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ABSTRACT

Two contrasting approaches to dynamic analysis exist. They

are the finite-element method, which is an analytical technique

that models the structure under investigation with a finite

degree-of-freedom model - and modal analysis, where the structure

is actually excited in order to assess its dynamic characteristics.

This thesis contains an investigation into both methods

tification, thereby clarifying the

research in this area and allowing

of viscous damping. A simple beam

sis throughout.

- (iv) -

objectives and expectations of

it to be extended to the case

is used to illustrate the analy-

using

ure.

specific examples

Often the dynamic

in order to assess their contrasting nat-

performance predicted by these methods

does not coincide. Attempts to reconcile the differences that

emerge are reviewed initially, and the problem is then rethought

in the context of vector space theory. The analysis is built up

in stages, commencing with a simple (3x3) matrix example, and grad-

ually adding in more detail as the problem becomes understood. The

introduction of vector space theory permits a reassessment of the

techniques mentioned in order to unify the entire process of iden-
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NOTATION

The following is a list of the principal notation used in

each chapter of this thesis. Notation that does not appear here

is defined in the text.c-

Chapter 1

B(X)
r

- or : system matrix

: damping matrix

: force

: Laplace pair

: transfer function matrix

: identity matrix

: stiffness matrix

: incomplete stiffness matrix

: analytical stiffness matrix

: full stiffness matrix

: reduced stiffness matrix

: mass matrix

: analytical mass matrix

: full mass matrix

: reduced mass matrix

: displacement

: Laplace pair

: ith residue

: viscous damping coefficient

CCT

F(t)
t- F(t) + f(A)

H(X)

I

K

KING

Ka

KFULL

KRED

M

Ma

MFULL

MRED

K(t)

X(t) + x(X>

-r

’ ‘C.

a.
1

C

: hysteretic damping coefficient

: complex variable (= cl)

: stiffness

‘T. i

k
T.
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Chapter 2

D

E

F(t)

H(X)

I

r

K

Ke

M

Me

K(t)

: mass

: ith eigenvector

l ith rigid body mode.

: matrix of eigenvectors

: diagonal matrix of eigenvalues

: matrix of analytical eigenvectors

: diagonal matrix of analytical eigenvalues

: ith eigenvalue

: Laplace variable

: ith undamped natural frequency

: measurement frequency

: percentage critical damping of ith mode

: jth measurement frequency

: zero vector

: l i f i = j

O i f i f j

: partial derivative

: dynamic Young's modulus

: force

: transfer function

: identity matrix

: second moment of area

: stiffness matrix

: element stiffness matrix

: mass matrix

: element mass matrix

: displacement
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Chapter 3

I

Pi
P-i
T

T
f
T'

: damping coefficient

: element (i,j) of flexibility matrix

: stiffness

: element (i,j) of stiffness matrix

: element length

: mass

: element (i,j) of mass matrix

.. number of measurement frequencies

: complex conjugate of x

: jth eigenvector

: distance along beam

: ith eigenvalue

: Laplace variable

: ith natural frequency

: percent critical damping of mode i

: jth measurement frequency

: ith shape function

: matrix of xi

: zero vector

: identity matrix

: basis vector for ~(zp,IlQ

: matrix representation of Pi

: linear transformation

: matrix representation of T

: hybrid matrix

: dual of T
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(O,O,...l)~

vectors

eigenvector (of T)

coordinate n-tuple representing x. relative1
to ei basis

transpose of x+

complex conjugate of x

ith eigenvalue
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matrix of xi

transpose of Q
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projection of T onto subspace 2p,

projection of T onto subspace 3p,’

zero vector
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n-dimensional vector space
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CHAPTER 1

JNTRODUCTION AND REVIEW

1.1 Preliminaries

An understanding of the dynamic behaviour of structures

has been sought for many years. This search has been greatly

enhanced by the onset of computer technology, which has allowed

an ever-increasing degree of sophisticated analysis in order to

gain a fuller comprehension of how structures exhibit vibrational

_-

characteristics. The sorts of structure that provoke interest in

terms of their dynamic behaviour are extremely varied and far too

numerous to mention here. However, to cite but a few examples:

civil engineering structures such as bridges, dams and multi-

storey frames have been investigated(5,30,34,41,100) . with parti_

cular attention being paid to how the structure would behave in

an earthquake environment ; aircraft dynamics is another area where

a good understanding is required in order to provide the optimum

design(43); other structures of interest include offshore struc-

tures(48), space vehicles(23) ., motor cars(40) , and so on, in a

seemingly endless list. In order to assess the dynamic properties

of these structures, two methods have emerged in recent years with

which to analyse the problem. The first of these methods is the

finite-element method, which has been logically expanded from its

use in static analysis to incorporate dynamic behaviour. This

technique has now firmly established itself as an extremely power-

ful numerical method. A brief review of how it is adapted for use

in dynamic work is given in Section 1.3. The second technique is

modal testing, in which the structure (or a scale model of it) is

-l-



capable of these measurements is relatively new and the interest

and amount of activity in the field of modal testing continues to

expand at an increasing rate. This fact is demonstrated by the

existence of the International Modal Analysis Conferences, which

began in 1982 and continue to grow in terms of support and the

quality and quantity of papers submitted. However, modal analysis

techniques are not being developed with the objective of replacing

the long-standing theoretical, finite-element dominated type of

analysis - the two are designed to enhance one another. If both

methods indicate the same type of response patterns, then an even

greater confidence that this would be the true respJnse of the

structure may be asserted. With greater control and demands being

put on the design of modern structures, the time whenan FE enalysis

alone would suffice to indicate the vibrational characteristics of

that structure is rapidly drawing to a close. The modern dynaclicist

needs to be both a good analytical engineer and also a proficient

experimental engineer. This dual role implies that two sets of

data will emerge. The ideal situation would be if these two sets

agreed with each other so that the modal test and the F'E analysis

may co-exist and complement one another in mutual harmony. However,

both methods have errors attached to them. The FE method is an

approximation to the real continuous structure with a finite degree-

of-freedom model and consequently can never be a perfect represen-

tation of that structure. In addition to this, modal testing also

has its associated errors. These are concerned with the way in

which data are collected and subsequently analysed. However, there

- 2 -
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actually excited and measurements of the structure's response are

made in order to assess its dynamic characteristics. Equipment



exist two insurmountable limitations with test methods. The first

of these is the fact that it is generally not possible to measure

at all the nodes or degrees-of-freedom required. This is especi-

ally true when one considers rotational motion. The second limi-

tation is that in all but the most trivial example an incomplete

set of data is obtained. That is, the number of degrees of freedom

exceeds the number of measured modes. Despite this, it cannot be

overlooked that the test measurements do offer the most accurate

representation of the structure. So, experimentation provides the

best source of information, which is nearly always incomplete,

whereas the analysis provides a complete picture but is often

inaccurate. It is prudent, therefore, to try to extract the most

salient features of both types of approach. The way forward, chink-

ing in general terms, would perhaps be to somehow combine the two

in an effort to provide a third and optimum set of information

which includes data from the modal tests and retains the additional

data available only from an F'E analysis. The theme of this thesis

is concerned with problems of this nature.

Attempts to reconcile the contrasting sets of information

that exist between experiment and analysis in the literature are

firstly reviewed towards the end of this chapter. Chapters 3 to 6

set out to reanalyse the problem in the context of vector space

theory, starting initially from an idealistic, oversimplified

example and gradually introducing more factors as each previous

stage is explained and understood. Vector space theory is a mathe-

matical tool which is an extension of simple geometric concepts, so

at each stage of the analysis a vivid picture of the meaning of the

work will be readily available. All the expressions previously

- 3 -



--- i

-

. .
presented, using a wide range of alternative mathematical tech-

niques, appear in the analysis contained herein - along with

other expressions, previously unseen. The advantage and motiva-

tion for the use of vector space theory is that it simplifies the

problem into simple geometric terms, provides a unification for

the whole, and therefore permits an extension to more complicated

cases where other techniques might possibly be buried in their own

algebra. As a direct result of the use of this method, cautionary

notes may be injected outlining the limitations and expectations

that will exist, no matter what type of approach is adopted, because

of the very nature of the problem.

Chapter 2 presents a limited investigation into experimental

and analytical methods, using as a test-piece a simple uniform beam.

Some description of how the beam was analysed using experimental

modal analysis and how a mathematical model was formulated using

the FE method is given. This serves as an introduction to both

methods and allows the problem to be set in context with an appre-

ciation of the two contrasting approaches.

The principal results and conclusions that are drawn from

the entire analysis are reviewed and discussed in the final chapter,

and the thesis draws to a close with a brief discussion of how the

entire line of research stands at present - and where it is likely

to move, as a greater understanding is attained, in the foreseeable

future.

1.2 Dynamic Equations

For the analysis, we

system, so the usual way in

assume that we are dealing with a linear

which the equations of motion are

. \ z



introduced is via the one degree-of-freedom mass-spring-damper

set_up(25,52,63) . The equation of motion is considered in terms

of forces acting on the body, and written as

G(t) + ci(t) + kX(t) = F(t)

where F(t) represents the external force, X(t) the response and its

derivatives with respect to time, and m, c and k represent the mass,

viscous damping and stiffness of the system. For multi-degree-of-

freedom systems with n degrees of freedom, the motion is said to be

adequately described (assuming small motion, elastic materials etc.)

by n linear differential equations with constant coefficients,

written as

M?(t) + Cjr(t) + KX(t) = F(t).

Now, X(t) and F(t) are displacement and force n-vectors respectively

and M, C and K are (nxn) mass, viscous damping and stiffness matri-

ces. The text of this thesis is concerned with the viscous damping

model. This model has the advantage that it is mathematically

plausible, as opposed to hysteretic damping where the equations of

motion differ and cause difficulties at zero frequency, with a

finite dissipation of energy. Hysteretic damping is often intro-

duced in the light of the observation that damping is independent

of frequency. However, no entirely satisfactory model, in the form

of a differential equation, exists to incorporate this and for

light damping the equivalent viscously damped system is practically

(65)justifiable .

We may take the Laplace transform of the model to obtain

(MA' + CA + K)x(X) - f(X)

that is

H(Ux(U = f(A)

- 5 -
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where B(X) = MA2 + Ch + K

B(X) is known as the (nxn) system matrix and its inverse H(X) is

the transfer function matrix. So, assuming detlB(X)l f 0, and

that all the poles lie in the left-hand half-plane (stability con-

dition), we have

so that

x(h) = H(A)f(A)

If we assume that there are

written in partial fraction

2n ai
H(h) = 1 A _ A

i=l i

no repeated roots, then H(X) may be

form as

where ai = ith residue of the system

Ai = ith pole of the system (eigenvalue)

and hi = -lJiwi + iwi/(l - uf)

for the dissipative system. Here, wi is the undamped natural fre-

quency of mode i, which is the square root of the ith pole of B
lO0*

with C = 0. r~i is the percent critical damping for mode i, where

a critically damped system returns to a state of equilibrium with-

out oscillation. The frequency response function, rather than the

transfer function, is obtained by substituting A = iw, thus,

2n ak
H(iw) = 1

ktl iw - $

These expressions are derived by Lancaster(58) and again at the end

of Chapter 5, in the context of vector space theory. For free vib-

ration, f(A) is put equal to zero so that

(MA2 + CA + K)x(A) - 8.

For consistency, A must adopt the 2n values satisfying the charac-

- 6 -
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teristic equation

IMhi + CXi + Kj = 0 i = 1, . . . . 2n

The associated eigenvector xi which-satisfies the equation

(MA; + Chi + K)xi = 8

is, in matrix form, for i = .l, . . . . 2n, equivalent to

MQA2 + CQA + KQ = 0

where A = diagonal matrix of eigenvalues

4 = matrix of eigenvectors.

If c = 0, then we have

M#A = KQ.

This is the undamped free vibration equation and when this is sol-

ved, gives the undamped normal modes xi rnd the undamped natural

frequencies Ui2. Orthogonality conditions emerge from the analysis

which must be satisfied. These are given by

QTMO = I

and aTKO = A /

for an undamped system. Further developments of this type of analy-

sis are to be found in References (79) and (80).

1.3 The Finite-Element Method

The onset of the rapid development of computer technology

permitted the development of the FE method so that it now repres-

ents a powerful numerical tool in the analysis of, amongst others,

dynamic structures. To complement this, several texts have appeared

in the literature describing the FE method from first principles.

A selection of these appear as References (ll), (18), (29), (31),

(71), (85) and (110). It is not the objective here to analyse or

-7-
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criticise  the basic principles of the FE method as it is a tool

of proven worth that is now well established.
p&l

To be brief, the FE method is .a way of replacing the,,diff-

erential equations describing the structure by a (possibly large)

set of matrix equations. The matrices are finite-dimensional ana-

logues of the differential (stiffness) operator and the mass. The

matrices are obtained by discretising the structure into much

smaller, simpler elements, whose mass and stiffness properties may

be estimated with the use of localised shape functions of a simple

polynomial nature, in order to derive element mass and stiffness

matrices. These elemental matrices may then be combined to form

the global mass and stiffness matrices. If the numbering of the

nodes of the elements is done in a sensible fashion, these global

matrices will be banded in nature. Elements are assembled by

ensuring continuity of displacement and slope (rotation) at a finite

number of points on contiguous groups of elements. The resulting

finite-dimensional model thus satisfies compatibility throughout

the structure in this sense, while equilibrium is satisfied only

in a variational or weak sense. The procedure, for this reason,

is often referred to as the displacement method. Boundary condi-

tions which occur are incorporated at the assembly stage. Accurate

assessment of the boundary conditions is a crucial,but  difficult,

task and caution needs to be exercised to ensure that what is being

modelled  reflects the real situation accurately.

In general, two types of

is a consistent

arrived at in a

The second is a

mass matrix, so

similar fashion

mass matrix may appear. The first

called because its derivation is

to that of the stiffness matrix.

lumped mass matrix, which may be interpreted almost

-8-
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literally. All the mass of the structure is assumed to be concen-

trated at the node points and so this matrix will be u+allY dia-

gonal and hence will require less computer storage space. The
I

solution of the equation

M@A = KQ

is then sought for the first several eigenvectors (starting with

the lowest eigenvalue). The eigenvectors will correspond to the

normal modes of the structure and the eigenvalues will correspond

to the square of the undamped natural frequencies. It is usual for

the damping matrix to be assumed to be negligible when conducting

this type of analysis, so normally only the conservative behaviour

of the structure will be predicted.

1.4 Modal Testing

The amount of interest and activity that surrounds the field

of modal analysis continues to swell. This is hardly surprising,

considering the potential rewards such a method offers. Modal test-

ing has been in existence much l<nger than its name, and dates back

to the early days of vibration measurement. Its appeal lies in the

fact that it is an experimental technique as opposed to an analyti-

cal one. A far more confident appraisal of the dynamic character-

istics of the structure under consideration may be presented if it

has been directly tested rather than artificially modelled, and the

derived model subsequently analysed. Of course, the price for deal-

ing with the real world is having to cope with all the real phen-

omena that exist, such as damping, non-linearities etc. However,

far from dissipating interest as a result of these unattractive fea-

tures, the subject continues to expand because of the new and exciting

-9-



challenges these problems provide for both the

analytical engineer. The amount of literature

in the field of experimental modal'analysis is

far too much for it all to be cited here. The

experimental and

that has appeared

vast, and there is

interested reader

is referred to References (3), (67) and (68) for good bibliograph-

ies on the current literature covering all aspects of testing,

including results obtained on specific test-pieces. The purpose

of this section is to provide a general overview of the field and

highlight some of the more significant contributions which are of

a more general nature.

The motivation for conducting a modal test is to extract a

mathematical model of the behaviour of that structure. Ewins(35'37)

suggests that the model will be of three possible forms:

1. Response - containing the forced response characteristics

of the structure, usually as functions of time or frequency.

2. Modal - a knowledge of the principal modes of vibration,

natural frequencies and damping estimates.

3. Spatial - a description of the distribution in space of the

structure's mass, stiffness and damping characteristics.

The ease with which each of these models may be formulated varies.

Model 1 is rapidly established if good measurements are made and

the subsequent analysis of the data is conducted sensibly. Model

2 may be extracted from model 1, but some mathematical constraints

and limitations must be imposed. The evaluation of model 3 from

experimental data alone presents severe difficulties and is usually

conducted with the

is clearly of most

aid of other information (analytical). Model 3

benefit to the practising  engineer, since it

- 10 -
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tells him something about the physical characteristics of the

structure under investigation, permits a prediction of its response

due to given loading conditions, and models 2 and 1 can be derived

directly from it. Hence the derivation of model 3 will be a prin-

cipal concern of this thesis , and for purposes of review at this

stage the various techniques available for the formulation of

models 1 and 2 only will be considered.

In essence, experimental modal analysis consists of three

stages:

1. Acquisition of Data.

2. Analysis of Data

3. Curvefit of Data

- formulation of model 1.

- formulation of model 2.

Each of these steps requires careful thought and preparation if

the time spent on a modal test is to be advantageous. The experi-

menter needs to be aware of hie objectives and goals at the beginn-

ing of the investigation, and not halfway through, in the light of

unforeseen assumptions and avoidable errors. For example, for the.

test engineer, one hour spent calibrating a single accelerometer

correctly will be, in the long term, infinitely more advantageous

that two weeks spent analysing data that is inherently wrong in the

first place. Stein(",") observes that the analysis of data is

a 'right' that has to be 'earned' by successfully obtaining valid

data at the outset. He remarks that the actual collection of data

in the first place is an extremely important stage, since all fur-

ther analysis - if it is to be valid - depends on the accuracy of

the data first acquired. He adds that in a test situation the

equipment must be assumed to be 'guilty' of generating unwanted

- 11 -



types of noise and it is for the engineer to convince himself that

these unwanted measurements are sufficiently controlled either by

removing them completely or by limiting their significance.

Ewins(36) also injected a few words of warning with the results of

his round-robin tests, where many engineers were asked to analyse

and test a simple structure, and then demonstrated the spread of

opinion in the results obtained by displaying them all simultane-

ously in graphical form.

The type of test that is conducted

type of structure under investigation and

tion sought. Many authors(37.55,82) have

depends largely on the

the quality of informa-

listed techniques used

in order to extract the data. Among

testing, random input, pseudo-random

dwell technique, impact testing, and

the methods are sine-sweep

input, multiple shaker sine

so on. These techniques

require the use of electromagnetic exciters, force transducers,

accelerometers and other associated pieces of equipment now gener-

ally available. A brief investigation into two of these techniques

(multiple shaker sine dwell and impact testing) is given in Chapter

2.

Once the data)rove been collectedI+ey  need to be processed.

The first stage is usually analogue-to-digital conversion. The

onset of computer technology and the development of the Fast Fourier

Transform (FFT), first developed by Cooley and Tukey (27) in 1965,

has meant that the data can be processed at high speed and presen-

ted in either a time or frequency domain in one of the many forms

of presentation available. Again, these techniques and the associa-

ted considerations required for their effective implementation are

becoming well established, and discussion here will be limited to

- 12 -



that of equipment available at Bristol University and the experi-

L ences gained from it, as described in Chapter 2. Having obtained

': the data in this form, model 1 is said to have been established.

This usually consists of a knowledge of the frequency response

function between excitation location, i, and response measurement

location, j. The assumption of linearity throughout the structure

infers that if one row or column of the frequency response matrix

is know, then the whole matrix can be evaluated. Two software
,
'packages exist at Bristol University for the analysis of data using

this approach.

Once the data is in this form, the next stage is the inter-

esting problem of curvefitting the measured data so that a mathe-

matical function with disposable parameters approximates it as

closely as possible. Much effort has been devoted to this problem

.in recent years, with analyses being conducted in either the time

or frequency domains. In the time domain, perhaps the two most

significant methods of parameter estimation are the Ibrahim time

domain technique(53) and the poly-reference complex exponential

method(4S105) . Both methods use the free decay response of theS
>structure  to determine the system's eigensolutions and fit a model
.*

of the form

x
‘r

2n h.t
X(t) = 1 xie ' + {V(t))

i=l
,;

‘V

iwhere V(t) represents the noise. The poly-reference technique

,;obtains the free decay responses by an inverse FFT on the obtained
..:I
,transfer functions. It has also been developed for use in the

_frequency domain(28).

- 13 -
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More commonly in the frequency domain, however, the approach

is again to fit the mathematical expression to the data. The ana-

lytical expression used here is asbefore

2n
H(iw) = 1

k=l
ak

iw-h ’k

To reiterate, the ak's are known as the residues and contain infor-

mation concerning the mode shapes of the structure. However, the

function here is non-linear, with respect to the Xk's, and this

problem may lead to difficulties. Much discussion upon how this

function may be fitted to the experimental data may be found in

the literature(19,45,111) , and consideration of this problem is

given in Chapter 2 with details concerning how the curvefitter was

coded on the PDP 11/34 at Bristol University. Some authors acknow-

ledge the fact that the fitting of an analytical model requires

that certain parameters (i.e. natural frequency and damping) need

to be global properties of the structure, but curvefitting does not

entirely confirm this (especially with damping), so that global

curvefitting procedures are introduced whereby all the frequency

response functions are fitted simultaneously

quency and one damping estimate is extracted

so that only one fre-

for each mode.

Other curvefitting techniques include a circle-fit, which

is a single-degree-of-freedom method first introduced by Kennedy

and Pancu(57), and fits a circle to the experimentally-obtained

data plotted on a real vs imaginary diagram of the frequency res-

ponse function. The method is relatively simple to implement and8

hence its attraction to many analysts. However, its use is limited

to well-separated peaks.

- 14 -



Richardson and Formenti (83)

nomials in order to remove some of

have utilised orthogonal poly-

the ill-conditioning of the

non-linear least squares curvefit and have used these polynomials

to curvefit an expression of the form

y akAk
H(io) = kI"

1 bkAk
k=O jA=iw

where n is set as the number of identified roots and m may be spe-

cified by the analyst. Having solved this problem, the residues

are then found by using the usual expression. Other factors that

are considered are the contribution of modes outside the frequency

range of interest and how additional terms may be included to acc-

ount for this(lg*lll).

Once completed, a successful curvefit will yield estimates

of the mode shapes of the structure and the natural frequency and

damping estimates. This is the modal model (model 2). The mode

shapes will be, depending upon the complexity and distribution of

natural frequencies, either real or complex. Since the function

used to curvefit the data is complex, in general complex modes will

be generated. If damping is small and the natural frequencies are

well spaced, the complex modes are often replaced by their real

part, making the assumption that the imaginary contribution is neg-

ligible. The modal model may then be used for comparison against

the eigensolutions of the analytical model.

Another area of research in this field which is of signifi-

cance is the use of the Hilbert transform for the detection of non-

linear systems. If

- 15 -
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Z(w) = I z(t)eiwtdt = F(w) + iU(w)

then

t

and y(w) = + s dQ
I

So here the fact that the imaginary part of a frequency response

function may be generated from the real part via the Hilbert trans-

form and vice versa is utilised

linearities in the curvefitting

in order to determine areas of non-

work on taking into account non-

procedure has also been conducted(39.

Other work has also been undertaken on the determination of struc-

tural defects using modal test techniques and a knowledge of the

mass and stiffness distribution of the structure (1,21) .

Overall, modal analysis is a current area of intense research

and as methods, equipment and techniques improve, so does the con-

fidence in the natural frequencies, damping factors and mode shapes

that are extracted using this method. Clearly, if this is the case,

some harmony between the test and the FE analysis must prevail.

Correlation of the two is reviewed in the next section.

1.5 Correlation of Experiment and Theory

One of the key objectives of activity in the area of dynamic

analysis in recent years has been to derive measured mass and stiff-

ness matrices from the modes and frequencies that will have been

obtained from a modal test, or in other words, to generate model 3.

- 16 -
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Richardson and Potter(81),  in an ear-111 paper, offered an immediate

solution to this problem for the damped case. This analysis star-

ted from the expression for the transfer function matrix

2n a.
H(X) = 1 x _lA = (MA2 + CA + K)-l.

i=l i

If A is put equal to 0, then

2n a.
H(0) = - 1 $ = K-l

i=l i

-1hence K = {H(O)) .

Then differentiating with respect to A we have

H'(A)[MX2  + CA + K] + H(X)[ZMA + C] = 0

and again putting h = 0 gives

H'(O)K + H(O)C = 0

H(0)-lH'(O)K  + C = 0

C = - KH'(O)K

and again differentiating w.r.t. 1

H"(X)[MX' + CA + K] + H'(X)[ZMX + C]+ H'(X)[ZMA + C]

+ H(X)ZM = 0

and finally, putting A = 0 again, we have

H"(O)K + ZH'(O)C + H(O)ZM = 0

9 + (-H'(O)KH'(O)K) + H(0) M = 0

H(O)M = H'(O)KH'(O)K - v

M = K(H'(O)KH'(O) - E$9)K

and hence solutions for K, C and M are rapidly obtained. The serious

difficulty that exists with this analysis is the initial inversion

of H(0) in order to obtain K. For this to be possible, H(0) needs

- 17 -



to be non-singular or, in other words, all the modes of the struc-

ture must have been measured. If this is the case, these express-

ions - and others mentioned in the literature(38) - are perfectly

valid and will provide the correct spatial matrices. In practice

though, when measurements are made on a real structure, an incom-

plete set of data only will be obtained. That is, the number of

measurement positions will greatly exceed the number of modes meas-

ured. We will have a so-called 'incomplete modal model' (model 2)

consisting (thinking for the time being of the undamped case only)

of an (mxm) diagonal matrix of eigenvalues (square of the natural

frequencies) A and an (nxm) rectangular matrix of modal vectors @.

Starkey(g4), in a recent paper, acknowledges this fact and

introduces the idea of a generalised inverse in order to circumvent

this difficulty, and proposes expressions of the form

K = @(@To)-lA(@To)-l@T.

This type of result is attractive because it will satisfy the nec-

essary condition of orthogonality

QTK@ = A

and hence, if he had derived a mass matrix in a similar fashion,

satisfying

QTMO = I

a complete system would have emerged consisting of two singular

system matrices satisfying the two orthogonality requirements and

hence the eigenvalue equation. However, his analysis fails to

suggest such a system.

What is perhaps of more serious concern here is that the mass

and stiffness matrices obtained by this method will have no meaningful

- 18 -
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interpretation in terms of mass and stiffness distributions of

the structure. Starkey quite rightly observes that this type of

expression "does not include the subspace perpendicular to the

eigenvectors from the experiments", but yet neglects to clarify

exactly what information is to provide the data for this subspace.

ROSS, in an earlier paper, inferred that difficulties may be

encountered when trying to develop matrices in this way with his

comments: "from the spectral decomposition of a matrix, it is known

that the higher-order eigenvectors determine the outward appearance

of a matrix." He goes on to observe that the lowest strain energy

states determine the outward appearance of the flexibility matrix,

so a flexibility matrix may readily be constructed. Rodden(86),

in a separate line of investigation, reaches this conclusion and

goes on to demonstrate how this is done.

However, many authors also acknowledge the fact that there

is additional information available in terms of analytical mass and

stiffness matrices. If the analytical modes and frequencies corres-

pond with those of the test then there is no call to direct atten-

tion to the generation of measured mass and stiffness matrices,

since it is assumed that these will directly correspond with the

analytical ones. However, the line of action necessary if the two

in some way contradict each other has generated a lot of interest.

Much concern was directed to which set of data was correct,

and earlier attempts(6,8,46,62,88,97,98) which were made prior to

the development of more sophisticated test equipment assumed that

the most likely 'correct' piece of data was the analytical mass

matrix, hence efforts were made to orthogonalise the measured data

with respect to the mass matrix so that

- 19 -
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and then proceed to correct the stiffness matrix. One of the major

criticisms of this type of exercise -is that the 'corrected' system

still did not produce the measured modes, so it was debatable as

to exactly how it had been corrected.

