resonance and resonances on the the receptance FRF of a

2 DOF system: a) magnitude; b) real part; c) Nyquist plot.

explained that the results are poor if the first two elements of Re(G} are

also expected to be close to zero? The answer is that for lightly-damped

systems the FRF phase angle changes abruptly near the natural frequency

and although the neighbouring points have similar frequency values, the

real part of the response may vary suddenly from near-zero (close to the

natural frequency) to a large value (see Fig. 4-6 - b, c) and, as it was

concluded, Re{G}  is the factor that dominates J, even in these cases when

the elements of [Q] are smaller.

The data points near the resonances may, however, still be taken into

consideration in some cases, especially if it exists a very good resolution of

points in these regions, but no general rule can be stated.

L ,
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4-3-3 Comparison with previous work

The study reported here now explains why in Ref. [77] anti-resonances are

identified as “good” points for the identification process and also why in

Ref. [ 1181 it is concluded that in many cases the best choice is to take points

close to the resonances. Both kinds of points are easily seen from a graph of

the FRF modulus vs. frequency.

It should be noted that, as one is not always analysing point FRF

measurements (excitation and response measured at the same point of the

structure), we can sometimes have minima together with anti-resonances

and a good choice in these curves could be to take the anti-resonance points

when they exist and points close to the resonances where there are minima.

This is sometimes the practice used when applying the method of Ref [77].

One might also wonder why, in the development of the expressions that led

to the calculation of the modal constants in Ref [77], it was not clear that the

accuracy of the answers was dependent on the values of the response. In

fact, if we try to derive an expression for the error J in a similar way to

that used in this case, we will obtain zero instead of an expression like

(4-80). This is because the number of points needed to solve the equation

for the modal constants in that earlier approach was exactly equal to the

number of unknowns, the expression being of the type of Eq. (4-71) but

with matrix [T’] having dimensions NxN and vector Re(G} being of

order N. In that formulation, the error is exactly zero when calculated for

that number of points. (This is not unlike the case of fitting a straight line to

a given set of points: if only 2 points are used, the fit is perfect and the

error is zero.) This does not mean that the total error using more points is

zero and in fact it never is. When a “bad” set of points using the method of

Ref [77] is chosen, the regenerated curve still coincides with the original

one at these points, but the two curves can be quite different away from
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these few frequencies. If the expressions in Ref [77] had been derived

using more points than the minimum required (N), and a pseudo-inverse

had been performed, an equation similar to (4-80) would have been

obtained.

4-3-4 Computer program description

Criteria for the “best” modal constants

Although it has been shown that the anti-resonances are ideal points to be

used in order to obtain a minimum error in the curve-fitting, it is well

known that in many practical situations there is a low signal-to-noise ratio

around those points. The discussion in the two previous sections served to

explain more rigorously what has been found successful in practical

application although, in our approach here, there is no obligation to use

anti-resonance points.

In the present work, it was decided to choose arbitrarily (randomly) the

sets of points - which may or may not include the anti-resonances - used to

calculate the modal constants. In this process, regions around the

resonances are excluded (a neighbourhood of + 2 points). Then, the

calculation is repeated several times with a different set of points each time.

Having thus obtained results from several runs, it is necessary to introduce

into the program some criterion so that the “best” results can be found.

Perhaps the most obvious criterion one can use is to choose the run that

provided the minimum error for J. An alternative criterion that has been

devised will be explained next, using a specific example to facilitate

understanding. Let us consider a system with several DOF, which has been

analysed using the above method, applied 10 times. Let us suppose that we

-’
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wish to calculate the value of the modal constant of the first mode, Cr. The

computer program will consider the value of C, from the first run, set a

tolerance of +6, around that value, and look at the other values of C, from

the remaining runs to see how many of these fall inside that tolerance. This

procedure is then repeated based on the value of C, obtained in each of the

10 runs. In the end, the program will have “learned” that the value of C,

in the first run was repeated, for example, 4 times; the value in the second

run was repeated 3 times, etc., and it will memorize the values of C, that

were most often repeated within that tolerance. This may have happened,

for instance, in run no. 7, where C, was repeated 5 times more than in

runs nos. 2,3,6,8 and 9. Then, the average value of all these results is

taken as the final result for C,, together with the normalized standard

deviation. For the modal constants of the other modes, the procedure is

identical. This seems to be a better criterion for calculating “best” values of

the modal constants than simply choosing the run that provided the least

value of the error. This is because the value of J is calculated taking into

consideration the modal constants in each run, whereas with this new

criterion the best results can be obtained by averaging values coming from

different runs. In the numerical examples, a comparison between these two

criteria is made.

Flow-chart description

In Fig.4-7, the flow-chart of a program to perform the above analysis is

presented. Following through this flow-chart: after the input of data and

having chosen the part of the curve to be analysed, the resonant frequencies
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Fig. 4-7 Flow-chart of the computer program.
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Fig. 4-7 (cont.) Flow-chart of the computer program.
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must be defined. An automatic peak search routine indicates, with the

cursor, each peak found and allows the user to choose whether to accept or

to ignore that peak. Also, there is the possibility of deleting any peak

already recorded. In this operation the user need not specify the number of

modes to be analysed, as the program counts them automatically. Next, any

number of out-of-range modes can be included and their frequencies

specified by the user: the program will “see” which ones correspond to the

low- and high-frequency ranges.

The intervention of the operator terminates here. Next, the program sets

some initial default values, specifically for the order of the polynomial of

expression (4-53), the number of points, the number of runs and a

tolerance for the modal constants. The defaults are as follows: for the

order of the polynomial and number of points, it takes their minimum

values, i. e., 2N-2 and 2N-1 respectively. For the number of runs it takes

10 and for the tolerance, 10%.

Now, the program starts calculating the modal parameters for each run, as

described in the flow-chart. Eventually, the “best” values for the modal

constants are determined, their mean value and normalized standard

deviation being presented together with the damping factors which are

calculated last. Then, a rapid regeneration of the FRF is seen on the screen,

together with the initial measured one. Among the several options now

offered, a useful one is the “retry” option, which permits modification of

the initial default parameters mentioned above. For example, if the initial

data are noisy, the number of points may be increased and if the influence

of out-of-range modes is large, the order of the polynomial may be

increased, too. Experience shows that increasing these values does not

necessarily give better results - especially for the second one if

out-of-range modes have already been specified. Nevertheless, the user is

free to try any alteration he wishes.
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Discussion

The advantages of this type of modal analysis procedure over previous

versions are several. With this new procedure the user need not specify

either the number of modes to be analysed, nor the points to be included in

the calculations. Furthermore, it is not necessary to decide at the

conclusion of the analysis whether to retain or reject modes which have

been “found”: a task often necessary in less “intelligent” procedures.

Out-of-range modes may either be excluded or an arbitrary number can be

given. The program now presented is quite automatic, and “intelligent” in

the sense that it rejects partial results that do not agree with the general

trend of the good ones. The program is not very time-consuming,

compared with previous versions: the parameter that most affects the speed

of running is the number of points taken into account, but usually the

default value provides a good identification, and quickly.

Another advantage concerns the calculation of the modal properties

associated with the specified out-of-range modes. Those values are

particularly sensitive to the points that are chosen for the analysis and much

more consistent results are obtained with the present approach. This is

quite important when coupling sub-structures based on the identification of

experimental data, because in this case the consideration of the actual

values of residual modes is fundamental.

Finally, it must be noted that the expression “automatic” attributed to the

present computer program is due to the fact that it requires far fewer

decisions to be taken than the classical version currently available, although

some intervention of the user is still neede.d in the first stage, specifically to

define the resonance frequencies and the out-of-range modes. The

automatic finding of resonant peaks may be possible but, at present, a

reliable routine to perform such a task has not been found due to the

existence of noise in the data.
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4-3-5 Examples

2 2 2

Theoretical cases

Some numerical examples are presented to illustrate the effectiveness of

the analysis method. A comparison with results from the standard

procedure of Ref. [77] is also shown. These examples are representative of

the general behaviour of the program, as experienced when analysing

many different theoretical and experimental cases.

Evaluation of the method

In the first example one attempts to simulate theoretically a practical

situation by generating FRF data for a 5 DOF system and then adding

random noise. Attention is focussed on the middle 3 modes, so that the

others act as residual modes. Also, the system parameters chosen give rise

to a double anti-resonance, as this is usually a difficult case to analyse, and

the values given to the modal constant phase angles differ slightly from the

ideal case of O” or MOO.  The original modal data are presented in Table

4-12, and the generated FRF curve is shown in Fig. 4-8. Fig. 4-9 shows the

expansion of Fig. 4-8 around the middle 3 modes.

Mode w&Hz)

: 95.00 80.00 0.0025 0.0050 1.5 1.0 -5.00 5.00
3 120.00 0.0050 0.2 178.00
4 150.00 0.0025 1.0 6.00
5 180.00 0.0025 1.3 175.00

Added noise = 3%

Table 4-12 Theo. data with noise.
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4-3-5 Examples

Theoretical cases

Some numerical examples are presented to illustrate the effectiveness of

the analysis method. A comparison with results from the standard

procedure of Ref. [77] is also shown. These examples are representative of

the general behaviour of the program, as experienced when analysing

many different theoretical and experimental cases.

Evaluation of the method

In the first example one attempts to simulate theoretically a practical

situation by generating FRF data for a 5 DOF system and then adding

random noise. Attention is focussed on the middle 3 modes, so that the

others act as residual modes. Also, the system parameters chosen give rise

to a double anti-resonance, as this is usually a difficult case to analyse, and

the values given to the modal constant phase angles differ slightly from the

ideal case of O” or 18OO. The original modal data

4-12, and the generated FRF curve is shown in Fig

expansion of Fig. 4-8 around the middle 3 modes.

.

are presented in Table

4-8. Fig. 4-9 shows the

Mode co&Hz) 5, cr 9,

: 95.00 80.00 0.0025 0.0050 1.5 1.0 -5.00 5.00
3 120.00 0.0050 0.2 178.00
4 150.00 0.0025 1.0 6.00
5 180.00 0.0025 1.3 175.00

Added noise = 3%

Table 4-12 Theo. data with noise.
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Fig. 4-8 Bode plot (inertance) of the 5 DOF system of Table (4-12).
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Fig. 4-9 Expanded graph of Fig. 4-8 around the 3 modes in the middle.

In order to evaluate the influence of the several parameters that might be

varied in this method, each one will be modified at a time. The parameters

of interest are: number and magnitude of out-of-range modes; number of

points used (L); order of the polynomial (M); number of runs (NR) and

tolerance for the modal constants (6,). For this example, the default values

are:
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L  =9
M = 8

NR = 10
So = 10%

In Table 4-l 3, six different cases are studied.

2 2 4

r M
I MODES I

ZASE HJT-OF-RANGE
No. MODES (Hz)

L NR s,w

1 80 180 9 8 10 10

2 70 170 9 8 10 10

3 80 180 11 10 10 10

4 80 180 20 8 10 10

5 80 180 9 8 10

6 80 180 9 8

5, 1 4.986x1o-3  1 4.564x11T3
I

2.557~10 -3
I

O.%l (4.0%) 0.192 (4.5%) 0.992 (4.7%)

9, 0 180 0

5, 4.911n10-3 4.573x1o-3 2.468x1o-3

cl ii46 (3.0%) 1 0.192 (5.3%) 1 0.958 (4.4%) 1

@r 0 180 0

5, 4.989~10-~ 4.522~16~ 2.521~10 -3

cr 0.%1(2.8%) 0.190 (3.7%) 0.978 (4.1%)

+* 1 0 1 180 1 0 1
5, 5.o7ox1o‘3 4.680~10.~ 2559x10 -3

cr 0.977 (3.1%) 0.197 (24%) 0.993 (2.7%)

+r 0 180 0

Table 4-13 Results of the identification for six different cases.
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For the first case, the default values are used and for the second the

influence of varying the values of the out-of-range modes is analysed. For

cases 3 to 6, the influence of M , L, NR and 6,, respectively, are

analysedThe  natural frequency values are not presented, as they are given

in advance, while the results in brackets refer to the standard deviation.

The original (dotted) and regenerated (solid) curves are shown in Figs.

4-10 to 4-15, corresponding to cases 1 to 6.

Fig. 4-10 Original (dotted) and
regenerated (solid)
FRFs  for case 1.

Fig. 4-12 Original (dotted) and
regenerated (solid)
FRFs for case 3.

Fig. 4-11 Original (dotted) and
regenerated (solid)
FRFs for case 2.

Fig. 4-13 original (dotted) and
regenerated (solid)
FRFs for case 4.
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Fig. 4-14 Original (dotted) and

regenerated (solid)

FRFs for case 5.

226

Fig. 4-15 Original (dotted) and

regenerated (solid)

FRFs for case 6.

Discussion

From the cases presented, it is found that the method is sensitive to the

values given for the out-of-range modes and, although not shown

explicitly, two out-of-range modes are usually sufficient to represent the

contribution of all the modes that are not being analysed. Increasing M (the

polynomial order) is not, in general, a valuable measure, and may even

make the results worse. In some cases, it was found that increasing M could

give a better estimate for the modal constants up to a certain value, but

beyond that value the results became worse. Increasing the value of L (the

number of points) usually does not make things any better either, and here

again the results are poorer in some cases. From the results obtained when

using 20 runs (NR) instead of 10, and with the minimum number of

points, it seems that it is generally preferable to use the minimum L and to

increase the number of runs. In this way more results are available to

evaluate more reliably the modal constants. For the same reason, it is

advisable to decrease the tolerance when doing so and, in fact, the last case

(6) was one that gave the best estimates for the modal constants. In Fig.

4-16, a graph of the relative error in the modal constants for the several
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cases studied is presented (errors in the damping are not shown, as the

damping is a consequence of the calculations of the modal constants).

Relative
Error (%)

10

+ Cl
8 +- c2

6

0 1 2 3 4 5 6
Case No.

Fig. 4-16 Relative error in the identification of the modal

constants, for the various cases studied.

In conclusion, it can be said that the most resonable procedure is to work

with the default values and, if these do not lead to satisfactory results, to

increase the number of runs and to decrease the tolerance. Also, it should

not be forgotten that this method is particularly sensitive to the values

attributed to the out-of-range modes, and so it is important that these be

specified as precisely as possible.

Comnarison of criteria

Using the criterion of minimum J, and the default case data (where L = 9),

the same calculations were repeated 3 times. The results are presented in

Table 4-14, where the values in brackets represent the standard deviations.
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As can be seen, the criterion of minimum J gives very good results for the

second and third tries, but not such good results for the first try where the

modal constant C, is considerably in error. In contrast, the alternative

criterion always gave quite reasonable results. It is concluded that the

criterion based on the minimum error (the basic curve-fit requirement) is

less reliable than the alternative. This is probably because it is based purely

on mathematics, whereas the other criterion, seeking consistency in the

results from several runs, has a more “physical“ basis.

J min. Alternative criterion

Try Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

1 5, 7.510 x~O-~ 4.323~10-~ 2.841~10-~ 4.935x1O-3 4.374~10-~ 2.697x1O-3

cr 1.477 0.180 1.075 0.971 (2.0%) 0.181 (6.4%) 1.021 (3.6%)

2 g 5.020x10-3 4.739x1O-3  2.628~10-~  5.010~10-~ 4.652~10-~  2.543~10-~

cr 0.988 0.197 0.994 0.987 (4.5%) 0.193 (2.7%) 0.962 (5.8%)

3  c 5.260~10-~ 4.641~10-~  2.637~10-~  5.165~10-~  4.419x1O-3 2.628~10-~

cr 1.036 0.192 0.998 1.017 (5.2%) 0.183 (5.1%) 0.994 (4.6%)

Table 4-14 Comparison of criteria for the “best” modal constants.

Experimental case

A FRF measured on a turbine blade (Fig. 4-17) was chosen to compare the

results of the identification obtained using the method now proposed and

those from a more conventional procedure. Using the Ewins-Gleeson

method and choosing adequate points according to experience, a very good

identification of the curve was obtained, as shown in Fig. 4-18 where the
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difference between the original and the regenerated curves (plotted

together) is barely visible. Using again the same method, but choosing a

different set of points at random, can lead us to an answer as shown in

Fig. 4-19. Using the new method, the results are shown in Fig. 4-20

(original and regenerated curves).

Fig. 4-17 FRF of an experimental case. Fig. 4-18 Original (dotted) and

regen. (solid) FRFs using

the Ewins-Gleeson method.

Fig. 4-19 Original (dotted) and

regen. (solid) FRFs using

the Ewins-Gleeson method,

taking a different set of points.

Fig. 4-20 Original (dotted) and

regen. (solid) FRFs using

the new proposed method.

Discussion

The comparison provided by this example is made in order to stress that an
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difference between the original and the regenerated curves (plotted

together) is barely visible. Using again the same method, but choosing a

different set of points at random, can lead us to an answer as shown in

Fig. 4-19. Using the new method, the results are shown in Fig. 4-20

(original and regenerated curves).
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Fig. 4-17 FRF of an experimental case.

Fig. 4-19 Original (dotted) and

regen. (solid) FRFs using

the Ewins-Gleeson method,

taking a different set of points.
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Fig. 4-18 Original (dotted) and

regen. (solid) FRFs using

the Ewins-Gleeson method.

re / 1

Fig. 4-20 Original (dotted) and

regen. (solid) FRFs using

the new proposed method.

Discussion

The comparison provided by this example is made in order to stress that an
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automatic and intelligent program can overcome problems such as (in this

case) a poor choice of points, and therefore can minimize the requirement

for a contribution of the expertise of the user. It also provides an indication

of the quality of the results, after running several times.

4 -4 Conclusions

4-4-l Conclusions on the RFP method

As reported before (Ref. [82]), the RFP method presents some advantages

when compared with other modal parameter extraction techniques, namely

when dealing with closed-spaced complex modes and in the presence of

noise. Nevertheless, in some cases, it still can give either inadequate

answers or results which are difficult to interpret, due to computational

modes that are mixed with the true ones. To avoid this problem, several

different sets of points are used, in a given frequency range, with the

following advantages:

(0 -

(ii) -

(iii) -

the computational modes are well identified, as they exhibit

different values as different sets of data points are used;

the correct modal parameters emerge and so one can automatically

determine whether one or more close modes have been identified;

the results of the true modes found are averaged, eliminating to

some extent the errors in the estimates obtained due to noise and

also, allowing for an indication of their quallity, given by the

normalized standard deviation.

The method is not very sensitive to the number of data points taken into the

calculations, but seems to be sensitive to the frequency range chosen.
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Considering the disadvantages, it is noted that the objective of obtaining the

additional reliability in the set of results is gained at the expense of speed,

as the number of runs is increased.

The various parameters that have been chosen in the computer program

(number of data points, number of runs, tolerances associated with the

criterion to decide on the genuine number of modes) seem to be the most

sensible ones, as they have permitted to obtain good results for a large

number of cases studied.

4-4-2 Conclusions on the new approach for lightly damped

structures

An established method for the modal identification of lightly damped

structures, the Ewins-Gleeson method, has been re-examined. A new

approach has been developed which is an extension of that original method,

and is a particular case of the RFP method. Likewise, the Ewins-Gleeson

method may also be seen as a particular version of the RFP method. The

importance of these facts is that a better understanding of the

inter-relationships amongst those methods is now possible. Before, the

Ewins-Gleeson method seemed a completely separate and different

modal analysis technique.

The new approach also enables the justification of some procedures that

were applied in the Ewins-Gleeson method in the past, merely based on

empirical factors, namely the choice of data points to be taken in the

analysis.