Berman and Flanelly (12) , in an earlier paper on the problem,
4

considered some important points that one needs to be aware of for

this type of analysis. They proposed an expression for an 'incom-

plete' stiffness matrix given by

Again, however, we may see that the dominant terms the high eigen-

values, were missing from the summation so that the form of this

incomplete matrix may not, in practice, represent any tangible stiff-

ness distribution. They

the terms containing the

dominant terms of K will

the true K matrix."

acknowledged this by commenting that "since

higher values of Xi are not included, the

be missing and thus KING will not resemble

Another glaringly obvious fact about this type of result is

that the mass matrix also needs to be known in advance. They con-

sider this problem, and conclude that the "best information avail-

able as to what the 'true' values are, (i.e. elements of the mass

matrix) is the approximation arrived at by the engineer" or, in

effect, the analytical mass matrix, Ma. However, again there could

be no guarantee that Ma would satisfy the orthogonality requirements

with respect to the measured modes 9. It was clear that what was

needed was a best approximation to the mass distribution followed

by a slight adjustment so that it also satisfied the orthogonality

requirements.
- 20 -
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It was not until 1979 that a generalised expression that

satisfied these requirements finally emerged. In his excellent

technical note, Berman(14) describes'how  a change to Ma is sought

(AM) so that

QT(Ma + AM)@ = I.

He sets out to find that AM which has some minimum weighted Euclid-

ean norm within the constraint of this condition. The following

function is minimised

and Lagrange multipliers are introduced to incorporate the orthogo-

nality constraint to give the following Lagrangian function

$= E + y ; A. .(QTAMO
i=l j=l I'

- I + Ma)ij

where ma = QTMaQ.

This equation is then differentiated with respect to each element

of AM and the results are set to zero in order to satisfy the mini-

misation and the constraint. This process gives the matrix equation

Or A M =

=o

A solution for n (the (mm) matrix of Xij) may easily be extracted

as

A=- 2ma1(I - ma)m,l

so that

AM = Ma@mil(I - •a)m~l@TMa'

This result was encouraging insofar as it is:

- 21 -
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(a>

norm;

(b)

(c)

. .ii-*

'close' to the analytical matrix in the sense of a Euclidean

symmetrical;

satisfies the orthogonality constraints.

This improved mass matrix allows the incomplete stiffness

matrix to be also calculated as described previously. Alternatively,

a similar method may be adopted to correct the analytical stiffness

matrix - once the mass matrix has been corrected - as described by

Baruch(') and Wei( The norm that is minimised here is

d = Ill&K - K,)M-'11

Ka is symmetric and can be singular if it includes rigid body modes

(see below). K must also satisfy the constraints

KO = MQA,

K = KT ,

and QTKO = A.

Again, Lagrange multipliers are introduced to incorporate these

constraints and partial differentiation yields an expression for K

of the form

K = Ka + M@(OTKa@ + A)OTM - Ka@QTM - M@QTKa.

So a pattern is emerging whereby an analytical model is improved

in stages using the data obtained from the modal test. In 1983,

Berman and Nagy (15) formalised this procedure, calling it AM1 (ana-

lytical model improvement). The method is essentially conducted

in three steps:

1. Ma, Ka and the measured modal displacements and natural

frequencies are used to obtain the 'full' modal vectors from which

- 22 -
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@ (nxm) is formed (see Section 1.6).

2. Ma and the

the orthogonality

now known Q are used to obtain M which satisfig

relationship between the modes.

3. Ka and the known M, @ and A are used to obtain K, which is

symmetric and satisfies the eigenvalue equation. The M and K here

do not represent the 'true' mass and stiffness matrices of the

structure, as may be implied by the notation, but only corrected

analytical matrices obtained using measured information.

3aruch(""), in the light of the argument that it may be

the stiffness matrix which is known with more reliability than the

mass matrix because of "the significantly greater success of the

finite-element static analyses (which use the stiffness matrix) as

compared to corresponding dynamic analyses (which are both the mass

and stiffness matrices.) ,,(13) . suggested that the stiffness matrix

may be corrected first and then the mass matrix. Effectively the

roles of the mass and stiffness matrices are reversed. Here,

instead of initially normalising the modes with respect to the

analytical mass matrix so that

XiTMaXi = 1,

as was necessary for the previous case, the modes are normalised

so that

XiTKaXi  = xi ('i = wi').

The important point to note here is that if the structure is not

fixed in space, such as an aircraft or space vehicle, then there

will exist rigid body modes. These are modes that have zero fre-

quency and are brought about due to the lack of a fixed reference
normolly

position. There is x a-maximum of six rigid body modes which satisfy
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KxiR = 8 i = 1, . . . 6.

So, if they are present, the stiffness matrix is singular.

are orthogonal with the mass matrix; so

xiRMx R = 6;
j i,j = 1, . . . 6

They

therefore the mass matrix remains non-singular. Thus, if rigid

body modes are present, the reverse approach cannot be implemented

because of the singular nature of the stiffness matrix. The inclu-

sion of rigid body modes does not affect the previous formulation.

Having understood this, Lagrange multipliers may again be intro-

duced in order to incorporate the necessary constraints. The

expressions obtained in this way for stiffness and mass are given

as

K = Ka +

and M = Ma +

T

Ka@'k-'(A - k)k-10TK a

KOk-l(I + m)k-l@TK - K4'QTMa - MaWTK

where k = QAKa@.

Chen and Fuh, in a recent technical note(24) , have adopted the idea

of generalised inverse in order to rederive these types of express-

ions and introduce a weighting matrix W, but do not succeed in

deriving a general form for an improved mass or stiffness matrix;

nor, indeed, is it made clear that the mass and stiffness matrices

do not have to be updated in any particular order. The same sort

of comments also apply to O'Callahan and Leung (73) in attempts to

use established pseudo-inverse techniques(64,75) in order to redeter-

mind the update expression for mass and stiffness.

Berman, in a more recent paper (16) , provoked further dis-

cussion with the justifiable observation that an expression of the
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form

K = ; Mx&x;M
i=l

could not identify a K matrix which represents the correct structu-

ral characteristics, since the higher modes used are those of the

structure and not of the model. The modes in this expression are

those of the finite-dimensional model. The high modes of the struc-

ture (i" n) are not the same as those of a valid model. This effec-

tively means that the idea that the problem would be somehow 'sol-

ved' if only we could measure all the modes is a myth. It is not

possible to measure the higher modes of a model since these are

analytical functions associated with that model and do not represent

any measurable parameter. Indeed, he quite rightly asserts that the

validity of the model

roximately Q.

will only cover a frequency range up to app-

One of the motivations for improving or updating mass and

stiffness matrices is that it then offers the prospect of comparing

an updated mass and stiffness with the original analytical matrices

with the objective of an error analysis to see where the mathemati-

cal model may have been in error in the first instance. An 'error

analysis' type of approach need not necessarily yield improved

mass and stiffness, but may only serve to indicate the areas of

poor modelling in the model. However, the text of this thesis sets

out to demonstrate the close link that exists between error analysis

and model improvement techniques.

In the light of this, Dobson (32) is perhaps a little bold

with his sentiments that "it is not possible to convert differences

between experimental and predicted results into spatial modifica-
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tions within the F'E model." In his contribution, he proposes the

application of a flexibility error matrix in order to determine

which parts of the mathematical model are in error. The error

expression is extracted through the expression for flexibility with

the corresponding analytical pieces of information being taken

directly from the model thus

E r @fyQT - Q ATaa a'

However, limited success is achieved here since, as will be discussed

in Chapter 2, local changes in the material properties of the struc-

ture globally affect the flexibility of that structure, so it may

be slightly optimistic to expect a 'flexibility' error matrix to

indicate areas of poor modelling.

An alternative approach is proposed by Sidhu and Ewins (91)

whereby a stiffness error matrix is investigated. This is given

as the different between the exact stiffness matrix and that of

the model

E K-K=
a'

Rearranging and inverting both sides gives

K-l = [I - K-'c]K-~.a a

If the matrix Kale satisfies the condition

(i.e. K:~E is small in some sense), the expression in the square

brackets can be rewritten using the binomial expansion as

K-l  e K-l - K-1& + ((J&) 2K-‘)
a a a a a

or, to first order,
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in Chapter 2, local changes in the material properties of the struc-

ture globally affect the flexibility of that structure, so it may

be slightly optimistic to expect a 'flexibility' error matrix to

indicate areas of poor modelling.

An alternative approach is proposed by Sidhu and Ewins (91)

whereby a stiffness error matrix is investigated. This is given

as the different between the exact stiffness matrix and that of

the model

E K-K=
a'

Rearranging and inverting both sides gives

K-l = [I - K-lc]K-l.a a

If the matrix Kale satisfies the condition

(i.e. K~‘E is small in some sense), the expression in the square

brackets can be rewritten using the binomial expansion as
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a a a a a

or, to first order,
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K-1  2 K-1 _ K-&-l + O(E2)
a a a

or E. = Ka(K-l - K;‘)Ka'
K-1 -1and Ka are then determined as the flexibility matrices sugges-

ted by Dobson. A similar expression for the mass error matrix may

be derived, of the form

E = Ma(M-l - M;l)Ma'

Sidhu and Ewins then go on to demonstrate how these error matrices

may be applied in order to determine areas of poor modelling that

may exist within the structure. Although these error expressions

may look very different to the update expressions described previ-

ously, it will be seen through the course of this thesis that the

two are quite closely related.

Other work in this area is directed towards utilising some

sort of iterative procedure whereby the physical parameters of the

model are modified (e.g. EI, mass/unit length) to encourage a closer

agreement between analysis and test. Collins et a1(26) offer a

statistical approach and Chen and Garba (22) employ a matrix pertur-

bation technique. The advantage of these methods is that the con-

sistency of the model is preserved, but computational difficulties

and problem formulation limit the adaptability of these methods to

realistic structures.

Throughout the analysis of this problem, attention is dir-

ected to the undamped problem only, and the measured data are assu-

med to be real normal modes. However, in practice all structures

are damped and will yield measured modes which are complex, often

with significant imaginary parts. In this instance, the methods
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already mentioned all come under question and nearly all authors

tend to neglect this almost inevitable fact if so-called 'realistic'

structures are to come under scrutiny. Some authors attempt to

circumvent this problem with proposals for computing normal modes

from complex ones(42,54,69,108) . The type of approach that is

adopted is usually either the introduction of measurement noise in

order to facilitate the inversion of a singular matrix, or the

introduction of an hypothesis such as the measured modes can be

represented as a linear combination of the normalolodes  of the ana-

lytical system. These attempts tend to be unsuccessful, and can

produce unsatisfactory and unstable solutions. In effect, the

problem of damping is here eased out of the problem by attempting

to eliminate its contribution to the set of measured data, and

hence we return to an artificial undamped environment which is not

truly representative of the real world.

The methods adopted to improve or update the spatial matrices

describing a system discussed so far do not readily lend themselves

to an extension to the dissipative case. One of the principle

objectives of this thesis is to reassess the techniques mentioned

here in order to unify the entire process of identification, thereby

clarifying the objectives and expectations of the research in this

area and allowing it to be extended to the case of viscous damping.

The initial introduction of the equations of motion of a

dynamic system is usually done in terms of the mass-spring-damper

one-degree-of-freedom system, as described in Section 1.2, but by

the time a large system is being analysed in terms of modelling or

testing, the damping matrix has usually either been completely cast

aside or assumptions are made about its nature (usually proportional

- 28 -
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damping or estimates gained from previous experience). Some attempts

have been made to synthesise the concept of linear damping (65) , but

in general a technique for constructing a FE damping matrix in a

similar fashion to the mass and stiffness continues to be excluded

from any analysis. Until a satisfactory method emerges for doing

this, experimentation will be the only source of information avail-

able concerning the damping characteristics of the structure. Clearly

an unsatisfactory state of affairs will exist if experimentation

increasingly tends towards the extraction of complex modes and damp-

ing factors, but yet consideration of the damping matrix is continu-

ally ostracised from any analysis.

the equations of motion of a linear

ive the inherent relationships that

Fawzy and Bishop(38) analyse

non-conservative system to der-

exist, with no assumptions being

made upon the properties of the system matrices. However, the ana-

lysis contains only statements of these identities and discussion

concerning the implications is not forthcoming. The presentation

of the orthogonality conditions that exist for this type of system

continue to appear in the literature(37,38,W, and Zhang and

Lallement(log) realise that if the damped system is to tend towards

the undamped system as the damping tends to zero then a different

normalisation to the one usually quoted is required so that the

phase shift of the modes is 0" or 180'.

As mentioned, this thesis is concerned with the viscous

damping model. The alternative approach is to consider the hyster-

etic or structural damping approach. This is introduced as a result

of the experimental observation that damping is independent of fre-

quency, which is not reflected in the viscous damping model. The

usual hysteretic, one-degree-of-freedom model adopted for transient

- 29 -
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motion is

m;;(t) + k(l + ig)X(t) = 0.

This involves a complex opeartor, so therefore neither the real

nor the imaginary parts of X alone are solutions. Physically,

there appears to be no logical justification for the inclusion of

the complex variable in the equation of motion. The more sensible

model to adopt is an integro-differential equation which uses a

convolution, thus

mi(t) + k(1 + g*)X(t) = 8

where a convolution between two functions is given as

t

f,(t) * f2(t)  = I f1(t - r)fz(T)dT
0

t

-_ I fr('l)fn(t  - T)d'l.
0

This formulation has a Laplace  transform of

(X2 + wl(l + g(X>>>x(X) = 8.

The transfer function is given by

H(A) = X2 + w:(l : y En(A))

where the function g(X) = y an(&) is necessary to ensure a constant

imaginary part, in accordance with observations. Therefore we have

a frequency response function of

H(inj) = 1
-"; + wf(1 + y finIn. + iy n/2) l

3

Thus, we may observe that hand-in-hand with constant damping is a

change in stiffness. It may be possible, for certain frequency

ranges, to neglect the change in stiffness if y is small, so we

have

- 30 -
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(-R;+ wl) +y

which is the usual form adopted. However, this model has the diffi-

culty of an infinitely negative stiffness as frequency tends to

zero, which leads to an unbounded displacement response which is

a totally unrealisable model. Attempts have been made to improve

this with variations of an(h), all of which demonstrate that a

region of constant damping requires a variation in stiffness. Ref-

erence (65) goes on to demonstrate that for the various formulations

given, the displacement response for the equivalent viscous model is

generally acceptable, thus justifying the use of the viscously dam-

ped model for dissipative systems.

Clearly, damping problems are an area where research poten-

tial is vast. Chapter 5 of this thesis considers the (2nx2n) vis-

cously damped problem and the results for the undamped case are

rederived with the analytical damping matrix set to zero as would

be anticipated if no analytical damping information is known.

The contents of this section are presented in order to pro-

vide a brief review of the work that has so far been presented on

the problem of verification strategies. It is clearly a key issue

in dynamic analysis, since if some sort of plausible agreement bet-

ween test and analysis cannot be procured then the credibility of

one, if not both, of these techniques will be seriously undermined

and a confident appraisal of the dynamics of the structure under

investigation will be denied. Early optimism concerning the app-

arent ease of formulation of measured mass and stiffness matrices

from dynamic tests was rapidly extinguished. This is not to say

that incomplete measured matrices may not be derived, but the very
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inclusion of the word 'incomplete' implies that information is not

available and the matrices so obtained may not reflect any tangible

mass or stiffness distributions. It is a fact that the missing

information represents that which is most predominant in terms of

mass and stiffness distributions, but which is not readily avail-

able for measurement by the experimental dynamicist. However, all

is not lost as a result of this, since further information is at

hand in terms of the analytical mass and stiffness matrices. Two

possible courses of action are the use of analytical matrices to

provide the missing information, and to effectively complete the

measured matrices with the best information available. Alternatively,

this information may be removed from the analytical matrices in

order to conduct an error analysis with matrices of a comparable

nature.

Berman(16) has quite rightly commented that discussion of

the physical relationships between an analytical model and test data

has been rare, and the objective of this thesis is to attain an

understanding of these relationships. The formulae quoted so far

are thus rederived within the framework of vector space theory in

order to demonstrate how nearly all the analysis proceeds in the

same fashion, with the same objectives. Reference (16) is rather

less optimistic than previous publications, and expresses concern

about some of the limitations that are to be expected. Although

it is wise to proceed with caution, the nature of these limitations

needs to be known. Not surprisingly, they are directly related to

the quality and quantity of data obtained and it is an objective

of this thesis to provide a feel for the sort of expectations one

may anticipate and the amount of useful information one may expect

- 32 -



to extract. Discussion of this nature has been restricted because

of its complexity and therefore the work presented herein has been

directed to a more philosophical nature, bearing in mind the situ-

ation that a practising  test engineer is likely to encounter,

rather than attempting a straightforward application, which may

not have been so useful without first understanding the problem at

hand.

One of the central issues that is encountered in this analy-

sis is the problem caused by the fact that measurements are not

usually made at all the degree-of-freedom points of the model.

This is rarely achievable in practice, since rotational degrees-of-

freedom often exist in the analysis and equipment to measure this

is not available to the experimentalist at present. A compatibil-

ity between a measuredmode and an analytical one is essential prior

to any analysis of the two, so clearly the problem is of key signi-

ficance and will deny any further development if adequate consider-

ation is not forthcoming. This fact, and its importance, is recog-

nised, so that consideration of this problem is set aside and con-

sidered separately in Chapter 6 and thoughts upon this topic by

others are reviewed in the next section.

1.6 Expansion of Measured Data

A central issue concerning the comparison of measured data

with analytical matrices is the question of compatibility. An FE

model, for example a dam structure, will have, say, 1500 nodes, 90%

of which will be internal and therefore inaccessible to measurement.

Furthermore,a modal test may be expected to identify no more than
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perhaps the first 8-10 modes at, at most, 50 measured positions.

In order to proceed with a comparison between these two sets of

data, the order of the two sets will. have to be equal. This invol-

ves either reducing the order of the analytical model or completing

the measured modes in some fashion so that a direct comparison may

ensue. In addition to the problem of the inability to measure

internal degrees-of-freedom, there is also the problem of assessing

the rotational motion at the external nodes. The current test

equipment has the capacity to measure translational motion only,

so we may see that much of the desired information concerning mea-

surement will be unavailable. This is in addition to the problem

of measuring the higher modes as previously mentioned. A reduction

in the size of the model is considered undesirable, since it is

advantageous to retain the form and structure of the model, so

attention is directed towards the expansion of the measured modes.

Consideration of this problem is given in Chapter 6, but is first

briefly reviewed.

In essence, two possible strategies exist for completing the

measured modes. Firstly, some sort of interpolation technique may

be adopted in order to approximate the unknown information, and

secondly the analytical model may again be used to provide the

information with some kind of expansion process. The theory of

splines(2,17,90) is now a well-developed technique for interpola-

tion purposes, and some efforts have been made to complete modesusing

these concepts. Done(33) discusses two-way silline curves for the ana-

lysis of the aeroelastic characteristics of aircraft. His atten-

tion is focused on the interpolation of node deflections which are

given at the nodes of a structural grid in order to obtain the
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desired information at the nodes of an aeroelastic grid. In general,

the two do not coincide so the problem discussed there is similar to

the one here, though it is usual for".dynamic  measurements to be made

at positions corresponding to a node in the F'E model. The use of

surface splines has also received attention(49,87) . However,

interpolation techniques have their limitations in any given cir-

cumstances since, although a useful tool, not a great deal of accu-

racy or reliability can be expected because the amount of known

information (as compared to the amount of unknown) is very sparse.

Large, unavoidable errors may emerge, especially with the higher,

more complex modes.

The use of the mathematical model to complete the mode is

often preferred in the literature and is, effectively, the same as

interpolating using the shape functions from which the model is

derived. In a rather different context, consideration at an early

stage was given to reducing the number of terms in an FE model to

reduce the computational difficulty experienced in determining the

lower eigenvectors and eigenvalues for the problem(47,56) . However,

the rapid increase in computer

not such a significant problem

effectively a static analysis,

the reduced case as

technology has meant that this is

as before. Guyan(47), in what is

proposes expressions for K and M in

KRED = Klr -
-1

K12K22K21

MDon = Ml1 + (K;1;KT2)TM22(K;:KT2)  - (K;:KTz)~M~~ - Mrz(K;:K%n&u

Using this idea, the reverse process may be implemented whereby the
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unknown degrees-of-freedom are obtained from the known ones using

this type of expression.

Berman and Nagy(15) y, in a paper addressing the problem, for-

mulate it as

and so obtain

X
2i

= - (K22 - 'iM22)-l(K21 - XiM,,)xli

If A.
1

= 0, then this is equivalent to the Guyan reduction relation-

ship. If Xi f 0 then this method corresponds to the dynamic con-

densation method outlined by Paz and others(7476.77.78) The.

drawback with the dynamic condensation/expansion method is that it

needs to be calculated for each natural frequency wi, and a costly

inversion is involved which, although the method may be accurate,

is also very slow. Proposals whereby this conversion may be avoided

are presented in Chapter 6 in order for the best full experimental

mode to be extracted from the information available.

1.7 Overview

The contents of this chapter have introduced the subject

matter of this thesis. It has identified two methods of approach

for the dynamic assessment of structures, and reviewed some of the

work that has emerged which attempts to bring the two together in

order to obtain the best approximation of the structure's dynamic

characteristics. Rarely, in the published work, is there any dis-

cussion upon the 'nature' of the problem, and confusion often pre-

vails as a result of the apparent lack of success of methods proposed.
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Chapter 1 has attempted to highlight some of the more significant

comments that have hitherto appeared in the literature, and to

outline the motivation of this area.of research.

Chapter 2 follows this up with a discussion upon the appli-

cation of the FE method and contains details of modal tests, both

investigations being carried out on a simple uniform beam in order

to display the verycontrastingnature of the information extracted

by each method. This is then extended to a consideration of the

contrasting stiffness/flexibility type of data under investigation

in each case.

The theory of vector spaces is introduced in Chapter 3 in

order to revisit the problem armed with these tools. A simple ana-

lysis of the single matrix case is included. Chapter 4 then goes

on to deal with the undamped problem, and this is then naturally

extended to the damped problem in Chapter 5. The difficulties

caused by not being able to measure at all the FE nodes are dis-

cussed in Chapter 6, as already mentioned, and Chapter 7 brings

the entire problem together with an overall assessment in the light

of the knowledge gained, including recommendations and proposals

for future work in this area.
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CHAPTER 2

NARY WORK

2.1 Preliminaries

Having now established the area of research, namely the

correlation of experimental measurements with theory, in the first

instance an examination of both techniques in more specific detail

is required. To this end, simple structures are investigated in

this chapter in order to obtain an awareness of the methods of app-

roach of both theoretical finite-element analysis and experimental

modal analysis. The contents of this chapter therefore contain the

details of the development of mathematical models describing simple

structures and some of the experimental techniques used for testing

such structures. The purpose of this is to obtain first-hand know-

ledge of both methods and allow some of the features that must be

considered during such processes to be highlighted. The chapter

builds to a general discussion upon the contrasting nature of the

two methods to establish some undeniable facts and focus the analy-

sis of the subsequent chapters on the difficulties arising from the

real world with its many observable phenomena.

2.2 Setting Up an FE Model

The work in this section will be concentrated on simple

specific examples. The motivation was to develop working mathema-

tical models with which the analysis of the ensuing chapters could

be investigated and tested. The structures studied are:

1. uniform cantilever;

2. uniform simply-supported beam;

3. simply-supported beam with non-proportional damping;

- 38 -
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and for the remainder of this thesis these will be known as Examples

1, 2 and 3. The majority of the text of this thesis concentrates

upon the detection of error and improvement of mathematical models

of structures, so to go hand-in-hand with these three models, alter-

native versions were developed which were known to be incorrect,

but were labelled 'the analytical model' , requiring improvement or

adjustment. Thus, for each of the three examples there exist two

versions of the mass matrix and two of the stiffness matrix. Those

which correctly describe the structure or the true FE matrices are

simply called M and K, and the incorrect analytical versions are

labelled Ma and Ka' Although experimental techniques receive att-

ention in this chapter, for the purposes of the development and

investigation of the error expressions and so on in the remainder

of this thesis it was considered prudent to adopt two F+E models,

one to represent the analytical environment and the other to rep-

resent the real world or that which would be measured experimen-

tally. Therefore the additional problems that are encountered when

making good measurements are avoided and the two separate problems

may be addressed individually. The theme of this thesis concen-

trates on the second part of this problem, or that which is concer-

ned with the course of action required when good experimental meas-

urements disagree with analytical predictions. That is not to say

that the first stage, the acquisition of good measurements, is in

any way a simple or trivial task. This problem has received wide-

spread attention and is addressed in this chapter to attempt to

provoke some constructive discussion upon experimental techniques

for people wishing to verify their mathematical model using modal

analysis.
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The 'two model' approach is defended with the argument that

it would be fruitless to devote time and effort to obtaining good

dynamic measurements of a structure if one were unaware of what to

do with them, once obtained. For example, it is often the case

that an experimentalist will measure complex modes of vibration

and yet the analysis in the literature is all too often based upon

real modes, so already the first dilemma is encountered. The analy-

sis of this thesis starts from a very simple position and attempts

to build and expand the theory in stages to arrive at a plausible

assessment, by adding in at each stage the increasing difficulties

that would be envisaged with the comparison of experiment with

theory. It is submitted that by the end of the thesis all the rele-

vant practical considerations have been covered and dealt with.

The use of two mathematical models, one for experiment and one for

analysis, is the only way effe~~~,~l 3 k do this. If the develop-

ment of a theory was attempted using a mathematical model and ex-

perimental measurements then one is simultaneously confronted with

the problems of curvefitting, interpolation, complex v normal modes,

damping estimates, normalisation and so on, at the onset. Each

problem in turn, if it is to be properly understood, needs to be

individually isolated and analysed.

Example 1 - Uniform Cantilever

Example 1 is a uniform cantilever that is split up into five

finite elements (see Diagram 2.1). For each of the elements, four

shape functions were used which possess either unit displacement

or unit gradient at either end of the element and 0 displacement

or gradient at the ends other than this (see Table 2.1). The
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expressions for mass and stiffness are well established and given

by References (71) and (110)

k
ij = I ET(y)$(y)Jljl(y)dy

m. . =
=J I

m(Y)Qi(Y>tij(Y)dY

Performing these integrations for each pair of shape functions

results in the production of the element stiffness and mass matri-

ces, thus

Ke =g[l2 6JI -12 61

I 6g 4g2 -69, 21L2

-12 -6JL 12 -62

6JL Z2 -6J?, 4R2

Me .z A420 156 22 54 -13JI.

2211 4!z2 1351 -3112

54 13k 156 -22

_-1311 -3k2 -2211 4fi2

For convenience, II, m and ET are

matrices are then assembled over

conditions are introduced at x =

set equal to 1. These elemental

the five elements and boundary

0 (that is, the first two rows

and columns are eliminated) to give the two global matrices given

by Figure 2.1. The modes and frequencies of this system are then

evaluated by solving the equation

Kx. = AiMxi
1

where Xi = w.2
1

The analytical model for this example is taken as a cantilever with
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the second element having half the mass per unit length and a

quarter of the second moment of area of the original (see Diagram

2.2). For this element, the element mass and stiffness matrices

are given by

Ke = 3.0 1.5

1.5 1.0

-3.0 -1.5

L 1.5 0.5

and Me = 78 11

11 2

27 6.5

_-6.5 -1.5

-
-3.0 1.5

-1.5 0.5

3.0 -1.5

-1.5 1.0

27 -6.5
1

6.5 -1.5'
I

78 -11
I

-11 2 I

and the global mass and stiffness matrices are given in Figure 2.2.

Example 2 - Uniform Simply-Supported Beam

The same beam element was used in this example, the only

differences being that, for convenience, the length of the beam

was set to 3.1415926 (TI) and different boundary conditions were

imposed (i.e. translational coordinates at each end eliminated -

see Diagram 2.3). The mass and stiffness matrices for this are

given by Figure 2.3. This has the convenience of ease of compari-

son with the theoretical modes which are sine functions with eigen-

frequencies wi2 (i.e. 1, 16, 81, 256, 625 etc.). The modes and

ised so that

TQ M@ = I.

It is important

eigenvectors in

to realise at this stage

Figure 2.4 correspond to
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dimensional eigenvalue problem. They do not all describe the first

10 modes of a simply-supported beam (i.e. the first 10 sine func-

tions), but are merely approximations. However, the approximation

is generally considered to be good for the first n/2 modes when

arranged in order of ascending frequency, hence the appeal of the

FE method when continuous analytical solutions are not available,

which is the usual practical situation. The analytical model for

this example was taken as a simply-supported beam with the first

element having half the mass and half the second moment of area

(see Diagram 2.4). The analytical matrices are given in Figure 2.5.

Example 3 - Simply-Supported Beam with Non-Proportional Damping

In this example a non-proportional viscous damping matrix

is introduced where the damping is set at 1% of the stiffness in

the first element and zero everywhere else. The damping matrix is

given in Figure 2.6. The eigenvectors and eigenvalues are now com-

plex and are normalised so that

-QTMlpA + AaTMO + QTC@ = 2A

for reasons expanded upon later. The solution to this problem is

given in Figures 2.7 and 2.8.

The analytical model was taken to be the same as in Example

2, with the analytical damping matrix being assumed to be zero (as

would be the most probable situation). One may observe that damp-

ing is relatively small in the first mode and increases for the

higher modes. The real part of the complex mode approximates the

normal mode for the lower modes which is an observation often made

in practical situations (see Appendix 1 for a comparison with esti-

mates obtained using a perturbation analysis). The interpretation
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of the real and imaginary parts of the eigenvalues of this problem

are given later on in this chapter. These three models are used

throughout this thesis for preliminary investigations into the

construction of incomplete spatial matrices, error analysis and so

on.

2.3 Experimental Modal Analysis

Two approaches for modal analysis are generally adopted.

They involve exciting the structure at either one point or many

points. Both methods are briefly discussed here to outline some

of the more important points that need to be considered when con-

ducting a modal test.

2.3(a) Multiple Input Testing

Multiple input testing has been in existence for a longer

time than its counterpart, single input. Its use was developed

rapidly in the mid-60s, principally in the aircraft industry, when

the use of computer power was not as readily accessible as it is

today. Broadly speaking, multiple input testing involves the att-

achment of several electromagnetic exciters to the structure under

investigation, with the objective of exciting one of the normal

modes of that structure by tuning the various force levels of each

exciter, until a state of resonance is reached. The mode is then

measured and the process is repeated for another mode of vibration.

Early work on this technique (31) was perhaps a little ambitious,

with attempts to automate this procedure using an analogue machine,

so that the force level of each exciter was controlled automatically,

such that once the process was set in motion the machine would tune
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itself in to a state where it was exciting a normal mode and thus

relieve the engineer of any manual adjustments. This machine was

given the acronym GRAMPA (Ground Resonance Automatic Multipoint

Apparatus). The technique envisaged a fully-automated system which

would rapidly converge to a normal mode and hence reduce the experi-

mental time and the need for expertise in the tedious manual adjust-

ment of exciter force levels. Despite this, it achieved limited

success and was hampered by a continual divergence away from the

frequency of the mode being excited.

The consequence of this was to adopt a compromise situation

where only one exciter is controlled automatically which monitors

the frequency of vibration, but the remaining exciters are adjusted

manually until all are tuned into the normal mode. This version

was given

At

the acronym MAMA (Manual Automatic Multipoint Apparatus) (101) .

Bristol University the need to develop MAMA by incorpora-

ting computer technology was identified and an updated version,

MAMA-2, was constructed which utilised a NASCOM micro-computer for

control of the hardware. MAMA-2 utilises up to five electromagnetic

exciters which are attached to the structure at five different

locations. The principal exciter, usually fixed at a position of

large amplitude of the mode being considered, is set in motion at

the frequency of that mode. An accelerometer is fixed near to the

principal exciter and a resonance is said to have been established

when a quadrature phase shift has been observed between the force

level and the accelerometer. The phase angle is monitored on the

MAMA VDU. Automatic frequency

the frequency

to maintain a

of the principal

quadrature phase

- 45 -
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other exciters are set in motion. The force levels of these exci-

ters are then adjusted in turn until a normal mode is being excited.

The involvement of the author on the MAMA project was to develop

software for the automatic frequency control, to conduct some pre-

liminary tests, and to produce documentation for its use, a copy

of which appears as Appendix 2. Some useful subsequent results

were obtained using MAMA-2 for the dynamic analysis of concrete

arch dams(lo3).

Further work on MAMA-2 was not pursued for the purposes of

this thesis. This is because the introduction of computer techno-

logy for use with this type of equipment has not greatly enhanced

its potential but highlighted the inherent difficulties of this

technique. The principal drawback with this type of approach is

that some preconception of the mode shape is required before an

analysis can begin. This is a potentially dangerous situation and

the user must exercise extreme caution and judgement to ensure that

he does not impose his premeditated opinion of what the mode shape

should look like upon his interpretation of the observations that

are made. No phase variation on the force input is currently

available on MAMA-2. This means that real modes are assumed from

the onset and no facility for accommodating complex modes is avail-

able. In real life this situation is reversed. There is invariably

a change of phase between different positions, sometimes small if

damping is light. Therefore a phase variation of as much as ~10%

from quadrature is considered acceptable when exciting a normal

mode and damping is light. Already we may observe that an approxi-

mate confirmation of a preconceived mode shape is all that may be

expected. In addition, setting up of the apparatus is time-consuming
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and tricky. The positioning of the exciters needs to be considered

in advance and careful attachment by suspending the exciters is

required. There is no facility for'automating the setting up of

apparatus at present, so these difficulties are inevitably going

to continue to present themselves. On top of this, some authors (55)

express concern that prolonged excitation of one mode may actually

result in structural damage, the very thing that it is desirable

to prevent.

Multipoint excitation has not benefitted greatly from

advances in computer technology and at present, in the opinion of

the author, fails to keep pace with the rapid advances being made

with the single point excitation method, which is much easier to

set up and implement.

2.3(b) Single Point Excitation

Single point excitation techniques have generally undergone

significant development in recent years due to the fact that they

more readily lend themselves to processing using digital computer

technology. The method assumes a linear structure so that to

establish a picture of the dynamic behaviour of a structure either

an accelerometer measuring response may be fixed and the excitation

position moved to different positions on the structure, or the ex-

citation position is fixed and the accelerometer moved to different

positions. It is more usual for the latter to be adopted, though

some caution is needed to ensure that the excitation position does

not coincide with a node of one of the principal modes of vibration.

The response of the structure is almost invariably measured

with the use of accelerometers, but the excitation may be produced
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with either one electromagnetic exciter or an instrumental hammer.

When conducting a modal test, perhaps the single most important
.I:

consideration is repeatability. If the equipment can be dismantled,

calibration checks made and reassmebled with a repeat of the test

producing the same measurements, then the confidence in the pro-

cedure and subsequent analysis will grow. It is rarely wasted

effort, therefore, to ensure that the apparatus has been set up

sensibly. The attachment of the equipment is an important consid-

eration. Accelerometers may be attached using a variety of tech-

niques ranging from hand-held to threaded screws. Clearly, the

more firmly they are attached, the more confidence will be given to

the reliability of the readings. Electromagnetic exciters, if they

are to be used, are best attached via a thin rod which has the

advantage of being very stiff in one direction (that of the excita-

tion) and flexible in other directions, thereby ensuring that the

exciter does not impose unwanted additional reactionary forces which

would contaminate the readings. The length of the attachment rod is

important: not too long so as to introduce the dynamic behaviour of

the rod into the system, butnot so short that the required flexi-

bility in perpendicular directions is not attained. Once the corr-

ect attachment has been chosen and implemented, the sort of signal

that may be imposed may vary from sine-sweep to periodic random,

to random - depending on the test situation and the type of infor-

mation sought.

The general procedure for setting up apparatus, exciting

the structure and dealing with the sorts of problems that need to

be identified (e.g. aliasing,

It is not the purpose of this
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any detail since they are now well understood and hardware has

emerged which analyses the data with these problems overcome (e.g.

by introducing a windowing technique). The most significant out-

standing difficulty appears to be the assessment of modal parameters

once frequency response function data has been obtained. That is,

the development of model 2 once model 1 has been established. This

is essentially a curvefitting problem, and is necessary if good

modal parameters are to be extracted for the subsequent comparison

with a theoretical model. Therefore the approach that has been

adopted and implemented at Bristol is described here, and this is

then supplemented with examples using an impact testing transient

technique which will be described at that stage.

2.4 Development of the Curvefitting Program

If we consider, for the present, a one-degree-of-freedom

system, then the equation of motion describing that system is given

by

z(t) + c%(t) + kX(t) = F(t).

If we take the Laplace transform of this equation and assume zero

initial displacement and velocity, we have

(X2m + AC + k)x(X) = f(A).

That is

(A2 + 2urw1x + &x(h) = f(X)

where 2u,wr = ;

and w: = % .

The transfer function is then given by



r

r

where h is complex and equal to, say, 5 + iw. We may solve

x2 + 2urwrx + wf = 0

to get h = - lJlW1 +. or-. ;I.

So, H(X) may be factorised  about its poles to give

H(X) =
a' + ia" a' _ ia"

(A + Ulwl - iwr47-Z) + (A + l.rrwl + wrA73)

Therefore

1 = (a' + ia")(E + iw + Prwr + iwrm)

+ (a' - ia")(C + iw + Drwr - iwrC- uf>
and taking real and imaginary

1 = a'5 + a'urwr - a"w

+ a"w + a"wrm

parts gives

+ a"wrm + a'5 + a'urwr

so 1 = 2(a'S + a'l.lrwr + a"wrm )

and 0 = a"5 + a"Prwr + a'w - a'wrm + a'w

+ a'wrm

so 0 I a'w * a' =

- a"5 - a"Llrwr

0

and a" = -1
2wA - UT

This is the transfer function for a one-degree-of-freedom system.

It is usual for the frequency response function only to be measured,

which is simply the transfer function measured along the frequency

axis. h is replaced with iQj where Q.
J

is the jth measured frequency
A

(j = 1, . . . M), thus

a' + ia" I

H(inj) = (iQj + ulol  - iwlm)  + (iQj + uYwr
_ ia”

+ iwrm)

We may also observe that the real and imaginary parts of the fre-

quency response function are given by

(4 - Q?)
Re(H(iRj)) = (Wf - $2;) +  4ufW$R3 j = 1, . . . i
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_ 2Ul(&Q.  &
and 1

lm(H(iRj)) = (uf - Qf) +  c!&lJfufQ;-  j  = 1, . . . i

-t.1 2p

These are shown, for a one-degree-of-freedom system, in Figure 2.9..:
In a similar fashion, an expression for the frequency response

function may be obtained for a multiple degree of freedom system

(see Section 5.11) to give

H(iQj) = a_k$++ j=l,...M1
j-

where ak = residue of kth mode;

hk = - uk% +i%fi -$ ;

9c = undamped natural frequency of kth mode;

Uk = % critical damping of kth mode.

The purpose of the curvefit is to give the best parameters for ak

and Ak so that the mathematical expression given here approximates

the measured frequency response function in a minimum least squares

sense. For the single degree-of-freedom example we let

E = 5 (H . - H(iQj>>
j=l '

; where H. =
J

measured frequency response at frequency Q.;
J

H(iQj) = analytical frequency response at frequency R. with
J

unknown parameters a', a", Ur, WI.

--.i
I The mathematical parameters need to be set so as to make

1
J 11E112= <E,E>
'.; Ar:

.3
= y {(H . - H(inj))(T - H(iQj))}

j=l J

a minimum. A Newton-Raphson iteration scheme was developed to

perform this minimisation. It possesses quadratic convergence

with a sequence of linear equations. So,
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%E ,E>
aa -~ (Hj

aH(iR.)

j=l
- H(inj>> aa l + (5

aH(iR.)
- H(iQj)) ao '

= f(a), say, .:

where Q = a', a", p', p"

and p' = - 1.11w1, p" = or-.

The iteration scheme to solve f(a) = 0 is given as

{D(f(a(P)))}(6(P))  = - f(a(P)),

{6(P)) YE (a(p+l)} - {a(P)).

So, if we have initial estimates of the unknown parameter vector

ICr(O)}

{6(O))'

a better approximation is given by {a(')I + {S(O)) where

is the solution of the above equation. The D denotes par-

tial differentiation with respect to the CI parameters. {D(f(a(P)))l

is therefore a matrix, known as the Jacobian matrix. The scheme

may readily be extended to many degrees-of-freedom with the number

of equations to solve being four times the number of modes present.

Hence, the formal differentiation may

tion procedure applied to provide the

Ak given a0 and X0.

be carried out and the itera-

best approximation to ak and

This procedure was programmed for preliminary tests on the

Bristol University mainframe computer. In order to determine its

usefulness, some artificial one-degree-of-freedom test data L-WC

generated with which to try the program. Only an initial estimate

of the pole was required since the initial estimate for the residue

could be found by solving the linear least squares problem with the

pole initial estimate. For the test data the following parameters

were set:

LJl = 0.03, Wl = 4

so A = -0.12 + 3.99819953.
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and a' + ia" = 0 - 0.1250562i.

The program was run using differing initial estimates and the

results are given in Table 2.2. As,ran be seen from this, conver-

gence is obtained if

-1 < DAMPING ESTIMATE C -0.07

3.93 < NATURAL FREQUENCY ESTIMATE < 4.07

That is, from this test the indication is that an initial estimate

error of about 40% is good enough for the damping and an error of

not more than 1.75% is required for the frequency. This was con-

sidered acceptable since it is usual for the frequency estimate to

be obtained quite accurately from a modal test.

The Hilbert transform says that the real and imaginary parts

of an analytical function contain the same information (one being

derivable from the other using the transform) so a further test was

conducted to identify whether MIN1Re(H)12,  MINIIm(H)12 or MIN(/Re(H)12

+ IIm(H)12) hs ow any signs of differing stability criteria. The

outcome of this test is summarised in Tables 2.2, 2.3 and 2.4.

This showed that using MINIIm(H)12 was perhaps not as advisable as

the other two possibilities. It was decided to use MIN(Re(H)j2

since this reduced the amount of data that needed to be processed

by a half.

In the final preliminary test some artificial noise was

introduced on the data with the use of a pseudo-random 'variable.

2% and 5% noise was introduced to simulate actual measurements.

The outcome of this test is given in Tables 2.5 and 2.6. This

showed that the introduction of noise did not affect the quality

of the convergence, but only increased the number of iterations

required for convergence to be obtained.
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Two-degree-of-freedom datawero also generated to investigate

the usefulness of the algorithm for identifying close peaks. In

general, the outcome was encouraging, provided that the initial nat-

ural frequency estimates were fairly good.

A further development of the curvefitting program was the

inclusion of a NAG(112) linear least squares algorithm, which uses

an improved version of Newton-Raphson iteration. The standard

version may run into difficulties with poor initial estimates, espe-

cially if the Jacobian matrix (D(f(a(P)))) is rank deficient or the

sum of squares is not small near the solution. The modified tech-

nique is based on the singular value decomposition of the Jacobian

matrix("), thus

J = D(f(a(P)>) = U S VTII0
where S I= diag[Sr . . . S4n]l is a matrix of singular values of J

with Si+l 5 Si. U and V are (ix;) and (4nx4n) orthonormal matrices.

S is then partitioned to provide an iterative algorithm for the

solution. The use of this routine removes the ill-conditioned

nature of J. The introduction of this improved version of the

curvefit permitted a relaxing of the fairly severe initial estimate

restriction on the natural frequency and allowed a more reliable

degree of convergence. The inclusion of the NAG routine was also

useful insofar as it provides information as to the quality of the

curvefit, indicating whether convergence has been obtained, or how

close the final values are to a minimum, or whether divergence has

occurred, thus allowing the user the option of rerunning the pro-

gram until a satisfactory solution is found.
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Two programs were completed and written in PASCAL on the

Bristol University mainframe computer (Multics), using the FORTRAN

NAG library subroutines. They were'.called SDOF, a single-degree-

of-freedom program for well-separated peaks with a fast run time,

and MDOF, a multi-degree-of-freedom curvefit program for multiple

closely-spaced peaks with a slower run time.

2.5 Experimental Impact Testing

In order to assess the sort of problems likely to be encoun-

tered in practice, a cantilever was tested to gain an insight into

experimental techniques and to allow an application of the curve-

fitting program to actual measured data. The cantilever that was

examined possessed the characteristics itemised in Table 2.7. It

was clamped to a large concrete block with four beavy-duty screws

running through a thick steel plate, as shown in Diagram 2.5. Five

perspex blocks, for attachment of the accelerometers, were glued on

to the cantilever. The accelerometers could then be attached using

a threaded screw. The apparatus was set up as in Diagram 2.6. The

instrumented hammer contained a force transducer from which the

input was measured. Impacts were made at the tip of the cantilever

and the accelerometer was moved to each of the five locations in

turn. The data was processed on a Solartron 1200 signal processor,

with several averages being taken, and care was taken to ensure a

good coherence (a measure of repeatability, ranging from 0 to 1

with 1 being the optimum value). Due to data transfer difficulties

at the time of the test (which have subsequently been overcome),

the measurements were read off the signal processor (after it had

calculated the real part of the frequency response function) and
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are given in Tables 2.8 and 2.9, for the first two modes which

were being investigated. These numbers were then fed into the

Bristol University mainframe computer for further analysis using

the curvefitting software. The results using SDOF for the two

well-spaced modes are given in Figure 2.10, and the magnitude val-

ues are plotted for comparison with the analytical modes predicted

from an FE model in Figure 2.11. As can be seen, in general a good

agreement is observed, with the errors being introduced most prob-

ably because the necessary boundary conditions could not be entirely

satisfied. The analytical frequencies are in good agreement with

those measured, but there is no analytical damping value with

which to compare the measured ones, which were found to be about

0.2% of critic&l  in both modes.

For further tests, the cantilever was damaged by sawing a

quite severe notch in it in the second element from the fixed end.

The test was then repeated, and the measurements obtained from the

signal processor for the damaged cantilever are given in Tables

2.10 and 2.11, and the curvefit  results in Figure 2.12. Figures

2.13 and 2.14 show how the eigenvalues have moved as a result of

the introduction of the notch. The most significant observation

is the increase in damping from 0.2% to 0.64% in the first mode

and 0.47% in the second mode. However, although an increase in

damping is indicative that damage has occurred, it is a global par-

ameter, and no information about the location of the damage can be

expected with this observation. The first two modes are replotted

in Figures 2.15 and 2.16, and it can be seen that the first mode

has hardly changed, but the second mode has become much more flex-

ible near the fixed end.
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The objectives of the cantilever experiments were as foll-

ows:

(a) to demonstrate the effectiveness of the curvefit  program

for establishing measured modes and frequencies;

(b) to illustrate the need for a comprehensive theory for the

detection of errors or poor modelling;

(c> to show that damping values are important and are sensitive

to structural changes or inaccuracies, and that any theory should

cater for this, while acknowledging that currently no entirely

satisfactory analytical method exists for assessing damping pro-

perties.

The experiments with a simple cantilever had indicated the

potential use of the curvefitting program. Its implementation for

larger, more realistic cases would relieve the experimental engineer

of a subjective assessment of the frequency response function data

to try to approximate the modal parameters. The motivation was

identified, therefore, for a further development of the program

for use on the PDP 11/34 which is a mini-computer used in the Civil

Engineering Department for processing and analysis of dynamic test

measurements. This involved an entire rewriting of the program

from PASCAL to FORTRAN, a loading of the program and associated NAG

software onto the PDP 11/34, and an allocation of sufficient compu-

ter memory organisation to allow the program to run. An inevitable

consequence of this, because of the length of the NAG routines, was

to use single precision instead of double precision. The direct

loading of data from

developed at Bristol

Engineering Research

the Solartron 1200 signal processor has been

University (by members of the Earthquake

Group), so a potentially efficient and direct
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procedure for extracting modal properties from dynamic tests is

beginning to emerge, which may either be used in the laboratory

on models, with the equipment directly at hand, or information may

be stored on magnetic tape for subsequent analysis on return to

the laboratory. The user manual for the PDP 11/34 curvefit pro-

gram is given in Appendix 3, with a listing of the two programs

in Appendices 4 and 5.

To investigate this, an analysis of some of the transient

data collected recently from a small suspension bridge (Dolarue)

in North Wales by members of the Earthquake Engineering Research

Group was conducted. As an illustrative example of the curvefitt-

ing program's use for the purposes of this thesis, the first two

lateral modes were investigated once the data had been transferred

onto the PDP 11/34. Data was collected from 9 positions along the

bridge. The quality of the data was assessed, and a note made of

the modes visible in each channel (see Figure 2.17). SDOF was then

used to curvefit each channel for each mode present and the res-

ults are given in Tables 2.12 and 2.13. The results of the curve-

fit produced estimates of the first two lateral modes of the struc-

ture, given by the following two complex vectors:

Ll = -1

0.11 - 0.003i

0.15 + 0.03i

0.18 + 0.12i

0.18 + 0.08i

0.125 + 0.025i

0.134 - 0.043i

0.0072 - O.O007i,
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0.15 - 0.04i

0.34 - 0.02i

0.20 - O.OOi

0

-0.082 + 0.053i

-0.284 + 0.157i

-0.246 + 0.173i

-0.005 + O.l73i,
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The missing elements are from data channels where there was excess-

ive noise so as to make any analysis unreliable. The natural fre-

quencies and damping estimates of these first two modes were ex-

tracted by taking a weighted mean of the estimates, weighted by

the subjective assessment of the quality of the data as given in

Figure 2.17. They are

01 = 1.69Hz Pl = 0.60%

02 = 6.98Hz u2 = 0.69%

ILlI and IL21 were calculated for plotting and are given as

ILli=

0.11

0.15

0.22

0.20

0.13

0.14

0

lL21=

0.16

0.34

0.20

0

-0.10

-0.32

-0.25

-0.17

These modes are plotted in Figure 2.18. As may be observed, the

modes illustrate that the bridge is essentially behaving as a

simply-supported beam in the lateral direction. Some variation

of the global parameters was observed, especially with damping.

This is, to some extent, to be expected, as the mathematical model

itself is an idealistic simplification, and the best option is to

acknowledge this fact and extract the best parameters which most

closely reflect the behaviour of the structure. The analysis of

the suspension bridge has been encouraging, with the potential

advantages of employing a curvefit program demonstrated.
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2.6 Comparison of FE Method and Modal Analysis

Two differing methods, both encompassing the same objectives,

have been discussed hitherto. 0neLf.s an analytical technique, the

other an experimental technique. The validity of both methods

hinges upon whether they predict the same dynamic response, in

terms of the predominant mode shapes and frequencies. If a contra-

diction in the results of the two methods is observed, something

is wrong with the overall assessment. A calculation of the struc-

ture's dynamic response or internal stresses and so on can no lon-

ger be considered as good enough if the modes and frequencies pre-

dicted by the model used are not directly backed up and verified

with a modal test on the structure itself. All too often this

agreement is lacking, and the approach is then either to adopt some

haphazard trial-and-error adjustment of the mathematical model to

improve it, which usually results in a worsening of the situation,

or to dismiss the warnings brought to light by a modal test as

being due to 'experimental error'. As experimental techniques and

expertise grow, neither of these arguments is satisfactory. Some

thought must be directed towards reconciling these difficulties

with a more formal approach that may be implemented on a more rou-

tine basis. No ideal solution to this problem exists. In this

thesis a 'best solution given the circumstances' is presented. It

is possible to extract useful information, but not without first

identifying the contrasting nature of the two methods and the

inherent difficulties associated with a marriage of the two.

If we compare the FE method and modal analysis, the first

observation is that the mathematical model is built up in terms

of stiffne'ss, where the stiffness is defined as
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kij = force at node i due to unit displacement at node

j, all other displacements being zero.

On the other hand, a modal analysis-type of measurement is of a

flexibility nature, where the flexibility is defined as

fij = displacement of node i due to force at node j, all

other forces being zero.

To measure stiffness we need to apply forces at all the nodes of

the structure to make displacements zero, which is practically

impossible. To measure flexibility we need to apply zero forces

at other nodes which is easy - and what is done in practice. So

in a modal test we are measuring dynamic flexibilities which are,

from the definition, independent of the number of degrees of free-

dom. The stiffness matrix is not, since all the degrees of freedom

included need to be constrained to be zero. If we consider the

usual dynamic FE model, we have

Kxi = liMxi

and each interpolation function

of the form

has the same degree of complexity

therefore the stiffness matrix is banded and the order of numbers

anywhere in the matrix is the same; that is, it is of uniform com-

plexity. Therefore FE stiffnesses are of the order of complexity

of the highest mode. A summation of the form
c

; XiXiT
i=l

will thus give small contributions if in ascending order of modes.
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This infers that what we measure in a modal test are not necessarily

those vectors which dominate the form of the mathematical model.

The lower eigenvectors are of principal interest, but the higher

analytical eigenvectors dictate the outward appearance of the mathe-

matical model. This will inevitably restrict the verification or

correction of mass and stiffness parameters using experimental

modal analysis. A theory that is built up needs to account for

this and take the necessary precautionary steps. The text of this

thesis uses vector space theory to construct a plausible approach,

with the initial inevitable limitations being acknowledged and

accepted.

2.7 Some Uses of the Mathematical Model

If agreement between the FE analysis and modal test is

reached, then the mathematical model is considered to be a good

representation of the structure and can be used for further analy-

sis. This is an extremely desirable state of affairs, since the

principal modes of vibration will be known, at given frequencies

with possibly an additional knowledge of damping estimates. The

distribution of the structure in terms of mass and stiffness will

also be knowrr,so an accurate assessment will have been made.

The mathematical model may be used to calculate the dynamic

response of a structure to a given excitation. The two methods

in general use are direct integration methods where the equations

of motion are integrated using a numerical step-by-step procedure,

and the mode superposition method, where the motion is assumed to

be a linear combination of the principal modes of vibration and

the problem is decoupled into n separate linear differential
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equations by use of a modal transformation. Of the direct inte-

gration methods, the central difference method (which is essenti-

ally an explicit integration procedure), is perhaps the best-known,

but other popular methods exist which use an implicit integration

technique such as the Houbolt, Wilson 8, and Newmark B methods.

The methods are all useful, and are well-documented (11) and there-

fore not reiterated here. Some research has been conducted (106)

in order to establish which method is most accurate with the general

conclusion being that if accuracy is a priority and the quantity of

data is small, the mode superposition method is preferred; but if

the quantity of data is large, the Newmark B method is most suit-

able.

Once the dynamic response of the structure has been calcula-

ted, the maximum displacements and internal stresses may be assessed.

Areas of high displacement and excessive stress may be identified

and corrected, not necessarily with the addition of extra mass or

stiffer material at that point, but perhaps with a redistribution

of mass that will reduce dynamic movement. An assessment of the

durability of the structure may be made, and its lifespan when

subjected to constant loading may be forecast. Alternatively, its

performance may be predicted in an earthquake situation with vio-

lent external loading, and so on. If the exact form of loading is

not known, for example wind loading, a non-deterministic solution

may be sought. In general, a good mathematical model opens the

door to a confident assessment of the structure's likely dynamic

performance, resulting in longer-lasting, safer and cheaper struc-

tures being constructed.
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2.0 Sensitivity Analysis

If we have an incorrect model and are trying to correct it

by changing some of the parameters,;"or  have a correct model with

which we wish to estimate the effect of parameter changes, then

it is possible to estimate the change in frequencies and mode

shapes as a result of changes in mass and stiffness using a sensi-

tivity first order analysis. We have

(Mhi - K)xi = 8.

If the mass and stiffness distributions are altered so that M

becomes M + 6M and K becomes K + 6K then we have

f(M + ‘%$ + 6$) - (K + SK)](xi + 6x.) = 6
1

which, to first order, gives

(M’i - K)Sxi + (6MX. - GK)xi + MGXixi = 9.
1

If we premultiply by xiT then we have

bXi = - xiT(&MA i - 6K)xi

giving the change in natural frequency of mode i due to the change

in the mass and stiffness distributions. Also, if we premultiply

by xjT (j f i) we have

xjT(M$ - K)Gxi + xjT(6MX.
1

- GK)xi = 0

and if we now assume that

6x =i ,E, 'kxk
kfi

then

,P, vkXjT(M”i - K)xk + xjT(dMh. - GK)xi  = 0
1

kfi
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'j('i - Aj) + xjT(6Mh.
1

- 6K)xi  = 0 ;

that is

x.~(&M$ - &K)xi 'Y.
'j = (Xi - Aj)

S O 6x =
n x.(GMXi - &K)xi

i 1
j=l ("i - Xj) 'j

jfl

which gives an approximation to the change in mode i due to a change

in mass and stiffness.