The intervention of the user and the need for his experienced judgements

has been reduced to a minimum, by the inclusion of a degree of

“intelligence” into the algorithm used. Decisions based on physical criteria,



Chap. 4 Sec. 4-4-2 Conclusions on the new approach . . . 2 3 2

rather than numerical, have been used to establish “best” results for the

modal parameters sought, together with indications of their quality. For

this accomplishment, the experience gained with the development of the

RFP algorithm was very helpful.

The experimental example shown illustrates the advantages of the new

approach. More recent practical applications of this algorithm have

demonstrated that it is very “friendly” to use and very easy and quick to

rerun the program when one wishes to try a different seting for the default

parameters assumed. Being fast, makes it very useful when a large quantity

of FRFs need to be analysed.

* ,



CHAPTER 5

AN INVESTIGATION OF SOME SI2MO AND
MIMO METHODS

5 - 1 Introduction

With SISO methods, only one FRF could be analysed at a time and the best

one could obtain, if a set of FRFs were to be studied, was an average of the

results from the several individual analyses. As mentioned in Chapter 1,

the basic philosophy of SIMO and MIMO modal analysis methods is to take

advantage of d the measured FRFs of a structure, by processing them

simultaneously. In this way, a unique result for the global properties of a

structure (the natural frequencies and damping factors) will be obtained.

With SZMO methods, the calculation is often divided into two stages: first,

calculation of the natural frequencies and damping factors considering all

the measured FRFs and, second, calculation of the modal constants and

phase angles, considering each FRF at a time. With MM0 methods all the

modal properties are usually calculated simultaneously.

Three methods will be studied in this chapter: one is the extension of the

2 3 3
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RFP method studied in Chapter 4, the Global RFP (GRFP); another is

simply called the Global method; a third is the Spectral method. The first

two are indirect HMO methods and the third one is a direct MIA40

method.

The main objectives of the present chapter are essentially the same as those

of Chapter 4 (for the RFP method), i. e., to provide a clear and detailed

explanation of the theoretical background of the methods and to extend

them in order to obtain more “intelligent” algorithms, able to supply the

user with the best possible identification and give a clear indication of the

quality of the analysis. This is accomplished by repeating the calculations

with different sets of data points and analysing the consistency of the results

obtained each time, keeping the ones that are mostly repeated within a

given tolerance and rejecting the others. The quality indicators are based

upon the standard deviation of the results accepted. We shall continue to

pay special attention to the problem of the identification of double modes,

which is a typical an very common situation and yet one where most of the

methods often fail to give reliable answers and so, it is believed to

constitute a good test for the type of algorithms which we seek to explore.

Besides this, a comparison among the three methods will be carried out.

5 -2 The Global Rational Fraction Polynomial method (GRFP)

In Chapter 4, the RFP method for identifying the modal parameters from

a single FRF was explained in detail and extented  to enable the valid

extraction of modal parameters. If other FRFs measured on the same

structure are also considered, one might expect (theoretically) exactly the

same results for the resonant frequencies and damping ratios, as these are

characteristic properties of the structure, although different modal

constants and phase angles. The former are called “global” properties and
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the latter “local” properties. Using several FRFs to calculate the global

properties is to overspecify the number of equations in relation to the

number of unknowns and, so, we shall make use again of a least-squares

procedure. Knowing the global properties, the local ones can be calculated

from each FRF. Here, the SIMO version of the GRFP method(Refs. [84]

and [SS]) will be explored, extending it to fulfil the desired objectives.

5-2-l Theory

Calculation of the global properties

As seen in Chapter 4, coefficients b, (Eq. (4-2)) are the ones which yield

the global properties of the system. These are related to coefficients d,

(Eq. (4-20)) through the relationship (4-40 b), where [T,,J and {R) are

direct functions of the orthogonal polynomials coefficients.

@I = [TM1 (4 + {RI
(2Nxl) (2Nx2N) (2Nxl) (2Nxl)

Rewriting (4-40 b) as

(4 = D’,,J’ ({bl - WI)

and (4-39 a) as

([ I] - [X’lTIX’]) {d} = - [X’lT {G’}

and substituting (5-l) into (5-2), we obtain

([ II - KIT WI) [‘&I-’ (04 - {RI) = - WIT WI

(4-40 b)

(5-l)

(5-2)

(5-3)
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or

(5-4)

where

&I = ([ II - [X’lTF’l) D’J1
(2Nx2N)

(5-5 a)

W,, = l&l {RI - W’lTW7
(2Nx 1)

(5-5 b)

For each FRF we have an equation of the form of (5-4). Considering a total

of p FRFs,

.

.
(5-e)

(2Nxp)x2N (2Nxp)xl

or

&I @I = &I (5-7)

Solving (5-7) in a least-squares sense, we obtain

{b] = (WTIT KJTDml  &IT {VT> (5-8)

In the computer program, instead of building [U,] from [U,],, k =l,...p

and then computing [U,lTIUT], it is better to calculate each [UG]kT[UG]k

and to make the summation for k=l to p. The same applies to [UTIT{VT}.

So, in fact, instead of (5-8) we shall use in the program:
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k=l
(5-8 a)

With {b}, we can use a polynomial solver to find the roots and thence to

calculate the natural frequency and damping factor, as seen for the RFP

method.

Calculation of the local properties

To calculate {a) (vector of coefficients a,), we have two options: either to

use Eq. (4-40 a) with {c} (vector of coefficients ck) given by (4-39 b),

using (d} calculated for each FRF, or, once the resonant frequencies and

damping ratios have been calculated, to curve-fit each FRF again but now

only to calculate {a} and then the modal constants. The second option

seems to be much more rational and consistent with the global curve-fitting

philosophy, and will next be explained in greater detail.

Recalling equation (4-2),

2N-1

c ak(jm)k
k=O

c bk(jo)k
k=O

or, for each measured frequency,

o r

k=O

(4-2)
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2N- 1

aO’oi>  =C tikak
k=O

with
tiaijk

t.lk =  2N

C bk(jOi)k
k=O

The error between the analytical and experimental values at each

frequency Oi, will be

2N-1

ei = a(ioi>  - iii~oi)  = & t  i k a k - E(iOi>

For all L measured frequencies, the error vector will be

(Lxl) (Lx2N)  (2Nxl) (Lxl)

where

IJ’J = $,O $,l l ‘ .  t12N-l

f2,O t2,l l * ’  t2JN-1
. . .
. . .
. . .

tL,O tL,l l *’ ‘L,2N-1

2 3 8

(5-10)

(5-l 1)

(5-12)

(5-13)

(5-14)

The squared error J will be

J = {E*}T{E} = ( {a}T[TG*]T  - {G*jT) {&I {a) - 6d) (5-15)

Developing (5-15), we have

J = {a}T [TG*lTITCl Ia) - I~*lTITGl  {a)

- {a}T[TG*]T {&} + {&*}T {&‘a) (5-16)
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so that, following the same procedure as in Chapter 4 , we obtain

J = b4TW[TG*lTCTGJ)  {aI - W{~*lTITGl) {aI

- blTRe([TG*lT I$> + Re( (&*}T {E})

Minimizing J by making _-_
acd

= 01 , we obtain

(5-17)

RNTG*lT [T,l) {al = W&*lT 61) (5-18)

{a] = MFG*lT [TGIY1  WFG*lT 61) (5-19)

However, once again, some numerical problems can be encountered in the

inversion of Re([T,*lTIT,]) although these can again be avoided by

using orthogonal polynomials so that Re([T,*lTIT,]) is replaced by the

unit matrix. This means, following what has been done for the RFP

method, changing (5-9) or (5-10) into:

2N-1 & 2N- 1

a(ioi) = C - (5-20)
k4 gi

% = F’ ‘i,k ck

where gi is the denominator of Eq. (5-9), which is known, as the

coefficients b, have already been calculated, and (P& is the half-positive

orthogonal polynomial defined in Eqs. (4-34) and (4-35) as y and for

qi = Il/g,l’. For all L measured points, Eq. (5-20) can be written as

{NW} = [&I Id (5-21)

where [Z,] can be expressed as [‘ l/g t] [WI, [W] being the matrix

composed by qi,,k. Thus, to have Re([TG*lTITG]) = [ I] means to have



Chap. 5 Sec. 5-2-2 Computer program description 2 4 0

MW*lT  I? U/g)* -1 li’l/g -1 WI) = [ I I (5-22)

Similar to what was found in (4-31),  we have to generate orthogonal

polynomials with respect to a weighting function ll/gil’ and the

orthogonality condition is (using the positive half-functions)

Re (i (~pi’,>* ($J ll/gil*)  = { i 5
i=l

Hence, Eq. (5-18) becomes

r 0.5 -1 {c} = Re([&*lT  {E})

So,

(5-24)

{c} = 2 Re([ZG*lT{  G}) (5-25)

k#j
k=j

(5-23)

The similarities between Eqs. (5-25) and (4-68) are understandable, since

for the case of lightly damped structures (Section 4-3-l) we were also

looking for the modal constants, the natural frequencies having already

been established. (a} can be calculated using a transformation as in Eq.

(4-40 a) and the local modal parameters can now be evaluated as previously

explained for the RFP method.

5 - 2 - 2 Computer program description

The computer program developed is an extension of the one used for the

RFP method (Section 4-2-2), considering now several FRFs. All the

numerical parameters used before to determine the existence of one or two

close modes are the same now. In Fig. 5-l the corresponding flow-chart is

presented. After calculating the “global “and “local” modal parameters, the

program repeats the calculations 20 times, taking each time a randomly
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For
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I
Input
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with noise

I

I
Input

or experimental
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I
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Calculation
of weighting
function qi

of denominator

I

Calc. of coeff.
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W-MI and {R))
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1
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Fig. 5-l Flow-chart of the computer program.

6C



Chap. 5 Sec. 5-2-2 Computer program description 242

C
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0Calc.  of partial
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Otherwise7
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values and norm.
stand. deviation

-1Final
results

Fig. 5-l (cont.) Flow-chart of the computer program.
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chosen set of points. In a second phase, the program analyses all the

calculated parameters and, based upon the criteria of acceptance or

rejection presented in Fig. 5-i, “decides on the final results.

5-2-3 Numerical examples

Theoretical case - Evaluation of the method

In this case, we shall study 3 FRFs simultaneously, with the data for or, c,,

C, and 41~ given in Table 5-1.

Mode FRF o,(Hz) 5,

1 1 90 0.005 1 0
2 ” ” 1 0
3 ” ” 1 0

2 1 100 0.005 1 0
2 ” ” 1 0
3 ” ” 1 180

3 1 variable 0.005 1 0
2 ” ” 1 180
3 ” ” 1 180

4 1 120 0.005 1 0
2 ” ” 1 0
3 ” ” 1 0

Table 5-l Theoretical data.

As before, we shall look for the closest value of o3 with respect to CII~, still

capable of being identified with good accuracy.
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Influence of the freauencv range

For the frequency range 97 Hz to 104 Hz it was not possible to obtain

satisfactory results even with no added noise. For the range 92 Hz to 108

Hz, the results for the maximum resolution of the natural frequencies are

given in Table 5-2.

Table 5-2

N o i s e ( % )  oz(Hz) w&Hz)

0 100 100.70

1 100 100.75

2 100 100.80

3 100 100.85

Maximum natural frequency resolution with different

levels of added noise (freq.  range = 92 Hz to 108 Hz)

As for the RFP method, the performance of the program has a degree of

dependence on the frequency range chosen (around the two modes). The

choice of a wider frequency range encompassing the two modes is in

general preferable, allowing for quite satisfactory results to be obtained.

Influence of the number of noints used, L

The number of points taken into consideration showed the same influence

on the results as in the case of the single FRF analysis: for two modes plus

two residual ones the minimum number of data points is 9 and the adding

of noise to the data showed that better results could be obtained if that value

were increased up to 16 points, beyond which no significant improvement

was found. For this reason, 16 points will be used, as for the RFP method.

Influence of the variation of the natural freauencv from FRF to FRF

As the raison d’2tre of any global analysis is to obtain an unique set of
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global properties, it is important to investigate to what extent the computer

program can cope with variations in those properties (the most important

being the natural frequency) from FRF to FRF. We shall analyse the

behaviour of the program considering 2 FRFs, for the case where a

variation on the natural frequency exists between them. The data used are

presented in Table 5-3. We shall investigate the maximum variation

possible in the natural frequencies for mode 2. Modes 1 and 3 act as

residual modes and a frequency range from 92 Hz to 108 Hz is used. The

results are shown in Table 5-4.

Mode FRF or $

1 1 90 0.005 1 0

2 90 0.005 1 0

2 1 100 0.005 1 0

2 variable 0.005 1 180

3 1 110 0.005 1 0

2 110 0.005 1 0

Table 5-3 Theoretical data to study the influence of variations

of the natural frequency between FRFs.

Noise(%) 1 1 2

0 100 100.15

1 100 100.13

2 100 100.13

3 100 100.05

Table 5-4 Maximum variation allowed between the two FRFs.
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Table 5-4 shows that the GRFP method only allows for a very small

variation in the natural frequency between two FRFs, meaning that it is

quite sensitive to such variations, bound to occur in experimental cases.

Experimental cases

In all the experimental data cases tried - where the FRFs were measured

one at a time and not simultaneously - the program was unable to produce

satisfactory results, certainly due to its sensitivity in coping with variations

of the natural frequencies between the several FRFs. It must be

remembered that, although the algorithm used here is already an extended

“intelligent” version of the GRFP method, the calculation of the “global”

properties is still based on the standard procedure, Eqs. (5-l) to (5-8 a).

The difficulties encountered in the experimental cases led us to try an

alternative to that standard procedure, which will be presented in the next

Section (5-2-4).

Discussion

The version of the GRFP method that has been described above shows

greater dependence on the frequency range chosen for the analysis (a wider

one being preferable) and also a poorer capacity of identifying 2 close

modes when compared with the RFP method. In addition, the method was

found to be very sensitive to variations of the natural frequencies between

different FRFs. In general it showed many difficulties, even when

considering theoretical data, and could not perform effectively for

experimental data. A new approach to the algorithm that will enable both

theoretical and experimental data to be analysed with improved accuracy

and reliability, will be presented next.
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In Section 5-2-l we have presented an algorithm to calculate the global

coefficients {b} of the characteristic polynomial of the system model

under study. This was done by the development of Eq. (4-40 b), using

Eq. (5-2), the final expression being Eq. (5-8 a). This development does

not make explicit use of the intermediate calculations of coefficients (d},

associated with each individual FRF, as Eq. (5-l) is substituted into Eq.

(5-2) to give Eq. (5-3). The mathematical derivation of the final expression

(5-8 a) does not present any problems. On the other hand, for the single

FRF case (RFP method), coefficients {b} can be calculated by direct use of

Eq. (4-40 b) and, as we have shown in Chapter 4, the method works quite

well in this case. Therefore, the explanation for the failure of the method

when using Eq. (5-8 a) for the global coefficients {b} must be associated

with numerical problems in the intermediate calculations. An alternative

way to calculate the global coefficients (b} might be advantageous. But

which alternative way ? One possibility will be to use Eq. (4-40 b) for each

FRF. Considering p FRFs,  we have

(5-26)

This means that we shall still have
given by :

Eq. (5-8 a>, but with [U& and {VG}k

wG]k =  [II

IvG)k =  [&jlk {d}k + IR)k

Eq. (5-8 a) will then become

(5-27)
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(5-28)

Eq. (S-28) simply represents the ordinary average of the coefficients {b}

and it is nothing but a particular case of a least-squares procedure.

Although not so elegant as the previous formulation, Eq. (5-28) proved to

be much more efficient and reliable. It should also be stressed that this does

not correspond to the classical method of analysing the several FRFs

individually and averaging the natural frequencies and damping factors.

With Eq. (5-28), what we are averaging are the coefficients of the

characteristic polynomial, prior to the calculation of its roots. To calculate

the roots after calculating the average values of the coefficients of the

polynomials is not identical to calculate the roots of each polynomial and

eventually calculating their average values; to average the coefficients {b}

is a more rational procedure, consistent with the least-squares technique

and with the philosophy of global FRF analysis.

Theoretical evaluation

The alternative way of calculating the coefficients (b) (Eq. (5-28)) was

tried on the theoretical case study of Section 5-2-3. Previously, we could

not obtain results for the frequency range 97 Hz to 104 Hz. Using the new

procedure, we obtained the results shown in Table 5-5 which are clearly

better than those of Table 5-2. Moreover, the global analysis no longer

seems to be very sensitive to the frequency range any longer, as the results

of Table 5-5 were not improved when the range 92 Hz to 108 Hz was

chosen. On the other hand, the sensitivity to variations on the natural

frequencies from FRF to FRF remained aproximately the same as

presented in Table 5-4.
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N o i s e ( % )  uz(Hz) o@Iz)

0 * 100 100.01

1 100 100.50

2 100 100.60

3 100 100.70

Table 5-5 Maximum natural frequency resolution with different levels of added

noise, using the new algorithm (freq.  range = 97 Hz to 104 Hz).

Experimental cases

For all the experimental cases tried, the GRFP method worked quite

satisfactorily, even when some of the FRFs failed to be analysed

individually. The examples that will be presented below refer to some

FRFs obtained from tests on an impeller, a structure that has recently been

studied in our laboratory; this structure exhibits symmetrical geometry

and therefore is susceptible to possessing very close modes.

Impeller  -Examme 1

In Section 4-2-3 we have already shown results from an analysis on a single

FRF of this structure. Together with that FRF (Figs. 4-2 and 4-3), 2 more

FRFs will be analysed (the three FRFs will be called FRF-1, FRF-2 and

FRF-3, respectively). Fig. 5-2 shows FRF-2 and Fig. 5-3 its expansion

around the modes under consideration. Figs. 5-4 and 5-5 show FRF-3 and

its expansion, respectively. The results are presented in Table 5-6, with

their normalized standard deviation in brackets. From Figs. 4-3, 5-3 and

5-5 one could say that no doubt would exist about the presence of two close

modes, but it must be noted that the frequency resolution (4 Hz) is quite

poor.
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Fig. 5-2  Bode plot of FRF-2.
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Fig. 5-3 Expanded Bode plot around the second double peak of Fig. 5-2.

250



Chap. 5 Sec. 5-2-4 Improvement of the algorithm 251

7 0

e
s”
s
5
:
:
c( I

-40 ’ I
3 2 0 0 . 0 0 6 4 0 0 . 0 0

Frequency Hz.

Fig. 5-4 Bode plot of FRF-3.
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Fig. 5-5 Expanded Bode plot around the second double peak of Fig. 5-4.
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1 3377.413 (0.001) 1.371~10-~ (1.441) 3.334x10-l (1.264) -13.87

1 2 I, II 2.396x10-l (1.133) -13.61
3 ” 11 2.215x10-’ (0.783) 167.10

1 3395.897 (0.004) 1.088~10-~ (1.958) 1.214x10-l (2.340) -12.96
2 2 II 11 1.080~10-~ (1.836) -11.76

3 ” 11 1.356x10-’ (1.726) -14.49

Table 5-6 Identification of the modes of the three FRFs  (Figs. 4-3,5-3 and 5-5).

The original and regenerated curves are presented in Figs. 5-6, 5-7 and

5-8, for FRFs-1,2 and 3, respectively.

3 3 2 4 . 0 0
Frequency Hz.

3 4 4 0 . 0 0

Fig. 5-6 Original (dotted line) and regenerated (solid line) FRF- 1.
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Fig. 5-7 Original (dotted line) and regenerated (solid line) RF-2.
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Fig. 5-8 Original (dotted line) and regenerated (solid line) FRF-3.