2.9 Overview

Both the FE method and modal analysis have been investigated

in some detail in this chapter. Simple structures have been used

with which to outline the

nature

two to

of the

sis of

of the two methods

show some signs of

basics of both methods. The contrasting

has been observed and the need for the

agreement identified. An illustration

application of these methods has set the scene for the analy-

the following chapters which attempt to bring together the

two methods to permit a more unified approach where each method

is contributing valid information as to the dynamic performance

of the structure under investigation.
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Diagram 2.1

Correct 'Measured' Cantilever

Diagram 2.2

Incorrect ~Analytical~ Cantilever
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Diagram 2.1

Correct 'Measured' Cantilever

Diagram 2.2

Incorrect ~Analytical~ Cantilever
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Diagram 2.3

Correct 'Measured' Beam

Diagram 2.4

Incorrect 'Anabtical' Beam
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Heavy Duty Screws Steel Slab

c d

Direction
Cantilever

Diagram 2.5

of Motion
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Perspex Block Hammer Force Transducer

Accelerometer
//

.

Diagram 2.6
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Damping Frequency Co&.erge nce ? Number of
Estimate Estimate Iterations

-5 3.990 z

-2 3.998 A

-1.5 3.998 *

-1 3.998 J 8

-0.5 3.998 J 6

-0.1 3.998 J 4

-0.07 3.998 J 6

-0.06 3.998 %

-0.05 3.998 x

0.01 3.998 )<

0.5 3.998 x

-0.12 3.9 %

- 0.12 3.92-0.12 3.93 ; 7

-0.12 3.95 J 6

-0.12 4.05 / 6

-0.12 4.07 J 0

-0.12 4.08 x

-0.12 4.1 8
-0.12 4 ,/ 3

-1 3.93 J 0

-1 4.07 J 7

- 0.07 3.93 x

-0.07 4.07 x

Table 2.2: Converfzence Test Using MIN(i RE(H)I'+~Dl(ii)lL)
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D-ping ~w=CY Cm@noe ? lArmber of
Estimate Estimate Itemtions

-1 3.998 x

-0.5 3.998 %

a.1 3.998 J 5

-0.06 3.998 J 6

-0.05 3.998 J 7

-0.04 3.998 J 6

a.03 3.0998 x

-0.01 3.998 x
-0.12 3.92 x
-0.12 3.93 J 8

-0.12 4 J 3

a.12 4.07 J 8

-0.12 4.08 3
-0.07 3.93 J 10

- 0.07 4.07 X

Table 2.3: Convergenoe Test Using MIN IRe(H)]L
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Damping

I

Frequency

Estimate Estimate

3.998

3.9%

-0.07 3 . 9 9 8

- 0 . 0 6 3 . 9 9 8

-0.05 3 . 9 9 8

-0.12 3 . 9 3

-0.12 3 . 9 7

-0.12 3.98

-0.12 4

-0.12 4.02

-0.12 4.05

I

Convergence?
Number of
Iterations

Table 2.4: Convergence Test Using PIIN 1 li~(Ii)\~
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-0.06 3.998 x

-0.07 3.998 J

-0.12 4 J

-0.2 3.998 J

-0.8 3.998 \/

-1 3.998 J

-1.2 3.998 8

-1.5 3.998 x

-0.12 3.92 x

-0.12 3.93 J

- 0.12 4.07 J

-0.12 4.09 x

Damping
Estimate

Frequency
Estimate

Number of

Table 2.5: Convergence Test with 2% Noise

Added
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r.i .

r

r

I

r

I

I

r.

T

1-:

Damping Frequency Convergence ? Number of
Estimate Estimate Iterations

-0.1 4 J 7

-1 3.998 J 11

- 1 . 2 3.998 x

-0.07 3.998 J Q

-0 .06 3.998

-0 .12 4.07 :: 10

-0.12 4.08 x

-0 .12 3.93 J 10

-0.12 3.92 )<
-0 .12 4 J 6

Table 2.6 Convergence Test  with 5 $ I?oise

Added

- 75 -

i

I

I
r



Total Length of Cantilever

Density of Steel

Cross-Sectional Area

Young's Modulus (Edynamic)

Second Moment of Area

EI

Mass/Unit Length

First two Analytical Frequencies :-

0.545m

7850 kg/m3

0.000256m2

0.168825~10~~  N/m2

5.46133x10-'

922 Nm2

2.0096 kg/m

m4

Ol fl= 40.35 Hz

w2 f2= 252.88 Hz

Table 2.7: Cantilever Parameters
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PEAK;
COHERENCE :

VALUE:

FREQ.

38.96

39.12

39.4

39.6

39.8

39.88

39.92

39.96

40.04

40.08

40.12

40.16

40.2

40.24

40.28

40.32

40.36

40.4

40.44

40.48

40.52

40.56

40.76

40.88

41.4

CHANl cHAN2 cHAN4 cHAN5

40.44 40.36
0.945 0.98

82.969 46.811

40.4
0.991; V
39.489

40.44 40.48
0.993 0.984

28.936 13.876

-4.9471 -5.0647 -2.8054 -1.4097 -0.47234

-5.6487 -5.8991 -3.124 -1.624 -0.53952

-7.5447 -7.6189 -i.2896 -2.1398 -0.69049

-9.6938 -9.478 -5.5237 -2.7256 -0.86591

-13.225 -11.718 -7.4224 -3.7499 -1.1631

-14.806 -12.537 -8.4223 -4.353 -1.3345

-16.277 -12.861 -9.0396 -4.7249 -1.4412

-17.407 -12.987 -9.6196 -5.1765 -1.5669

-20.2 -12.472 -10.737 -6.1646 -1.8961

-21.779 -11.513 -11.338 -6.7466 -2.0985

-23.657 -9.4229 -11.382 -7.3716 -2.3577

-24.603 -6.'5182 -10.869 -8.0276 -2.6876

-24.532 -1.6036 -9.5708 -8.481 -3.0793

-22.277 5.9795 -6.6433 -8.543 -3.5393

-17.336 16.164 -1.5438 -7.7363 -4.0598

-6.6777 29.838 7.584 -5.0461 -4.3911

13.112 41.256 14.305 0.9599 -3.8501

47.672 41.359 34.107 8.8345 -2.5746

82.238 16.202 27.051 24.381 9.88382

25.53 8.2891 8.0098 15.303 10.68

19.718 14.403 10.933 6.5811 6.0942

21.797 11.802 9.97855 7.3408 3.9404

12.773 8.644 6.3667 4.323 1.9454

10.49 7.4102 5.2927 3.4679 1.4599

5.8464 4.6501 3.0514 1.8376 0.71487

Table 2.8: Mode 1, Undamaged Cantilever
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PEAK:

COHERENCE:

VALL'E:

FREQ.

247.6

250.9

251.9

253.2

253.5

253.6

253.7

253.8

253.9

254

254.1

254.2

254.3

254.4

254.5

254.6

254.7

254.8

254.9

255

255.1

255.2

255.3

255.4

255.5

255.6

CnANl cHAN2 cHAN4 CHANS

254.4 (254.5) 254.5

0.961 (0.805) D.953

21.048 (0.879) 12.027

254.8 255.2

0.9621 0.978

18.768 16.04

-0.9661 1.0276

-1.3497 1.9476

-1.184 2.5487

2.2014 3.6652

4.896 3.6934

6.2554 3.5735

7.667 3.3463

9.4824 3.0592

11.56 2.5466

13.564 1.7685

15.494 0.79926

17.781 -0.5261:

19.561 -1.8453

20.591 -3.7168

20.723 -5.4993

19.666 -7.1399

17.399 -8.7072

14.234 -9.1982

11.485 -9.0404

9.4878 -8.1436

8.4658 -7.0012

7.8342 -6.2095

7.1919 -5.7288

6.6667 -5.3416

6.2209 -4.9771

5.8003 -4.6284

Table 2.9: Mode 2, Undamaged Cantilever - 78 -
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0.16492

0.23122

0.25914

0.43575

0.50119

0.55936

0.62256

0.59705

0.65585

0.71732

0.7735

0.80829

0.83804

0.83502

0.81613

0.74387

0.58768

0.38391

0.15859

0.24712

0.45612

0.31898

0.27951

0.25172

0.20411

0.34639

1.1816

2.2123

2.9696

4.741

5.4153

5.5806

5.6294

5.8052

5.833

5.6453

5.1963

4.6572

3.4939

1.8231

-0.37421

-3.3022

-6.8184

-10341

-12.956

-14.158

-13.676

-11.923

-10.199

-9.2983

-8.4604

-7.7852

0.55869

1.055

1.3674

2.1814

2.5197

2.6515

2.7815

2.9302

3.1338

3.3359

3.5619

3.7667

3.9728

4.2349

4.3291

4.3142

4.1738

3.433

2.2074

-0.15563

-3.6637

-8.6073

-11.472

-12.437

-11.072

-9.2148



PEAK:

COHERENCE:
VALUE:

FREQ.

33.2

35.2

36.3

37.3

37.9

38

38.2

38.4

38.5

38.6

38.7

38.8

38.9

39

39.1

39.2

39.3

39.4

39.5

39.6

39.7

39.8

$0

kO.9

$1.8

$4.6

CHANl cHAN2 cHAN4 CHANS

39.3 39.2 39.2 39.4 39.6

0.983 0.9716 ;;. 9538 0.979 0.96307
30.451 20.625 15.673 10.264 6.3083

-1.1442 -0.9873 -0.6535 -0.3377 -0.13404

-1.9073 -1.6942 -1.1128 -0.56015 -0.22077

-3.209 -2.8994 -1.9062 -0.93527 -0.35872

-4.5706 -4.1399 -2.757 -1.3606 -0.49023

-6.8576 -5.3784 -4.1084 -2.051 -0.6918

-7.4512 -6.2449 .-4.405 -2.2113 -0.74823

-8.7441 -7.031 -5.0742 -2.6661 -0.87317

-10.123 -7.3528 -5.6831 -3.1171 -0.99075

-10.525 -7.1108 -5.8137 -3.3247 -1.0748

-10.592 -6.3193 -5.5642 -3.4504 -1.1773

-10.02 -4.6541 -4.8015 -3.5121 -1.2703

-8.6577 -2.0813 -3.5011 -3.3517 -1.3492

-6.1904 1.7095 -1.4089 -2.9252 -1.4483.

-2.2609 6.4409 1.4785 -2.1515 -1.5474

3.5518 11.533 5.1602 -0.89761 -1.6217

11.23 16.052 9.2822 1.0089 -1.567

19.851 18.143 12.766 3.7203 -1.1978

26.74 15.647 13.542 6.9675 -0.3291

25.145 8.1118 9.9473 9.5845 1.4704

8.6528 2.0551 3.0889 7.8262 4.531

5.1616 7.4436 3.9548 1.0778 4.9365

8.8013 5.6843 4.7986 3.1932 1.532

7.5613 5.0286 3.9302 2.4734 1.3961

4.2227 3.1454 2.3604 1.4158 0.65842

3.0021 2.3497 1.7095 4.0009 0.45059

1.6877 1.3943 0.99072 0.55722 0.24804

Table 2.10: Mode 1, Damaged Cantilever - 79 -
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PEAK:

COHERENCE:

VALUE:

FREQ.

249.6 249.4 249.4 250 251.2
0.92102 0.90329 ;4.93878 0.9934 0.93964

9.1452 0.45525 4.978 9.8443 6.4326

240.4 -1.0365 0.024813 8.498793 0.81329 0.3373

242.6 -0.076561 0.025161 0.68118 1.1332 0.47319

244.6 0.1319 0.05896 0.86719 1.5684 0.65204

246 0.60767 0.11713 0.87778 2.0747 0.83609

246.8 1.3035 0.18723 0.63422 2.4191 0.98251

248 3.7332 0.3607 -0.73953 2.7981 1.2312

248.2 4.3962 0.3736 -1.1533 2.7538 1.2822

248.4 5.176 0.39963 -1.6592 2.6699 1.3109

248.6 5.9575 0.42499 -2.1558 2.3994 1.3205

248.8 6.7893 0.43054 -2.7191 1.9709 1.3331

249 7.6611 0.42439 -3.2581 1.3763 1.2919

249.2 8.4131 0.41939 -3.7515 9.59247 1.2129

249.4 8.8911 0.40229 -4.1768 -0.46367 1.1171

249.6 9.1362 0.35121 -4.3486 -1.8209 0.96353

249.8 8.9385 0.26375 -4.4749 -3.5394 0.84262

250 8.3047 0.13882 -4.1274 -4.9265 0.26497

250.2 7.3555 0.21502 -3.7231 -6.2852 -0.29849

250.4 6.228 0.18322 -3.3143 -7.375 -1.074

250.6 4.9958 0.1804 -2.9569 -7.7791 -1.9302

250.8 4.1002 0.18816 -2.6589 -7.6062 -2.8901

251 3.4355 0.1738 -2.4766 -6.9553 -3.8437

251.2 3.0641 0.15743 -2.335 -6.1116 -4.668

251.4 2.79 0.15678 -2.1849 -5.353 -5.3008

251.6 2.5588 0.15932 -2.0603 -4.8208 -5.5872

253.8 1.2623 0.11879 -1.2756 -2.5385 -2.1213

259.2 0.60873 0.10083 -0.6904 -1.2298 -0.91141

CHANL cHAN2 &AN3 cHAN4 CHAN5

Table 2.11: Mode 2, Damaged Cantilever - 80 -



1 -I T -- -I--- I -l 7

UNDAMPED
NATURAL
FREOUENCY

REAL PART IMAG. PART
ERROR

OF RESIDUE OF RESIDUE

DAMPING

FACTOR

(-0.1)

-0 .023

- 0 . 0 1 6

-0 .0022

- 0 . 0 1 7

-0 .018

-0 .0012

-0 .0012

-0 .0015

CHANNEL

B (6.35)
I

31.69) (1.70) (0.11) (0.02) 7

1.695 0.11 -0 .003 3

1.70 0.149
I

0.03 3

1.683 0 . 0 6 0 .04 2

9.

. J

1.67 0 .18 0.12 3
I

I F
I I I

I II G 1.05 I 1.68 1.68 0 .18 0 .08 3

1.70 0.125 0.025 20.071 1.703iH

0.071I 1.717 1.717 0.1338 -0 .043 3

1.700 0.0072 -0.0007 2I 1.700I J

Table 2.12: SDOF Curvefit  Results (1L)



I

X CRITICAL DAMPED UNDAMPED REAL PART IMAG PART
FACTOR NATURAL NATURAL ERROR

FREQUENCY FREQUENCY OF RESIDUE OF RESIDUE

CHANNEL DAMPING
FACTOR

B

C -0.09 1.31 6.96 6.96 0.04 -0.15 0
I I I I I

I

tz
I

D -0.051 0.72 I 7.00
I

7.00 I 0.02 I -0.34

E -0.056 0.80 7.02 7.02 0.00 -0.20 3

F I 1 I J I
G -0.034 I 6.97 I 6.97 I -0.053

I
0.082 8

H -0.069 0.99 6.98 ’ 6.98 : -0.157 0.284 6

I -0.034 I 7.01 I -0.073
I

0.2467.01

J -0.029 0.43 6.89 6.89 -0.0173 -0.005 8

Table 2.13: SDOF Curvefit Results (2L)
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t
3 1 2 . 0 0 . 0 5 4 . 0 - 1 3 . 0 0 . 0

0 . 0 9 . 0 1 3 . 0 - 3 . 0 0 . 0
5 4 . 0 1 3 . 0 3 1 2 . 0 0 . 0 5 4 . 0

- 1 3 . 0 - 3 . 0 0 . 0 8 . 0 1 3 . 0
M = 0 . 0 0 . 0 5 4 . 0 1 3 . 0 3 1 2 . 0

0 . 0 0 . 0 - 1 3 . 0 - 3 . 0 0 . 0
0 . 0 0.0 0 . 0 0 . 0 5 4 . 0
0 . 0 0 . 0 0 . 0 0 . 0 - 1 3 . 0
0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

\ 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

’
2 4 . 0 0 . 0 - 1 2 . 0 8 . 0 0 . 0

0 . 0 8 . 0 - 8 . 0 2 . 0 0 . 0
- 1 2 . 0 - 8 . 0 2 4 . 0 0 . 0 - 1 2 . 0

8 . 0 2 . 0 0 . 0 8 . 0 - 8 . 0
K * 0 . 0 0 . 0 -12; 0 - 8 . 0 2 4 . 0

0 . 0 0 . 0 8 . 0 2 . 0 0 . 0
0 . 0 0 . 0 0 . 0 0 . 0 - 1 2 . 0
0 . 0 0 . 0 0 . 0 0 . 0 8 . 0
0.0 0.0 0.0 0.0 0.0

\ 0.0 0 . 0 0 . 0 0 . 0 0 . 0
f I

Figure 2.1: 'Measured' Cantilever Mass and Stiffness

Matrices



.

‘234.0 - 1 1 . 0 2 7 . 0 - 8 . 5 0 . 0  0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
- 1 1 . 0 6 . 0 6 . 5 - 1 . 5 0.0 0.0 0 . 0 0 . 0 0 . 0 0 . 0

2 7 . 0 6 . 5 2 3 4 . 0 1 1 . 0 54.0-13.0 0 . 0 0;o 0 . 0 0 . 0
- 6 . 5 - 1 . 5 1 7 . 0 6 . 0 1 3 . 0  - 3 . 0 0 . 0 0 . 0 0 . 0 0 . 0

WI- 0 . 0 0 . 0 5 4 . 0 1 3 . 0 312.0  0 . 0 s4.0 - 1 3 . 0 0 . 0 0 . 0
0 . 0 0 . 0 - 1 3 . 0 - 3 . 0 0.0 8.0 1 3 . 0 - 3 . 0 0 . 0 0 . 0
0 . 0 0 . 0 0 . 0 0 . 0 5 4 . 0  1 3 . 0 3 1 2 . 0 0 . 0 5 4 . 0 - 1 3 . 0
0 . 0 0 . 0 0 . 0 0 . 0 - 1 3 . 0  - 3 . 0 0 0 8 . 0 1 3 . 0 - 3 . 0
0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 S C . 0 1 3 . 0 1 5 6 . 0 - 2 2 . 0
0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 - 1 3 . 0 - 3 . 0 - 2 2 . 0 4 . 0 ,

e . ._
1 5 . 0 -4 .  !5 - 3 . 0 1 . 5 0.0 0.0 0 . 0 0 . 0 0 . 0 0 . 0 J
- 4 . 5 s.0 - 1 . 5 0 . 5 0.0 0.0 0 . 0 0 . 0 0 . 0 0 . 0
- 3 . 0 - 1 . 5 1 5 . 0 4 . 5 - 1 2 . 0  6 . 0 0 . 0 0 . 0 0 . 0 0 . 0

1 . 5 0 . 5 4 . 5 5 . 0 - 6 . 0  2 . 0 0 . 0 0 . 0 0 . 0 0 . 0
%= 0 . 0 0 . 0 - 1 2 . 0 - 6 . 0 2 4 . 0  0 . 0 - 1 2 . 0 6 . 0 0 . 0 0 . 0

0 . 0 0 . 0 6 . 0 2 . 0 0.0 8.0 - 6 . 0 2 . 0 0 . 0 0 . 0
0 . 0 0 . 0 0 . 0 0 . 0 - 1 2 . 0  - 6 . 0 2 4 . 0 0 . 0 - 1 2 . 0 6 . 0
0 . 0 0 . 0 0 . 0 0 . 0 6.0 2.0 0 . 0 6 . 0 - 6 . 0 2 . 0
0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 - 1 2 . 0 - 6 . 0 1 2 . 0 - 6 . 0
0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 6 . 0 2 . 0 - 6 . 0 4 . 0 ,

F i g u r e  2 . 2 : ‘Analyt ica l ! Cantilever Mass and

St i f fness  Matr ices



MASS MATRIX

-0.002 0.012-0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000'
0.012 0.467 0.000 d.O81-0.012 0.000 0.000 0.000 0.000 0.000
-0.002 0.000 0.005 0.012-0.002 0.000 0.000 0.000 0.000 0.000
0.000 0.081 0.012 0.467 0.000 0.081-0.012 0.000 0.000 0.000
0.000-0.012-0.002 0.000 0.005 0.012-0.002 0.000 0.000 0.000
0.000 0.000 0.000 0.081 0.012 0.467 0.000 0.081-0.012 0.000
0.000 0.000 0.000-0.012-0.002 0.000 0.005 0.012-0.002 0.000
0.000 0.000 0.000 0.000 0.000 0.081 0.012 0.467 0.000-0.012
0.000 0.000 0.000 0.000 0.000-0.012-0.002 0.000 0.005-0.002

_o.ooo 0.000 0.000 0.000 0.000 0.000 0.000-0.012-0.002 0.002,

._
J

STIFFNESS MATRIX
.
6.37 -15.20

-15.20 96.75
3.18 0.00
0.00 -48.38
0.00 15.20
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

_ 0.00 0.00L

3.18 0.00 0.00 0.00 0.00 0.00 0.00
0.00 -48.38 15.20 0.00 0.00 0.00 0.00

12.73 -15.20 3.18 0.00 0.00 0.00 0.00
-15.20 96.75 0.00 -48.38 15.20 0.00 0.00
3.18 0.00 12.73 -15.20 3.18 0.00 0.00
0.00 -48.38 -15.20 96.75 0.00 -48.38 15.20
0.00 15.20 3.18 0.00 12.73 -15.20 3.18
0.00 0.00 0.00 -48.38 -15.20 96.75 0.00
0.00 0.00 0.00 15.20 3.18 0.00 12.73
0.00 0.00 0.00 0.00 0.00 15.20 3.18

Figure 2.3: Correct (Measured) Mass and Stiffness Matrices of a Uniform Simply-Supported

Beam
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EIGENVALUES

1.00021
16.05306
82.29164

267.93070
769.94872

1604.32752
3401.01224
6860.57149

12427.70447
16168.92315

Eigenvector number.. 1 Eigenvector number.. 3

0.79805530
0.46908518

-2.42965342

0.64564030
-0.77117777

0.75899576
0.75080420

0.24661265
0.47661407

0.75899576
1.96563090

-0.24661265
0.47661407

0.46908518
-1.96563090

-0.64564030
. -0.77117777

-0.79805530
-0.75080420
2.42965342

Eigenvector number.. 2 Eigenvector number.. 4

-1.60101553 3.29392705
-0.76135436 0.49465689
-0.49474101 -2.66484296
-0.47054287 -0.80037166
1.29524877 1.01787944
0.47054287 0.80037166
1.29524877 1.01787944
0.76135436 -0.49465689

-0.49474101 -2.66484296
,-1.60101553 3.29392705

Figure 2.4: Correct (Measured) Modes and Freauencies of a

Simply Supported Uniform Beam
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Eigenvector number.. 5 Eigenvector number.. 8

-4.91819602 -12.33800175
0.00000000 0.63554701
4.91819602 -3.81265222

-0.00000000 0.39278965
-4.91819602 9.98165310
0.00000000 -0.39278965
4.91819602 9.98165310
-0.00000000 -0.63554701
-4.91819602 -3.81265222
4.91819602 -12.33800175

Eigenvector number.. 6 Eigenvector number.. 9

6.81740864 -16.24231073
-0.45028622 0.25314256
-5.51539945 -13.14030541
0.72857840 0.40959327
2.10669513 -5.01915004

-0.72857840 0.40959327
2.10669513 5.01915004
0.45028622 0.25314256
-5.51539945 13.14030541
6.81740864 16.24231073

Eigenvector number.. 7 Eigenvector number.. 10

-9.08402648 13.01232356
0.72247637 0.00000000
2.80711856 13.01232356

-0.44651495 0.00000000
7.34913180 13.01232356
-0.44651495 0.00000000
-7.34913180 13.01232356
0.72247637 0.00000000

-2.80711856 13.01232356
9.08402648 13.01232356

Figure 2.4 (cont.)
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I MASS MATRIX

0.001 0.006-0.001 0.000 0.000 0.000 0.000 0.000 0.000 o.ooo-
0.006 0.350-0.010 0.081-0.006 0.000 0.000 0.000 0.000 0.000
-0.001-0.010 0.004 0.012-0.001-0.010 0.000 0.000 0.000 0.000
0.000 0.081 0.012 0.467 0.000 0.081-0.012 0.000 0.000 0.000
0.000-0.012-0.002 0.000 0.005 0.012-0.002 0.000 0.000 0.000
0.000 0.000 0.000 0.081 0.012 0.467 0.000 0.081-0.012 0.000
0.000 0.000 0.000-0.012-0.002 0.000 0.005 0.012-0.002 0.000
0.000 0.000 0.000 0.000 0.000 0.081 0.012 0.467 0.000-0.012
0.000 0.000 0.000 0.000 0.000-0.012-0.002 0.000 0.005-0.002
0.000 0.000 0.000 0.000 0.000 0.000 0.000-0.012-0.002 0.002.

I .
I STtPPNESS MATRtX ._J

-3.18 -7.60 1.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-7.60 72.56 -7.60 -48.38 7.60 0.00 0.00 0.00 0.00 0.00
1.59 -7.60 9.55 -15.20 1.59 0.00 0.00 0.00 0.00 0.00
0.00 -48.38 -15.20 96.75 0.00 -48.38 15.20 0.00 0.00 0.00
0.00 15.20 3.18 0.00 12.73 -15.20 3.18 0.00 0.00 0.00
0.00 0.00 0.00 -48.38 -15.20 96.75 0.00 -48.38 15.20 0.00
0.00 0.00 0.00 15.20 3.18 0.00 12.73 -15.20 3.18 0.00
0.00 0.00 0.00 0.00 0.00 -48.38 -15.20 96.75 0.00 15.20
0.00 0.00 0.00 0.00 0.00 15.20 3.18 0.00 12.73 3.18
0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.20 3.18 6.37

Figure 2.5: Incorrect (Analyt~,,l)  Mass and Stiffness Matrices of a Uniform Simply-Supported

Beam
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DAMPING MATRIX

0.064 -0.152 0.032 0.000 0.000 0.000 0.000 0.000 0.000
-0.152 0.484 -0.152 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.032 -0.152 0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
o.ooo- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 2.6: Damping Matrix for a Uniform Simply-Supported Beam with

Non-Proportional Damping



EGENVALUES

- 0 . 0 0 0 2 4 +I 1.000109
- 0 . 0 0 0 2 4 +i - 1 . 0 0 0 1 0 9
- 0 . 0 1 2 2 9 +i 4 . 0 0 7 0 3 6
- 0 . 0 1 2 2 9 +I - 4 . 0 0 7 0 3 6
- 0 . 0 9 4 6 6 +I 9 . 0 7 6 6 2 6
- 0 . 0 9 4 6 6 +i - 9 . 0 7 6 6 2 6
- 0 . 3 0 3 9 4 +I 1 6 . 3 8 4 1 7 1
- 0 . 3 0 3 9 4 +i - 1 6 . 3 8 4 1 7 1

- 0 . 7 6 8 0 2 7 +I 2 7 . 7 9 0 9 9 7
- 0 . 7 6 8 0 2 7 +i - 2 7 . 7 9 0 9 9 7
- 1 . 3 3 3 6 2 1 +I 4 0 . 1 4 6 0 5 9
-‘I. 3 3 3 6 2 1 +i - 4 0 . 1 4 6 0 5 9
- 2 . 2 9 9 6 2 6 +I 5 9 . 2 1 7 9 2 9
- 2 . 2 9 9 6 2 6 +I - 5 9 . 2 1 7 9 2 9
- 4 . 6 1 7 1 1 0 +I 8 7 . 7 2 3 8 2 6
- 4 . 6 1 7 1 1 0 +I - 8 7 . 7 2 3 8 2 6

- 4 0 . 9 1 6 4 4 6 +I 9 9 . 5 7 7 7 7 4
- 4 0 . 9  1 6 4 4 6 4 - 9 9 . 5 7 7 7 7 4

- 1 . 5 7 0 9 3 9 +I 1 2 1 . 3 5 7 0 8 0
- 1 . 5 7 0 9 3 9 +i - 1 2 1 . 3 5 7 0 8 0

Figure 2.7: Eigenvalues of Uniform Simply Supported

Beam with Non-Proportional Damping
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i-

!-
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r

r.

r

r

E I G E N V E C T O R  1 E I G E N V E C T O R 5

0 . 7 9 8 0 4 8 2 8  +I - 0 . 0 0 0 8 8 4 5 2 . 4 2 8 7 4 3 2 7 +I - 0 . 0 8 3 9 2 6 7
0 . 4 6 9 0 8 3 8 0  + I - 0 . 0 0 0 2 3 4 2 ‘? +I0 . 7 7 2 1 5 4 3 8 0 . 0 0 5 0 0 0 6 7
0 . 6 4 5 6 4 6 5 9  + I 0.00058926 - 0 . 7 4 8 6 3 7 4 9 + I 0 . 1 1 4 5 3 1 3 9
0 . 7 5 8 9 9 7 4 2  + I 0 . 0 0 0 0 7 5 0 4 - 0 . 4 7 6 3 3 0 4 +i 0 . 0 1 2 8 6 0 4 9
0 . 2 4 6 6 1 6 4 1  + I 0 . 0 0 0 3 7 2 6 9 - 1 . 9 6 9 7 5 7 3 8  + I - 0 . 0 6 4 4 6 4 8
0 . 7 5 8 9 9 8 7 1  +I 0 . 0 0 0 2 1 4 9 9 - 0 . 4 7 7 6 5 3 5  + I - 0 . 0 1 7 4 4 4 5
- 0 . 2 4 6 6 1 2 3  + I 0 . 0 0 0 0 6 7 6 0 1 . 9 6 6 6 7 7 4 6 + I 0 . 0 0 1 4 2 3 1 8
0 . 4 6 9 0 8 7 3 3  + I 0 . 0 0 0 1 6 8 2 5 0 . 7 7 1 6 1 5 8 7 + I 0 . 0 0 4 7 2 7 9 8

- 0 . 6 4 5 6 4 2 9 5  + I - 0 . 0 0 0 1 9 8 3 0 . 7 5 2 4 9 9 3 2 +I 0 . 0 3 3 3 8 6 3 2
- 0 . 7 9 8 0 5 9 1 1  + I - 0 . 0 0 0 3 0 3 3 - 2 . 4 3 1 8 8 8 4 1  +I - 0 . 0 3 5 0 2 0 7

E I G E N V E C T O R  2 E I G E N V E C T O R 6

0 . 7 9 8 0 4 8 2 8  + I 0 . 0 0 0 8 8 4 5 4 2 . 4 2 8 7 4 3 2 7 + I 0 . 0 6 3 9 2 6 7  1
0 . 4 6 9 0 8 3 6 0  +I 0 . 0 0 0 2 3 4 2 8 0 . 7 7 2 1 5 4 3 8  + I - 0 . 0 0 5 0 0 0 6
0 . 6 4 5 6 4 6 5 9  + I - 0 . 0 0 0 5 8 9 2 - 0 . 7 4 6 6 3 7 4 9  + I - 0 . 1 1 4 5 3 1 3
0 . 7 5 8 9 9 7 4 2  +I - 0 . 0 0 0 0 7 5 0 - 0 . 4 7 6 3 3 0 4  +I - 0 . 0 1 2 8 8 0 4
0 . 2 4 6 6 1 6 4 1  +I - 0 . 0 0 0 3 7 2 8 - 1 . 9 6 9 7 5 7 3 8  + I 0 . 0 6 4 4 6 4 8 2
0 . 7 5 8 9 9 8 7 1  + i - 0 . 0 0 0 2 1 4 9 - 0 . 4 7 7 6 5 3 5  + I 0 . 0 7  7 4 4 4 5 6
- 0 . 2 4 6 6 1 2 3  +I - 0 . 0 0 0 0 6 7 6 1 . 9 6 8 6 7 7 4 6  + I - 0 . 0 0 1 4 2 3 1
0 . 4 6 9 0 8 7 3 3  + I - 0 . 0 0 0 1 6 8 2 0 . 7 7 1 6 1 5 8 7  +I - 0 . 0 0 4 7 2 7 9
0 . 6 4 5 6 4 2 9 5  + I 0 . 0 0 0 1 9 8 3 3 0 . 7 5 2 4 9 9 3 2  + I - 0 . 0 3 3 3 8 6 3
0 . 7 9 8 0 5 9 1 1  +I 0 . 0 0 0 3 0 3 3 8 - 2 . 4 3 1 8 8 8 4 1  + I 0 . 0 3 5 0 2 0 7 5

E I G E N V E C T O R  3 E I G E N V E C T O R 7

1 . 6 0 0 6 3 2 2 2  + I 0 . 0 1 6 9 4 9 2 6 - 3 . 2 9 4 3 6 5 6 6  +I 0 . 1 1 6 7 5 7 1 3
0.761347i3  +I 0 . 0 0 2 3 4 4 0 2 - 0 . 4 9 8 6 7 8 3  + I - 0 . 0 4 1 9 0 7 7
- 0 . 4 9 5 3 8 0 4  + I - 0 . 0 2 0 0 9 4 5 2 . 6 6 8 2 9 0 0 7  +I - 0 . 2 2 5 2 3 8 3
- 0 . 4 7 0 7 1 2 9  + i - 0 . 0 0 4 4 5 7 6 0 . 8 0 3 4 2 1 9 2  +I 0 . 0 2 8 6 7 9 4 1
1 . 2 9 5 3 2 7 9 1  +I - 0 . 0 0 0 8 1 4 8 - 1 . 0 1 3 3 6 2 3 6  + I 0 . 1 8 4 8 3 9 8 8
0 . 4 7 0 5 5 4 6 0  +I - 0 . 0 0 0 6 7 4 2 - 0 . 8 0 0 9 6 7 8 6  +I 0 . 0 0 2 6 3 2 8 2
1 . 2 9 5 6 1 7 7 9  + I 0 . 0 0 9 4 4 3 6 7 - 1 . 0 2 5 2 0 9 4 8  + I - 0 . 1 6 0 0 4 6 3
0 . 7 6 1 4 9 5 9 6  + I 0 . 0 0 3 0 8 6 3 7 0 . 4 9 4 2 9 9 9 0  +I - 0 . 0 0 9 5 4 0 9
- 0 . 4 9 4 7 6 5 2  + I 0 . 0 0 0 3 6 5 5 0 2 . 6 6 9 4 4 3 9 8  + I 0 . 0 9 2 1 9 7 2 4
1 . 6 0 1 3 5 2 8 4  + I - 0 . 0 0 7 8 8 3 5 - 3 . 2 9 6 7 3 6 3 8  +I - 0 . 0 6 0 3 3 4 1

E I G E N V E C T O R  4 E I G E N V E C T O R 8

1 . 6 0 0 6 3 2 2 2  + I - 0 . 0 1 6 9 4 9 2 - 3 . 2 9 4 3 6 5 6 6  +I - 0 . 1 1 6 7 5 7 1
0 . 7 6 1 3 4 7 1 3  + I - 0 . 0 0 2 3 4 4 0 - 0 . 4 9 8 6 7 8 3  + I 0 . 0 4 1 9 0 7 7 5
- 0 . 4 9 5 3 8 0 4  + I 0 . 0 2 0 0 9 4 5 0 2 . 6 6 8 2 9 0 0 7  + I 0 . 2 2 5 2 3 8 3 3
- 0 . 4 7 0 7 1 2 9  +I 0 . 0 0 4 4 5 7 6 0 0 . 8 0 3 4 2 1 9 2  +I - 0 . 0 2 8 6 7 9 4
1 . 2 9 5 3 2 7 9 1  + I 0 . 0 0 0 8 1 4 8 0 - 1 . 0 1 3 3 6 2 3 6  + i - 0 . 1 8 4 8 3 9 8
0 . 4 7 0 5 5 4 6 0  +I 0 . 0 0 0 6 7 4 2 4 - 0 . 8 0 0 9 6 7 8 8  + i - 0 . 0 0 2 6 3 2 6
1 . 2 9 5 6 1 7 7 9  +I - 0 . 0 0 9 4 4 3 6 - 1 . 0 2 5 2 0 9 4 8  + I 0 . 1 6 0 0 4 6 3 1
0 . 7 6 1 4 9 5 9 6  + I - 0 . 0 0 3 0 8 6 3 0 . 4 9 4 2 9 9 9 0  +I 0 . 0 0 9 5 4 0 9 4
- 0 . 4 9 4 7 6 5 2  + I - 0 . 0 0 0 3 6 5 5 2 . 6 6 9 4 4 3 9 8  +I - 0 . 0 9 2 1 9 7 2
1 . 6 0 1 3 5 2 8 4  + I 0 . 0 0 7 8 8 3 5 8 - 3 . 2 9 6 7 3 6 3 8  + I 0 . 0 6 0 3 3 4 1 8

Figure 2.8: Eigenvectors of Uniform Simply-Supported

Beam with Non-Proportional Damping
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C

.

E I G E N V E C T O R  9

- 4 . 8 6 3 0 9 6 1 7 +I 0 . 3 9  1 5 6 0 6 7
- 0 . 0 0 7 3 7 1 4 +I - 0 . 0 9 2 9 5 4 0
4 . 9 9 5 2 4 6 9 8 +i - 0 . 1 6 7 1 1 3 4
0 . 0 0 4  1 6 4 5 5 +i 0 . 1 0 0 0 9 3 9 8

- 4 . 9 6 3 1 0 1 1 4 +i - 0 . 1 3 1 8 5 1 0
- 0 . 0 0 2 4 4 2  1 +I - 0 . 0 6 5 5 0 8 9
4 . 9 4 4 5 4 3 2 2 +I 0 . 1 9 4 2 9 5 6 6
0 . 0 0 1 1 2 7 0 7 +i 0 . 0 3 2 7 7 5 3 8

- 4 . 9 3 3 2 7 2 9 9 +I - 0 . 2 3 7 1 5 1 3
4 . 9 2 9 4 8 4 8 8 +i 0 . 2 5  1 2 8 6 4 2

E I G E N V E C T O R  1 0

- 4 . 8 6 3 0 9 6 1 7 +i - 0 . 3 9 1 5 6 0 6
- 0 . 0 0 7 3 7  1 4 +i 0 . 0 9 2 9 5 4 0 6
4 . 9 9 5 2 4 6 9 8 +i 0 . 1 6 7 1 1 3 4 5
0 . 0 0 4 1 6 4 5 5 +i - 0 . 1 0 0 0 9 3 9

- 4 . 9 6 3 1 0 1 1 4 +i 0 . 1 3 1 8 5 1 0 0
- 0 . 0 0 2 4 4 2  1 +I 0 . 0 6 5 5 0 8 9 9
4 * 9 4 4 5 4 3 2 2 +i - 0 . 1 9 4 2 9 5 6
0 . 0 0 1 1 2 7 0 7 +I - 0 . 0 3 2 7 7 5 3

-4 * 9332 7299 +I 0 . 2 3 7 1 5 1 3 6
4 . 9 2 9 4 8 4 8 8 +i - 0 . 2 5 1 2 8 6 4

E I G E N V E C T O R  1 1

- 6 . 4 9 8 8 4 6 4 7 +I 0 . 6 2 9 2 1 8 6 1
0 . 4 4 2 3 8 0 8 5 4 - 0 . 0 9 7 9 0 8 5
5 . 8 0 3 9 9 4 0 7 +I 0 . 7 9 6 2 7 1 4 6

- 0 . 7 4 0 9 0 6 5 0 +i 0 . 0 3 5 9 4 3 4 1
.2.21029950 +I - 1 . 1 1 3 7 7 1 0 7 ~
0 . 7 4 0 2 3 4 6 6 +I 0 . 0 3 0 1 5 8 3 9

- 2 . 0 9 4 8 3 6 3 0 +I 0 . 6 5 2 2 4 6 9 1
- 0 . 4 5 6 8 7 4 3 +i - 0 . 0 3 6 6 1 7 2
5 . 5 5 3 9 8 9 7 0 +I - 0 . 0 7 8 5 1 9 7
.6.87061007 +I - 0 . 1 7 2 9 0 1 8

E I G E N V E C T O R 12

- 6 . 4 9 8 8 4 6 4 7  +I - 0 . 6 2 9 2 1 8 6 1
0 . 4 4 2 3 8 0 8 5  +I 0 . 0 9 7 9 0 8 5 4
5 . 8 0 3 9 9 4 0 7  +I - 0 . 7 9 6 2 7 1 4 6

- 0 . 7 4 0 9 0 6 5 0  +I - 0 . 0 3 5 9 4 3 4
- 2 . 2 1 0 2 9 9 5 0  + I 1 . 1 1 3 7 7 1 0 7
0 . 7 4 0 2 3 4 6 6  +I - 0 . 0 3 0 1 5 8 3

- 2 . 0 9 4 8 3 6 3 0  + i - 0 . 6 5 2 2 4 6 9  1
- 0 . 4 5 6 8 7 4 3  +I 0 . 0 3 6 6 1 7 2 9
5 . 5 5 3 9 8 9 7 0  +I 0 . 0 7 8 5 1 9 7 0

- 6 . 8 7 0 6 1 0 0 7  +I * 0 . 1 7 2 9 0 1 8 9

E I G E N V E C T O R  1 3

7 . 7 0 8 2 3 0 3 9  +I - 2 . 1 4 1 3 4 3 7 8
- 0 . 7 0 8 9 1 5 7 8  + I 0 . 0 6 9 9 3 7 6 5
- 4 . 1 3 8 7 4 0 8 1  +I - 2 . 5 1 2 8 5 7 7 4

0 . 5 2 1 1 8 3 5 2  + I 0 . 1 2 6 7 9 4 8 0
- 7 . 4 1 8 6 6 3 1 1  +I 0 . 8 8 2 9 6 4 0 7

0 . 4 3 0 0 7 4 5 8  + I - 0 . 0 8 3 6 1 6 8
8 . 0 2 3 6 1 6 0 6  +I 1 . 1 0 9 9 3 8 0 1

- 0 . 7 5 3 4 7 2 7 9  + i - 0 . 0 2 4 0 8 7 3
2 . 7 2 4 9 6 8 1 4  +I - 0 . 4 7 5 0 2 6 3

- 9 . 5 0 6 4 6 6 6 2  + i - 0 . 4 8 8 9 8 6 0

E I G E N V E C T O R  1 4

7 . 7 0 8 2 3 0 3 9  + i 2 . 1 4 1 3 4 3 7 8
- 0 . 7 0 8 9 1 5 7 8  + I - 0 . 0 6 9 9 3 7 6
- 4 . 1 3 8 7 4 0 8 1  +i 2 . 5 1 2 8 5 7 7 4

0 . 5 2 1 1 8 3 5 2  +I - 0 . 1 2 6 7 9 4 8
- 7 . 4 1 8 6 6 3 1 1  +I - 0 . 8 8 2 9 6 4 0 7

0 . 4 3 0 0 7 4 5 8  +I 0 . 0 8 3 6 1 6 8 8
8 . 0 2 3 6 1 6 0 6  + i - 1 . 1 0 9 9 3 8 0 1

- 0 . 7 5 3 4 7 2 7 9  + i 0 . 0 2 4 0 8 7 3 3
2 . 7 2 4 9 6 8 1 4  + I 0 . 4 7 5 0 2 8 3 3

- 9 . 5 0 6 4 6 6 6 2  + I 0 . 4 8 8 9 8 8 0 6

E I G E N V E C T O R  1 5

7 . 4 5 3 2 4 4 4 7  +I - 6 . 2 4 1 2 2 9 0 5
- 0 . 6 8 6 2 5 4 8 5  +i 0 . 0 6 8 6 8 7 9 8
- 2 . 1 0 0 0 0 8 7 0  + I - 6 . 1 4 5 4 1 6 8 7

- 0 . 2 1 0 4 4 6 2  +I 0 . 2 1 5 9 0 8 8 5
1 4 . 2 9 6 9 0 6 3 9  +I - 2 . 2 4 2 2 7 1 5 2

0 . 5 4 6 7 9 9 3 0  + I 0 . 0 8 1 2 3 4 5 9
- 9 . 8 2 4 3 9 1 2 8  + I 1 . 5 6 8 2 0 7 0 0

0 . 6 4 9 5 1 9 8 7  + I - 0 . 0 4 7  1 8 4 2
5 . 8 6 0 4 3 9 2 7  + i 1 . 7 2 0 4 3 3 2 1

1 4 . 3 6 0 1 6 4 2 3  + i 0 . 9 4 2 5 2 8 7 6

EiGENVECTOR 1 6

7 . 4 5 3 2 4 4 4 7  + i 6 . 2 4 1 2 2 9 0 5
- 0 . 6 8 6 2 5 4 8 5  +i - 0 . 0 6 6 8 8 7 9
- 2 . 1 0 0 0 0 8 7 0  +I 6 . 1 4 5 4 1 6 6 7

- 0 . 2 1 0 4 4 6 2  +I - 0 . 2 1 5 9 0 8 8
1 4 . 2 9 6 9 0 6 3 9  + i 2 . 2 4 2 2 7 1 5 2

0 . 5 4 6 7 9 9 3 0  +I - 0 . 0 8 1 2 3 4 5
- 9 . 8 2 4 3 9 1 2 8  +i -1.5682070(1

0 . 6 4 9 5 1 9 8 7  +I 0 . 0 4 7 1 8 4 2 0
5 . 8 6 0 4 3 9 2 7  +I - 1 . 7 2 0 4 3 3 2 1

1 4 . 3 6 0 1 6 4 2 3  +I - 0 . 9 4 2 5 2 8 7 6

Figure 2.8 (cont.)
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EIGENVECTOR 17 ,, v
26.675420 11 +I -9.61793553
0.52915315 4 0.54295220

19.83261166 +i - 1.57958265
0.44551446 +i 0.05151553

-7.30067665 4i 5.91671735
0.16257968 41 -0.1486024
-0.1552809 41 4.16051563
0.01957921 41 -0.1018729
1.75767996 4i 0.99315436
1.88679567 4i -0.2395551

I EIGENVECTOR 18
I

26.67542011 +I 9.61793553
0.52915315 41 -0.54295220

19.83261168 4i 1.57958265
0.44551446 41 -0.0515155

-7.30067665 41 -5.91671735
0.16257968 41 0.14860240
-0.1552809 4i -4.16051563
0.01957921 41 0.10187293
1.75767996 4i -0.99315436
1.88679567 +I 0.23955516

EIGENVECTOR 19

- 0 . 7 0 9 6 4 4 0 9 4i 4.21619012
0.25471659 +I -0.0495710
2.61180108 4i 3.74569192
0.25902052 4i -0.0729415
9.01791709 +I 2.16618231
0.19218298 4i -0.0616198

14.44910849 4i 0.53144312
0. 10207651 *I -0.0349668

17.98876480 +I -0.64014133
19.21658627 41 -1.06414531

EIGENVECTOR 20

- 0 . 7 0 9 6 4 4 0 9 4i -4.21619012
0.25471659 41 0.04957 103
2.61180108 41 -3.74569 192
0.25902052 4i 0 . 0 7 2 9 4 1 5 2

9.01791709 4i -2.16618231
0.19218298 41 0.06161981

14.44910849 +I -0.53144312
0.10207651 41 0.03496687

17.98876480 +I 0.64014133
19.21658627 +I 1.06414531

Figure 2.8 (cont.) ,
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t

(11

(21

(31

(41

(51

(11

(2)

(31

(41

(5)

I

MODE 1
40.37 40.37 -0.0741 0.183533 2.29445 5.491102

40.2847 40.2846 -0.10312 0.255711 2.3507 4.022547

40.3287 40.3285 -0.0984 0.244 1.192357 3.181806

40.385 40.3849 -0.07612 0.1884 0.655109 1.866827

40.4498

MODE 2
254.325

40.4498 -0.0468 0.1158 0.22195 0.610550

254.324 -0.582144 0.228897 11.852656 2.656811

254.25595 254.25443 -0.879 0.345723 0.694002 -0.102144

254.454 254.4539 -0.53189 0.209032 -2.77474 -5.603733

254.6978 .254.6974 -0.46166 0.181258 -3.480396 -7.888621

255.133 255.172 -0.32878 0.128847 -2.48746 -4.706277

MODE 1
MOD
5.951193
4.659042
3.397882
1.978436
0.64964

PHASE
67.32
59.698
64.457
70.663
70.022

2
1.5657
1.1419
0.6649
0.2183

MODE 2

U.D. FREQ. D. FREQ.

HOD PHASE
12.14677
0.70147

t'f2523:;
5:323203

12.634

243.65
246.19
242.14

DAMPING
FACTOR X CRIT.r

!_LN

2
0.1155

-1.02958
-1.41968
-0.87648

RE

Figure 2.10: Curvefit Results -Undamaged Cantilever
-
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c

t:

(:

(1

(5

(1

i2
(:

(4

(5

1)

0

0

i)

i)

.I

3

1)

1)

;I
-

U.D. FREQ. RE IM -

MODE 1

39.1696

39.00954

39.084196

39.274357

39.524173
MODE 2
249.4656

248.4981

249.03436

249.94155

251.03272

I

39.16874 -0.26283

39.008466 0.289495

39.083144 -0.289495

39.2735 -0.252542

39.523832 -0.164121

249.46269 -1.21668

248.49744 -1.68177

249.03689 -1.31323

249.9392s -1.07594

251.03022 -1.12062

0.671
I I
3.03679 7.376032

0.742112 2.475344 5.630936

0.733691 1.681678 4.275594

0.643021 1.011412 2.409633

0.415242 0.458141 0.873377

0.487717 11.20954 0.74112

0.676749 0.708874 0.106716

0.527346 -4.66496 -4.45960

0.428338 -5.15853 -9.31251

0.446405 -4.647265 -5.79940

MODE 1
MOD PHASE _fNJ
7.9767124 67.622 2
6.1509974 66.2698 1.442238
4.5944254 68.5292 1.151959
2.6132901 67.23 0.6552298
0.9862456 62.32 0.2472812

MODE 2
MOD PHASE M
11.234 86.21739 2
0.71686 81.4388 0.1276
6.45368 226.29 -1.1489549
10.645817 241.016 -1.8952852
7.4316995 231.3 -1.3230727

Figure 2.12: Curvefit Results -Damaged Cantilever
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I
A B C D E F G H I J h -Position

I I I I I I I I I I I

ESTIMATED FREQUENCIES ESTIMATED RANGE

FIRST LATERAL (1L) 1.64 1.3 - 2.2

SECOND LATERAL (2L) 6.95 6.5 - 7.6

CHANNEL QUALITY OF DATA MODES VISIBLE
(lO=good l=poor)

DB.DAT 1 (1L)

DC.DAT 3 1L (2L)

DD.DAT 6 1L - 2L

DE.DAT 5 1L 2L

DF.DAT 10 1L

DG.DAT 8 1L 2L

DH.DAT 7 1L 2L

DI.DAT 6 1L 2L

DJ.DAT 6 1L 2L

Figure 2.17: .'Susp&sion  Bridge Data
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CHAPTER 3

3.1 Preliminaries

The first two chapters of this thesis have set out to review

and analyse some of the theoretical and mathematical considerations

of dynamic analysis. As a result, some unanswered questions have

emerged, principally the dilemma that occurs between the comparison

of theoretical results using a method such as finite-elements and

experimental results which emerge as a result of modal tests. In

the literature, some formal attempts have been made to directly

compare and analyse the two simultaneously, but the efforts have

been far from exhaustive. No effort has been made with regard to

the comparison of measured complex modes with analytical, real mat-

rices.

It is the opinion of the author that the reason for this

has been the lack of an adequate mathematical tool with which to

analyse the problem. Matrix algebra, on its own, could neverrev-c \
eal the underlying fundamentals of the problem, and so results

obtained will nearly always need to be viewed with scepticism. The

introduction of vector space theory as a possible tool with which

to analyse the problem offers the prospect of a more fundamental

grasp of the situation and provides a good framework in which to

argue and justify results obtained.

However, prior to the analysis, the necessary groundwork

needs to be laid and fully understood. It is by no means the
_.__L  _

objective of this thesis to offer a comprehensive survey of the

-
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techniques and ideas of vector space theory: on the contrary, the

number of ideas needed to pursue thewremainder  of this thesis

with a full understanding is surprisingly small. So that this

volume may stand as a complete entity in its own right, the necess-

ary definitions will be quoted (66) and expanded upon, bearing in

mind the objectives and goals of the ensuing chapters.

3.2 Fundamentals

The most direct way to introduce vector space theory is with

the definition of a vector space.

Definition 1

A vector space v is a set of elements called vectors with

an operation called addition, and an operation called scalar multi-

plication which satisfy the following axioms:

(a> Addition Axioms: To every pair of vectors x,y  E v, there

corresponds a unique vector x + y E v, the sum of x and y such

that

(i) x+y = y + x (commutative law):

(ii) (x t y) + 2 = x t (y t 2) (associative law);

(iii) there exists a unique zero vector 8 E v such that

x+8= x V.x E #(identity element for addition);

(iv) for every vector x there exists a unique vector (-x) E

such that x t (-x) = 8 (additive inverse): the vector

x + (-y) is normally written x - y.

(b) Scalar Multiplication Axioms: To every scalar Q and every

T.

__ .- . .-_ _~.

Vector  x E v there

(v) a(Bx) =

--
corresponds a unique..ve_ctor_ax  E ti- such that

(af3)x for every scalar 6:

.

T.

-
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(vi) lx = x Ox = 0 4 x E w;

(vii) a(x + y) = ax + ay;

I
AT (distributive laws)

(viii) (a + 8)x = ax + Bx.

One can easily show that the vector -1x is the vector (-x) of

axiom (iv).

Thus,if we consider the space of real n-tuples and let

x = (51,52, . . . . En) and y = (T~I,%, . . . . rl,>. We define

x + y = (51 + rll, 52 + r12, ..*, 5, + 0,)

and ax = (aSI, aS2, .-., aS,).

This concrete definition of addition and scalar multiplication on

ordered n-tuples satisfies the axioms for a vector space, as is

easily verified. The zero vector is (0.0, . . . . 0). This space is

generally denoted by R n. The next thing to define is a subspace.

Definition 2

A non-empty subset&.! of a vector spacev is called a sub-

space of Vif Il.! is itself a vector space under the rules for addi-

tion and scalar

Possible

multiplication as defined for V.

pictorial representations for vector spaces and

subspaces are:

(i

-1.

----I-

-I-
- 106 --1
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For much of the analysis we will be concerned directly with

inner product spaces. An inner produce space is denoted by

0, < .,.>) and consists of a vector space vand an operation

between elements of that vector space called an inner product.

The definition of an inner product is as follows.

Definition 3

An inner product

function <x,y>, defined

and which satisfies the

on a vector space V-is a scalar

for all ordered pairs of vectors

following axioms:

l?-(i> <x, Y’ = <y,x> 4 x,y E w ;

valued

x,Y c v

(ii) <ax + By, Z> = a+,@ + B<Y,z>;

(iii) <x,x> > 0; <x,x> = 0 if, and only if, x = 0.

The following property follows from axioms 1 and 2:

(iv> <x, yy + 6z> = y<x, y> + Gx, 2’.

The bar denotes complex conjugate. Thus, if we consider the space

of complex n-tuples ( cn) then

n
<x,y: = ‘L qii (= XI-y1

i=l

This also allows us to introduce the norm of a vector, given by

Ilxll = <x.x>+ = Ii1 ciz]f
For the analysis of the undamped problem, a real inner prod-

uct space will be required, often called a Euclidean space. This

is because the operators involved (typically matrices) are symmet-
___._-----

ric and positive-definite, allowing an analysis using real arith-

metic. For the damped problem, the space and its dual will be

- 107 -
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analysed. This will be mentioned later.

Next we need to define a basis. in which to describe elements

of the vector space. This is defined as:

Definition 4

A set, s, of linearly independent vectors is an algebraic

basis for the space v if [s] = ??, i.e. s spans the whole space

v*

Thus for iRn' if we have n vectors x., i = 1, . . . n anyI
other vector may be expressed as a linear combination of these vec-

tors, viz:

x= F aixi
i=l

where the ai are scalar multipliers,[xi]i=l, . ..n is said to

span the whole space ' n' A vector space does not have a unique

basis; however, the number of vectors in any basis for V-is uni-

que. We will primarily be concerned with a basis of eigenvectors.