Comnarison with the RFP method

In Table 5-7 the results for the three FRFs analysed individually are

presented (for FRF-1, the results had already been presented in Table

4-10).
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Mode FRF Or G cr +r

1 3377.223 (0.006) 1.368~10-~ (2.113) 3,286x10-’ (3.108) -12.22

1 2 3377.606 (0.006) 1.343~10-~ (2.284) 2.420~10-~ (3.818) -15.06

3 3377.355 (0.002) 1.370~10-~ (1.594) 2.217x10-l (1.059) 168.02

1 3396.003 (0.011) 1.061~10-~ (2.244) 1.155x10-’ (3.550) -14.80

2 2 3395.590 (0.016) 1.082~10-~ (2.455) 1.096x10-’ (5.628) -9.79

3 3395.935 (0.002) 1.150~10-~ (1.721) 1.422x10-’ (1.588) -14.52

Table 5-7 Identification of FRFs  1,2 and 3, using the RFP method.

Comparing Table 5-7 with Table 5-6, we see that both results agree very

well. From a conceptual point of view, we should rely more on the results

from the global analysis and, in fact, the results point in that direction, as

they show a smaller normalized standard deviation and also the

regeneration is slightly better. However, it is not worth while to present

here the regeneration for the single analysis of FRF-2 and FRF-3, as in this

case the single analysis results are already quite good and from Figs. 4-4

and 5-6 we can understand that, in this case, the improvement achieved

with the global analysis is not graphically perceptible.

Impeller - Example 2

When we tried to analyse, in the same frequency range, two other FRFs

from the same structure (which will be called FRF-4 and FRF-5) using the

RFP method, the program failed to identify them. We tried, then, to use

the global analysis using FRFs 1,4 and 5. The program managed to work

and produced reasonable results. Figs. 5-9 and 5-10 show FRF-4 and

FRF-5 and the results obtained for the global analysis of the three FRFs are

presented in Table 5-8.
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Fig. 5-9 Bode plot of FRF-4, in the same frequency range as the previous three.
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Fig. 5-10 Bode plot of FRF-5.
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Mode FRF Y sr cr %

1 3377.153 (0.043) 9.853~10~ (4.984) 2.494x10-l (5.120) -12.41

1 4 II ,, 9.446~10-~  (20.474) 134.70
5 ” ,I 2.133x10-l (5.275) 168.72

1 3396.057 (0.005) 1.058~10-~  (3.412) 1.279x10-’ (9.049) -26.18
2 4 ,I I, 1.999~10-~  (1.947) 164.69

5 ” ,I 5.470~10-~  (22.584) 1.55

Table 5-8 Identification of FRFs 1,4 and 5.

The original and regenerated curves are presented in Figs. 5-l 1, 5-12 and

5-13 for FRFs 1,4 and 5, respectively.

-zeal I
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E
::
2
0 i 3 3 2 4 . 0 0 3440.06
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Fig. 5-11 Original (dotted line) and regenerated (solid line) FRF-1.
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Fig. 5-12 Original (dotted line) and regenerated (solid line) FRF-4.
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Fig. 5-13 Original (dotted line) and regenerated (solid line) m-5.

Comparing the global analysis of FRFs 1,4 and 5 (Table 5-8) with the one

of FRFs 1,2 and 3 (Table 5-6) in terms of the global properties, we see that

the results of Table 5-8 are worse, as the normalized standard deviation is

higher. We also see that from the global analysis of FRFs 1, 4 and 5 the
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regeneration for FRF-1 (Fig. 5-l 1) is poorer than the regeneration of

FRF-1 from the global analysis of FRFs 1,2 and 3 (Fig. 5-6), as FRF-1 has

been affected by the “bad influence” of the other two problematic ones

(FRFs 4 and 5). Even so, it was possible, with the GRFP method, to

analyse these curves and the results, though not exceptional, can be

considered as acceptable. It must be recalled that FRFs 4 and 5 could not be

analysed by the RFP method.

hnneller - Examnle 3

In this example, we shall consider all five FRFs together. The results are

presented in Table 5-9.

1 3377.231 (0.014) 1.118~10-~ (2.868) 2.846x10-l (3.392) -12.75
2 I, I, 2.062x10-’ (3.218) -12.48

1 3 I, 11 1.899x10-l (3.409) 168.21
4 11 11 1.047~10-~ (12,716) 125.60
5 ” I, 2.447x10-l (3.104) 168.59

1 3395.966 (0.003) 1.074~10-~ (2.121) 1.188x10-’ (8.676) -20.88
2 ” II 1.066x10-’ (6.382) -17.99

2 3 11 I, 1.361x10-’ (4.114) -10.54

4 I, 11 2.001x10-’ (1.710) 165.77
5 ” 11 5.594x10-2 (11.970) -5.00

Table 5-9 Identification of FRFs 1, 2, 3, 4 and 5.

As FRFs 1, 2 and 3 could be previously analysed quite accurately, it is

expected that Table 5-9 can provide evidence of better results for FRFs 4

and 5. Indeed, comparing Tables 5-9 and 5-8, we can see that the

normalized standard deviation for FRFs 4 and 5 is now smaller. On the
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other hand, we may also expect FRFs 4 and 5 to “pollute” the results of the

other three FRFs, and this is confirmed by comparing Tables 5-9 and 5-6.

In Figs. 5-14 to 5-18 the original and regenerated curves for the five FRFs

are presented.

60i 1

3
t5_i!
0 33 4.00 3440. 0

Frequency Hz.

Fig. 5-14 Original (dotted line) and regenerated (solid line) FRF-1.

!jO I-- 1

$___[
0%3zT3E-. ---d.

Frequency Hz.

Fig. 5-15 Original (dotted line) and regenerated (solid line) FRF-2.
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Fig. 5-16 Original (dotted line) and regenerated (solid line) FRF-3.
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Fig. 5-17 Original (dotted line) and regenerated (solid line) FRF-4.
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Fig. 5-18 Original (dotted line) and regenerated (solid line) FRF-5.

s

From these graphs, it is not easy to perceive the improvement in FRFs 4

and 5, as probably it is not easy either to verify that FRF-2 and FRF-3 are

worse than before. However, by comparing Figs. 5-6, 5-11 and 5-14 (the

three analyses of FRF-l), we can verify that the quality of the identification

on this last graph is somewhere in between the other two.

Discussion

From the above examples we can conclude that the modification introduced

in the calculation of the global pararneters was a very valuable measure to

take, as it enabled us to apply the method to identify real structures.

However, the reason for this improvement is not clear from a theoretical

point of view. It can also be concluded that to take more FRFs into the

global curve-fitting has the effect of smoothing the results that may

otherwise appear distorted by the presence of one or more “problematic”

curves. When in doubt about the results caused by the above phenomenon,

and especially if they present high normalized standard deviations, a

L ,
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comparison with the single FRF analysis results may provide useful

information. Finally, we can also conclude that the normalized standard

deviation proved to be a very useful parameter as an indicator of the

quality of the identification, not only in absolute terms but also relatively,

for each mode and FRF.

5-2-5 Alternative way to calculate the global parameters

We have seen that in some cases it was not possible to obtain results for the

analysis of single FRFs, but that the global analysis overcame this

insurmountable stage. However, what if the opposite situation occurs, i.e.,

if we fail to analyse in the global sense and we only have at our disposal the

individual results for each FRF ? The classical answer is simply to average

the results for the global parameters. However, in this work, we have

developed a useful parameter that we could make more use of: the

normalized standard deviation of the modal parameters obtained in several

runs of the computer program. Once it provides a reliable indication of the

quality of the results, we can perform not a simple average of the results

but instead a weighted average based upon it.

From the first example of the impeller, the results for the single FRF

analysis were presented in Table 5-7. The weighted average of the natural

frequency of mode 1 would be given by:

%vg. =
3377.223/0.006 + 3377.606/0.006 + 3377.3WO.002 = 3377 379 Hz

.
l/O.006  + l/O.006  + l/O.002

For the second mode it would be:

?avg. = 3395.911 Hz
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Proceeding in the same way for the damping factor, we obtain the results

of Table 5-10.

1 3377.379 1.362~10-~

2 3395.911 1.103x10-3

Table S-10 Weighted average results based on the single FRF analysis.

By computing a simple average, the results would be (Table 5-l 1):

1 3377.394 1.360~10-~

2 3395.843 1.O98x1O-3

Table 5-11 Weighted average results based on the single FRF analysis.

Considering the global estimation results as exact, the relative error of

each kind of average is (Table 5-12):

Average Mode e or(%) E 5,(%)

Simple l 0.0006 0.8023

2 0.0016 0.9191

Weighted 1 0.0010 0.6565

2 0.0004 0.0138

Table 5-12 Relative error of the single and weighted average
results by comparison with the GRFP method.

From these results we can see that, especially for the damping factor, the
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weighted average seems worth while using, as the errors are significantly

smaller.

5-3 The Global method

5-3-l Introduction

The method discussed in this section is referred to simply as “The Global

method” and it is based on the works of Refs. [87] and [ 881. As mentioned

in Section 5-1, this is a SIMO method. Our objectives here are (i) to give a

detailed explanation of the basic theory involved and of the specific

techniques used, as such an explanation is not currently available in the

literature, (ii) to extend the work already done in order to fulfil the

objectives stated in Section 5-l and (iii) to establish a comparison with the

GRFP method. In particular, we shall be dealing once more with the

problem of double modes and the introduction of criteria of decision and

quality indicators that can provide us with more confidence in the results

obtained.

5-3-2 Theory

Basic developments

The development presented here follows closely that given in Ref. [ 1271,

for the general case of non self-adjoint systems. The purpose is to present a

rigorous development of the expressions of receptance and mobility, in

terms of the modal properties. Let us consider the matrix equation of

motion for a linear, viscously damped, N DOF system:
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Ml {y(t)) + [Cl IjlO)l + Kl {y(t)1 = u%)) (5-29)

where [Ml,  [C] and [K] are NxN real symmetric matrices of mass,

viscous damping and stiffness, respectively, {F(t)) is an Nxl complex

vector of applied forces and {y(t)}, {y(t)} and {i(t)} are Nxl complex

vectors of displacement, velocity and acceleration, respectively. It is well

known that in order to solve this 2nd order linear differential equation it is

convenient to define a 2Nxl complex state vector (u(t)} as:

(5-30)

In terms of this new variable, it is also well known that the equations of

motion can be written as follows:

r&l ;;;I ru(O] +  [F] _;&I] {u(t)] = i’:‘arit
(5-3 1)

or, more simply,

[Al I;(O) + PI bW = F’(O) (5-32)

This formulation is often called as “state space analysis”, by contrast with

the usual “vector space analysis”. [A] and [B] are 2Nx2N real symmetric

matrices and {F’(t)} is a 2Nxl complex vector. Let us consider the

homogeneous solution of (5-32),  i. e., the free vibration solution with the

right-hand-side of (5-32) set to zero:

[Al b%O) + PI WI = KU (5-33)

In the vector space, we look for a solution of (5-33) in the form

(5-34)
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where {y-) is a Nxl complex vector representing the complex amplitude

of the response and s is a complex quantity. The derivatives with respect to

time will be

{y(t)} = sIy1 est = s{y(t)I (5-35)

{j;(t) 1 = s2{y} est = s2{y(t)} (S-36)

Hence, the state vectors will be

bml = {y} es = {ii} estI Im
b-h = s(y) est =  s(i) est

i Is2m

(5-37)

(5-38)

Therefore, a solution for (5-33) will have the form given in Eq. (5-37).

Substituting (5-37) and (5-38) in (5-33),  we obtain for all time t,

[s[Al+[Bl]I:l = (01 (5-39)

Eq. (5-39) represents a generalized eigenproblem whose solution

comprises a set of eigenvalues and eigenvectors. Because [A] and [B] are

2Nx2N  real matrices, the 2N eigenvalues and eigenvectors will be real, or

will exist in complex conjugate pairs. For the case in which we are

interested, i. e., sub-critical damping, the values will always appear in

complex conjugate pairs. The eigenvalues will be designated by s, and s,*

and the eigenvectors by {w,‘} and {w,‘*], where * denotes complex

conjugate. For the state space formulation, the eigenvectors will be

(5-40)
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where {v,) and {v,*} are the Nxl complex eigenvectors corresponding

to the vector space coordinates {y).

Assuming that it is possible to express the response of the 2Nx2N state

space system as a superposition of the responses of 2N SDOF systems, for

which the coordinates are designated by p, we have

{u(t)} = iz ~w,‘l P,(t)
1=1

(5-42)

The superposition of responses p,(t) is weighted by the corresponding

modal vector. In matrix form, (5-42) will become

(5-43)

where [Y’] is a 2Nx2N complex matrix, which can be called as the state

space modal matrix. Coordinates {p} are called the principal coordinates.

For {b(t)), it will be:

{at> I = W’l IP( (5-44)

Substituting (5-43) and (5-44) into (5-33) and pre-multiplying by [Y’lT,

we obtain

WIT WI WI Ii>(t)1 + WIT EBI ['+"I {pO>l = 101 (5-45)

Due to the well known orthogonality properties, [‘PIT [A] [Y ‘1 and

[Y’lT  [B] [Y’] are diagonal matrices, and so:

r a, -1 {p(t)] + r b, ~l~p(Ol = (01 (5-46)



Chap. 5 Sec. 5-3-2 Theory 268

Eqs. (5-46) are uncoupled and each of the 2N solutions for p(t) is the

solution for a 1 DOF system. Considering each solution to take the form

(5-47)

where IT& depends on the initial conditions, we have

(a,s,+b,&e’  = 0 (5-48)

and so,

4sr=--
%

(5-49)

Substituting (5-47) in (5-42),  we obtain the free vibration response in

terms of the state space coordinates:

{u(t)}  = T {w,‘) Fr es+
x=1

(5-50)

jj, is a weighting factor associated with each mode (wr’}, representing

the contribution from each mode to the total response at each point. It is

often described as a “modal participation factor”.

Returning to the general equation of motion for forced vibration (5-32),

and substituting Eqs. (5-43) and (5-44) into it, it follows that

(5-5 1)

Pre-multiplying this equation by [Y’lT and considering the orthogonality

properties, we obtain

r a, -1 {p(t)} + r b, flip) = WIT {F(t)) (5-52)

As discussed above, expression (5-52) represents a set of 2N uncoupled

L ,
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equations. Considering Eq. (S-49), each of those 2N equations can be
written as

P,(t) - s, p,(t) = (5-53)

For a harmonic excitation force vector of the form {F(t)} = {F}&t, the

response will be of the form {p(t)} = Tp} dot. Thus, Eq. (5-53) will

become

and so,

(5-54)

(5-55)

Substituting (5-55) in (5-42) and considering harmonic excitation, we will

obtain the forced response of the system:

b(t)) = z {yfr,} ( l ) Lw,‘lT
l=l N-s, a,

{F] &t

i i

(5-56)

101

Normalizing the eigenvectors with respect to a,, we obtain

{@,‘I = L &,‘I
6

and Eq (5-56) becomes

(5-57)

(5-58)
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where (41,‘) is a 2Nxl eigenvector of the form

Considering Eq. (5-37) for harmonic response, i. e., for s = jo, and

substituting (5-59) in (5-58), we obtain the expression for the amplitude of

the response:

or

(5-61)

We are now close to achieving our aim, i. e., to obtain expressions for the

receptance and mobility in terms of the modal properties. Returning to the

vector space coordinates and extracting the values of their amplitude

responses, it follows that:

,> {OrIT (Fl
- r

(5-62)

Likewise,

MYI =
r=l

(jol ,> {@rIT IFI
- r

(5-63)

The modal participation factors for Eqs. (5-62) and (5-63) correspond

now to the product {$QT (F}. The receptance aik is defined as the
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displacement at a point i due to a force at a point k, all other forces being

zero ({F} = (0 0 . . . kk . . . 0 O}q  . Thus, considering the response

displacementyi, we have .

Yi
a,(jo) = - = ’ r@i ( ’ > r@k

I=1 io - s_

Eq. (5-63) becomes:

joa, = rl’ r@i % ( ’jco - s,> r@k

But jo aik(jo)  is the mobility (= &,_o))  and SO,

(S-64)

(5-65)

(5-66)

Because the eigenvalues and eigenvectors appear in complex conjugate

pairs, we can write Eqs. (5-64) and (5-66) as

(5-67)

0 - S,)-l r~k+ r~i* S,*(jO - S,*)-l ~~,*I (5-68)

From now on we shall make the approximation that the first term of the

summations in Eqs. (5-67) and (5-68) are the ones that effectively

contribute to the response of the system and that the second terms (complex

conjugates) plus the modes that lie outside the frequency range of interest

act as residuals. In these terms, Eqs. (5-67) and (5-68) will become

(5-69)
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r-1

In matrix notation, we obtain:

+ R2W0

2 7 2

(5-70)

+ R,W

(5-71)

(S-72)

Specific developments concerning the Global method

As mentioned in the introduction, this method considers the excitation

force at one point and the responses taken at several locations. As a

consequence, we shall have several FRFs as defined in (5-71) where i

varies and k remains the same. Considering p locations (i. e., p FRFs), it

follows that

a2ktim
.
.
.

=

. . .

. . .

. . .

30 - sl)

(jo - s2) 0

.

0 (jo-$1

01 k

,2 @k
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b@)~ = PI [‘ (io - sr) -I-’ @JT + W,tiW (5-74)

@xl) (PXN)  (NW Mr) 0x1)

Similarly, from Eq. (572), we obtain

Io;ciW = PI C’ s, -1 r (io - SI> *l-l NQT + W@ol (5-75)

(Pxl) @xN)(NW WXN) (Nxl) @xl)

The subscript k in Eqs. (5-73) to (5-75) means that the force is applied at a

location k. If we define a vector {gdjo)}  as

{g(io>l = r tio - sr> + 19JT (5-76)

@xl) (NW Wl)

and, dropping the subscript k for simplicity, we obtain

Considering the receptance at two nearby frequencies oi and oi+c, we
obtain

{Cr(jo,>} = [@I {gciOi>l + IR,(joi)l (5-79)

{aCi~i+,>l  = [@I {g(jO&)l + IRl(ioi+,)l

Subtracting Eq. (5430)  from Eqs. (5-79) , we obtain

(5-80)

{aCiQ$)J - ta(iai+c)} = [@I ( {gCjOi)J - {gUmi+c)) I +
(Rl(j~i)I  - {RlCjO,,)} (5-81)

I.
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Now, we shall make the assumption that the effect of the out-of-range

modes is a complex constant over the frequency range in which we are

interested. This is the same principle as adopted by the “Bendent” method

(Section 3-3-2). Accordingly, Eq. (5-81) becomes

{ a(io,)} - { “(iOi+,)} = [@I { {gciOi)) - { g(-jOi+J)  ) (5-82)

or

For the above assumption to be reasonable, o++~ must be close to oi but

not so close that it might cause numerical problems later on. A reasonable

value for c must be established when we undertake the computer

implementation.

Using the same principle, we obtain for the mobility:

{AkiOi>  1 = [@I E’ S, ~1 {Ag(i~i>I (5-84)

Considering L measured points in the frequency range of interest (that will

have at least L+c points for the differences to be calculated), Eqs. (5-83)

and (5-84) become

[{A&(jwJ} {A&(@)}  . . . {AC&)}]=  [@I [‘ sr-1 [{AgW,)} {Agci%)}

. ..IAgcjo.)}] (5-86)

or
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(S-87)

(5-88)

It will be assumed that

L2plN (5-89)

which means the availability of more FRFs than the number of modes and

more frequency data points than the number of FRFs. Now, we shall

eliminate [Ag] between Eqs. (S-87) and (5-88).