Definition 5

The dimension, dim v, of a vector space is the number of

elements in any basis.

We shall be concerned mainly with vector spaces having a

finite basis, i.e. finite dimensional. The dimension of the vector

space will be typically n (dim(v) = n) where n is the number of

-1

elements in the FE model.

‘1, Ideally we wish our basis sets

to the inner product. By orthonormal
- _J._

t

-..._.

vectors)
-.. _ _ _

.-l? _-. _
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<x Tx.> = x.x =i'l
F &j = 0

1-j r=l rr
*f

and <X.,Xi> = XTX =
1 -1-i

where the xi are basis vectors. If we have a weighted inner prod-

uct, involving a positive definite transformation (see below) the

orthonormality conditions are given as

<xi'Xj>A T A x
= Zi _ _ j = o

<x.,x.> = x.TAx =l
1 1 A -1 - -i

where A is such a transformation. Thus a set of eigenvectors, xi,

i = 1, . . . m will define a sukpace 74, and the orthogonal comple-

v'ment space m will be spanned by xi, i = m+l, . . . n, since all

the vectors in one subspace are mutually orthogonal to those in the

other. So we may say

7
where @ denotes the addition of two subspaces when the intersec-

tion is equal to the null (empty) space. Thus

dim(un) = dim(vm) + dim(~mL).

-I

-i

-

We may now introduce symmetric positive-definite operators of the

form T :v, -+ vn where, relative to an orthonormal basis, T is

represented by a square, symmetric positive-definite matrix array

(II)' T is a linear transformation where a linear transformation

is defined as

Definition 6

The function (or mapping)

- 109 -
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is called a linear transformation of w onto itself if

(i) T(x + Y> = TX + Ty; A' *

(ii) T(ax) = aTx Vx E -v and all scalars a. T is a symmetric

transformation if

<x,Tx> = <Tx,x> Vx

and T is positive-definite if

<x,Tx> = <x,x>T>04xfe

The principal concern of this thesis will be the formulation of

projected forms of T so that

Proj(T) V :IJm+IJm
m

That is, Proj(T)
Vm

can only operate on and produce

lie within the subspace vm' Then, for x ~‘1p‘m'

(Proj(T)V )x = Proj(Tx)V
m m

vectors that

that is, the component of TX in *m and for x @! vrn

(Proj(T)V )x = 8.
m

The projected transformations behave exactly the same as T in the

subspace  onto which they have been projected and map everything out-

side that subspace  to zero. We need some more definitions:

Definition 7

The range space of T, R(T), is the subspace  of vectors pro-

duced after the operation of T on vectors in vn: R(T) is a sub-

space of IJn'

Definition 8

The null space of T, n(T), is the subspace  of vectors which

map to zero when operated on by T: n(T) is a subspace of vn.

.
ir
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We may say that
T.

p(Proj(T)V > = dim(R(Proj(T)V )) = m
m m

?
and v(Proj(T) V ) = dim(fi(Proj(T) U )) = n - m.

m m

1 However, it is not true to say that

T = Proj(T) V
m
@Proj(T)VL

m1.

since the effect of T in mapping vectors from urn to vrnL and

vice versa will have been eliminated. This may be illustrated with
T

a partitioned matrix

x = Proj(T)
1 vrn j

x12 1
I-----

i

-__--- ---
I

x21 ,  Proj(T) I

I
d,

T

Tr2 and T2r are not included in the sum of the two projections.-

In order that a full understanding of the undamped problem7

is gained, an initial analysis of the single matrix case

(Ai __i=e- T)x2 -_

or T@ = 4A
-1  1

will first be studied, with (where appropriate) a (3x3) symmetric

matrix example7

3.
- 111 -
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Then, as a preliminary study for the damped case, a single unsymm-

etric matrix will be studied.

3.3 Change of Basis

Before attempting to approximate T using its eigenvectors

and eigenvalues, it is essential to realise that 2 is merely a

matrix representation of the linear transformation T. Although

the linear transformation is fixed, its matrix representation can

take on many forms, depending upon the basis (axis system) in

which we choose to describe it.

For example, T maps the point x(1,1,1) to @2,0,2) and T

is represented using the standard basis ei = ~(l,O,O),(O,l,O>,(O,O,l)~.

However, we may choose to describe T using an alternative basis

bi = ~(1,1,0),(0,1,1),(1,0,1)~. These are the coordinates of the

new basis vectors (axes) bi relative to the old basis ei which is

the only way we can describe them.

Alternatively, we may choose to describe the vectors ei in

terms of the vectors bit which are then as follows: {$(l,-l,l),

3(1,1,-1),3(-l,l,l))* Relative to the new basis bi the point x is

now $(l,l,l)  and E is (O,O,2). To determine the form of T relative

to this new basis we must transform the coordinates of T.

_.
I. %I% BASIS = {old basis in terms of new basis)

' %LD BASIS x (new basis in terms of old basis}
-1

with

-1 :

i

-l.
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{old basis in terms of new basis} = {new basis in terms of old basis}-l.

so
1

&EW BASIS = ’
.1 l - l
1

T is the

point E,

.l 1 1

1 -1 1‘1I
Aa

3 -1 0

-1 2 -1

0 -1 3,:!1 0 1
1

1 1 0

i0 1 1
.I&.

= I 2 -1

-1 2 -1

0 0 -1 I4
same operator, that is it still maps the ponnt x to the

but because we have chosen to represent it using a diff-

erent basis set bi, it appears completely different and is no

longer symmetrical. The loss of symmetry is a result of choosing

a non-orthogonal basis. In nearly all cases the basis vectors

are merely rotated and so remain orthogonal, and hence preserve

symmetry.

Furthermore, if we choose to represent T using a basis set

of eigenvectors, x is diagonalised with the diagonal terms being

the eigenvalues.

%IGENVECTOR  BASIS = I
l//G 2/G l/J5

T

TEIGENvE~R BASIS = %LD BASIS@

TEIGENVECT~R BASIS = A(diagona1 matrix of eigenvalues).

So, any operator T is merely a 'stretching' in three directions

- 113 -

i



T-I

i-

-c

1

-r-
1

(that of the eigenvector) by a given amount (that of the eigen-

value). '5f

3.4 Approximating the Single Symmetric Operator

The first

of an incomplete

may be posed as

(nxn)

T =
+

actual

objective is to approximate T in terms of a basis

set of eigenvectors and eigenvalues. The problem

(nxn) (nxn)

Tm + T
* ;

restriction of T remainder

operator to subspace  spanned
by first m eigenvectors

We know that the operators T : v themselves form a vectorn
space (which we shall denote as x( K,vn))and on this space we

may define an inner product as

<A,B> = tra ATB- -' (tra = trace)

and the norm will be
T

-- IIAl12 = <A,A> = tra ATA =- -

which is a Euclidean norm.
-

A suitable basis for this space are the n Pi operators,

-r

7,

-1.

7.

where

P T_i=x.fli

and the zi are the eigenvectors of x.

They are a suitable orthonormal basis since

<Pi'Pj' = tra{gTEjI = 0

and <Pi'Pi> = tra(F&I = trat~~~xix~l  = 1
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The Q are symmetric and of rank 1. They are projection matrices

in the sense that

and P.x = 0.-1-j

Thus, the first m gi matrices will be a suitable basis in which to

describe T+,.,

T =

In order to extract the best approximation to the required matrix

T, the norm

IIT - i
i=l

‘ipi II

needs to be minimised. This means finding that point in the sub-

space spanned by the Pi, i = 1, . . . m which is nearest to T in the

sense of the given norm.

so E = II T - i;, UiPiII  ’

= <T - y piPi, T - y u.P.>
i=l j=l J J

m
= <T,T> - 1 IJ~<P~,T' -

i=l
T lJjcr'Pj>

j=l

+ T i u.u.<P.,P.>  .
i=l j=l I. J ’ J

To minim&e, we differentiate with respect to I$,

iE=,avi

so, <Pi,T' - i
j=l

Uj<Pi,Pj> = 0.



T T
(p.,p = tra T X.X. = tra A.X.X.  = A.

1 - -1-1 1-1-1 - 1

m t *

I

-.
I

-I

T

7.

t

7

--[

-1

and c u.<P.,P.> = I.$
J=l J ' J

so the best approximation to T is obtained if

lJi = xi

hence T =

If m = n then we may call this the spectral expansion of T

T = j, xi Jci LiT = ‘#vwT.

For the simple, illustrative example, we have

01
I

with eigensolutions:

x1 = (1; l/&(1,2,1)),-

x2 = (3; l/&(1,0,-1))

and x3 = (4; l/&(1,-1,l)).-

So, the spectral solution for x is given by

Our best approximation to T, if knowledge of the first two eigen-

vectors only is available, is therefore:
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Although we have 3 of the necessary information for the

construction of 2, the form of & ,$s very different to that of

T represents the projected solution of 'IJ which will, hence-

zlrt: be written as Proj(T).
- vm

to make this point apparent. It

is a projected solution in the sense that it only operates on vec-

tors in the subspace  into which it has been projected. All others

are mapped to zero. Examples are

Proj(T)V
m
Ii r 3
-3

= $ I 5

1

3 -4

Proj(T) l- 5?pm2 '5
1 1

_3_ -4

x2 = I 3 -1

.B -1 0 -1 2

0 I1 f*

-1 3J H 3 1

1 -4
1

2

1

1 -4

2 1

1 5

I-
I_

=

3 =e

-3

3*

= +-_1- = ;

71

18 1

11 - 3I 11 1

21 I 01I1J 14

So we can see that on the subspace that Proj(T)V is restricted
m

to, it operates exactly as T. Thus Proj(T)V may be considered

as the shadow caused by T by shining a light into the subspace urn



T

I-

T-

1

i

-I

T.

-I

7

7

7

7,

-i ,

1I 1so Proj(T_),p  knows nothing about -1 .
"m

The projection

For an incomplete set

opeartor P with range

I 1J

T m

operators gi 4re of key significance here.

of eigenvectors we may define a projection

Lp, as

T
P = 90' = 1 JCiCi'

i=l

where @ is an (nxm) incomplete matrix of eigenvectors. P has the

following attractive properties:

Px =x-i -i 1= 1, . . . m

Px =e-i i = m+l, . . . n.

Another important point is that P is idempotent. That is, over

the space to which it is restricted, it is equal to the identity

operator, so

P2 = oQT@@T = @@T = p

and P = Ion Vm'

Therefore, to formulate the projected solution of T on the subspace

of known eigenvectors (m) we need to perform two operations:

(a> Premultiply r by

known subspace only are

P in order to ensure that images in the

produced.

(b) Postmultiply x by P in order

only on vectors in the subspace and

We have

Proj(T)v = Pp
m

= wTpoT
T m

to ensure that it operates

maps others to zero.

T
= @A@’ = 1 A-x.x._

i=l 1-1-1
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which is the same result as obtained earlier. Diagrammatically,

this may be expressed as YL

T< )=x.x.l ,*
--Y -J

For the simple example we may say that

dim @(Proj(x)V ) = 2 = rank(Proj(T)Lr >
m m

dim n(Proj(T)V ) = 1 = nullity(Proj(T)V ).
m m

This simple but key idea provides the tool with which to

analyse the entire problem and will be the central theme in nearly

all the subsequent analysis.

3.5 The Approximation and Its Uses

The analysis so far has described how, if only a limited

number of the eigensolutions of x are available, the matrix can be

approximated in terms of these solutions. The resultant matrix is

singular and is a projected solution of the true matrix _.T We may,

if we wish, want to compare the projected matrix with an analytical

matrix, Ta* However, it would be foolhardy to engage in a direct

comparison since Proj(T)Lp and T, operate on different spaces
m

3 . .
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(urn and vn respectively). A more definitive error analysis

would be obtained if Proj('IJLg were compared with Proj(T )
rn. -a v-,’

where G had been projected onto the same subspace as T. An iden-

tical procedure for projection is involved,

Proj(TJV = pT,P
m

so that

E = Proj(T)
- Vm

- Proj(L)V
m

For example, if G is given by

recalling that T = 3 -1 OJ
I

2 -11

-1 3

then

so that

The bottom right-hand corner indicates the largest error which,

with a comparison of $ and 1, may be seen to be the case.
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Alternatively, $ may be projected onto the orthogonal

complement space and then directly:,added  on to Proj(TJV. Since
m

this projection would operate entirely in the orthogonal comple-

ment space, its addition to the projected solution will not affect

its properties. The appropriate operator here is given by

(I - 4QT) = (I - P)

so that

(I - P)zi = zi - + = 9 i = 1, . . . m

and (I - P)zCi = zi i = m+l, . . . n.

We have

-1.

-I

T

-I

-1 .

-I

-I

-1

Proj(T+l = (I - P)T,(I - P)
m

= (I - @@T)TJI - @QT)

For the example,

Proj(T ) L = $

-8 vm

-17 17

17
1

-17

-17 17.l

So the 'hybrid' solution, TH, is given by

rH = Proj(TJV
m
0 Proj(&)VL

m

1C=-9 I 15 3 -12

3 6 3

-12 3 15,

I -1 -1 1 -1 1 1 -i -1. 1

+ 1 17 -17

-17 17 -17

1 17 -17

17 1. '

17
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7

7

7

-7

32 -14 5 = 3.56 -1.56 0.561

-14 23 -14 +56 2.56 -1.56 I
I

5 -14 32) j 0.56 -1.56 3.561

which would be considered the best approximation to x, given the

information available. We observe

(a> TH(L2*1) = (1,2,1)

(b) TH(l,O,-1) = 3(1,0,-l)

(c) &l,-1.1) = A+,-1.1)

(d)  a
T (l,-1,l) = @,2,1) - +,0,-l) + +l.-1.1)

verifying that the restriction of THtovt_,' behaves as T+.

3.6 The Unsymmetric  Operator

The analysis so far has pertained to the inner product space

(2&.<.,. >) where the inner product has been defined as

<x x.> = xTx. =i' J -i--J

where the 6,'s and the ni _'c are the elements of zi and x. respec--J
tively. If we now wish to extend the analysis to consider the

unsymmetric case (with a direct analogy to the damped problem) we

have

('i' _-- T)xi = 6

where T is now (nxn) and not symmetrical. We will need to use,-

instead of an inner product on %' the linear functional on the

primal space vn and its algebraic dual vr,*. In order to clarify

the situation we require some new definitions:
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Definition 9

A linear transformation II from a vector space vinto the

vector space of real (or complex) scalars is said to be a linear

functional on V.

We also need to define a suitable basis for this linear

functional.

Definition 10

Let {x', . . . x") be a basis for pn and let y. be the linearJ

functional on Vr_, defined by yj(xl) = 6;' j = 1, . . . n, then

{Yl, . . . yn} is a basis forvn *; it is called the dual basis of

Ix?.

The new basis defines the algebraic dual of vn, denoted by

Vn"* which is isomorphic to vn. That is, they are both finite-

dimensional of dimension n and isomorphic to (indistinguishable

from) the space of complex numbers C n'

The value of the linear functional is usually represented

yj(~i) = [yj.xi] = ["SYjl

There is no complex conjugate here, as for the inner product.

have

‘I’ : Vn + Vn
T' : vn* + v'* (see diagram overleaf)

where vn* denotes the dual space for T and T' is the dual of T.

If T has a matrix representation 1 relative to a basis in vn then

- 123 -

- i

We



c-i-t

T

T

T-,

T

T

7

7

7

T

T

7.

7

T
T' has a matrix representation T relative to the dual basis in

Vn"* So, in general for the damped problem, the analysis requires

the use of two basis sets, one for each of the isomorphic spaces

vn and vn*.

For the ensuing analysis we assume that

T are distinct and the problem is diagonisable

reflects the case for light damping). We have

(Xi1 - T)xi = 8 i = 1, . . . n

and (Xi1 - T')yj = 8 j = i, . . . n

so that

[Xi .Yj] = 6;

if the eigenvalues are suitably normalised, and

[Txiyj] = [xi,T'yj] = h,6;.

So a vector z E '2p;, = V-,* can be written as

7.

or as

-

the eigenvalues for

(which generally

2= ; aixi
i=l
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2 = lpyi.
In the same manner as before, we miy now introduce projection mat-

rices

P. = KiyiT-1

so that

P.xi = g,
-1-

P.xj = 8,-1-

$2 = Q

and P.P. = 8.-1-j

iTAlso _i = yirPT

so that

~iTyi = yi,

giTyj = 8,

($T)? = q'

and P.~P T = e-1 -j .

We may also say that

! Ei
i=l

is a projection of vn onto vrn along vt, where vm is the sub-

space of vn spanned by the first m eigenvectors [xi], i = 1, . . . m.

We have no inner product here so the concept of orthogonality is

extended to normed spaces with the symbol1 representing an anni-

hilator, as in Reference (60).
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It is plain to see that
-i

T

T
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T

7

--
L

7

7..

7.

7

; Q= f
i=l i=l

If we let

P . T
-ij = &.

J

then P..* = 0
'J

and Eij$
= o

=Pi

and P P=-_ij_ -_i

as above.

The P.. are
-1J

PT=I
tV

-i .

unless i = j

jfk

j = k

rl* independent basis vectors for the space

xl q, 24) and hence we may write

T. = ,El jP, Oij %j = if1 jE,
iT

'ij X1'3

whence

[yQ,Txk] = if, jf, 'ij

(~T(drjTlrk))

=

E, aik(QTzi) = 'fik

but [~,,Tx~l = 'k'fi"

hence allk = Xk$ .

so z = ; xi Ei
i=l

which is analogous to the result obtained for the symmetric case.

Again, we may consider this as the spectral expansion of x.
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i=l

7

7
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7

we have

Proj(T)v = PIP
n

= @JITT@lIT-

= 4NlT

with R(Px-oj(T)V  ) = [xiJ i=l, . . . m

n(Proj(T)_,,m)  = [xi] i = m+l, . . . n.
m

Having thus established an analogous framework with which to analyse

1

7

-

the damped or unsymmetric problem, error and hybrid matrices may

then be calculated in a similar fashion to that of the symmetric

problem.

3.7 Overview

The analysis has demonstrated that matrices are merely

representations of more fundamental objects called linear transfor-

mations. A linear transformation may take on several matrix dis-

guises depending on the basis (axis system) in which we choose to

describe it. Since, for the following analysis the basis implied

is usually the standard ei basis {(l,O,...,O>,(O,l,...,O)  l .-

(O,O,..., 1)) the formal distinction between the operator and its

representation with respect to this basis will be omitted. If the

analysis moves to an eigenvector basis, the operator will usually

be described by a diagonal matrix (namely I or A).
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A foundation on which further analysis may be constructed

has now been provided. It has beeFshown  that pre- and post-

multiplication by certain idempotent matrices can force a matrix

to exhibit predetermined range and null spaces. As a result, pro-

jected solutions are readily formulated. This enables a restric-

ted version of a given matrix to be established. The stage has

now been set to derive mass and stiffness matrices which are res-

tricted to the sub-space spanned by the measured modes. These

'incomplete' measured matrices will represent the best possible

approximation to the true matrices with the information available.

As indicated in this chapter, these matrices have the pot-

ential uses of determination of errors or improvement of existing

mathematical models. The analysis has been built up from the con-

sideration of the single symmetric operator and then an outline

of how this may be extended to the single unsymmetric operator has

been detailed. The analysis of the next chapter is that of the

double symmetric operator problem or the undamped problem, and

then, in Chapter 5, the double unsymmetric operator problem or the

damped problem is dealt with which, by that stage, is no more than

a natural extension of the work that has gone before.

7

-r,

7

7:
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CHAPTER 4

THE UNDAMPED PROBLEM

r

T

r

I-

T.

T

7

7..

7”

7.

T

4.1 Preliminaries

Having now established a

ther analysis can be conducted,

undamped eigenvalue problem

(XiM i=8- K)x

Or MQA = KQ.

mathematical framework in which fur-

it is possible to consider the

In this case, we know that M and K are diagonalisable and we assume

isolated roots. Before commencing further analysis, it is worth

restating the problem in terms of what information is available

and what is sought. From the experimental measurements, which are

assumed to have been made correctly, there is a set of measured

data consisting of an (nxm) unnormalised modal matrix @ of measured

modes and an (mxm) matrix of natural frequencies A. From the theo-

retical analysis, there are assumed to exist finite-element mass

and stiffness matrices Ma and Ka. Using these, the analytical

eigenvalues and eigenvectors have been calculated, A,, @a, and

these correspond to the theoretical natural frequencies and mode

shapes of the system. The objective of the experimental work will

have been to show that the mathematical model is accurate and

acceptable. If the measurements agree with those predicted by the

model then it is reasonable to assume that the model is accurate,

is a good representation of the structure and may be used for fur-

ther analysis. The contents of this chapter address themselves

the course of action necessary if there is disagreement between

the two.
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In essence, two questions arise which are related, and which

will both be considered in this chapter. They are:

1. Is it possible to determine error matrices which show

where the c3rror in the mathematical modelling has occurred?

2. What are the correct mass and stiffness matrices?

The first, and most important decision to make is what

inner product to select. Although any inner product may be used,

there are, in reality, no more than five with a realistic case for

selection. These are:

T

7

-
1

2

3

4

5
-

Inner Product

< *,- 'M = XiTMX
J

< T
-9. 'K = 'i KxJ

< T
l ,a '1 = 'i 'J

< T
-1. 'Ma = 'i Max.J

< -9. 'K, = 'i TK x.a J

1 and 2 are clearly the correct or best choice since the measured

modes will then by mutual y orthogonal

7

-r-.

7

3,

-r. little or no use since they cannot be computed. 3 has little to

Normalisation

TxiMx. =11

xiTKxi = Xi (measured)

Tx. x. = 1
1 1

xiTMaxi = 1

xiTKaxi = Xi (measured)

i.e. xiTMx.  =  0
J

and xiTKxj = 0.

The problem here is that M and K, the correct mass and stiffness

matrices are, in general, unknown and so any results obtained

using these, which have M and K in their solution, will be of

recommend it, other than the fact that it was the one used in the

--I
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single matrix case. The modes will not be orthogonal to one

another if this inner product is chosen.
i"

The most appropriate choice of inner product is most commonly

4, since it is generally thought that the analytical mass matrix is

a better approximation than the analytical stiffness matrix. 5 may

be used if no rigid body modes are present. If they are, the stiff-

ness matrix will not be positive-definite and an inner product axiom

would be violated if they were included in the analysis. No other

type of inner product is generally considered. In all the ensu-

ing analysis, the inner product will be stated at the beginning of

the derivation.

4.2 Inverse Mass and Stiffness Expressions

Two initial results may first be derived; that is, express-

ions for the inverses of the mass and stiffness matrices. Since

these results do not explicitly contain M and K, the correct inner

product can be used to derive the expressions

inner product (in x(vn,vn)) = <A,B'M = tra ATMB.

So the norm will be

<A,A>M = tra ATMA = ]lAllEf .

An approximation for the inverse of the mass matrix may now be

determined in terms of the matrix dyads Qi, where

Qi 1 iT l
= x.x

The following norm is minimised with respect to the coordinates @.,1

E t IlM-1 - F JliQiII',
i=l
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= <M-1 - iE, ~iQi, Mm1 - jE, *jQj’M

= <M-l -l,M ‘M- i ,,'Qi,~~-"M - jI1 ~j"-l,Qj'M
i=l

+ ~ ~ ~i~j<Qi ,Qj'M .
i=l j=l

Differentiating with respect to tii gives

F $..<Q_,Q.>  - <Qi,M-l'M = 0.
j=l J ’ J M

cQ~,M-~>~ = tra QiMM-1But = tra Qi = 11 xi112

where IlxJ2 = XiTXi (no mass matrix)

and <Qi,Qj' = 0 ifj

thus 'Qi'Qi'M = tra QiTMQi = t,ra Qi = II 'ill2

ll’i II ’
giving 4Ji = lm = 1

so that

-1 m
MS1 (approximation to M > = 'L Qi = " XiXiT = WT.';

i=l i=l
-1

Similarly, minimising for the flexibility matrix K ,

E = IIK-1 - ! SiQiII ‘M
i=l

= <K-1 - iyl SiQit K-l - jI, ‘jQj>M=

= <K--l -’,K ‘M- T ci<Qi*K-l'M - F Cj<K-l.Qj>M
i=l j=l
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Differentiating with respect to 6,1

7.

7

7

T

-i

7.

7.

3.

7 n(M,-l) = &K,-') = [Mx ]i i = m+l, . . . n.

7

7.

7,

jil Sj<Qi,Qj>M  - <Qi,K-l'M =%

so -l> T -1 IIx.II'
'Qi,K M = tra QiMK = tra K-'MQi = e,

i

and
II ‘i II ’

cizs;m=+
i i i

so KB
-1 = + Qi = @A-l@T.

i=l i

Effectively what has been accomplished is the approximation of M-1

and K-1 in terms of the measured modes and natural frequencies.

The resulting approximations are restricted to the space spanned

by the vectors M@ and, in effect, represent projected solutions

MB
-1 = CGT KB

-1 = @/+@T

where &MB-l) = &K,-') = [x 1i i = 1, . . . m

We can rederive these expressions thinking of them as projections.

If we decompose V-n so that

v, = u +u where 24 = [xi] i = 1, . . . m

then here 24 and

If we introduce,

jection operator

and 'ICQ = [xi] i = mil, . . . n,

U are not orthogonal with respect to <.,.>M.

with respect to the inner product <.,.>M, the pro-

we may note that PM is not an orthogonal projection (since PM f Pi).
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PM is the projection onto U alongU and PMT (= M@OT) is the

projection onto UBlong U' where l_ denotes orthogonality with
t: V

respect to <.,.>M.

so PM : projection onto [xi] along [xi]

and TPM : projection onto [Mxi] along [Mxi]

Thus

and

&P;i) =  .[x.l;
1

i=l . . m

W(PnT) = ~'xi];

i=l . . m

We also need to note that

-1 . . m_- i=m+l . . n

i=l . . m i=m+l . . n

cp,j2 = (PMT)2 = I

R(P,) = [xi]

i=m+l . . n

i=m+l . . n

or that the projection operators are

the inverse mass matrix, M-1 , we see

idempotent. If we consider

that it operates on the vec-

tors Mxi, i = 1, . . . n to produce the vectors xi, i = 1, . . . n. A

projected solution would need to operate only on the vectors Mxi,

i = 1, . . . m to produce the vectors x.; i - 1, . . . %. Thus1

@JProj(M-l)) = [xi] i = 1, . . . m

n(Proj(M-1)) = [Mxi] i = m+l, . . . n.

This is ensured by a premultiplication by PM and a post-multiplication

by PMT. The resulting solution is an orthogonal decomposition of

vn with respect to <.,.>M' Thus,

ProjM(M-l)ZI. = projection of M-1 using mass inner product
m onto space spanned by experimental modes

(Q) along its orthogonal complement

= PMM-1 TPM
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and ProjM(K-'1 = P K-1P T
Vm M M

= WTMK-lMWT

so the same results are obtained by a projection onto the relevant

T-

z

T-

-I

T.

T

subspaces.

4.3 Projection of Measured Matrices

The expressions for the projected inverse mass and stiffness

matrices have been successfully derived, but are of little use to

us. The projected solutions for the mass and stiffness matrices

themselves are now sought since clearly the complete matrices can-

not be derived from

projected solutions

space onto which it

have

a set of incomplete data. Again we wish the

to behave as the complete operator on the sub-

has been projected. Thus they will need to

(a> range space given by [Mxi] i = 1, . . . m;

(b) null space given by [xi] 1 = mil, . . . n.

In order to facilitate this, a post-multiplication by PM and

a pre-multiplication by PMT are required. The projected solution

for each of the five inner products under consideration will now
.

be derived.

(a) Inner product <.,.>M

normalisation xiTMxi = 1



e
-iY

PM = OTM.
T

Therefore

ProjM(M)V = PMTMPM
m

1.