[&I = WI’ Dal
C-J-) (NXP) @a

(5-90)

where [@,I+ is the pseudo-inverse of [a], given by

[aq’ = ( [@*IT PI>-' [@*IT

(NXP) (NW C-P)

and from Eq. (5-S),

[Ag] = r s, ~1-l [a]’ [A&]

WV (NW (NXP)  @a

Combining Eqs. (5-90) and (5-92),

[@I+ [Aa] = r s, ~1-l [@I+ [A&]

o r

[&IT [O]+T r s, -1 = [A&IT [@]+T

(LXP)  (PXN)  (NW O-XP)  @W

(5-91)

(5-92)

(5-93)

(5-94)
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Making a change of variable as

[z] = [@]+T

we obtain the following generalized eigenproblem

[[Awl’ - s, PaIT] Iq) = 101

(5-95)

(5-96)

As we shah be dealing with experimentally acquired data, Aa and A& will

be denoted, respectively, as A: and Ai from now on. Thus, Eq. (5-96) will

be written as:
.

[IAGIT - sr [A$‘] Iql = (01 (5-96 a)

This equation enables the calculation of the eigenvalues s, and,

consequently, the global parameters (natural frequencies and damping

factors). Later on, we shall see how to calculate the local parameters

(modal constants and phase angles). Before that, we shall make some

remarks about Eq. (5-96 a). Matrix [AGIT is calculated directly from the
.

-T *measured receptance FRFs. The calculation of matrix [Aa] 1s easy, as

there is a simple relationship between receptance and mobility:

&(j6Q = joa (5-97)

Hence, for each element of matrix [AGlT, given by

&(j Wj) - &(jtOi+c) (5-98)

.

we shall have a corresponding element of matrix rAGIT, given by

j6Ji Ei(jOi) - j6Ji+c &oi+& (5-99)



Chap. 5 Sec. 5-3-2 Theory 277

.

So, matrices [AEIT and [AglT are easy to obtain. However, we may

experience some difficulty in solving Eq. (5-96 a) due to the fact that the

matrices involved will be, in general, rank deficient, since we usually have

more FRFs than modes. This could be solved in a least-squares sense,

pre-multiplying Eq. (5-96 a) by the hermitian transpose of [AGIT. But the

resulting matrices would still be of order p and we are looking for N

eigenvalues (p>N), so the matrices would still be rank deficient (their

ranks are exactly equal to N).

A good eigensolution routine (Ref.[128]) could solve the problem, and

from the p eigenvalues we could extract the significant N values for our

solution. It must be remembered that in practical situations, with noisy

data, we may not be sure of the number of genuine existing modes and so N

is not a known quantity. To determine N (and therefore the rank of the

matrices) we shall make use of the Singular Value Decomposition (Ref.

[ 1291) , a technique that has many applications (Ref. [ 1301) and is the best

known way of computing the rank of a matrix. In Appendix D, an

explanation of this technique is given, together with references to the most

significant articles published on the subject.

Use of the Singular Value Decomposition

The Singular Value Decompositon  (SVD) of a Lxp complex matrix [A]

(L 2 p) is given by

[Al = WI PI MH (5-100)

where the superscript H denotes hermitian  transpose and [U] and [V] are

unitary complex matrices of order LxL and pxp, respectively. [C] is an

, 6%.  I
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Lxp real matrix, with elements bij = 0 if i#j and crii = pi 2 0. The

quantities (TV are the singular values of [A]. Matrix [E] is of the form

[cl = q 0
O2__1 P

0 OP_______---

0 1 L-P

P

(5-101)

We shall assume that err > o2 > . . . > bp (most of the SVD routines give the

results in this form). In matrix [C] there will be N high values of cri and

p-N small values. The comparison between the magnitude of these values

enables us to determine the rank of the matrix and, therefore, the number

of genuine modes, N. We must establish, then, a criterion that can

recognize the relative magnitudes of the singular values. In Ref. [88] it is

suggested the graphical representation of the sucessive ratios of the

singular values, i. e., cT1/GZ , a,/~, , etc. As the rank is equal to N, bN+r

will be much smaller than bN and therefore the ratio o&+r will have a

very high value, and a peak will be clearly visible on the graph. We have

decided here to consider the rank as the value corresponding to the

maximum result of the several ratios, because in this way there is no need

to make a judgement based on the referred graph.
.

The SVD technique will be applied to [AGIT and [AGIT, and it is noted that

both these matrices should obviously have the same rank, N. Their

decomposition is given by

[AEIT = WI, PI, wl,H
(LXP)

(5-102)
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[AGIT = WI& [qx MbH (5-103)

(LXP) 0-a (LXP) (PXP)
.

As the rank of [A&]’ is the same for [AGlT it would seem pointless to
.

decompose [AGIT. However, there is an advantage in doing so, as we shall

see next. Having calculated the rank, we will have p-N small values of CT~,

but not exactly zero as they should be if the data were noiseless. This means
.

that [AGIT and [AGIT can be “improved” if we recalculate them after

setting to zero the small p-N singular values in matrices [Cl, and [Cl&.

The new matrix [Cl,’ will be of the form

Pl$ = Ol
0

O102 :

0
*.

‘CJN : 0
,,,-,_-A

0
0

‘0
_____-__ - - -

0
P

1 GP

.

(5-104)

The “improved” matrices [AGIT’ and [AGIT’ will be given by

[A&]” = WI, PI,’ wloLH (5-105)

.

[AE]lT’ = WI, PI,’ rQH (5106)

where only the first N columns of [U] and the first N rows of [VIH  will

contribute to the product, because only the first N singular values of

[a,’ and [Xl&’ are non-zero, i. e.,
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[AQ = WI, El, [QH (5-107)

@PI 0-w (NW (NXP)
.

[A&IT’ = WI, m&l  rQH (S-108)

(LXP) (LXN) mw (NXP)
.

Considering the new matrices [AEIT’  and [AGIT’, relations (5-87) and

(5-88) still hold, becoming

[A&]’ =  WI ml (5-109)
.

[A&]’ = PI [‘ s, -1 [&I (5-l 10)

Using a similar route to that which led to Eq. (5-96 a), we obtain

We

.

[[AElI” - s, [AG]]“] {zr} = (0) (5-111)

can solve Eq. (5-l 11) by pre-multiplying it by the pseudo-inverse of

[A;lT’:

[ ( [AEIT’)+  [AilTt -s,[Illb~ = vu (5-l 12)

- @PI

which is a problem of eigenvalues and eigenvectors of a complex matrix.

To calculate the pseudo-inverse of [AGJT,‘we  can make use of its singular

value decomposition. Considering Eq. (5-107),  but before having taken

away the p-N zero singular values, we have

[AGlT’ = WI, El,’ wlaH
(LXP) WA @PI @PI

Thus,

([A&IT’)+ = wl~H)+ m$)+ WI,)’
W-1 @XP) 0 (LXL)

(5-l 13)

(5-l 14)
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But the pseudo-inverse of a square matrix coincides with its simple inverse,

and so,

( [AGIT’)+ = (WlaHY1 (IlqJ’ wl,)-1 (5-115)

@W @XP> W-1 (W-1

Remembering that [VI, and [U], are unitary matrices, for which the

hermitian transpose equals the inverse, we obtain:

( [AEIT’)+ = WI, Wl$>’ wl,H
CPU @XP) @a v-,xL)

The pseudo-inverse of a rectangular diagonal

Eq. (5-104) is defined in the following form:

W$)’ =
I

l/O,
I
1 I

I

l/o, 0 j ;

0 ‘.l/o,l O j 0______--- -’ I
0 0.. :

‘0 :

(5-l 16)

matrix like [Cl,’ given by

(5-l 17)

such that

WI,‘)’ GqJ = 11 I’
@XL) (LXP) @XP)

(5-l 18)

where [ I 1’ is a diagonal matrix with N unit values and p-N zeros. Now,

only the first N columns of [VI, and the first N rows of [UlaH  will
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contribute to the product, and we will have

([AEIT’)+ = [VI, m,‘Y [QH (5-l 19)

(Pa1 (PXN)  CNxN)  C=t-)

As we already know [V], and [UlaH, we only have to calculate the

inverses of the N singular values in order to evaluate the pseudo-inverse.

Substituting Eq. (5-l 19) in (5-l 12), we obtain

[[A,1 -s,[131 M = w (5-l 20)

where [As] is a pxp complex matrix which is called the system matrix,

given by
.

[AsI = WI, (PI.‘)-’ WlaH bEIT (5-121)

This eigenvalue problem will produce N non-zero eigenvalues and p-N

zero eigenvalues.

Note on the use of differences of forced response

We have made use of the differences of forced responses to obtain the final

eigenproblem of Eq. (5-120). The advantage of doing so is that the residual

influence of extra modes is taken directly into consideration. But is it really

necessary to use those differences, or could we just take the responses as

measured and incorporate the residuals later ? We shall discuss this point

based on the response of a SDOF system. For this case, and according to

inequality (5-89),  one FRF and one data point should be enough to calculate

the eigenvalue. Let us consider Eq. (5-96 a), with the responses instead of

their differences. For a single degree-of-freedom, Eq. (5-96 a) would give

.
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(is-sji)q = 0
.

Considering the response at a_ frequency oO , G = j a+-, G, and

(j6@ - s,or>  zr = 0

Hence,

sr = jo,

This simple example is enough to prove that the method does not work

when only the responses are used, as we would obtain only pure imaginary

results, i. e., the damping values would be zero. Let us consider now, for

the same case, the difference of responses between two data points, 1 and 2.

Here,
. . .

A& = &,-&, = j(w& - olG1) (5-125)

and so, Eq. (5-96 a) would be

2 0 3

(5-122)

(5-123)

(5-124)

and

But & and gZ are given by

a, = A+jB

joI - s,

(5-126)

(5-127)

(5-128)
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+ A+jB

jm, - s,

Substituting (5-128) and (5-129) in (5127), we obtain

Y 01-

s, = j
jm2 - s, jol - s,

1 1-
jm2 - s, Ml - s,

or

s, = j
jo,w, - s,02 - j0,0, + ors,

jo, - s, - jo, + s,

Hence,

284

(5-129)

(5-130)

(5-131)

(5432)

from which,

sr = s, (5-133)

The identity (5-133) proves that by taking the differences of response, the

eigenvalue could be recovered.

Calculation of the eigenvectors

Having calculated the eigenvalues using Eq. (5-120),  we know the global

parameters of the system, i. e., the natural frequencies and damping ratios.

Now, we can go back to each FIW to calculate the local parameters, i. e.,

modal constants and phase angles. Eq. (5-69) will be rewritten as
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ii&o> = cN * +R(jo)
r=i jo-s,

1

where

P ik = A A

(5-134)

(5-135)

is the residue of mode r. Considering the residual term R,Cjo) of the

forrnT

R,Cio)
RM= R,+-
w2

and for all the L data points, we have:

N rhka,_w,) = c +R +RM

14 jo, -s,
K-012

f%k
h-s,

RM
+ RK +

(322
. .
. .
.

N rhk'+R+RMt$jmJ = c
1=1 jq_-s,

K-oL2

In matrix form, this will be:

t The form of Eq. (5 134) suggests the residual term to be given by

RIW
RM= RK+-

jm

(5-136)

(5-137)

(5136 a)

but this would mean an additional and unnecessary restriction, as the contribution of the
complex conjugate part of the residual would not be contemplated.
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1 1 1. . .
or2 jo, - sr j0r - sN

1 1 1

m22 jo, - s1 jwsN
. . .
. . .

1 1 1
q2 je.$_-sr  “’ jq- sN

(Lx(N+w W+2W) o-xl)

or

&I {Al = 61

(A} can be obtained by calculating the pseudo-inverse of [T,].

{Al = &I+ IGl

with

&I+ = ( &*lT [T,I)-’  &*lT

(5-139)

(5-140)

(5-141)

Expression (5-140) is not exactly the same as Eq. (5-19) because here the

vector {A} is complex. The pseudo-inverse in (5-140) can be evaluated

more efficiently by means of another SVD calculation. The use of

orthogonal polynomials does not seem to be easily applicable in this case, as

the form of Eq. (5-134) does not lead to a polynomial expansion in (@III) in

the numerator. {A) contains the values for the residuals and the values of

rAik (residues) from which the modal constants and phase angles can be

derived, by a similar process to that presented in Section 4-2-l (Eqs. (4-48)

to (4-51)). Comparison of each identified FRF with the corresponding

measured one can be made by regenerating the former using Eq. (5-134)

and superimposing both graphs.



Chap. 5 Sec. S-3-3 Computer program description 207

5-3 -3 Computer program description

A new computer program for the Global method has been developed and

implemented in a micro-computer. In addition to the main program to read

in the data files and to establish the equations, routines for the singular

value decomposition and eigenvalue problem have been incorporated.

New developments to the Global method

Inequality (5-89) shows that for p data files only L=p data points are

necessary. Usually, there are many more points available in the frequency

range considered and we can take advantage of this fact to proceed as we

did before, i. e., instead of running once, the program may run several

times, taking a different set of randomly chosen data points each time. With

theoretical data, the results are not improved by increasing the number of

points, but because experimental data always contain some noise, it is

advisable to use more points than the minimum required. We have chosen

the same fixed number of points as used in the GRFP method, i. e., 16

points. Further discussion of this subject is made later on.

Before, in the GRFP method, the use of several runs had the objective of

determining the number of genuine modes and also the calculation of mean

values and standard deviations for the modal parameters. Now, due to the

use of the SVD technique, we already have a good means of obtaining the

effective number of modes present in a given frequency range. Even so,

and particularly for very noisy data, the program may yield different

results for the number of modes when different sets of data points are used.

Eventually, the program will give the number of genuine modes found (=

rank of [AG]) and a confidence factor that tells us how many tunes the most

repeated number of modes was found in a given number of runs. For
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START7
For
each-vRF

Computer program description

Choice of

/
freq. range

talc. SVD  of

[AsIT  and [A&l’

Calc.  of reson. freq
and damp. factors
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For the most
repeated ones
talc.  the mean

values and norm
stand. deviation
of modal pararn,

I

Final
resultsz

Presentation of
intermediate results

Take one
reson. freq.

I

How many of the
remaining lay within
33.1%  of that value

and &7% of the damD.  ?

6B

Fig. 5-19 Flow-chart of the computer program.
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instance, if the program finds there to be 3 modes in 7 out of 10 runs, the

answer will be 3 with a confidence factor of 70%. In addition, the

program will give the mean values for the modal parameters and their

standard deviations, after looking for those results that were most often

repeated, taking in consideration a narrow tolerance around the values of

the natural frequency and damping factors. In this way, the user will have

the answers he is looking for a, most importantly, an indication of their

quality. In Fig. 5-19 the flow-chart of the computer program is presented.

5-3-4 Examples

Examples based on theoretical data will be presented first to investigate the

performance of the method. The same experimental cases used to test the

GRFP method will then be used to evaluate the behaviour of the Global

method in practical situations. Special attention will be given to the case of

two close modes,as before, but the program is not restricted to this case.

Theoretical case - evaluation of the method for two close modes

The data chosen for this example are the same as previously given in Table

5-l (Section S-2-3). We shall look for the values of oa which are the

closest possible to o2 that the program is capable of identifying. Modes 1

and 4 act as residual ones. Noise levels from 0 to 3% are added to the data.

The results are shown in Table 5-13.

t
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Noise(%) q-w qw

290

0 100 loo.2

1 100 loo.3

2 100 loo.4

3 100 100.5

Table 5-13 Maximum natural frequency resolution
with different levels of added noise.

Influence of the freauencv range and the number of data points

It was found that the frequency range and the number of data points taken

into the analysis were two inter-related factors in the Global method. For

a given number of data points, as the frequency range used is larger, the

results are poorer. This is due to the fact that the data points will be spread

over the frequency range and it was found here that this method works

better if the data points are close to the natural frequencies. This results

from the fact that the method works with the differences of the forced

responses and the assumption made that the effect of neighbouring modes is

constant is more correct for points in the region of each resonance peak.

Our special interest is to obtain a good identification for close modes. For

this case, the frequency range is chosen to encompass these modes and the

data points will be always near the natural frequencies. If we are interested

in identifying a wide frequency range with several modes that can be quite

separate from each other, then it will be better either to have a means of

choosing regions around the peaks where the data points should lie or

(which is obviously equivalent) to neglect regions with no peaks. A wide

frequency range could also lead to numerical difficulties and in this case

weighting factors associated with the frequency values could be used to



Chap. 5 Sec. S-3-4 Examples 291

overcome the problem. For the study of close modes we will not have this

sort of problem.

Influence of the variation of the natural freauencies from FRF to FRF

In a practical situation where we have a set of FRFs, small variations in the

resonant frequencies are expected to be found between one FRF and the

next. That is why a global analysis is so important, as we wish to find a

consistent and unique set of global parameters. However, if those

variations are significant, the method used for the analysis may fail to

produce the right answers, especially concerning the number of modes.

Several theoretical examples using the Global method, where the values of

the natural frequencies and damping ratios were modified from FRF to

FRF, showed that within the specified frequency range the program always

gave the correct value for the number of modes. With added noise, it failed

sometimes in only one or two runs (out of the 10 used in the program), but

it can be said that this method is almost insensitive to this problem.

Discussion and comnarison  with the GRFP method

Based on the results from the theoretical cases, the Global method seems

to offer a very powerful means of analysing a set of FRFs. Referring to

close modes, it was able to detect them to a very good limit of frequency

spacing (Table 5-13). This result is, in general, better than the ones

obtained with the GRFP method (Tables 5-2 and 5-5). The influence of the

frequency range is not an important factor for a region encompassing

several close modes and it is not a limiting factor as for the GRFP method

(Section 5-2-3). A great advantage of this method is its ability to handle sets

of data that have variations of the global parameters (natural frequencies
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and damping ratios) amongst the several FRFs. This was a very limiting

aspect in the GRFP method, as the variations tolerated were very small

(Table 5 -4).

Moreover, a more reliable calculation of the number of genuine modes is

now possible, based on the calculation of the rank of the matrices of

response data. Examples based on experimentally obtained data are

presented next.

Experimental cases

The same examples as given in Section 5-2-4 for the GRFP method are

now tested with the Global method.

Impeller - ExamDle  1

The results are given in Table 5-14. Two modes were found with a

confidence factor of 100 5%.

Mode FFtF

1 3377,431 (0.004) 1.371~10-~ (3.511) 3.277x10-l (3.109) -14.93

1 2 I# I, 2.342x10-l (2.852) -14.96

3 ” 11 2.176x10-’ (3.894) 167.32

1 3396.050 (0.007) 1.193x1O-3 (2.979) 1.316x10-’ (2.235) -16.53
2 2 ” 11 1.171x10-’ (2.157) -14.76

3 ” 11 1.474x10-l (3.021) -14.85

Table 5-14 Identification of FRFs 1, 2 and 3.

The original (dotted line) and regenerated (solid line) curves are presented

in Figs. 5-20,5-21 and 5-22, for FRFs 1,2 and 3, respectively.
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a
0 1

3 3 2 4 . 0 0 3440.01 0
Frequency Hz.

Fig. 5-20 Original (dotted line) and regenerated (solid line) FRF-1.

5 0

z a44e.a
Froqumnoy Hz.

Fig. 5-21 Original (dotted line) and regenerated (solid line) W-2.

1 . ri.
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50

E

3

f

1
a

Fig

Frequmcy  Hz.
3440.88

5-22 Original (dotted line) and regenerated (solid line) FRF-3.

ImDeller - Example 2

For this example, 2 modes were found, again with a confidence factor of

100%. The results are shown in Table 5-15.

Mode FFU? Or sr cr @r

1 3377.367 (0.004) 1.296~10-~  (2.971) 3.166x10-l (1.897) -13.78

1 4 11 11 9.787~10-~  (30.947) 114.12

5 1, II 2.745x10-l (2.674) 167.39

1 3396.138 (0.006) 1.183~10-~  (3.293) 1.293x10-’ (2.860) -18.99

2 4 ” II 2.149x10-’  (2.996) 164.230

5 11 1, 5.680~10-~  (3.318) -14.51

Table S-15 Identification of FRFs 1, 4 and 5.

The original (dotted line) and regenerated (solid line) curves are presented

in Figs. 5-23,5-24 and 5-25, for each FRF.
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Frmqumncy Hz.

Fig. 5-23 Original (dotted line) and regenerated (solid line) W-1.

50

c

d

f
?
d

-20 3324.88 344&f&s
Frmqumnoy Hz.

Fig. 5-24 Original (dotted line) and regenerated (solid line) W-4.
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60 1 1
- I I

Fraqumcy  Hz.

Fig. 5-25 Original (dotted line) and regenerated (solid line) FRF-5.

Impeller - Example 3

For this case, the results are given in Table 5-16. Two modes were found,

again with a confidence of 100%.

1 3377.311 (0.004) 1.320~10-~ (2.993) 3.200x10-’ (2.522) -13.48
2 11 II 2.292x10-l (2.113) -13.06

1 3 1, 11 2.158x10-l (2.565) 167.73
4 11 11 8.282~10-~ (42.875) 110.01

5 11 (1 2.784x10-l (2.532) 167.84

1 3396.358 (0.003) 1.131~10-~ (1.068) 1.239x10-l (1.892) -20.23
2 ,, 11 1.102x10-’ (1.963) -17.95

2 3 ,I 11 1.453x10-l (1.886) -18.13
4 I, 11 2.089x10” (1.336) 161.78
5 II 11 5.784x10-* (2.774) -18.89

Table 5-16 Identification of FRFs 1, 2, 3, 4 and 5.
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Figs. 5-26 to 5-30 show the original (dotted line) and regenerated (solid

line) curves for each FRF.

-I I

‘I\
60

i

a

D

1

’ * 3324.00
Frmqumncy Hz.

3440.88

Fig. 5-26 Original (dotted line) and regenerated (solid line) FRF-1.

0 ‘3324.00
Frmqumncy Hz.

3448.d

Fig. 5-27 Original (dotted line) and regenerated (solid line) FRF-2.
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Frequency Hz.

Fig. 5-28  Original (dotted line) and regenerated (solid line) FRF-3.

50

a

a

f

- 2 0  +gg----24.00
Fraqumoy  Hz.

Fig. 5-29 Original (dotted line) and regenerated (solid line) FRF-4.
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::

60

i

d

f

I
- 1 0 3324 .00

Fraqumcy  Hz.
3448.81

Fig S-30 Original (dotted line) and regenerated (solid line) FRF-5.

Discussion and comnarison with the GRFP method

Comparing the results given in Tables 5-14 to 5-16 with the corresponding

results given for the GRFP method (Tables 5-6, 5-8 and 5-9) and

comparing the corresponding graphs of the original and regenerated data,

we can see that the answers are very similar. However, the Global method

is preferable, as it does not suffer from so many restrictions, namely in

terms of frequency range and variations of the global parameters from

FRF to FRF. In addition to these aspects, it is also less time-consuming.

5-4 The Spectral method

5-4-l Introduction

The Spectral method was first presented by Klosterman (Ref. [ 161) as

being suitable for dealing with systems with nearly coincident natural
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frequencies, and therefore it seems appropriate to include it in this survey.

Because it works with data obtained from several input reference locations,

it falls into the category of MIA40 methods (see Section l-3) and because it

deals directly with the matrix equation of dynamic equilibrium, it can be

classified as a direct method. Nevertheless, its approach is much simpler

than other modern direct methods, like the SFD or the Multi-matrix

(Section 2-3-3). Here, the basic theory will be presented and some

variations discussed. A computer program was written for this purpose.

Evaluation of the method is made through several examples.

5-4-2 Theory

The damping model assumed by this method is the hysteretic one, although

a viscous damping model version could also be developed. The equation of

motion for an N DOF system is given by

[Kl+ jW1 - &WI] Ij> = {F} (5142)

where [K], [H] and [M] are NxN real matrices of stiffness, hysteretic

damping and mass, respectively. 0) and {F) are Nxl complex vectors

of the amplitudes of response and force, respectively. The receptance

matrix [a] will be given by:

Cd = [WI + WI - &t11-'

and hence,

bl-’ = [IKI +jlHl - &XII

Grouping [K] and j[H] in a single matrix, it gives

(5143)

(5-144)

L ,
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[a]-’ = [[ICI - o?[M]]

with

301

(5-145)

IK’I = [IX1 +jWl 1 (5-146)

Let us suppose that the receptance matrix [a] is known from a set of

measurements over the chosen frequency range. In practice, it is not

possible to have a complete NxN matrix, and this problem will be

discussed in Section 5-4-4. What is sought with this method is to calculate

from [a] the matrices of the system, [K’] and [Ml, in order to calculate the

eigenvalues and eigenvectors and, eventually, the modal parameters. Eq.

(5-145) has two unknowns, [K’] and [Ml. Therefore, all that has to be

done is to establish two equations, each one for a different frequency (wt

and 03~, say). Thus,

[al~I = [WI - q2Ml

[al;:= [Kl - (u,2Ml

By subtracting Eq. (5-148) from (5-147), [K’] is eliminated:

from which one can determine the mass matrix:

(5-147)

(5-148)

(5-149)

(5-150)

Multiplying Eq. (5-147) by 0~2 and Eq. (5-148) by 0~2 and subtracting,

enables the calculation of matrix [K’]:
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61z2 [a];11 - toI2 [a];: = (co22 - q2) [K’]

Hence,

302

(5-151)

(5-152)

from which the stiffness and damping matrices can be calculated:

[K] = Re [K’]

[H] = Im [K’]

(S-153)

(5-154)

Knowing [K’] and [Ml, the following generalized complex eigenproblem

can be solved, whose eigenvalues and eigenvectors correspond to the ones

of the homogeneous solution of Eq. (5-142):

[WI - h,[Mll {v,) = 101 (5-155)

Klosterman’s approach

Klosterman suggests a solution of the eigenproblem of Eq. (5-155) by

expressing [K’] and [M] in terms of the receptance matrices, in the

following way: substituting Eqs. (5-150) and (5-152) in Eq. (5-155), it

follows that

[ 1 b22 [Alan 011~2 [ajA2] h, ’- - -6J22 - 6312 6J22 6312
[[ a 1

-
;:

(5-156)

or
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[
0322 - h,

[al& -
012 - h,

6q - 6112 6q - q2
[ales] {W,l = UN (5-157)

As it is always possible to choose or f 6.1~’  Eq. (5-157) can be further

simplified to

[[al,1 [al;:  - x [ Ill NJ = KU

where

6.122 - h,
Yr =

q2-h

Once the Yr are known, ?+. can be easily recovered by

(5-158)

(5-159)

(5-160)

For practical application, it is undoubtedly convenient to consider more

than 2 frequency points in the calculations, as noise is always present.

Taking p’ pairs of points, one can write p’ equations like (5-158), where

there will be an error on the right side, instead of zero:

Kblq bl~2)2 - y2 1 Ill NJ = W2

Setting the summation of the error vector to zero, it gives

(5-161)
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, ,

[ ’ ([a16.)I[al~2)i-  (‘YJ [II] {W,)  = (0)
i=l i=l

or

where
t

bJ= E ([“lq bl;‘)j
i=l 2

(5-162)

(5-163)

(5-164)

(5-165)

In order to establish a modal representation for each FRF, of the form

(5-166)

it is now necessary to calculate the modal masses and stiffnesses, m, and

kr’. From the orthogonal properties of eigenvectors, it is known that

IvrlT WI {w,l = kr

IvrlT WI Iv,) = q

Taking into consideration Eq.

(5-167)

(5-168)

(5-145),  it follows that

IvrlT [al-’ {w,) = $’ - 02 m, (5-169)

The separation of Eq. (5-169) into its real and imaginary parts leads to

Re(IyJT bl-’ IvJ) = Re(kJ - m2 R&m>
(5-170)
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or

Re(s) = Re(kr’)  - ce2 Re(mr)

Iml,> = ImOr,‘) - a2 Irn(mr)
(5-171)

with

Considering L frequency values (which can be the same p’ pairs of points

taken before to solve the eigenproblem of Eq. (5-162)), one has for the real

part:

w&J 1 =  Re(k,‘)  - 0~2 Re(mr)

Re(q,), =  Re(k,‘)  - 0~2 Re(mr)
. .
. .
. .

Wq,), = Re(kr’) - 0+_,2 Re(mr)

(5-173)

An equivalent expression can be written for the imaginary part. In a

least-squares sense, the error, defied by

J = i [ Re(q,)i - Re&‘) + 0: Re(m,.)]2
i=l

(5-174)

will be minimized, by partial differentiation of Eq. (5-174) with respect to

Re(kJ and Re(m,.)  and equating the result to zero:

- 2 i [ Re(q,)i - Re(lZ’)  + W; Re(n+)]  = 0
i=l

+ 22 [(Re(q,)i  - Re(kJ + 6.Q R&q)) m?] = 0
i=l

(5-175)
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from which the normal equations are obtained:

i Re(q,)i  - L Re(q) + Re(rnJ i a: = 0
i=l i=l

L L L

C Re(q,)i  Oi* - Re(kJ C Wi* + Re(m,) C 0i4 = 0
i=l i=l i=l

or

-~,i
i=l

iq* -
i=l

k Oi
i=l 1

Likewise, for the imaginary part, it follows that

Im(k,‘: -L &* -’ ~ Im(q)i
i=l i=l

-4; L
i=l i=l 1) IWi* C 0i4 ~ Im(q)i Oi

i=l

3 0 6

(5-176)

(5-177)

(5-178)

Eqs. (5-177) and (5-178) will be solved N times to calculate all the values

of kr’ and mr’

All the parameters needed to construct the theoretical model are now

available, using Eq. (5-166). Because it is usually convenient to determine

the mass-normalized mode-shapes and the natural frequencies and damping

factors, and because it is difficult to recover the values yi from Eq.

(5-165),  those modal parameters can be calculated based upon the results of

k,’ and m,. In this way, the mass-normalized mode-shapes (Q,} will be

calculated by dividing (w,) by Gr. The natural frequencies and

D
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hysteretic damping factors will be given, respectively, by:

? = Re(k,‘/m,)

T = b-n(kJmJ  /Re(k,‘/m,)

(5-179)

(5-180)

Alternative approach

The theoretical formulation developed so far suggests that matrices [K']
and [M] may be calculated alternatively, based on the p’ pairs of frequency

points and not by a simple average, as done before. This alternative

approach will be tried next, with the objective of comparing the results

with Klostexman’s  approach, in order to determine which one leads to

more accurate results. Knowing [K’] and [Ml,  Eq. (5-155) can be solved

for the eigenvalues and eigenvectors. Let Eq. (5-149) be written for the p’

pairs of points:

<$ - ~12)~ WI = (@ - [al;:),
. .
. .
. .

or, in matrix form,

where

(5-181)

(5-l 82)
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(5-183)

(5-184)

The least-squares solution of Eq. (5-182) is given by

Ml = ([QJT mJ)-’ [Q-J’ N-J’ (5-185)

In this case, it is simple to obtain an explicit version of Eq. (5-185) as

E { (a22
[Ml = i = l

- 012>i [[al~I - iIal~2]i}

E ( (a22 - 0,2)2)
i=l

(5-186)

Proceeding in a similar way for matrix [K’], leads to:

i { (“22 -
[K’] = j=l

012>i [w22  la];’ - a12 rali Ii}

E ((022 - w,2)2}

(5-l 87)

i=l

Knowing [K’] and [Ml, the eigenproblem of Eq. (5-155) can be solved,
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allowing the natural frequencies, damping ratios and mass-normalized

mode-shapes to be calculated. The advantages of knowing the system

matrices are enormous, especially for the post-processing stage of analysis,

already referred in Section l-l.

5-4-3 Computer program description

A computer program for this modal identification method has been

developed and implemented in a micro-computer. Several sets of pairs of

frequency points are specified and picked up randomly from the given

FRFs, and the modal parameters are calculated using both approaches cited

above. In Fig. 5-31 the flow-chart of the program is presented.

5-4-4 Examples

Theoretical cases

The program must be supplied with the “measured” receptance matrix

[a], each individual FRF containing all the measured frequency points.

The order of this matrix is N, the number of degrees-of-freedom of the

system. For self-adjoint systems, as is usually the case, this implies the

provision of (N2+N)/2  FRFs. For instance, for a 4 DOF system, it would

be necessary to measure 10 FRFs. If the system is complete, and noiseless

theoretical data are used, there is no doubt that both approaches to the

present method give exact results and the calculated matrices are also exact.

The important question is to know how well the method behaves when the

system is incomplete and/or the data are noisy. For this purpose, noiseless

theoretical data were generated first, assuming that the complete system

has 4 modes but that the hypothetical measured data available correspond
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START

I
READ  DATA

FILES

For the
no. of pairs

CHOOSES A
PAIR OF POINTS

I

CALC. RECEPT.
MATRIX

Klosternwn’s  aDDr. Alternative appr.

I SOLVES EIGENPROBLEM
(Eq. (5-163)) I

I CALC. MODAL PARAM.
(Eqs.  (S-179),  (5-180)) I

0%. (5-155))

MAS S-NORMALIZ.
OF{‘%)

CALC. MODAL
PARAMETERS

Fig. 5-31 Flow-chart of the computer program.

3 1 0



Chap. 5 Sec. 5-4-4 Examples 311

to a 2 DOF system, i. e., there will be only 2 visible resonances in the

frequency range of interest. To analyse the corresponding 2 modes, only 3

FRFs - a,,, aI2 and az2 - will be generated (considering 4 modes). The

frequency range chosen for this analysis will encompass the two central

modes. It will be investigated how well the program is able to identify

those two middle modes, the other two acting as residuals.. The data are

given in Table 5-17.

all 100 0.01 0.8 0

2 92 ” 11 0.7 0

a22 ” (1 0.6125 0

31 101 0.01 0.8 0

3 a12 I, 11 0.5 180

?I2 ” ” 0.3125 0

all 110 0.01 1 0

4 a12 ” 11 1 0

a22 ” (1 1 0

Table 5-17 Theoretical data .

A set of 10 pairs of points is used. In this case, the results for modes 2 and

3 are given in Table 5-18. Considering again the case defined in Table

5-17, but choosing a narrower frequency range around modes 2 and 3, the

results obtained are shown in Table 5-19.

L ,
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Approach Mode FRF (+W qr cr %

Klosterman

2
%l 99.9058 0.0099 0.6796 1.039

%2 I, II 0.6283 4.539

3
al1

101.0023 0.0100 0.8661 -0.639

92 ” 11 0.4880 179.929

Alternative

2 all 99.925 1 0.0092 0.6675 4.520

a12 11 II 0.6086 6.063

3
all

101.0017 0.0100 0.8466 -1.221

a12 ” 11 0.4922 -179.845

Table 5-18 Identification of the theoretically generated

data using both approaches.

Approach Mode FRF qIW qr cr Qr

Klosterman

2
all 99.9636 0.0096 0.7415 2.395

a12 11 I, 0.6637 4.082

3
all

101.0001 0.0100 0.8183 -1.667

a12 11 11 0.4968 -179.754

Alternative

2 all 99.9576 0.0097 0.7422 3.138

a12 11 11 0.6647 4.170

3
all

101.0001 0.0100 0.8156 -1.633

a12 I, 91 0.4972 - 179.764

Table 5- 19 Identification of the theoretically generated data considering

a narrow frequency range around modes 2 and 3.

Comparing Tables 5-18 and 5-19, it is observed that the results of the latter

are more accurate. It seems preferable, then, to use a narrower frequency
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range encompassing the modes that are to be analysed. This is not

surprising, as the narrower the range around a natural frequency is, the

less important is the effect of neighbouring modes.

For the same case, but if 3% of random noise is added, the results obtained

are shown in Table 5-20, and can be seen not to differ significantly from

the previous case (Table 5-19).

Approach Mode FRF or(Hz) qr cr +r

Klosterman

2 51 99.9602 0.0094 0.7430 2.930

%2 11 11 0.6527 4.386

3 0111 101.0013 0.0101 0.8051 -1.632

(32 II II 0.5003 -179.940

Alternative

2 all 99.9725 0.0091 0.7369 4.301

a12 II 11 0.6484 5.094

3 all 101.0113 0.0102 0.8155 -1.578

a12 II 11 0.5056 179.567

Table S-20 Identification of the theoretically generated data considering a narrow

frequency range around modes 2 and 3, and with 3% added noise.

As the results are satisfactory and of similar accuracy using both

approaches, the next stage will be to investigate the limits of the method,

i. e., how close two modes can be, with the method still producing accurate

results. As before, this problem will be studied in terms of the frequency

closeness, and for several levels of added noise. The results are presented

in Table 5-21.



Chap. 5 Sec. S-4-4 Examples

Noise (%) o2 (Hz) 6q-w

o- loo loo.25
1 100 100.30
2 100 loo.35
3 100 100.45

3 1 4

Table 5-21 Maximum natural frequency resolution
with different levels of added noise.

From the analysis of Tables 5-l 8 to 5-20, it is observed that although both

approaches provide similar results, Klosterman’s approach is slightly

better (the corresponding values are closer to the theoretical data given in

Table 5-17) and, thus, it is not worthwhile using the alternative approach as

suggested. From now on, the results will only refer to Klosterman’s

approach. The results of Table 5-21 have a similar order of magnitude

when compared to the ones obtained with the GRFP and Global methods.

Because the results improve when a narrower frequency range around a

resonance is taken, the simultaneous analysis of several modes will be

better if those modes are reasonably close together, or, conversely, if the

neighbouring modes are sufficiently distant from the region of interest.

Moreover, it was found that the accuracy of the results will generally

improve by considering more pairs of data points.

Experimental cases

In order to evaluate the method in a real case, a disc made asymmetric by

the adding of a small eccentric mass was tested, using an impact hammer

and a small accelerometer. The characteristics of such a disc imply the

existence of several sets of double modes. The disc was sucessively hit at

three different points, and responses were captured at those three points, in

order to acquire a data-base for our work. Figs. 5-32 (a) to (f) show the
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curves obtained. Considering the first double peak (near 1850 Hz), a

narrow band around it was chosen (1828 - 1874 Hz), and just 3 FRFs taken

for the analysis (a,,, aI2 and ct&.

_._________--- v-- ~--~---I

(a) (b)

7s , I .a , 1

(cl W

Fig. 5-32 Bode plots of an experimental case: (a) a,,; (b) 01~~;

(c) a1+ (d) az; (e) aD; (f) CC,,.

.
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The results

regenerated

are presented in Table S-22. The original (dotted line) and

(solid line) curves for a,, and Q, around those close modes

are shown in Figs. 5-33 and 5-34, respectively, after having introduced the

residual effect of the neighbouring modes. Visual inspection of Figs. 5-33

and 5-34 indicates that the identification is not a particularly good one,

especially for the second FRF. The GRFP and Global methods will be

tried, in order to compare results.

1 all 1843.987 5.947x1O-3 2.852 22.232

%2 ” 11 3.725 23.653

2 aI1 1853.133 1.160~10-~ 4.574 42.453

0112 11 I, 0.928 -143.731

Table 5-22 Identification of the first double peak of
Fig. 5-32 using a,,, aI2 and a,,.

Fig.

Frmqumncy  Hr.

5-33 Original (dotted line) and regenerated (solid line) alI
using the Smctral method.

c ,
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Frmqumncy Ht.

Fig. 5-34 Original (dotted line) and regenerated (solid line) aI2
using the Spectral method.