= MWTM4GTMI

T
and ProjM(K)V = PMTKPM

m
T-, = MWTK@(sTM

= M~Dlz4~r-r.I

(b) Inner product <.,.>K
1.

normalisation xiTKx i = hi
T

P - QA-lOTKK-

Therefore

ProjK(M)V = PKTMP,
m

= K@A-l@TMOA-lOTK

= K@A-*'DTK

and ProjK(K)v
m = PKTKPK

= K@A-lQTK@A-l@TK

= KOA-lQTK.-I.
The projected solutions using either <.,.>M or <.,.>K satisfy the

7.. orthogonality conditions and the eigenvalue equation. However,

the problems here are obvious. In order to find a projected solu-

tion, the complete matrix needs to be known (either mass or stiff-; 7,

ness). Clearly the use of these inner products is inappropriate.
7,
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The object was to demonstrate this and outline the method for

other projected solutions. .&' '5

cc> Inner product <.,.>I

normalisation x Tx = 1i i

If we consider PM we observe that its full form is given as

PM = O(OTMS)-l@TM

As we are free to choose the inner product we may repiace M by any

suitable matrix. If we use the identity matrix, I, we have

PI = o(oT+oT

so that

ProjIW)
*m

= PITMPI

= @(QT@)-l@TM@(QT@)-lQT

= o(oT@)-*OT

and ProjI(K)V = PITKPI
m

= @(QT@)-l@TK@(@T@)-lQT

= 4(@T@)-1A(OTo>-1@T.

Again, these expressions satisfy the orthogonality and eigenvalue

equation conditions and may be thought of as generalised inverses

for M-l and K-1(94). However, the use of <.,.>I here is inappro-

priate and the matrices so generated would not represent any recog-

nisable mass or stiffness distribution. Inner products which use

either the analytical mass or stiffness are most appropriate since

we hope that these would reflect the true mass and stiffnesses

reasonably closely.
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(d) Inner product <_,.>M
a

normalisation xiTM x = 1aiT

QTmwlaTM where m-l = (QTM @)-1
a a'Ma =T

pMa
hP,

a
so ProjM (M)V =

a m‘I

M @m-lOTMQm-l@TMa a=
I

M Om-*OTMa a=

and ProjM (K)V = pM TKPM
a m a a

1-I

T

M @m-lOTK@m-l@TMa a=

M @m-lAm-l@TMa a=

T and finally, for the fifth inner product:

(e> Inner product <.,.>K
a

normalisation xiTKaxi

We need to note here that Ka

body modes are present, thus

ted to flexible modes

PKa = @$cVIOTK wherea

T

x= . .
1

may not be positive definite if rigid

the argument here needs to be restric-

\

k = QTKaQ

7

7.

so Pr”jK Wa vrn = 'KaLMPKa

= K @k-lQTM@k-l@TKa a

= K @k-*aTKa a

T.

7
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and ProjK (K)V = PK TKPK
a m a a

= K Qk-l@TKQk-';TKa a

= Ka@k-lAk-l@TKa .

Thus, five incomplete expressions for measured mass and stiffness

matrices have been presented, all of which are restricted to a

subspace of vn defined by the choice of inner product.

In order to make comparisons, for error analysis of these

projected matrices, the analytical matrices need to be projected

into the appropriate subspaces as well. Since the use of inner

products 1, 2 and 3 are, in most circumstances, impossible or

inappropriate, the arguments henceforth will be limited to the

< *,.
'Ma

and <.,.>
Ka

choices.

4.4 Projection of Analytical Matrices

A simple comparison of the projected matrices generated in

7

-‘

the last section with Ka or Ma cannot really be justified as a

correct measure of error since Proj(M)V and Proj(K)lP are res

tricted to ?p, only, whereas Ka and Ma o:erate on the whole of the

space ur,. A more reasonable comparison would be with the projec-

tions of Ka and Ma onto the same subspace,

mined by the measured modes. Thus the two

two inner products still under examination

Inner product <.,.>M  ,
a

i.e. the subspace deter-

error matrices for the

may be formulated as:

pMa
= Qm-'OTMa'
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so ProjM (Malv = Projection of Ma using analytical mass inner
a m product  onto subspace spanned by the experi-

.'5
mental mode6 *

= 'MaTM Pa Ma

= M @rnelQTM Om-lQTMa a a

giving EhASS = ProjM (M)v - ProjM (Malu
a m a m

= Ma@m-I(1 - m)m-10TM a

and ProjM (Ka)V = 'M TKapM
a m a a

= M @m-'QTK @m-l@TNa a a

giving ‘~IFFNESS
= ProjM (Klv - Projbf (Ka)79-

a m a "m

T

so ProjK (Majv = 'KaTM Pa K
a m a

= K Qk-lQTM 4k-14'TKa a a

giving EE;ASS = ProjK (M)
a Yn

- ProjK (Ma)V
a m

= Ka@k-+I - @TMa4')k-1@TK a

= Ma@m-'(A - aQTK O)m-l@TMa

Inner product <.,.>K
a

pK = @k-l@TKa'a

and ProjK (Ka)V = PK TKaPK
a m a a

= K 4k-1QTK @k-14'TKa a a

= K @k-14'TK
- LO -

a

’



-7

1

-7

giving E%TIFFNESS = ProjKa’K)vm - ProjK Ua)7y
a "m

= Ka@k-'(A -
"11 T

k)k Q Ka '

A study of how some of these errors are built up, in the

form of 3-D matrix surfaces, as more and more modes are added is

shown in Figures 4.1 and 4.2. The example used is that of the

cantilever (example 1) described in Chapter 2. Figures 4.3 and

4.4 attempt to give a geometrical view of vhat is happening and

which errors are being measured.

As an alternative approach, but perhaps with less fundamen-

tal justification, error matrices may be formulated by projecting

the analytical matrices onto the corresponding analytical space

determined by the vectors 0a' VmA, where each of the xai corres-

ponds to a measured mode x.. Since the two basis sets will not
1

span exactly the same space they will only be approximately compar-

able. To avoid unnecessary repetition, only the mass error matrix

using the analytical mass inner product and the stiffness error

matrix using the analytical stiffness inner product will ?o deri:lod

using this idea.

Inner product <.,.>M
a

normalisation xaiMaxai = 1

PMa' = Q,@,TMa

so, ProjM (M )
a aVm*

= MaQaQaTMaQaQaTMa

= MaQaQaTMa
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giving EiASS = ProjM (M)
a Vm

- Pro&, (Ma)VA
a m

= M @m-*OTM
T".

a a - Ma'a'a Ma

Inner product <.,.>K
a

normalisation xaTKaxai  = hai

= (0 A-% TK'ia a a a a

so ProjK (K >a a Vm*=
K Q A% TK $ h-l@ TKaaa a aaa a a

= K @ I\-%' TKaaa a a

giving GTIFFNESS = ProjKa(K)vm-

= Ka(@k-lAk-l@T

ProjK (Ka)VmA
a

- Q A-b T)Kaa a a

Sidhu and Ewins('l), using a different approach, propose express-

ions of this kind, but use an additional approximation. Their

analysis proceeds as follows:

E=K-Ka

K-l = (I + Ka-lE)-lKa-1

K-l = Ka-' - Ka-1E Ka-' t (Ka-lE)'Ka-1 . . . . .

= K -' - Ka-lE Ka-1 t O(E') where E = (Ka-lE).
a

So, ignoring the small error term, they have,

I$/&~ = K -' _ K -'
a a (K - K,)K,-1

K @A-lOTK = Ka a a -K+Ka

which is equivalent to
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T

QTK @A-'QTK 0 - 20TK Q - Aa a - a

kA-'k = 2k _ A ":

kA-1 -1
01 +  Ak = 21.

This implies that the approximation used by Ewins and Sidhu

is that k = A, and similarly for the mass representation the approx-

imation is m = I. Hence the error expressions proposed by them

are

%ASS = Ma(@aT - Oa@,T)M a

GTIFFNEsS = Ka(Oh-lQT - 4 Aaa-'QaT)Ka'

EIklS and GTIFFNEsS are shown in Figures 4.5 and 4.6. For geo-

metrical interpretation the diagram of Figures 4.7 and 4.8 attempts

to describe exactly what the situation is. A full table of all

possible results is given in Table 4.1. As explained previously,

the motivation for the derivation of E(M-~) and E(K-~) is limited,

although the results are easily established. This is because these

properties exhibit global changes as a result of a change in mass

or stiffness, so the error matrices produced will not pr-o;l;dc anv

useful information.

?-

r.

i-.

r

't

Having conducted a fairly comprehensive survey of possible

error matrix expressions using a few of the tools of vector space

theory, a critical examination of how much useful information may

be extracted from them is postponed until later in the chapter.

Before that, the second objective in Section 4.1 is now studied,

I-.

r:

I

T

4.5 Improvement/Correction of Mass and Stiffness

The expressions for mass and stiffness derived in Section

4.3 represent experimentally derived matrices. We have seen that
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if there are to be no unknowns in these expressions then the

analysis needs to be conducted in*n inner product space other

than those defined by M and K, since these are, to all intents

and purposes, unknown. The fact that analytical matrices M anda

Ka pop up in expressions for experimental matrices need not con-

cern us too greatly. This is inevitable because of the choice of

inner product. Emphasis has been placed on inner product choice,

and this needs to be clearly established and defined prior to any

analysis.

All the matrices produced for mass and stiffness to date

satisfy the conditions of orthogonality and the eigenvalue equation.

For example, the mass and stiffness matrices produced using perhaps

the most preferable inner product

ProjM (M)zp = MaQm-*QTMa
a m

<
l ,- ‘M are

PW14 WV  a= M @m-lAm-l@TM aa m

T T 3cp

._a

lil= OTMaO

_@ = Iand = 9'Ma@m-LO'M a

QTProju (lo,, @ = QTM cDm-lhm-lQTM 0 = Aa a1.1a " m

ProjM (Ml
a vm@n

M (Pme20TM WIa a = Ma@m-'A

ProjMa(K)Vm@

In spite of these extremely encouraging properties, the

mass and stiffness matrices will still give cause for concern.

They look nothing like the true mass and stiffness distributions.

This is an unfortunate fact, due to the fact that they are projected
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1. We have seen that, for an objective comparison with analy-

T

1 .

1

solutions. We know, and indeed with all the measuring equipment

available in the world can only ev;sr hope to know, an incomplete

knowledge of a finite representation of mass and stiffness using

measurements on a continuous structure. As will be expanded upon

in Section 4.6, there is no way we can ever 'measure' all the

modes of a finite degree-of-freedom representation without moving

beyond the bounds of feasibility.

tical matrices, we need to project the analytical mass and stiff-

ness into some comparable subspace. However, in order to formulate

our best approximation of the true, but unknown, stiffness and mass

matrices our formulations should operate on the entire space vn
under consideration instead of just the subspace vrn spanned by the

measured modes. Then the question arises of exactly how we are to

do this with an incomplete set of measurements.

the fact that we have no 'measured' information

plete the solution, it would seem reasonable to

the absence of any information to the contrary,

As a result of

with which to com-

assert that, in

we

that our analytical matrices, which operate on the

may be 'added on' to our incomplete matrices so as

operators from vm to vn. This will then produce

consisting of a measured matrix over the-space for

information %* and an analytical matrix over the

should assume

whole space,

to extend the

hybrid matrices

which we have

space for which
I .

we have no informationvmL  (the orthogonal complement of urn).

-1  .I

1.

All that remains for us to do is to perform the necessary calcula-

tions in order to formulate these matrices. Na and Ka will clearly

have to be projected onto the orthogonal complement space in order

to facilitate a direct vector space addition. Agai n, only the two
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most appropriate inner products will be considered.

Inner product <.,.>M i"
a

Orthogonal Complement Projection Operator = I - Original Projection
Operator

=1-P

where P : projection onto I'i] along ['i]

i=l . . m i=mtl . . n

and I - P : projection onto ['il along ['i]

Now ProjM (MajL,~ =
a m

i=mtl . . n i=l . . m

Projection of Ma using analytical mass

inner product onto orthogonal complement

of subspace determined by experimental modes

PM )TMa(I - PM >
a a

(1 - Ma4mv1QT)Ma(I - 4mS1QTMa)

Ma + M @m-lOTM OrnSIQTM - 2M @m-lOTMa a a a a

Ma -

So the hybrid for the mass matrix becomes

MM H
a

= ProjMa(M)vm @ Pro jMa(Ma)2P,’

= M @mm2QTM t M - M QmSIOTMaa a a a

= Ma t MaOmvl(I - m>m-ATMa

also ProjM (K ) 1 = (I - PM )TKa(I - PM )
a avm a a

= (I - MaOmSIQT)Ka(I - @mvlQTMa)
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= K + M @m-bTK @m-l@TM M @m-bTKa a a a- a a

- K (Pm+QTMa ’ a

and so

KM
H = ProjM (K)

a a 79;,
@ ProjM (K,).+

a m

= Ma@m-lAmS1@TMa + Ka + MaOm-l@TKa@m-l@TMa  - MaOmT1oTKa

- K OmelQTMa a

= Ka + Ma@msl(A + QTKa@)m-l@TM a - M @m-l@TKa - a .K @,-1@TMa a'

These are expressions similar to those derived by Berman and others,

by different nethods (15,24,107) .

There is no logical reason why the mass matrix hybrid should

be formulated before the stiffness matrix. Now Ma is cropping up

for two reasons:

(a) because all calculations are done in the inner product

space defined by Ma;

(b) because the projection of Ma onto the orthogonal cozpler;el!t

space is being used to complete the incomplete measured matrix.

Ka exists for the second reason only. If we wish, we can

eliminate the occurrence of the Gram matrix, m, in the expression

for KM H by using MM H:
a a

1 T

MM H@ = M Q, + M @me2QTM Qa a a - Ma@m-L@'MaQ
a

= MaOm-I

and '#"MM H = mqlQTMa'a
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Using this, we may write KM " as
a

K"a

H = MM
T g

H4(A + QTKaQ)Q MM -
a a

Since the incomplete measured matrices

MM HWTKa - KaWTMM H.
a a

have only been added to in

the orthogonal complement space, the necessary orthogonality and

eigenvalue equation conditions are bound to have been unaffected.

There can be no 'coupling' between the two spaces.

The whole procedure may be repeeted for the other inner

product:

Inner product <.,.>K
a

so Pro jK (Ma)v l. = (I - PK jTMa(I - pK >
a m a a

= (I - Ka@k-lQT)Ma(I - @k-lQTKa)

= Ma + KaQk-l@TMaQk-l@TK a - Ka@k-lQTM a

- M @k-lQTKa a'

The hybrid matrix under this inner product is

MKa

H
= ProjKa(M)Ui, @ ProjKa(Ma)vml

= K,Ok-*QTKa  + Ma + Ka4'k-14TMaOk-1QTKa - Ka@k-lQTM a

- M @k+DTKa a

= Ma + K,@k-' (I + IDTMaQ)k-l@TKa - KaOk-l@TMa

- M @k-l@TKa a

also, ProjK (K 1
a aV,I

= (I - K,@k-lQT)Ka(I - 4'k-'QTKa)
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= Ka + KaOk-lOTKaQk-l@TKa  - 2Ka@k-lQTKa

= Ka a- K @k-'sTK a
T

and so K H
Ka

= ProjK (K)V @ ProjK (Ka)LP.~
a m a m

= K Ok-lAk-l@TK + K - K @k-14'TKa a a a a

= Ka + Ka@k-l(A - k)k-lQTKa'

T.

7

-i.

-I

-I

7.

7.

These expressions correspond to those pro;Josed by Baruch'.' but

obtained by a different method.

Again, if desired, the expressions may be made more attrac-

tive by replacing Ka k-1 by KK H in the M H
Ka

expression thus:
a

MK
H = Ma + KK H@(I + QTMa@)QTKK  H - KM H@#'TM a - Ma@QTKK '.

a a a a a

(See Table 4.2 for a summary of hybrid matrices.)

Clearly the concept of orthogonal projections within a pre-

determined inner product space provides us with sufficient tools

with which to build a complete analysis. There is nothing to stop

a further analysis using a different inner product and projecti.ng

onto different subspaces. However, all the results occurring in

the literature to date have appeared within this simple framework.

Geometrical diagrams of what is going on are given in Fig-

ures 4.9 and 4.10. We now go on to consider how each projection

is related to the problem as a whole to give some idea of exactly

how much may be expected from the error analysis and exactly how

close the MM H, MK H. KM H and KK H matrices will be to the true

objectives, i and F.
a a

This may be done by consideration of the con-

tinuous example and the underlying principles and approximations of
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4.6 The Continuous Structure

The error matrices derived in Section 4.4 and summarised

in Table 4.1 provide a good framework with which to attempt to

identify the errors that may arise in finite-element modelling,

as will be indicated by experimentation on the structure itself.

Some insight into how much information one may expect to extract

from these expressions may be sought. This can only be obtained

by examining the fundamentals of the finite-element method itself,

which is the purpose of this section. The language of vector

spaces will be retained, but now we deal with a vector space v

whose elements are functions f defined on some physical region r

(the structure) and for which

7

7

3.

J mf2
i-

is finite, where m is a positive function (the mass) defined on r;

we define an inner product on '1Pby

<f,g> =M J mfg.

Figure 4.11 is designed to illustrate the following argument in

terms of the familiar bending beam. Let T be a positive definite

operator defined on a physical region r; T possesses a denumerably

infinite set of eigenfunctions fk and eigenvalues elk which are

solutions of

Tf - I.cmf = 0

together with a consistent set of boundary conditions.

The eigenfunctions are an orthonormal basis for V and hence

- 150 -

-i

i ’ (^



7.

-1,.

1.

7 Ua - aAkMa)axk = 0:

for any g E Vwe can write

usually referred to as the Fourier series for g relative to If,}.

A finite element analysis begins by replacing the operator equation

Tf - umf = 0 by its weak form

Ba(f,g) - u<f,g'M = OVg&-
a

where Ba(f,g) is a bilinear symmetric functional usually obtained

from

by an integration by parts and incorporation of the natural boun-

dary conditions. The displacement field f is then approximated by

a finite linear combination of local interpolation functions n.,
1

1= 1, . . . n. These are functions which vanish over most of r and

are smooth enough for Ba(ni,nj) to exist. The ni are not the so-

called shape functions of the FE method, but the functions obtained

as a result of combining a group of shape functions over contiguous

elements; in the usual implementation of the finite element method

the ni

of the

are the functions obtained after assembly and the imposition

essential boundary conditions.

The kth eigenfunction fk is then approximated by the function

n
afk = i=lc aXkini

where the a~ki are the entries of the vector axk satisfying

-1
aXk is an upper bound for pk. The stiffness matrix Ka has elements
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ku = Ba(nk'n&)

.re
and the mass matrix Ma has elements

mti = <nk,nll>M  .
a

The matrix Ka is, in effect, a projection of the differential

operator T onto a finite dimensional space vnCvand the nature

of the interpolation functions nk tends to preserve its 'differen-

tial' properties in the sense that

(i) kti = 0 for disjoint subregions;

(ii) local changes in properties of the structure are locally

reflected in K (this is in contrast to a flexibility matrix for

the structure which is a projection of an integral operator).

The eigenfunction basis for T, on the other hand, does not

preserve these properties for it consists of globally defined

functions whose complexity (curvature) increases with increasing

k; a linear combination of the lower eigenfunctions may singularly

fail to reflect local changes in T. The central difficulty in

using measured eigenvectors to 'update' the K matrix rtsSdes Zn

this essential difference in character between the two basis sets.

The more local are the changes (errors) in the structural model,

the more poorly they will be reflected in the (lower) eigenvectors.

So, the main point here concerns the localisation  of errors.

The smallest unit that the finite element method can deal with is

the element itself: no detail of the changes within an element of

T

-

the structure will be

better discrimination

out, the lower global

reflected in the k..,
1J

hence we cannot expect

than this. But as has already been pointed

modes of the structure have a discrimination
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length of many elements and it will be clear that only by including

modes

nodes

with a number of nodes of the-same order as the finite-element

could we hope to discriminate at this level.

Reference (20) contains an analytical experiment designed

to demonstrate the rate of convergence of the series for mass and

stiffness matrices as more modes are included.

The result of this shows that a faster convergence of the

mass matrix may be expected (of the order l/k") provided that Ma

is not so inaccurate as to make the choice of <.,.>M inappropriate.
a

The stiffness matrix, though less sensitive to the inner product

choice, exhibits much slower convergence (l/k*>.

If we examine the error matrices of Figures 4.1, 4.2, 4.5

and 4.6 we may see that for Figures 4.1 and 4.5 little information

is extracted as to errors in the mass matrix; this is because the

original analytical mass matrix is so badly in error that its use

in defining an inner product is inappropriate. In the same example

we can see that for the stiffness the error matrices obtained are

far more encouraging. This is not because of the fact th*;- the

choice of Ka as an inner product is more appropriate, but because

the stiffness error matrix is less sensitive to inner product sel-

ection. This is due to the fact that since the lower modes con-

tribute more to the mass matrix than the stiffness matrix, inapp-

ropriate scaling will distort the picture more, as can be brought

about by wrong inner product selection. The fact that the first

few modes show negligible error values arises as a direct conse-

quence of the argument just

The fourth and fifth modes,

expounded. The modes are too smooth.

on the other hand, begin to pick up



1

I

the region in error quite nicely, since they are modes of the same

order of complexity as the region iQ error.,C ’
In all the analysis

the size of the region of error detected can only be as small as

the complexity of the most complex mode. So if the most complex

mode is one with n nodes, only a region of error covering l/nth

or more of the structure can we hope to detect.

As for the 6th to 10th modes, not too much emphasis should

be placed upon them, since they represent essentially artificial

results. The trouble is that two 'analytical' models are being

used. This does not reflect the situation likely to be encountered

in practical situations. The higher eigenvectors of an analytical

model have no physical significance. Any finite element model,

because of its finite nature, ceases to have a direct relation with

a continuous structure after, at most, 50% of the modes and natural

frequencies. Although it is quite possible to neatly show the

error between two mathematical models using most or all of the

modes and the correct inner product <.,.>Pl, it is also pointless.

It represents an ideal situation which we could never hope to

achieve in practice.

It is extremely unlikely that in any realistic situation

the number of measured modes (m) is going to exceed half the number

of degrees of freedom of an FE model. In practice, it is likely

to be much, much less.

The analysis of a simply-supported beam allows us to illus-

trate some of the points just described more explicitly. Using

example 2, here the Ma is not so inaccurate that its use in defin-

ing the inner product space is inappropriate. Also, we know that
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the analytical modes of a simply-supported beam are the simple

sine functions, sin kx, so we may u_se a finite discretisationi. .

of these for our 'measured' modes. Figure 4.12 shows

(a) faster convergence of mass matrix;

(b) good error detection when complexity of modes = size of

error region;

Cc> rapid distortion for number of modes greater than N/2.

4.7 Hybrid Matrices

For similar reasons to those expressed in Section 4.6, one

may expect the hybrid matrices in reality to look similar to the

original analytical matrices Ma and Ka, and not the correct mass

and stiffness - although they will perhaps be a better approxima-

tion to the true mass and stiffness than the original Ma and Ka.

This is a result of the fact that the higher, more complex modes

of the matrices, which dominate the 'form' or outward appearance

of the matrix, are still provided by the analytical matrix. So

if only a few smooth modes are measured and the 4!> and K matricesii
are in error, generation of the hybrid matrices will necessarily

impose fairly minimal changes upon Ma and Ka. An attempt to des-

cribe the situation diagrammatically is given in Figures 4.13 and

4.14. There comes a stage where the addition of further measured

modes will no longer provide useful information about the true

finite dimensional mass and stiffness, and so the problem has to

be completed using Ma

ante. Again, clearly

modes of a complexity

are in error.

and Ka' These dominate the outward appear-

the most useful information is provided by

sufficient to describe areas where Ma and Ka
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4.8 Overview

A critical study of the undqrnped eigenvalue problem within

the framework of vector space theory enables a great deal of

clarification for error analysis and mathematical model improve-

ment. The following factors have emerged:

1. Inner product choice is fundamental in any analysis (with

the associated normalisation).

2. M-l -1and K can be derived in terms of @ and A only.

3. Measured mass and stiffness matrices are incomplete and

operate only on the space determined by the measured modes.

4. Analytical matrices need to be projected into a comparable

subspace before suitable comparisons can be formulated.

5. Hybrid matrices consisting of measured M and K over the

measured space and analytical M and K over the unmeasured space

may be readily formulated.

6. Error detection of the order of the most complex measured

mode only can be expected.

7. Mass error exhibits fast convergence.

8. Mass error is strongly dependent on inner product choice

and associated normalisation.

9. Stiffness error shows a slower rate of convergence.

10. Stiffness error is not so dependent on inner product choice.

The study of Chapter 4 permits the experimental engineer

to work within an organised mathematical framework so that the

verification of mathematical models using experimental measurements

may be conducted in a more enlightened atmosphere.
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so

or

and

(3)

+ C4A + K@ = 0

That is

SXA + TX = 0 where X =

or M@A2 + CQA + K4 = 0

and M@A - M@A = 0.

0 @l=O

I[ 1-M @A

For the analysis of this chapter we use, instead of an inner prod-

uct on ?L' a linear functional on ?G and its dual space 79;,*,

represented by

X(Y) = Y(X) = [YA] = [Y*xl

2n
YiX> = C Si~i

i=l

where x = {cl, . . . E.2nl E v2, and y = (~1, . . . r12n1  E 7s2,*.

The  eigenvector  sets {xi} and fyi} (X and Y) are dual basis sets

for the isomorphic spaces q,., and qn*. We know a vector z can

be written as either

z = ix sixi or 2 = ,'i, CiQ.
=

In a matrix sense, the eigencolumns of the dual are the eigenrows

of the primal. So, in order to find the dual basis we solve for

the transpose problem, thus.
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STYA + TTY = 0.

So, for example 1 we have,

TT= K 0

i 10 -1LM OJ
that is

E 4 I::] [*I+ [:, _g [::I = O.
so CYrA + YzA + KY1 = 0

and MYrA - Yp = 0

which gives

YZ = MYrA and Yr = @

i.e. Y=@ ,[ 1MQA
which is the dual or reciprocal set of eigenvectors.

We have

SXA + TX = 0

and STY/\ + TTY = 0.

Prom the definition of the dual transformation the following con-

ditions hold:

[Sxi,yj]  = ki6; = [xi.S'yjj

and [Txi,yj] = - k& = [xi.T'yj]

where the ki are constants, yet to be assigned. These conditions

may be expressed in a more familiar form(38,421 9 setting ki = 1

for all i, as

-1
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Or 4'TC@  + OTMOh + AQTM@ = I

7

7

T

T

3

T
t

7

-.
I

T.

‘3 .

-1

7

7

,
-

and [aT

Or QTK@ - AQTM@A = -A .

However, if we decide to employ formulation 3 we may observe that

S and T are symmetric, so the eigenvector basis for the dual space

is the same as the eigenvector basis of the primal, or the problem

is apparently self-dual. We have

.T
xi Sxj = k $

i j

xiTTxj = _ A k $
i i j '

It is because of this attractive feature that this formulation is

adopted for the remainder of this chapter. However, merely making

S and T symmetrical does not permit a side-step of the necessary

analysis, with a return to inner product spaces, as the operators

involved are not really symmetric in the fundamental sense, even

though this fact is well disguised by using the third formulation.

This is expanded upon in the next section.

5.2 Symmetric Formulation Paradox

We have set

S= [ :]andT= 6 _i]

which was first proposed by Hurty and Rubenstein in 1964(52) . If

we permit the use of an inner product we may observe the paradox

that ensues:
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I

r

I

r

r

r

T

1.

f

-i

7

1

T.

T-

7

f

.
<sxl *x1> = [TiT AixiT1 [ ““. I] [::.i]

-TCx +X;.TMx - T
= x.i i ii i + Xixi Mxi

=o

from orthogonality relationship, since this is an off diagonal term.

Also
. .

<Txl,x=> = 0

by similar reasoning.

Here, it is worth restating the essential difference between

inner product and linear functional:

2n
<x,y> = C Si~i

i=l

[xty] = ‘~ Si~i
i=l

i
X = {cp,  . . . . c29

X,Y E %

x E Y E 7p2,=

yi = {Ql, . . . '12J'

noting the use of the complex conjugate formulation for the inner

!>rodcct, but not with the linear functional. In essence, the S and

T matrices here are not positive definite so analysis using inner

product spaces is not permissible (see definition of inner product,

axiom 3).