Comparison with the GRFP and Global methogs

Curves a,,, aI and aI were analysed using the GRFP and Global

methods. The results, in terms of modal parameters, were obtained for the

referred modes and for curves art and a12. Table 5-23 shows the

comparison of results obtained by all three methods. The numbers in

brackets refer to the normalized standard deviation obtained with the

GRFP and Global methods (results of viscous damping have been

converted to hysteretic damping). Both these methods gave indications of

the existence of 2 modes.
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Mode Method FRF or

v--al %l 1843.987 5.947x10-3 2.852 22.232

T2 ”
II 3.725 23.653

1 GRFP %l 1846.138 8.010~10-~ 4.409 (7.033) 29.690

(0.013) (3.457)

T2 ” 11 4.367 (5.327) 27.340

Global all 1845.636 7.860~10-~ 3.966 (1.695) 32.050
(0.003) (1.093)

T2 11 I, 4.30 1 (2.030) 32.470

spec=J Tl 1853.133 1.160~10-~ 4.574 42.453

a12 11 I, 0.928 -143.731

2 GRFP all 1857.704 7.712~10-~ 2.048 (19.311) 29.000
(0.050) (3.592)

a12 ” I, 1.322 (18.963) -154.000

Global all 1856.945 8.154~10-~ 2.476 (5.822) 3 1.060
(0.011) (3.708)

0112 I, 11 1.476 (7.071) -143.010

Table 5-23 Comparison of the identification using the Spectral,

GRFP and Global methods.

Using the same information concerning the residual effect of the

out-of-range modes, the original (dotted line) and regenerated (solid line)

curves are presented in Figs. 5-35 (a,,) and 5-36 (a,,) for the GRFP

method and in Figs. 5-37 (a,,) and 5-38 (a,,) for the Global method.
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_ __.- - --
Ie28.08

frmqumncy Hz.
1874.0

Fig. 5-35 Original (dotted line) and regenerated (solid line) a,,
using the GRFP method.

rr. .
Frmquoncy  Hr.

3 1 9

Fig. 5-36 Original (dotted line) and regenerated (solid line) aI2
using the GRFP method.
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Fig.

-... _
1e2e.m

Froquoncy Hr.

5-37 Original (dotted line) and regenerated (solid line) aI,
using the Global method.

Froquoncy Ht.

Fig. 5-38 Original (dotted line) and regenerated (solid line) aI2
using the Global method.

3 2 0

. . .
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5-4-5 Discussion

Analysing the results of Table 5-23, it can be seen that the GRFP and

Global methods agree very well, and that the best curves are those of Figs.

5-37 and 5-38, corresponding to the Global method. Considering the

results from the Global method as the most reliable ones, a comparison of

the results from the Spectral with respect to the Global method give the

following relative errors (Table S-24):

M o d e  F R F  E y(%) E$(%) e Cr(%)  IAQJdeg.)

1 51 0.09 24.34 28.09 9.82

a12 11 11 13.39 8.82

2 all 0.21 42.26 84.73 11.39

52 1, I, 37.13 0.72

Table 5-24 Relative errors of the identification of the Spectral

method with respect to the Global method.

The errors in the natural frequency and even in the phase angles are

acceptable, but the errors in the damping ratios and modal constants are

very high. The regeneration of the experimental curves using the Spectral

method, is not completely disastrous only because the errors in the

damping ratios and modal constants tend to compensate each other, which

proves once more that a reasonable regeneration does not necessarily mean

a valid identification.

It is important now to establish how the accuracy of the Spectral method

could be assessed without having to compare it with other methods. One

possible solution is to let the computer program run several times, as for

the GRFP or Global methods, and to obtain quality indicators for each of

the modal parameters. A variation of the program presented here was
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written for this purpose with the result that the program was unable to

provide an answer, i. e., the scatter of results from run to run was such that

no consistent modal parameters could be found within an allowed

tolerance. This proved that the method was not suitable for analysing this

practical problem as it could not cope with the influence of the

out-of-range modes. This kind of answer (i. e., “No consistent results were

found”) is, in our opinion, more informative and preferable than to have

unreliable results, such as those in Table 5-22, where it is not clear to what

extent the analysis is good or bad. The result now obtained, although a

“negative” one, shows the importance of developing techniques in such a

way that numerical results obtained by modal analysis algorithms are given

together with indications of their quality. If the quality of those results is

not good, another method must be tried. Inconclusive or poor results

obtained for other experimental cases using the Spectral method showed

that it does not seem to be appropriate to analyse accurately real structures.

5-5 Conclusions

5-5-l Conclusions on the GRFP method

The conclusions drawn in Chapter 4 for the RFP method also apply to the

GRFP method, except in respect of the frequency range chosen for the

analysis: the GRFP method does not seem to be so much afflicted by that

parameter. In addition to those conclusions, some more may be added now:

(i) the conventional formulation of the GRFP method was found here to

have some difficulties, especially for the analysis of experimental

data. An alternative formulation proposed in Section 5-2-4 proved to

be much more reliable;

.
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(ii)

(iii)

(iv)

some problems may be encountered when using the GRFP method

due to its sensitivity to variations of the global modal parameters

from FRF to FRF. A failure of this method could well mean that

systematic variations of the global parameters exist among the

various FRFs used, due to incorrect measurement procedures or to

genuine non-linearities of the system. This may be checked by

analysing each FRF individually or by analysing globally two or three

FRFs at a time;

the normalized standard deviation percentage proved to be a reliable

indicator of the quality of the results and its direct use can serve to

estimate the global modal parameters from a single FRF analysis, if

for any reason the global analysis fails to work;

the results obtained confirm that the GRFP method gives more

reliable values than the RFP method, as it can be checked by

comparing the quality of both kind of results.

5 -5 -2 Conclusions on the Global method

The present investigation into the Global method led to the following

conclusions:

(i) the algorithm of the method, considering differences of responses to

take account of neighbouring modes (a philosophy similar to the

“Bendent” method - Section 3-3-2), proved very reliable, even for

very close modes;

(ii) the SVD technique has shown to be effective in obtaining accurate

results and in giving a reliable indication of the number of genuine

modes existing in the frequency range of interest;

1 , ‘Pk.
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(iii)

(iv)

(v)

(vi)

when the data are considerably noisy, however, even the SVD may

fail to give the right answers for the genuine number of modes. In

that case, the calculations can be repeated several times, each taking a

different set of points, in a similar way as in the GRFP method. The

repeatability of the nurnber of genuine modes obtained in each run of

the program is analysed and a final answer is given (the most

frequently repeated one), with an indication of the number of times it

has occurred. Average values and standard deviations of the

corresponding modal properties are also given;

the implicit assumption that the contribution of neighbouring modes

is a constant around each mode under consideration means that the

data points taken into the analysis should be concentrated around the

resonant peaks of the FRFs. This is directly related to the frequency

range chosen: in the case of two close modes, a narrow frequency

range must be taken around them and, for widely spaced modes, sets

of narrow frequency ranges around the several peaks must be

specified. Moreover, the differences of response to be calculated must

be taken between close data points, although a compromise should be

established: differences between data points too close may lead to

numerical problems;

in contrast to the GRFP method, the Global method proved to be

practically invulnerable to variations of the global properties from

FRF to FRF;

finally, the theoretical and experimental examples showed the

Global method to be a very powerful technique for analysing a set of

FRFs and to be more accurate and reliable than the GRFP method, as

well as being less time-consuming.



Chap. 5 Sec. 5-5-3 Conclusions on the Spectral method 325

5-5-3 Conclusions on the Spectral method

With respect to this method, the conclusions are:

(i) the method works reasonably well for theoretical data, to analyse

close modes. The frequency range taken into the analysis must be as

narrow as possible, in order to avoid the influence of neighbouring

modes;

(ii) an alternative approach for this method was tried, but no

improvements were achieved, when tested with theoretical examples;

(iii) a comparison with the GRFP and Global methods showed that, for

experimental data, the results obtained with the Spectral method

were very poor. A modification of the algorithm to include analyses

from several runs with different sets of data points each time (as done

for the previous methods) was tried but the conclusion drawn was that

reliable answers could not be obtained. The final conclusion is that

this method is not appropriate to analyse practical cases.



CHAPTER 6

REAL MODES vs. COMPLEX MODES

6 - 1 Introduction

The major objective of the previous chapters of this work has been the

extraction of valid modal properties from measured data. According to

Section l-1, one has been dealing with the second stage of experimental

modal analysis, the identification process. In a large number of practical

applications, we are content with such a study, as it provides the

mathematical model sought for the structure under consideration. There

are, however, other cases where further study is desired, and it is necessary

to go into the post-processing stage of EMA. A typical application is the

calculation of real modes from a set of complex modes.

The identification process usually supplies the user with a set of complex

mode-shapes, but in some cases it is important to determine the

corresponding real mode-shapes, i. e., the mode-shapes of the associated

conservative structure, in the pursuit of valid modal models. It seems

3 2 6
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appropriate, therefore, to include in our work a discussion on this subject.

The evaluation of the real modes of a structure plays a particularly

important role in the area of comparison/validation/up-dating of

theoretical models and has been a matter of great interest for some time. In

practice, we are often confronted by two kinds of results: a set of complex

modes, after applying methods of curve- fitting and modal analysis to the

experimental response functions, and a set of real modes, resulting from

the theoretical modelling of a structure, usually using FEM models. If the

experimental procedure and modal analysis have been carefully applied,

we have, in principle, a more precise set of results in the complex modes,

with the actual distribution of damping taken into consideration. If we have

at our disposal a reliable method for extracting the real modes, then these

can be compared with the theoretical results and thus validate and/or

up-date the theoretical predictions.

Several different methods have been proposed on this subject (Refs.  [ 13 l]

to [ 1381). The objective of this chapter is to highlight, discuss and compare

two very simple techniques that can be used for this purpose. An evaluation

of the two methods is made using theoretical data and each of them is

compared against the “exact” results using the well-known Modal

Assurance Criterion (MAC), in order to assess which one is more reliable

in obtaining a valid set of real mode-shapes.

6-2 Theory

6 -2 - 1 Niedbal’s method

This method (Ref. [ 1391) is based on the simple assumption that the real

modes must be related to the complex modes through a linear

transformation [T,] (complex, in general):
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[@“I = [@I &I

Separation of Eq. (6-l) into its real and imaginary parts, leads to:

328

(6-l)

[@,I = RePI RdT,l - Id@1 INTJ

[ 0 1 = Ir@JY MT,1 + Rd@l MT,1

From (6-3), it follows that

(6-2)

(6-3)

Re[Q] Im[T,] = - Im[<D]  Re[T,] (6-4)

In general, we only have an incomplete mass-normalized modal matrix

pxN, available (with p>N,) from a NxN system; pre-multiplying (6-4)

by Re[cr>lT, an N,,xN, matrix equation is obtained:

Re[OIT Re[D] Im[Tr] = - Re[QIT Im[@] Re[TJ

from which,

(6-5)

IMTJ = - [Re[DIT Re[O]]-’ Re[@lT Irn[@] Re[TJ (6-6)

Substituting in (6-2),  we obtain

[@,I = [Re[@] + Im[Q] [Re[@lT Re[Q]] -’ Re[O,lT I~[Q]] Re[T,] (6-7)

From the above equations, it can be observed that the transformation stated

in (6-l) is not unique and so it is necessary to use another condition in

order to make it so. If the theoretical (and unknown) matrices of the system

are [M] and [K’], then one can write :

Tmd = PITMIWl = [II
W3)
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and substituting (6-l) in (6-s),

r m -1 = [T1lmT WJ’ Ml W+l [TJ’ = [ II
(6-9)

r k’ -1 = lTJT [@“IT [K’l rq ITJ-’ = r h’ -1

r m \I = IT1l-T [Cl lT,P = [II

r k’ q = [TJ-T [Kfl pll-l = r x q

from which

[Ml = r&IT r&l

(6-10)

(6-l 1)

El = r&IT r h’ -1 [T,l

If [k] is the real part of [k’], [fi] and [k] must satisfy

[Kl - & [fill {qJ = Ku (6-12)

In order to make [M] and [f] diagonal, we have to solve this eigenproblem

and find the transformation [Tz] to yield the principal coordinates {p,>:

{q,} = &I IPJ

and so,

Substituting (6-l 1) in (6-14),

(6-13)

(6-14)
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l3~1 = lT~lT[TJT[TJ[T21  = PI

3 3 0

(6-15)

r i ~1 = lT21TRe[[T11T i’ 2 -1 iTIll &I = II’ & -1

From equations (6-l 1) and (6-15) we see that should the matrix Re[TJ be

well chosen, matrix [T,] would be the identity matrix. In general, Re[T,]

can be given any value and the transformation from the complex modes to

the mass-normalized real modes will be

[@,I = PI V,l [T,l (6-16)

For simplicity, we will take Re[TJ to be the identity matrix.

Next, a summary of this method is presented; in practice, since [<D] and

[‘ h’ ~1 are known values, we must go through the following steps :

l-

2 -

3 -

4-

Assume Re[T1]  to be the identity matrix and calculate Im[T,],

applying Eq. (6-6);

Calculate $!I] and [k] using Eq. (6-l 1);

Solve the eigenproblem of Eq. (6-12) to calculate [‘ h, -1 and [T,];

Calculate the real mass-normalized modes, using Eq. (6-16).

6-2-2 Asher’s method

This method, already mentioned in Section 2-4, uses the fact that the

application of several shakers that are suitably tuned can excite individual

undamped (real) modes of vibration of a structure.

Usually, application of the method gives values for the undamped natural

. ,
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frequencies and the relative forces the shakers must apply. As also

mentioned in Section 2-4, an alternative approach is to simulate

numerically the application of those forces, instead of actually applying

them to the structure. For the basic theory of this method, we can follow,

for example, Ref. [ 1161.

The matrix equilibrium equation of a system can be expressed as

[Ml {‘jl(t>} + [Cl IjlW + WI {y(O) = {f(t)) (6-17)

If {f(t)) = (F) sin ot, the response will be (y(t)} = {Y} sin(ot  - 0).

Hence,

[[K] - U? [Mjj {Y} sin(mt - 8) + [C] o cos(clx - 0) {Y} = IFj sin ot

(6-18)

For all time t , we have

cos 0 [[K] - & [M]] {Y} + o sin 8 [C] {yj = {F}
(6-19)

-sin8[[K]-&Ml] {Yj+0c0se[c] {Y} = (0)

for 8 = 90°, the displacements will be in quadrature with the excitation

forces and we obtain

o[C] {Y} = {F} (6-20 a)

(6-20 b)

We can see from (6-20 b) that the condition 8 = 90° corresponds to the

undamped solution of the system and the force distribution is given by

(F}. This means that if we were to excite the system with the force

distribution {F} we would obtain the real modes of vibration. Writing the

amplitude response of the system in terms of the complex frequency

response function [a(jo)]  , we have
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{Y} = [[K] - cc? [M] + jo [Cl]-l {F}

= [Re[a(jw)]  + jIm[aCjw)]] {F} (6-21)

The condition of the displacements being in quadrature with the forces

means that

Re[a(j@] {k} = (0) (6-22)

Solving

det [Re[a(j@]] = 0 (6-23)

enables us to determine the undamped natural frequencies which, when

substituted in (6-22), give us the force distribution (F}. Moreover, from

(6-21),  we can find the real modes of vibration, which will be given by

IO”] = Im[a(jw)] {F}

Reviewing this method, we identify the following steps:

(6-24)

l-

2 -

3 -

4-

From the complex identified modes and frequencies, [<PI and [‘ h’ \I,

calculate [a@))] (given by [<D] [‘ h’ - o* -1“ [@IT);

The undamped natural frequencies are calculated from (6-23);

The force distribution is calculated from (6-22);

The real modes are calculated using (6-24).

6 - 3 Numerical examples

Complex modes of vibration exist whenever we have a non-proportional

distribution of damping around a structure. In practice, this is always the

L,
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case to a degree but usually the complexity is very weak and the modes can

be considered as real. Apart from the non-proportional distribution of

damping, the amount of damping itself and the closeness of modes in terms

of natural frequencies are the factors that influence the degree of

complexity of a structure. To generate complex modes theoretically in

order to test the methods above mentioned, we will choose a system with a

high degree of non-proportionality and very close modes in terms of

natural frequency spacing.

6-3-l Example 1

It is well known that systems with circular symmetry like discs, for

example, have very close natural frequencies, even repeated ones in

theory. We will consider the system of Fig. 6-1, with 10 degrees-of-

freedom, having all the masses, springs and dampers identical, apart from

one mistuned spring and damper (element 10).

Fig. 6-1 - 10 DOF System.

The system has a rigid body mode and should all the elements be equal, the

system would possess several repeated roots. The mistuning elements will

provide separation in the natural frequencies, depending on the degree of

asymmetry. To generate very close modes, the relation between the

mistuned spring and all the others will be set at 1.01 while for the damper

we will have a ratio of 20. All the masses will have the numerical value of



0
I zr Eigmvccton I e.

Q,
10Eigmwlua

Sq. Frcq. Damp.

o.ooo o.ooo
0.382 0.010
0.385 0.046
1.382 0.010
1.393 0.047
2.618 0.010
2.638 0.047
3.618 0.010
3.636 0.051
3.968 0.027

1 2

Mod. PhUC MOd. Rlue

0 . 3 1 6  O.OW 0.425 0.000
0.316 0.000 0.263 0.000
0.316 0.000 0.000 166.037
0.316 0.000 0.263 180.000
0.316 0.000 0.425 180.000
0.316 0.000 0.425 180.000
0 . 3 1 6  O.CQO 0.263 18O.OCHJ
0.316 0.000 0 . 0 0 0  93.077
0.316 0.000 0.263 0.000
0.316 0.000 0.425 0.000

9

Mod. Phwe

0.487 177.152
0.320 -23.624
0.142 95.137
0.270 202056
0.413 8.741
0.413 188.747
0.270 22.056
0.142 -84.863
0.320 156.376
0.481 -2.848

3 4 5 6 7 8

Mod.  Phue M o d  Phase Mod.  Phue Mod.  Phase

0.135 -9.163 0.362 O.OCKl 0.259 -9.105 0.263 0.000
0.361 -1.187 0.138 180.000 0.432 2.430 0.425 18O.CKKl
0.448 0.567 0.447 18O.ooO 0.031 77.960 0.000 -69.918
0.364 1.314 0.138 180.000 0.426 180.046 0.425 0.000
0.139 1.621 0.362 O.ooO 0.265 181.865 0.263 180.000
0.139 181.621 0.362 0.000 0.265 1.865 0.263 18O.ooO
0.364 181.314 0.138 180.000 0.426 0.046 0.425 0.000
0.448 180.567 0.447 18O.Oal 0.031 251.960 0.000 121.282
0.361 178.813 0.138 180.000 0.432 182.430 0.425 180.000
0.135 170.837 0.362 0.000 0.259 170.895 0.263 O.ooO

Mod. Phase Mod. Phru

0.366 171.205 0.138 0.000
0.175 207.769 0.362 180.000
0.453 1.456 0.441 o.axJ
0.137 167.446 0.362 180.000
0.365 182.724 0.138 0.000
0.365 2.724 0.138 OX00
0.137 -12.554 0.362 180.000
0.453 181.456 0.447 o.ooo
0.175 21.169 0.362 180.000
0.366 -8.195 0.138 O.ooO

MOd. Phase

0.326 29.345
0.325 190.932
0.339 -2.795
0.356 168.572
0.367 -15.523
0.367 164.477
0.356 -11.428
0.339 177.205
0.325 10.932
0.326 209.345

Table 6-l Damped eigensolution for system of Fig. 6-l.

r EigmwctorsEigmvalua

Sg- Fw 1 2 3 4

0.000 0 .316 0.425 - 0.137 - 0.362
0.382 0.316 0.263 - 0.361 0.138
0.383 0.316 O.ooO - 0.447 0.441
1.382 0.316 0.263 - 0.362 0.138
1.385 0.316 0.425 - 0.138 - 0.362
2.618 0.316 0.425 0.138 - 0.362
2.623 0.316 0.263 0.362 0.138
3.618 0.316 0.000 0.447 0.447
3.625 0.316 0.263 0.361 0.138
4.004 0.316 0.425 0.137 - 0.362

5 6 I I 8 9

- 0.138 0.424
0.362 - 0.256

- 0.447 - o.aJ7
0.362 0.268

- 0.138 - 0.428
- 0.138 0.428

0.362 - 0.268
- 0.447 0.007

0.362 0.256
- 0.138 - 0.424

0.261
0.426
0.002

- 0.425
- 0.263

0.263
0.425

- o.Occ!
- 0.426
- 0.261

Table 6-2 Undamped eigensolution for system of Fig. 6- 1.
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1, as will the springs (except the mistuned one). All the dampers will be

equal to 0.01 (again, except the mistuned one). Due to the geometry, there

will always be some real modes. The damped  eigensolution is presented in

Table 6-l and the undamped eigensolution is presented in Table 6-2.

Incompletness of the model was simulated by using only 9x9,8x8,7x7,

6x6 and 5x5 sub-matrices from the initial 10x10 one. For the 5x5 case,

the results are presented in Tables 6-3 and 6-4 using both Niedbal and

Asher  methods, respectively.

Eigenvalues Eigenvectors

(squared freq.) 1 2 3 4 5

0.000 0.316 0.429 -0.123 0.37 1 0.243

0.382 0.316 0.272 - 0.355 -0.123 0.442

0.387 0.316 0.011 - 0.449 - 0.447 0.025

1.382 0.316 - 0.254 - 0.371 -0.153 - 0.424

1.410 0.316 - 0.422 -0.150 0.352 - 0.280

Table 6-3 - Niedbal’s method (5x5)

Eigenvalues Eigenvectors

(squared freq.) 1 2 3 4 5

0.000 1.000 0.425 0.134 0.362 0.256

0.382 1.420 0.270 0.388 -0.120 0.466

0.386 0.561 0.012 0.493 - 0.436 0.027

1.382 - 0.522 - 0.251 0.408 -0.150 - 0.447

1.410 - 0.443 -0.418 0.165 0.344 - 0.295

Table 6-4 - Asher’s  method (5x5)

The Modal Assurance Criterion - MAC - (Ref. [140]) was applied to

the 5x5 case, and the exact undamped modes were compared with the real
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modes obtained from both methods (Tables 6-5 and 6-6).

1 2. 3 4 5 ( p r e d i c t e d )

1 1.000 o.ooo 0.834 0.000 0.000

2 0.000 0.999 0.001 0.001 0.789

3 0.837 0.001 0.999 0.161 0.001

4 0.000 0.000 0.163 0.999 0.003

5 0.000 0.798 0.001 0.001 0.997

(exact)

Table 6-5 - MAC values for Niedbal’s method

1 2 3 4 5 ( p r e d i c t e d )

1 0.2 14 0.001 0.833 0.000 0.000

2 0.665 0.999 0.001 0.001 0.789

3 0.223 0.001 0.999 0.161 0.001

4 0.016 0.000 0.163 0.999 0.003

5 0.765 0.798 0.001 0.001 0.997

(exact)

Table 6-6 - MAC values for Asher’s  method

Discussion

Both methods are very simple in theory. However, in practice, some

problems may occur and the programs written to apply them show that in

particular Asher’s method has more problems when we are using

incomplete models, which is always the practical situation. Sometimes it is

not possible to find the correct result for the undamped natural

frequencies or even any result at all, obliging us to use as an

approximation the damped natural frequency. A major disadvantage is the

difficulty of dealing with incomplete systems when we have the
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information of the complex modes with more coordinate responses than

modes, i. e., when the modal matrix is not square, as in that case the matrix

[a(jo)]  is rank deficient and we would have to use a partition, so that the

number of forces (corresponding to the number of shakers) would be equal

to the number of modes. As seen in Section 2-4, extensions of Asher’s

method can accomodate  that case, but here only the basic technique has

been tried.

Numerical problems may also be found when dealing with rigid body

modes, giving rise to errors in the real mode shape although this is not a

very serious problem, as we already know which those modes are.

Niedbal’s method was very easy to programme, found to work very well -

even for highly incomplete models - and was able to use more coordinates

than modes. The results are given in terms of mass-normalized real modes

and the only problem found was that sometimes the incompletness  of the

model makes the mass matrix non-positive definite and equation (6-12)

gives an incorrect result for [T,]. When this happens, a message is given

and what we must try is to give one or more coordinates of the identified

complex modes. For instance, if we had given a 7x7 modal matrix, we

could try and give a 8x7 or 9x7, thus requiring one or more frequency

response functions to be analysed.

The results of Table 6-5 show that the correlation between the exact modes

and the predicted ones is good, except for the second method in the term

1,l which corresponds to the rigid body mode. Some off diagonal

elements are very large, where they were expected to be close to zero. By

just looking at these values, it is not clear why this happens, but if we plot

some graphs (Fig. 6-2 - Niedbal’s method, Fig. 6-3 - Asher’s method),

where good results should align along a 45’ slope straight line, we can

understand what is going on. For instance, from Table 6-5 (Niedbal’s

method), we see that the correlation between the exact mode 5 and the
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predicted mode 2 is quite high, but if we look at the corresponding graph

in Fig. 6-2, we note that there is a great deal of scatter in the results.

- /’

-- ,$ PRdiCtfZd
.I

,y
.,.y A

_k. .
. {4l5}0{4l2}-- - - -
0 {l$5}t,{i$5}-.-.-

A {Wo{@31 ---

Fig. 6-2 - Some exact against predicted modes (Niedbal’s  method).

Fig. 6-3 - Some exact against predicted modes (Asher’s  method).
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A good correlation is, for instance, the one between predicted and exact

mode 5. An example of a poor result is the correlation between exact mode

5 and predicted mode 3. For Asher’s method, the MAC value between

exact and predicted mode 1, is very low. From Fig. 6-3 we see that this

corresponds to a horizontal line, which indicates the existence of a rigid

body mode. Fig. 6-3 also shows that the high MAC value between exact

mode 5 and predicted mode 1 corresponds, in fact, to a staight line with a

small slope, which indicates a poor correlation. The correlation between

exact and predicted mode 5 is again very good, as confirmed by that graph.

The results from the other cases of model incompleteness presented a

similar trend.

6-3-2 Example 2

It can be argued that the previous example is not a very difficult one, as the

modes, although quite close, are not very complex. In this second example

the complexity of the modes will be increased by mistuning spring

elements 1 and 10 by a factor of 1.005 and the damper elements 1 and 9

by a ratio of 20. The damped solution is shown in Table 6-7. Because now,

instead of one mistuned stifness element with the value 1.01, we have two

mistuned elements of 1.005 each, and because the numbers are quite small,

the undamped solution is virtually the same as before and at least to the

third decimal place, there is no difference. However, the damped solution

provides modes with a considerable amount of complexity.

Asher’s  method showed many difficulties in dealing with this example and

no reliable answers could be obtained. Niedbal’s method, on the contrary,

worked reasonably well and some results will be presented, namely for the

10x5,8x5  and 5x5 cases of incompletness.  The undamped eigensolutions

for these cases are presented in Tables 6-8, 6-9 and 6-10, and the MAC

values are shown in Tables 6- 11,6- 12 and 6- 13, respectively.



EigCMlUU

4. Prcq.  Dunp.
1 2

Mod. Pluse Mod. Phase

o.ooo o.ooo 0.316 180.000 0.381 180.003
0.385 0.024 0.316 180.000 0.166 177.636
0.401 0.161 0.316 180.000 0.113 6.062
1.411 0.132 0.316 180.000 0.348 1.954
1.422 0.053 0.316 180.000 0.449 0.689
2.606 0.074 0.316 18O.ooO 0.378 - 0.832
2.818 0.068 0.316 180.000 0.162 - 5.753
3.506 0.352 0.316 180.000 0.120 190.393
3.603 0.027 0.316 180.000 0.352 182.934

3.869 0.018 0.316 18O.ooO 0.434 176.662

3

Mod.  Phase

0.228 - 15.237
0.414 - 0.980
0.442 3.051
0.294 3.505
0.031 - 23.949
0.252 189.093
0.430 184.801
0.439 178.924
0.282 164.442

0.032 108.672

4

M o d  Phase

0.394 174.513
0.328 186.972
0.194 - 1.484
0.439 0.453
0.094 - 46.970
0.417 187.527
0.333 161.207
0.300 34.907
0.492 - 5.702
0.105 - 82.513

5 6

M o d  Phase M o d .  Phase

0.227 178.781 0.398 5.104
0.320 5.706 0.318 172.670
0.412 - 0.818 0.198 182.178
0.101 216.833 0.434 - 0.419
0.463 182.974 0.092 223.226
0.202 158.319 0.408 172.605
0.367 12.361 0.336 17.008
0.403 - 7.300 0.280 - 36.283
0.186 225.314 0.487 184.144
0.409 168.131 0.104 27.138

7 8

Mod. Phase Mod. PhlSC

0.128 - 82.421 0.570 180.062
0.457 5.990 0.287 - 52.094
0.382 177.844 0.136 77.007
0.139 178.935 0.065 190.667
0.4% 0.707 0.064 - 36.839
0.281 198.316 0.061 171.782
0.312 159.426 0.111 62.402
0.525 5.007 0.241 - 65.351
0.266 240.770 0.480 166.281
0.358 141.815 0.764 10.793

Table 6-7 Damped eigensolution for system of Fig. 6-l with two mistuned springs and dampers.

9

Mod Phase

0.233 15.199
0.415 181.046
0.440 - 3.103
0.293 176.225
0.031 19.849
0.249 - 8.789
0.427 175.230
0.438 0.879
0.286 194.705
0.033 16.114

10

M o d .  Phase

0.090 64.120
0.215 191.466
0.353 0.944
0.450 177.393
0.488 - 3.470
0.462 177.644
0.377 1.355
0.247 191.167
0.116 49.841
0.109 - 72.137

0
P
0
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Eigenvalues Eigenvectors

0.000 0.316 - 0.432

0.384 0.316 - 0.273

0.391 0.316 - 0.012

1.404 0.316 0.254

1.441 0.316 0.423

0.316 0.43 1

0.316 0.27 1

0.316 0.008

0.316 - 0.256

0.316 - 0.413

-0.118 - 0.442

- 0.349 0.003

- 0.449 0.436

- 0.377 0.254

-0.152 - 0.278

0.133 - 0.419

0.361 0.022

0.448 0.433

0.367 0.245

0.135 - 0.254

- 0.105

- 0.459

- 0.158

0.366

0.369

-0.157

- 0.464

-0.102

0.417

0.295

Table 6-8 - Niedbal’s method (10x5).

Eigenvalues Eigenvectors

(squared freq.) 1 2 3 4 5

0.000 0.316 0.417
0.384 0.316 0.239
0.400 0.316 - 0.031
1.421 0.316 - 0.289

1.600 0.316 - 0.437

0.316 - 0.416

0.316 - 0.235

0.316 0.036

0.146 - 0.369 0.263

0.369 0.168 0.47 1

0.455 0.460 0.012

0.359 0.099 - 0.446

0.112 - 0.396 - 0.248

- 0.180 - 0.330 0.319

- 0.393 0.198 0.427

- 0.448 0.447 - 0.108

Table 6-9 - Niedbal’s method (8x5).

.
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Eigenvalues Eigenvectors

(squared freq.) 1 2 3 4 5

0.000 0.316 0.395 0.176 0.099 0.507
0.385 0.316 0.193 0.410 - 0.419 0.303
0.426 0.316 - 0.084 0.476 - 0.327 - 0.285
1.495 0.316 - 0.330 0.334 0.241 - 0.393
1.815 0.316 - 0.447 0.048 0.467 0.121

Table 6-10 - Niedbal’s method (5x5).

1 2 3 4 5 (predicted)

1 1.000 o.ooo o.ooo 0.000 o.ooo
2 0.000 0.999 0.001 0.000 0.000
3 0.000 0.001 0.999 0.000 0.001
4 0.000 0.000 0.000 0.917 0.077
5 0.000 0.000 0.000 0.082 0.914

(exact)

Table 6-11 - MAC values for Niedbal’s method (10x5).

1 2 3 4 5 (predicted)

1 1.000 0.087 0.025 0.011 0.070

2 0.079 0.994 0.058 0.021 0.070

3 0.037 0.013 0.997 0.010 0.025

4 0.007 0.023 0.001 0.991 0.014

5 0.079 0.103 0.060 0.002 0.982

(exact)

Table 6-12 - MAC values for Niedbal’s method (8x5).
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1 2 3 4 5 (predic ted)

1 1.000 0.029 0.773 0.010 0.021

2 0.000 0 . 9 6 5  0 . 0 2 1 0.384 0.403

3 0.837 0.035 0.975 0.062 0.018

4 0.000 0.006 0.204 0.496 0.449

5 0.000 0.772 0.017 0.505 0.524

(exact)

Table 6-13 - MAC values for Niedbal’s method (5x5).

Discussion

The results presented in Tables 6-8,6-9 and 6-10 show that as we go from

the 10x10 to the 5x5 case, the results from Niedbal’s method become

poorer, as reflected in the corresponding MAC values. It is clear that this

method is more sensitive to incompletness  in terms of number of

coordinates than in terms of number of modes: the MAC values for the

10x5 and 8x5 cases (Tables 6-l 1 and 6-12) are very good, while for the

5x5 case (Table 6-13), only the first 3 modes can be considered as well

identified.

6-4 Conclusions

Two different methods of calculating the real modes of vibration for a

structure from knowledge of the identified complex modes - Niedbal’s

and Asher’s  methods - have been programmed and the results compared

against theoretical values using the Modal Assurance Criterion. Although

both methods are very simple in theory, some numerical problems arose

and Niedbal’s method proved to be more reliable and easy to implement

than Asher’s method, giving very accurate results, even for incomplete

sets of close complex modes.



CHAPTER 7

CONCLUSIONS

7 - 1 General conclusions

In each of the previous chapters of this work, discussions and conclusions

have already been included: in this section a general summary of those

conclusions is presented.

Many modal analysis identification methods are available nowadays.

Normally, the most sophisticated ones are also the most automatic ones and

they tend to be used as “black boxes”, with little or no intervention by the

user. This can be “dangerous”, in the sense that a solution is always

provided but it may be difficult to assess how good that solution is. The

alternative simple methods are easy to manipulate and to control by an

experienced user, but the analysis may become very time-consuming and

costly. Nevertheless, these simple methods are the ones that can provide

more insight into the way a structure behaves. The choice of the method to

use is very important and depends on many factors, such as the kind of

344
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software and hardware available, the objectives sought, the type of

structure to be analysed, the time and money available, the experience of

the user, etc.

When large amounts of data are to be analysed, the current tendency is to

go for completely automatic methods (provided the means exist), where all

the data are analysed simultaneously. Because of the drawbacks that such an

analysis may embody (as mentioned above), the ideal solution should be to

introduce into the software the capacity of judgement so as to obtain a fiial

answer that would contain information about the quality of the analysis.

The necessity of having “intelligent” computer programs of analysis is,

naturally, more important whenever the data obtained from the

measurements are difficult to handle, as in the case when noise is present

and/or close vibration modes exist; in such a situation, it can be difficult to

know whether the results are a consequence of noise or the true properties

of the structure.

Throughout this thesis, several modal analysis methods have been

described and their performance assessed, based upon data that contained

close modes and a certain amount of noise. The theoretical background of

those methods has been explained in detail and improvements and new

developments introduced in order to provide a degree of “intelligence”

into the analysis. This has been done in MDOF methods, considering one or

more data curves in the analysis, but a study of SDOF methods has also

been made. One may question whether it is appropriate to bother nowadays

with SDOF methods, often considered as being rather simple or, at least,

out-of-fashion. Our belief is that a good understanding of the physical

implications of the behaviour of a structure possessing, for example, close

vibration modes, has necessarily to begin by studying few modes and

using simple methods of analysis, like the SDOF ones. Here, a study of the

interference between two close modes has shown that some SDOF methods

can still cope with that situation, within certain limits or, at least, provide
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useful indications about the true existence of one or two modes. Therefore,

to a certain extent, SDOF methods can also be made more automatic and

“intelligent”.

As a general conclusion, we can say that a full expert system, capable of

taking decisions is yet far from achievement, but it is believed that in this

work some steps towards such a goal have been taken. An expert system

would ideally be able of eliminating the intervention of the user, which

may comprise (i) decison on the method to be utilized, (ii) a first estimation

of the number of modes existing in a particular frequency range, (iii)

sorting out of the results obtained, (iv) estimation of the number of genuine

existing modes, (v) assessment of the identification by comparing the

original and regenerated FRF(s),  (vi) cross-checking of the results

obtained with different locations of the input force(s), (vii) confirmation

of the linear behaviour assumption, etc. These several aspects may be more

expanded in the future, by developing reliable numerical techniques and

introducing criteria of decision into the algorithms. It is desired that the

various points to be developed individually can be brought together to

build up more powerful and “intelligent” algorithms. In addition, some of

the items mentioned above could be optional (e. g., (vi) and (vii)).

7-2 New contributions of the present research

Specific contributions of this research are listed next, chapter by chapter,

so that it becomes clear to the reader which parts of the work constitute

new developments or attempts to new developments. The itemized

description given below is justified by the fact that the new contributions

are spread throughout the thesis, rather than being concentrated in any

particular part of it.

In Chapter 2, the contribution given is a comprehensive classification and
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detailed description of the great majority of current modal analysis

methods, which helps not only the understanding of the theoretical

background, but also the relationship between the several methods. Other

works on this matter cover only some methods and/or give a short and even

inadequate explanation of the theory involved.

In Chapter 3, the major contributions are as follows:

0

ii)

iii)

iv)

v)

vi)

critical discussion on the degree of interference between two close

modes and the implications for their identification;

derivation and implementation in a modal analysis computer program

of an indicator of close modes, based on the plotting of the centers of

the consecutive circles for each set of four points around the

frequency range of interest;

establishment of the inspection of inverse of receptance plots as a

means of recognizing  the existence of two close modes;

derivation and implementation in the modal analysis computer

program of the Inverse method (for complex modes) as an

alternative SDOF method to estimate the modal parameters of a

structure;

implementation of one of the interference criteria in the cited

program, to give an indication whether or not the SIM technique

should be used and also the implementation in the sarne program of

the option AUTO-SIM to iterate automatically and to refine the

identification of two close modes;

establishment of a parallel between the Inverse and “Bendent”

methods, so that this last one can be more easily interpreted from a

nhvsical Doint of view.
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The contributions concerning Chapter 4 are the following:

(9 a detailed explanation of the RFP method, very popular nowadays

although the theory is, in general, not well presented;

(ii) exploitation of the capabilities of identification of close modes and the

programming of an “intelligent” algorithm that can recognize the

existence of one or two close modes and give quality indicators of the

results;

(iii) the development of a new approach for the identification of lightly

damped structures, and the establishment of a parallel with another

already existing method, also dedicated to the analysis of that kind of

structures, justifying more rigorously some empirical guide-lines

suggested in previous works related to that other method;

(iv) the development and discussion of a fast, automatic and “intelligent”

algorithm for that new approach, to obtain results with quality

indicators.

In Chapter 5, the new developments are as follows:

(i) the reformulation of the GRFP method to deal better with

experimentally obtained data, while the capabilities of taking

decisions concerning two close modes remain as for the RFP method;

(ii) the presentation of an alternative way of calculating the global

properties of a structure, based upon the identification of single FRFs

and taking advantage of the knowledge of the quality indicators, and a

comparison between the GRFP and RFP methods;

(iii) a detailed explanation of the theoretical background of the Global

method, not currently available in the literature, that intends to attract

the attention for this powerful method;
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(iv) exploitation of the Global method capacities in identifying close

modes and the extension of this method to include also the possibilities

of obtaining more informative answers, in terms of quality;

(v) an attempt to improve the Spectral method, although not successful,

and a comparison between the GRFP, Global and Spectral

methods.

With respect to Chapter 6, the contribution given is a critical comparison

between two known methods of calculating real modes from identified

complex modes and the illustration, through some examples, of the good

performance of Niedbal’s method.

7-3 Suggestions for future work

Some topics for further investigation on the matter of extraction of valid

modal properties are indicated next. Two categories of developments are

considered: short term and long term ones. The former refer to direct

extensions of the work presented in this thesis while the latter constitute

larger research projects on their own.

Considering the short term developments, we may identify the following

ideas:

(9 extension of the algorithm that subtracts already identified modes

from an FRF, based on SDOF methods, to make it totally automatic

for the analysis of all the modes in the frequency range of interest;

(ii) development of an algorithm to locate reliably the resonance

frequencies in FRFs taken from lightly damped structures;

(iii) improvement of the RFP method, substituting the polynomial solver

by an eigensolver and to extend the “intelligent” procedure to the
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analysis of a general number of modes;

(iv) to develop the GRFP “intelligent” algorithm to analyse also a general

number of modes and to analyse automatically systematic deviations

of the global properties of a structure, among the several FRFs;

(v) to develop the SFD method including “intelligent” capabilities, as this

seems to be a very promising method.

Two long term projects that we envisage, are:

(9

(ii)

an investigation on the various sources that may contribute to the

existence of noise in the measured data, in order to assess the quality

of the measured data prior to the analysis, by establishing, for

example, boundaries of expected noise around particular frequency

ranges;

the development of an “intelligent” algorithm based on several

methods that would applied each method at a time and could decide on

the best identification. It could, possibly, “decide” that the best

identification was obtained using one particular method over one

given frequency range and another method for another frequency

range. One could start by studying only one single FRF using two

different methods and then proceed for more complicated cases.
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Derivation of Eq. (4-10)

Developing (4-9),

J= ( {a*}T [P*lT - {b*}T [T*lT - {W*}T} ([P] {a} - [Tj {b} - {W}}

= {a*}T [P*lT [P] {a} - {a*}T [P*lT [Tj (b} - ( a*}T [P*lT {W}

- {b*}T[T*]T[P] {a} + {b*}T[T*]T[T] {b} + {b*}T[T*]T {W}

- W*lTPl {al + W*lTITl  {W + W*lT WI (4-9 a)

But, as defined, (a) and {b) are real vectors, so {a*] = {a} and (b*} =

{b). Also, each term of (4-10) is a scalar, so identic to its transpose. We

can write then,

J = i (IdTP*lTPl {a) + bITPIT P*l {aI> - G4TP*lT[?rl @I

- {a}T[P*]T{W) - {a)T[P]T[T*] {b} + ’2 ({b]T IT*lT [Tl @I

+ MT D’lT [T*l {W) + IbIT U*lT WI - {aIT PIT W*I

+ {b}T[T]T  {W*} + {W*}T {W} (4-9 b)

or, rearranging,

J = + {a]T  @*IT PI + PIT P*l) {a)

+ f IbIT (U*lT [‘Cl + [TIT [‘I’*]) {b)

- {a}T @*IT [Tl + IpIT [T*l){W - {aIT @‘*IT WI + PIT W*I)

+ {b}T(CT*lT  {W] + [TIT {W*]) + {W*]T {W] (4-9 c)
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It is easy to see that

352

P*lT PI + PIT P*l = 2 Re(P*lT PI)

P*lT PI + PIT [T*l = 2 Re([P*lT PI)

[T*lT [T] + [TIT [T*] = 2 Re([T*lT [T])

[P*lT {W} + [PIT {W*} = 2 Re([P*lT  {W})

[T*lT {W} + [TIT {W*} = 2 Re([T*lT  {W))

(4-9 d)

as the second term of the summation is the complex conjugate of the first.

Therefore,

J = { a}TRe([P*]T  [PI) {a} + {bJTRe([T*lT  [T]) {b} + {W*}T (W}

- 2 {a}TRe([P*]T [T]) {b} - 2 {a}TRe  ([P*lT {W})

+ 2 {b}T Re([T*lT {W}) (4-10)
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Orthogonal Functions

A set of functions fI(x),  f2(x), . . . f,(x), is said to be mutually orthogonal

over an interval a 5 x I b if

jP fi(X)fj(X)  dX=O izj

SP fi2(X)dx=Qi>O  i = j

and if fi(x) are real, continuous and not identically zero.

We can normalize fi(x)  by defining

g,(X) = fi(X) / ~Qi

so that

JI giCx) gjCx> dX = { y t;’

(B-1)

(B-2)

(B-3)

when the data that we have to curve-fit is not of equal reliability, we can

introduce a measure of the relative precision of the value to be assigned to

gi(X) by means of a weighting function q(x) 2 0. The functions are then

said to be orthonormal relatively to to the weighting function q(x), over

Ia, bl:

Ii qCx) giCx>  gjCx) dX = { y i:’ (B-4)

3 5 3

L ,
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If the functions g,(x) are to be calculated at L discrete points, the integral

will be replaced by a summation over that number of points:

(B-3

Usually, gi(xk) will.be polynomials. As in our case we are using complex

polynomials, (B-5) becomes

Re ( i q<x& gi*(xk> gj(xk) ] = { y :z’
k=l

(B-6)

where * denotes complex conjugate.
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Method of partial fractions

Let N(s)/D(s) denote the ratio of two polynomials, with no common

factors, such that the degree n of D(s) is greater than that of N(s), and

suppose that D(s) has n distinct zeros sl, s2, . . . s,. Then, the coefficients in

the partial fraction expansion

N(s) A, A2
=-+-

D(s) s - s1 s - s2

are determined by the equation

NW
Ak = lim (s - Sk) -

s + Sk D(s)

or

N(Q
Ak = -

D’(sJ

+ +. . . (C-1)
s - s, k=l  S-Sk

(C-2)

(C-3)

where D’(sJ  is the first derivative of D(s) for s = sk.

:Proof

Multiplying Eq. (C-l) by (s - s,J,

6 - sk)
NW Al- = (s - Sk) -

Ak An
D(s)

+ . . . + (s - Sk) - + . . . + (s - Sk) -
s - Sl s-s, s - s,

Al= (s - Sk) -
A,

+ . . . + Ak + . . . + (s - Sk) - (C-4)
s - Sl s - s,

3 5 5

. .
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Taking the limit when s -+ sk, all terms on the right-hand-side of (C-4)

vanish, except A,:

NW
Ak = lim (s - Sk) -

s + Sk D(s)

If we write (C.5) in the form

lim N (S )

Ak =
s + Sk

1.
D(s)

lrn -
s+ Sk s - sk

we obtain

Ak
N(s)=-
o/o

(C-5)

C-6)

(C-7)

which is an indetermination. Applying L’Hopital rule to the denominator

of (C.6), we have

D(s) D’(s)
lim - = hm = D’(sJ
s-+sk s-s S--3%  (s - Sk)’

Hence,

Ak =
N(Sk)
D’(sJ

(C-8)

(C-9)
n

If in (C.6) we divide D(s) by s - sk or, equivalently, remove the factor

s - sk from D(s), and call it Q(s), we obtain a more practical expression

for A, :

Ak =
N(Sk)
Q&J

(C-10)
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The Singular Value Decomposition technique (SVD)

D- 1 Introduction

The purpose of this Appendix is to give a simple introduction to the

Singular Value Decomposition technique (SVD). This introduction follows

closely the one given in Ref. [141].  It is not our intention to present a

detailed explanation with a full and rigorous mathematical description, but

instead a simple approach that enhances the main characteristics of this

technique and highlights some common applications, providing the reader

a first contact with this powerful numerical method before attacking a

more profound text.

D -2 The rank of a matrix

The concept of rank of a matrix is directly related to the linear dependency

of the rows (or columns) of that matrix. For example, an NxN matrix

whose rows are linearly independent will have rank = N (full rank). If one

of the rows is a linear combination of the others, then the rank will be N-l.

In other words, the rank of a matrix equals its number of linearly

independent rows. An MxN matrix with M 2 N is said to be of ‘full

rank’ if its rank = N, or ‘rank-deficient’ if its rank c N. For a square

matrix, rank deficiency implies that the matrix is singular, i. e., the

determinant equals zero.

The classical way of calculating the rank of a matrix is by means of Gauss

elimination. An NxN matrix with rank = r c N will have N-r zero rows

after a Gauss elimination. If we think of the rows of a matrix as being

3 5 7

b
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vectors, two linearly dependent rows means two parallel vectors. Thus, the

most linearly independent case for two rows is when the corresponding

vectors are perpendicular, or in general, orthogonal. In practice, we can

have anything in between these two extremes. If two vectors are almost but

not exactly parallel, then the two corresponding rows of the matrix will not

be linearly dependent ,but almost so and, in general, we will not have exact

zero rows after a Gauss elimination, but a set of relatively small elements.

These rows of small elements must be compared with the other rows of the

matrix in order to assess the rank of the matrix. To compare rows, or

vectors, may not be an easy task, especially for large matrices. The

problem is even more complicated if the elements of the rows are complex

quantities. It would be preferable to have a means of comparison in terms

of scalars. The SVD of a matrix allows this comparison.

D-3 The Singular Value Decomposition

The SVD of an MxN real matrix [A] is given by:

[Al =Wl IZI MT
0 owwww

(D-1)

where [U] and [V] are orthogonal matrices , i.e.,

and

WIT = [U] -’ and [VIT = [VJ -’ (D-3)

[C] is a real matrix with elements oij = CT~ for i=j and oij = 0 for i#j.

The values ai are called the singular values of matrix [A]. Without loss of
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generality we shall assume them to be in decreasing order (a,> Go>...>

(D-4)

The relationship between this decomposition and the rank of the matrix

[A] is that the value of the rank is equal to the number of non-zero singular

values (the multiplication by orthogonal matrices does not alter the value

of the rank). For a 3x3 matrix with one linearly-dependent row, cr3 would

be zero. The advantage of the SVD to calculate the rank is that if the

considered row is not totally linearly dependent, we would obtain a small

value for O3 , instead of zero, but now we only have to compare this small

value with the other singular values. Having established a criterion for the

rejection or acceptance of small singular values, we would have an answer

concerning the value of the rank. This criterion may depend on the

accuracy of the expected results. If [A] is a complex matrix, then Eq. (D-l)

becomes

[Al =  IYI PI MH (D-5)

where the superscript H denotes complex conjugate (hermitian) transpose.

[U] and [V] are unitaryt matrices, i. e.,

t This designation replaces the term “orthogonal” when the matrices are complex.
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and

kJIH=[Ul-’ a n d  [VIH=[V]-1 (D-7)

The singular values cTi are the non-negative square-roots of the eigenvalues

of the matrix [AIT [A], if [A] is real, and of [AJH [A], if [A] is complex.

Because [AIT [A] is symmetric and [AIH [A] is hermitian, their

eigenvalues are always real and therefore both Eqs. (D-l) and (D-5)

provide real singular values.

We shall consider the case where M 2 N (without loss of generality),

because it is the most common case in engineering applications. If M I N,

then we could decompose [AIT  instead. For simplicity, we shall assume

[A] to be real from now on. Because there is a close relationship between

the singular values of [A] and the eigenvalues of [AIT [A] (the same as the

eigenvalues of [A] [AIT),  the columns of [IJ and [V] are particular choices

of, respectively, the eigenvectors of [A] [AIT  and [AIT [A], and are called

the left and right singular vectors. For this reason, the algorithms to

compute the SVD are very similar to the ones used to compute eigenvalues

and eigenvectors. It is possible to use the SVD as an eigensolver, but for

this application the SVD is not advantageous, as current eigensolvers are

very well developed and are quite reliable. Usually, the SVD computation

is performed in two stages: first, a reduction of [A] to a bidiagonal form

using Householder transformations and second a reduction of the

superdiagonal elements to a negligible size, using the QR algorithm. These

numerical methods can be studied in Ref. [142]. Detailed application to

the SVD can be found in Ref. [129].  Improved algorithms can be found in

Refs. [143] to [145].  In Ref. [129], an Algol program is given and in

Ref. [141] a Fortran  subroutine is presented. In Ref. [146], a subroutine

for the case when [A] is complex can be found. Ref. [ 1471 is another

relevant article with details about the algorithms used. In Ref. [143], a list

..,. . . .._
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of references is given for the use of the SVD to several applications. The

book by Golub (Ref. [ 1301) is also an excellent reference.

D- 4 Applications of the SVD

D-4-l Recalculation of [A]

Besides the calculation of the rank of a matrix, many other applications

exist for the SVD. The first one is the recalculation of matrix [A] after

having removed small non-zero singular values and calculated the rank.

For instance, if [A] is a 5x3 matrix, [U] will be 5x5, [C] 5x3 and [VIT

3x3. If the rank is 2, then only the first two columns of [U] and [VI are

effectively operational, and [A] (5x3) can be recomputed with [U] as 5x2,

[C] 2x2 and [VIT 2x3. This procedure is quite convenient in the majority

of cases, as it leads to an improved [A] matrix.

D - 4 -2 Condition number

Another simple application is the calculation of the condition number of a

matrix. After performing the decomposition, the condition number can be

expressed as the ratio crmax  / Q,, where cumin is the smallest non-zero

singular value. This calculation can serve as an indicator of potential

problems, as a high value reflects an ill-conditioned matrix.

D-4-3 Linear system of equations

The SVD can be very useful in solving over-determined linear systems of

equations of the form
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IAl {xl= WI
0 (Nxl)  (Mxl)

where M>N. Applying the SVD on [A], we obtain

(D-8)

(D-9)

or

@I NIT 1x3 = WI= 04
0 (NW ml) owl)

or

PI {z) = Id)
WW(Nxr) @W

with

{z) = MT 1x1

{dI = kJIT {bl

(D-10)

(D-l 1)

(D-12)

(D-13)

Eq. (D-l 1) represents a set of uncoupled M equations with N unknowns.

From (D-l l), we have

4 Zj = dj

0 - zj = dj

O=d.
J

for jSN and Oj+O

for jSN and Oj=O

forj >N

(D-14 a)

(D-14 b)

(D-14 c)

Eqs.(D-14  b) and (D-14 c) will only be consistent if dj = 0 for oj = 0 or

j > N. The range of [A], i. e., the set of (b} for which [A] {x} = {b) has

a solution {x}, implies that dj has to be zero for cj = 0 if j I N or for

j > N. If this does not happen, then {b} does not belong to the range of

[A] and Eq. (D-8) has no exact solutions. In this case, zj cannot be

determined from (D-14 b), although approximate solutions can be obtained
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by setting zj to zero whenever Oj = 0. This corresponds to the shortest

solution (minimization of ]][A] {x} - {b}  ]12)  in a least-squares sense. Having

calculated (z}, the vector {x} can be recovered from (D-12),  by doing

{xl= M 14 (D-15)

D-4-4 Pseudo-inverse

The NxM  matrix [A]+ is called the Moore-Penrose pseudo-inverse of [A]

if the following conditions are satisfied:

0
ii)

iii)

iv)

[Al [Al+ [Al = [Al

[Al+ [Al [Al+ = [Al+

[A] [A]+ is symmetric

[A]+ [A] is symmetric

@-16)

[A]+ always exists and it is unique. If [A] is square and non-singular, then

[A]+ = [A]-’ and if [A] is rectangular and of full rank, then [A]+ = ([AIT

[A])-1  [AIT. In this last case, if [A] is complex, then [A]+ = ([AIH [A])”

[ AIH . If [A] is not of full rank, the best way to calculate the

pseudo-inverse is via the SVD. The pseudo-inverse is related to the

least-squares problem, as the value of {x} that minimizes 11 [A] (xl -

{b} [ [’ can be given by {x} = [A]+ {b). Considering Eq. (D-l) and

calculating the pseudo-inverse, we obtain:

WI+ = ( [VT >+ PI+ WI+ (D-17)
(NW WXN) (NxM)o

Because [U] and [V] are orthogonal and full rank matrices, the

pseudo-inverse coincides with the classical inverse and Eq. (D-3) holds.

Therefore,
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[Al+= M El+ ITIT (D-18)
(NXM)  (NWWWWW

[Cl+ is an NxM real diagonal matrix, constituted by the inverse values of

the non-zero singular values Gi. Each element of [A]+ can be computed

more efficiently by

ZliJ’ = C ‘ik 'jk (D-19)

where vik and ujk are the corresponding elements of [V] and [UIT. The

summation excludes the values of ok that are zero. In practical terms,

considering only the singular values that are bigger than a critical value 2,

we have

(D-20)

This practical condition of acceptance for the singular values CT~ implies

that the first condition of Eq. (D-16) is no longer true? and in this

case it should be replaced by the condition:

11 [A] [A]+ [A] - [A] I] CT (D-21)

The other three conditions of (D-16) remain valid. Since one of the four

conditions of (D- 16) is not fulfilled, the pseudo-inverse will not be unique,

but amongst the possible answers, condition (D-21) is the one that

minimizes 11 [A]+ 11, providing the minimum error for the least-squares

problem.

f As a consequence, [A]+ [A] will not equal the unit matrix.
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D-4-5 Determinants

In some problems, we want to evaluate the values of z that make [A(z)]

singular, i. e., the values of z such that the determinant of [A(z)] is zero.

Using the SVD, we have:

det[A]=det[Uldet[I=]det[VJT (D-22)

Because [U] and [V] are orthogonal matrices, their determinants are + 1,

and so,

det [A] = + f; Oi
i=l

(D-23)

It is possible to determine exactly the value of det [A]. But if we only want

to know when its value is zero, one does not even have to calculate the

product of the singular values, but only to investigate the variation of CT~

(the smallest singular value) and evaluate the value of z that makes (3N a

minimum.

D - 5 Example

We shall present here an example that uses the same matrix as in Ref. [ 1411.

The problem is to solve [A] (x} = {b}, such that:

1 6 11

2 7 12

3 8 13

4 9 14
5 10 15

1 iI x1 x2 x3 = 1 5 5  5 5 5 j
Note that [A] is rank deficient, as the middle column is the mean value of

the other two. Solving in the classical way,
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{x} = ([AIT [A])-’ [AIT {b} =

If we calculate [A] (x}, we obtain

which is clearly in error. Applying the SVD on [A], we obtain

CA1 = WI [cl MT
(5x3) (5x5) (5x3) (3x3)

According to (D-4), the last two rows of [C] are zero and therefore the last

two columns of [U] do not contribute to the product. Thus, we shall work

with a 5x3 [U] matrix and a 3x3 [Z] matrix. Computer programs usually

provide only this reduced version of the decomposition, which is

effectively what is strictly necessary. Hence, matrices [U], [E] and [V] are:

w-l=

PI =

M=

-0.3546 -0.6887

-0.3987 -0.3756

-0.4428 -0.0624

-0.4870 0.2507

-0.5311 0.5638

I35.13000.

0.

-0.2017 0.8903 0.4082
-0.5168 0.2573 -0.8165
-0.8320 -0.3757 0.40821

0 . 0. .

2.4650 0 .

0. 2.840~10-'~

7

0.5623

-0.6404

0.0000

-0.3290

0.4067 d



APPENDIX D S e c .  D - 5  E x a m p l e 3 6 7

From matrix [C] we see clearly that the matrix has rank = 2 and we can put

the third singular value to zero. As a consequence, we can also work only

with the two first columns of [U] and [V] and calculate the pseudo-inverse

as:

X -0.3546 -0.3987 -0.4428 -0.4870-0.6887 -0.3756 -0.0624 0.2507 -0.5311 10.5638

The solution is now

If we calculate now [A] {x}, we obtain exactly the initial vector {b} .

Also, the answer is the shortest possible one.
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