5.3 Normalisation

Before embarkinz on a projection analysis for the damped

problem, a mention of normalisation is required. The usual normal-

isation that is adopted is

xTSx = I

T
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T

T

.
6x1 ,x1> = [TiT xix3 [ ““. I] [:;.i]

- T= xi Cxi + xiyiTMxi + X x,,bx,

=o

from orthogonality relationship, since this is an off diagonal term.

Also
. .

<TX' ,x1> = 0

by similar reasoning.

Here, it is worth restating the essential difference between

inner product and linear functional:

<x,y> = 2f Eirli
i=l

i=l

i
X = {Cl,  . . . .

noting the use of the

l>rodcrt, but no+ with.

X,Y E ?L

x E

yi = {rll, . . . '12J,

complex conjugate formulation for the inner

the linear functional. In essence, the S and

T matrices here are not positive definite so analysis using inner

product spaces is not permissible (see definition of inner product,

axiom 3).

5.3 Normalisation

Before embarkinz on a projection analysis for the damped

problem, a mention of normalisation is required. The usual normal-

isation that is adopted is

TxSx=I
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and Tx TX = -A

Ol- aTC@ + AQTM@ + (oTM@A = I

and (JTKQ - AQTM@A = -A

or, in other words, k. = 1 for all i. This
1

is perfectly valid,

and would appear the most suitable at first glance. However, if,

using this normalisation, we let C = 0 the we have, for the first

equation when i = j:

2XixiTMx, = 1
I

or xiTMxi

A phase shift

analysis here

xiTMxi

1 1 .
=2x=-=i 2i.Ui 2;'.

1

of 45' will prevail when damping is zero. For the

we wish

= l i f C = O

to allow compatibility with the undamped problem. To facilitate

this we let

ki =2X Vii

so we have

xTSx = 2A

Tx TX = - 2A2

i.e. OTC@ + AQTM@ + JM@A = 2A

and OTK@ - AQTM@A = - 2A2

The advantages associated with this normalisation become apparent

as the theory is developed and C is put equal to zero for comparison

with the undamped problem.
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5.4 Projection of Inverse S and T Matrices

We now consider the problem yhere we have an incomplete seti.

of measured complex modes, @, which is now (nx2m) and an incomplete

set of measured eigenvalues A (2mx2m). From this information, an

incomplete basis v2, may be formulated as the matrix X (2nx2m), so

decomposing 79in into the direct sum, we have

We may introduce, as before, two projection operators, using L.1,

as

pS = 3 x/Y-1xTs

and pS
T = + SXA -lXT .

In effect, Ps is the projection onto [xi] (i = 1, . . . 2m) along

[xi] (i = 2m+l,  . . . 2n). Thinking in terms of normed spaces, Ps is

an annihilator of [xi] (i = 2m+l,  . . . n). PST is the projection onto

[Sxi] (i = 1, . . . 2m) along [Sxi] (i = 2m+l, . . . 2n) (annihilator of

[Sxij(i = 2m+l, . . . n)). So here orthogonality has been extended to

include normed spaces with the use of linear functionals, i.e. I.,.]

(that is, an orthogonal space is replaced, in effect, by the anni-

hilator of the original).

We may also readily observe that the fact that we are dealing

here with a primal vector space and its dual is of little signifi-

cance, since both are expressed using the same set of basis vectors,

which is the advantage of employing a symmetric formulation. We may

readily deduce that
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T
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i
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-1

so we have, with respect to [.,.]g

Proj,(S-1)2p-  =
2m

That is

‘r;

p S-lp T A..
s s

+ XA -lXT

P=ojs(0)v 1=I
2m

Projs(M-l)Zp
2m

-1
Projs(M )p2m Projs(-M-lCM-l)V

!2m

So, equating corresponding elements,

@ [A-'][4'T1 @ATI

@A

-1
ProjSW Iv

2m

where Re signifies the real part.

summing vectors and their complex

io the undanlped case since if C =

exist. Also we have

- Projs(M-lCM-l)v
T

= +#A@'
2m

This may be used since we are

conjugates. This is analogous

0 then no imaginary part would

and %A-+DTP=ojS(0)~2m = 2

This second projection is not equal to zero unless m=n and, for com-

parison with the undamped case, if C = 0 then both these projections

are equal to zero for all m. Also, since

T-l = K-lI 0 1
0 M-l

L



I?!
T-

T

T

then -1ProjS(T 1~ = P T-1P T
2m s s

so

= 4 XA TsT-&SXA-lxT-1

= -1 4 XA-1XTSXA-2XT

-A x*-2XT= 2

k'roj,(K-')
zpim

Projs(0)Zp,,
1

I

ProjS(0)V
-1

2m
-ProjS(M )V2mI

l @ [A-2][@T= -5

11
AQT]

14
@A--W

@DT

which gives

ProjS(M-1 )v2, = 3 @QT

and Projs(0)~2m = -+@A -l@T

as before. ALSO

2m x.x. T
-1,ProjS(K ,'LP_ =

2m
_$@A-2@T=-+ 1 'x ;

i=l i
T
1

X.X. 1

= -Re F i : 1
i=l i

which is again analogous with the undamped problem.

We also have the two orthogonality conditions

AQTM@ + oTM@A + 4'T0#' = 2A

and aTKQ - AQTM@A = -2A*
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-1
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from which a third may be derived invo

oTK9 •t 2A2 = AOTMQA ;.?G

Pp T m

lving K and C on 1 y, thus:

A(AQ'M@A) t (A@'M@A)A t A@'C@A = 2A3

A(QTK'3 t 2A*) t (QTK@ + ZA*)A t AQTC@A = 2A3

AaTKQ t QTK(oA t A@TCQA = -2A3

so aTK@A-l t A-lQTK@ t QTC@ = -2A

This section has illustrated that again only expressions for

the inverse matrices are derived. It is possible to derive further

relationships between mass, damping and stiffness for a complete

system, but these are of little use.

As for the undamped case, in order to derive measured mass,

damping and stiffness matrices we require some additional informa-

tion, and the adoption of a suitable linear functional. Now we may

go on to consider how we may do this using, as that additional in-

formation, analytical mass and stiffness Ma and Ka.

5.5 Incomplete M, C and K

For the derivation of expressions for incomplete mass and

stiffness matrices we need to reintroduce the analytical system,

this time describing it as a (2nx2n) problem. We have

‘a = [

a

71 Ta = k _zj and xa = [IAa]

The analytical damping matrix is assumed to be zero, which would

reflect the most

could be carried

XaTSaXa =

likely situation in practice, but the analysis

through with C, f 0. We know that

2Aa
7



Xa*TaXa = -2A 'a

and T,X, + SaXBAa = 0. .vA’

T

T

-r

1

The following two matrices are set up, preceded first by an approp-

riate normalisation (that is

2XixiTMaxi = 2Xi for [.,.]S
a

and x.TKaxi - Xi2xiTMaxi  = -2xi21

for [.,.lT >.
a

So define

and

If we

where

and

with

where

and

s =AQTMa9 + @TMaOA = x*sax
t = OTKa@ - AOTMaQA = XTTaX.

Eirst consider the

pS
= xs-lXTSaa

Ps (2) =  xi
a

Ps (xi) = 8
a

T = s xs-lXT
'Sa a

Ps *(Saxi) = Saxi
a

Ps T(Saxi) = 8'
a

two projection operators for [.,.ls  , that is
a

i = 1, . . . 2m

i = 2m+l, . . . 2n

1= 1, . . . 2m

i = 2mi1, . . . 2n

then we may formulate a projected solution for the true S matrix,

thus

ProjS (S)ZP_ = Ps TSPS
a 2m a a

-.
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T

= s Xs-lXTSXs-lXTSa a

T

i

f

T-

T

so

= *saxs-1As-1P5
a

ProjS (M')tp
a 12m I

ProjS (01)~2m]
a

= 2

That is

O Ma 4 .-lAs-l[~T
Ma O

'[ 1
J

@A

ProjS ((3 jj2- = 2MadAs-1A0TM aa 2m

ProjS (M')
a 1p2, = ~M,~s-'A~-~AO~M~

= 2M ~As-'As+#'~MProjS (M2)v2m a aa

ProjS (0'l.p = 2M @,-'A~-bTM
2m a aa

-

Also ProjS (7')~ = Ps TTPs
a 2m a a

7

T.

7

7

so

that is

= S %-lXTTXs-lXTS
a a

= -2s X~-'A'S-~X~Sa a

ProjS (02)zp_
a 2m

-ProjS (M1)7~.i~
a 1

0 M a @I[ 1 s-~A~s-'[@~ AOT]

M 0 @Al
a

‘0 Ma

Ma O I
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7

7.
ProjS (K)zP,~ = -*MaQ*s-lA%-lk#JTM a

a

ProjS (M3)v2m = 2M Cps-lAzs%PTMa a
a

ProjS (0’)~~~ = -2Ma@s-lA2s-1A@TMa
a

ProjS (03)zp-
2m

= -2Ma@As-'A2s-bTM a
a

Here we see that there are three expressions for an incomplete mass

matrix. The expressions satisfy the following two orthogonality

relationships,

QT(ProjS  CC>  w )@ + OT(ProjS (M2) )@A + AQT(ProjS (M') )@
a 2m a F!m a 3rn

T + QAT(ProjS (O1)zp- )@A = 2A
a 2m

and OT(ProjS (K)
7pim

)@ + AOT(ProjS (M3)v >WI + AOT(Projs (02)v >@
a a 2m a 2m

+ QT(ProjS (03) qm)QA
= -2A2.

a

7 Alternatively, we may formulate expressions for incomplete matrices

u s i n g  [. , .I, , thus
a7

T

pT = Xt-lXTTaa

T = T Xt-lXT
T

'T, a

Using this approach, the projected S matrix will be

7

3.

so
-x.

7.

ProjT ts)tp = T Xt-lXTSXt-lXTT
2m a aa

= 2T Xt-lAt-lXTTa a

ProjT (')?Tirn
i

ProjT (M')z~
a a 2m

Pro jT (M2+p2m ProjT (01)7p. 1
a a 2mJ
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That is

Ka 01

0 -M I
al

ProjT (‘)v = 2K @t-lAt-l@TK
2m a a

a

-2K @t-1At-1A4'TMProjT W11w2, =  a a
a

ProjT (M2$- = -2M 4At-1At-10TK
2m a a

a

ProjT (O’>-),y = 2M @At-'At-'AQTM
2m a a '

a

Finally D for the projected solution of the T matrix,

ProjT (T) 79‘ = T Xt-lXTTXt-lXTT
2m a

a
a

= -2T Xt-'A2t-lXTTa a

so IProjT (K) ‘zp
a 2m

ProjT (")v
a 2m

ProjT (02)V = -2
a 2m

-ProjT (M3)v
1

a 2m

kT a

that is

Ka 011@ lt-lA2t-lI

0

-M
Ia

ProjT Wt, = -2K @t-1A2t-14'TK
a 2m a a

ProjT (02)V2m = 2K @t-1A2t-1A@TMa a
a

= 2M QAt-1A2t-1@TKProjT (O')zpi, a a
a

Pr"jT (M3)V2m = 2M @At-'A2t-'AQTMa a
a

Again, we may observe that the following orthogonality conditions

are satisfied:
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OT(ProjT (C)z,
2m

)Q + AQT(ProjT (M2)zp
2m

>Q + OT(ProjT (M')ze )@A
a a a 2m

‘r;

+ AoT(ProjT (O1)zp- )@A = 2A
a 2m

and 'T(ProjT (VP
a 2m

)a + AQT(ProjT (0')~
a 2m

>@ + aT(ProjT (Oz)~m)OA
a

+ QAT(ProjT (M3)Lr )@A = -2A'.
a 2m

It can be seen that for the incomplete case the projection of the

0 matrix is not itself 0 (although it will be for a complete system)

and thus plays a role in satisfying the necessary conditions. Also,

the expressions for incomplete mass matrices are similar, but not

identical. These observations are discussed later in this chapter.

The next section demonstrates how this analysis is the logical ex-

tension of the undamped problem by showing that the three incom-

plete expressions for mass are all identical and equal to the ori-

ginal undamped expression when the damping matrix is set to zero.

5.6 Comparison with Undamped Problem

We know that X = f@

I
1

@A.l

but that the @ is really a matrix of eigenvectors and their complex

conjugates, thus LO 3). With the normalisation that has been

adopted it is known that as damping tends to zero so do the imagin-

ary parts of the eigenvectors. In the limit we have [@ @] (@ now

real). Also, we know that A may be expressed as

A : O

[ '
_---
0 I i-j

and as damping tends to zero it becomes
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-I-

-r

-r

where G? is the diagonal matrix of measured natural frequencies.

Now, if we consider the s matrix under these conditions,

then

= i -QTMam + fiQTPlai;l

-OTM #(;z - fiQTM 0
I

a a 1

where A = QTMa@f? + RQTMaQ

and B = QTMa@R - ROTMaO

We may then formulate the inverse as

-1= -i (A - BA-lB> -(AB-1A - B)-1 = -i E -Fl, say.
I

(AB-lA - B)-1 -(A - BA-18)-l1 1F -EJ

This allows us to consider

with the complex variable i cancelling. So,
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where @m + @n = @((A-l + B-l)(AB-' - BA-I)-1)Q

= 4'((A-l + B-l)((&- B)(A-1 + B-l))-l)Q

= @(A - B)-'Q

= @m-1*-l* = $$m-1

recalling that

m = OTM @.a

This calculation may be repeated for @As -1 , thus

where WE - @RF = @R(E - F)

W(B-' - A-l)[(A + B)(B-1 - A-1)]-1

@Q(B-' - A-l)(B-l - A-l)-l(A + B)-1

m(A + B)-1

+#QQ-lm-l = +#Jrn -1

as before.

From this we may say that

(a) ~M,~~-'As-'A@~M~ = 2Ma@As-1A~-1@TMa

= 2M G~s-~A~s-~Q~Ma a

= 1 Ma@me20TMa (( nxn) version)}.

(b) 2M,@As-'As-'AOTM a = ~M,@s-'As-~@~M~
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T
= -2MaQs-1A2s-1AOTM a

= -34 8As~'~2s-'~TM - 0a a- ’

T-

-r

i,

-

-i

T.

T

7

cc> -2Ma@As-1A2s-1AOTMa = {-MaQm-lA2m -laTMa (( nxn) version)}.

Effectively, the two are one and the same problem. The

same may also be found to be true if we use [.,.I, to conduct the
a

analysis. This is encouraging insofar,as we may see that we have

moved from a (nxn) undamped problem to a (2nx2n) undamped problem

(but permitting the inclusion of damping if so desired) without

affecting the original expressions. It may therefore be asserted

that the (2nx2n) problem is just a natural extension of the (nxn)

problem.

5.7 Error Expressions

Error expressions for the damped case may now be formulated,

in a similar fashion to that described in Chapter 4. For brevity,

calculations using [.,.]g only are described here. Full tables
a

of possible error expressions are given in Tables 5.1 to 5.4.

Firstly, to derive an error expression, Sa and T, must be projected

onto the corresponding subspace so that

E'error = PS T(s
a

- Sa)Ps
a

'p
= saxs-lxl(s - 1 T

sa)xs-‘x’sa

= saxs-l(2A - s)s_lxTsa

-1.

T..

.”
-

0 1s-+2A - s)s-'[@~ AaT] 0

I

bial
M I
a OJ
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Cerror = MaQA&2A - s)s-lAQTMa2'"

Mkror = Ma@s-l(2A - s)s-'A(DTMa

M2error = Ma@As-+2A - s)s-lOTMa

0 ’ = Ma&-+PA - s)s-10TMerror a

and for the T matrix

&2 = PS T(T - T,)PS
a a

= S,Xs-lXT(T - Ta)Xs-lxTsa

= SaX&2A2 - XTTsX)s-lXTSa

= SaXs-l(2A2 - t>s-lxTsa

= 0 Ma] @ s-+2A2 - t)s-l[oT

i I[]Ma 0 "

so, Kerror = Ma@As-l(2A2 - t)s-lAOTMa

M3error = Ma&-+2A2 - t)s-loTMa

O2error = MaoAs-l(2A2 - t)s-lQTMa

'Lror = Ma&-l(2A2 - t)s-'AQTMa.

7
Alternatively Sa and Ta may be projected onto the subspace descri-

bed by the corresponding analytical modes. Here, the analytical

7. modes are assumed to be real (i.e. analytical system has no, or

possibly proportional, damping).
7

so, E3 = sa(Xs-12As -1XT - fX,A;'Xz)Sa

7.
- 192 -
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T

T

T

T

T

that is

Cerror = ~a@As-12As-1A~TMa  - $Ma@aAa@zMa

M'error = M,Qs-~~As-~A@~M~  - fMaQa@zMa

Mk-ror = M,OAS-~~A~-~~M~ - +MaQa$la

0 ’ = M @s--~~As-~O~Merror a a

and for the T matrix

E4 = Sa(Xs-12A2s-1XT  - fXaX;Pa

T

7.

7

7

7

;

3.

- f

Kerror

M&ror

= M @As-~~A~s-~A@~Ma a

= M @s-~~A~s-~@~Ma a - QMalOaQz~a

'Zrror = MaOs-12A2s-1A@TMa - $MabaAaQtMa

O3 = M @As--~~A~s-~~~Merror a a

Finally, introducing the approximation s = 2A in a similar fashion

to the m = I approximation of Chapter 4 gives:
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T

Merror = fMaOQTMa - +Ma@a@;Ma,

K +l @A20TM=2 _
error a a

+M @ AqaTM
a a a a a '

0error

7

7

7

-t

I

~1

1,

Cerror = ~~~~~~~~~ - +~~a~Aa@zM~.

5.8 Numerical Experiments

In order to investigate the potential of some of these error

expressions, example 3 from Chapter 2 was utilised, which has non-

proportional damping. That is, the first element has damping equal

to 1% of that of the stiffness. For reasons discussed earlier

(that is, the higher modes are analytical functions and would not

be measurable in practice), only the first n/2 modes were used and

compared with the correct form of the error matrix. The term

'correct' here means the form that the error matrix would take in

the ideal situation where all the modes were known. Although this

is unachievable in practice, it is included in order to examine

Lhe quality of results obtained using 1 to 5 modes (i.e. the likely

practical situation).

Two examples are included here, where the 'incorrect' ana-

lytical model is set up as follows:

Test 1:

Ca = 0; Ma = M (i.e. mass matrix correct, and adopting a

correct normalisation); first element of Ka = 0.5 x first element

of K, all other elements being correct.

Test 2:

C = 0; first element of M = 0.5 x first element of M (i.e.a a
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T.

T

T

7

-

mass matrix incorrect; normalisation errors exist); first element

of Ka = 0.5 x first element of K, aJ?l other elements being correct.

The error expressions marked with an asterisk in Table 5.1

were calculated and the results for mass, damping and stiffness are

presented for the two tests as Figures 5.1 to 5.6. Also, the ele-

ments of these three matrices for the two examples, with 5 or all.

modes used, are presented as Figures 5.7 to 5.12. The errors when

using all the modes in the second test are those due to a normali-

sation using Ma.

5.9 Discussion of Error Expressions

In the preceding sections, proposals have been developed

for the examination and comparison of an undamped analytical FE

model with measured complex modes and complex eigenvalues, which

represents the most likely practical situation. The damping has

been taken as viscous, and no attempt has been made to eliminate

it with efforts to convert complex modes to normal modes. Indeed,

the discussion and examples of Chapter 2 illustrate that this is

an extremely difficult, if not impossible, task for an incomplete

system. The damping in the example is set up as 0.01 x the terms

in the stiffness matrix in the first element only, thereby intro-

ducing non-proportionality into the system.

The initial results, based upon the numerical experiment,

are encouraging. As was expanded upon in Chapter 4, limitations

on the expectations of error analysis do exist, but these apply

equally to the damped case as to the undamped case. No serious

additional problems emerge from the treatment of the damped problem.

- 195 -

. . .



E
7

T

Indeed, if damping exists in the system, some headway may be made

towards establishing where the damping is concentrated by utilisingi'

the damping error expressions. Again, the same assertion that the

region detected may only be as small as the wavelength of the high-

est mode applies.

As may be observed from the diagrams, the asymmetry of the

mass matrix error expression is insignificant. It is brought about

as a result of the non-proportionality, and it would not be observed

if no damping or proportional damping existed (as simple tests have

demonstrated). The normalisation does not affect the asymmetry,

as may be observed in Figure 5.10 with all the modes included.

Here, the only unsymmetrical terms are those coupled to the damping,

and the (7x7) matrix in the lower right-hand corner is symmetric.

So, in practice, many of the mass error expressions are extremely

similar, since here non-proportionality has been imposed and yet

asymmetry is small. Of major significance is the fact that in the

second test, when an incorrect mass matrix was introduced, with the

consequent effect on normalisation, the first five modes extracted

nearly all the information concerning mass error that was available

and the quality of damping error and stiffness error was affected

very little.

T

An inevitable practical drawback is the fact that the error

expressions are fairly involved and performing the normalisation

may be difficult because of the use of complex arithmetic. However,

this is nothing more than a reflection of the complexity of the

real world, and must be accepted if an accurate model of the beha-

viour of the structure is to emerge. One note here is that the

7
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inversion of s or t, which are complex matrices, should not present

too many computational difficultiepsince they will only be as

large as the number of modes used (say, at most (20x20)).

The tables show an enormous selection of error expressions

to use. However, as was indicated for the undamped case, they

should nearly all perform equally well, with the key issues remain-

ing a good normalisation and quantity and quality of the measured

information.

5.10 Hybrid Matrices

The use of hybrid matrices in the (2nx2n) example is limited

since they necessarily need to be derived in the (2nQn) environ-

ment and although the hybrid S and T matrices (SH and TH) will

satisfy the necessary orthogonality and eigenvalue equations, the

individual components of these matrices (e.g. M, C, K) cannot

readily be extracted since other non-zero matrices will have been

formed which affect the solution of the necessary constraints. In

cases of light damping it may be possible to assume that these non-

zero matrices are zero, and so approximations to the improved M,

C and K will be extracted. As a result, these matrices will only

approximately satisfy the necessary constraints. The nature or

acceptability of these approximate solutions will depend largely

upon the individual problem under investigation and the degree of

damping that exists.

In parallel with the undamped case, the hybrid solutions for

the S and T matrices are given by
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and

** =Ssa ps a
TSPS + (I - Ps T)Sau - Ps >

a a a
i"

= saxs-lxTsxs-lXTSa + (I- SaXs_lXT)Sa(I - Xs_lXTSa)

= 2s xs-l/k-lXTS  + s s xs-lXTSa a a- a a

H
TS = PsaTTPs + (I - Ps T)Ta(I - Ps )

a a a a

= S Xs-lXTTXs-lXTSa a + (I - S,Xs-lXT)Ta(I - Xs-lXTSa)

= -2s Xs-1A2s-1XTS + T - S Xs-lXTT - T Xs-lXTS
a a a a a a a

+ S Xs-lXTT Xs-lXTSa a a

or, with respect to [.,.I,
a

sTa
H
= 'Ta TSPT + (I - PT T)Sa(I - pT )a a a

= TaXt-lXTSXt-lXTTa  + (I - T,Xt-lXT)Sa(I - Xt-lXTTa)

= 2T Xt-'At-lXTT  + S T Xt-lXTS - S Xt-lXTT
a a a- a a a a

+ TaXt-lXTSaXt-lXTT a

and TT
H = PT TTPT + (I - PT T)Ta(I - pT )

a a a a a

= TaXt-lXTTXt-lXTTa + (I - TaXt-lXT)Ta(I  - Xt-lXTTa)

= -2T Xt-1A2t-1XTT  + T - T Xt-lXTTa a a a a'

These expressions then will satisfy the necessary constraints, but

the system needs to remain as a (2rF2n) problem for further analy-

sis, which may itself be desirable since this in no way limits its

use.

7 .!
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5.11 Origins of Transfer Function Expression

Analysing the problem

derivation of the expression

space environment. We have

S;% 1; T;c O] with X = [A]

so that

in a (Jnx2n) normed space allows the

for the transfer function in a vector

with

It is

If we

SXA + TX = 0

XTSX = 2A and XTTX = -2A2.

therefore possible to say that

XT(uS + T)X = 2(uA - A*>.

have a complete set of modes (X)-l and (XT -1) will exist so

(~6 + T) = 2(XT)-l(uA - A*)(X)+

We have what is effectively a change of basis,

(us + T)-1 = +X(uA - A2ylXT

where (us + T) = uC + K

[ uM I:]

The inverse of (us + T) is given by

(us + T)-1 = (~*M+LIC+K)-~ (u*M+uC+K)-$J
1

I

since

(u2M+uC+K)-'u (~*M+~c+K)+J*  - M-'j

(u*M+uC+K)-1 (u*M+uC+K)% uC+K uM] = r' "1

(IJ*M+IJC+K)%I (~*M+~C+K)-'U*-M-~ I
41] Lo Ij

and (u*N+~C+K)-+J  . = I 0I[ 1(v2M pC+K)-+J'-M-l ' L

Therefore



t

(IJ~M+vC+K)-~ (U~M+IJC+K)%
-i

(IJ~M+uC+K)+J I(P~M+~.IC+K~+J~-M-~

i- - *9-1$ +#QI - n>-loT

-r - h)-laT +#Jh(uI - n>-b7

[uh  - A'] -l[oT noT]

giving three possible expressions for the transfer function of

Hl(lJ) = (u2M + IJC + K)-1 = +#Qfh - h2)-bT

Hi = (u~M + PC + K)-1 = &- Q(IJI .- r.)-lQT

H3(L1) = (u2M + PC + K)-1 = + @h(pI - /I)-bT + + M-l

= &@h(vI - -IT 1 TA) @ +p@Q l

-r

-I-.

i
I

-i

T

T

7

However, we know that for a complete system

1 @A-v = 02

therefore

&WA - h2)QT = + ;<l 'k{h,(u _1 hk)j 'k

and applying partial fractions gives

1
=z Oh-bT + a( I - A)-'QT

n)-'GT

Also, we may see that
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-i

-i-T
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T.

-i

-

1
=W

1
=2uz

so that all three expressions

jl ‘k(_(p hkAk) + l]'k
i

i"

@A(u'- A)-loT + WT
1

are effectively identical. HI(P) i s

the expression used for curvefitting since no multiplication or

division of the variable ~1 appears. For low frequencies, the

transfer function matrix of this expression‘approximates the flexi-

bility matrix. Again, the frequency response function may he

obtained by setting u = ifij thus,

H(inj) = f@(injA - A2)-laT

2n . m
= 3 c

kzl ‘k ‘,cinj’- A,) 'k'

so we may see that the residue ak is given by xkxkT/2Xk. for this

particular normalisation. If the normalisation XTSX = I were used,

the residue would be simply xkxkT. Therefore

2n
H(i!iZj)  = ak

kfl cinj - 'k)

5.12 Overview

This chapter has set out to extend the analysis of the

undamped problem of Chapter 4 to the viscously damped problem.

This is in an effort to bring closer together the comparison between

experiment and analysis. Curvefitting routines for experimental

results usually fit an analytical function involving viscous damp-

ing (frequency response function), so it is logical to extend the
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error analysis to incorporate this. The analysis has been directed

towards the comparison of measured (;omplex modes and frequenciesiv

with an undamped analytical FE model.

Possible ways of setting up the problem in the (2nxZn) com-

plex space and possible normalisations have been identified, and

in each case the most convenient form has been selected for the

analysis. A symmetric form for the problem was chosen so that the

problem became self-dual, therefore allowing the extra :onsidera-

tions required by adopting a dual basis to be suppressed my making

it identical to that of the primal. The normalisation chosen was

that which made the problem identical to the undamped problem of

Chapter 4 when da&ping  is set to zero. That is, the phase shift

of the modes tends to 0' or 180'.

Incomplete measured mass, damping and stiffness matrices

were formulated, in order to allow an error analysis to be conduc-

ted, in the same fashion as that of the undamped case. In general,

the numerical experiments demonstrated a strong similarity between

the degree of success attained for the damped problem with that of

the undamped problem. The asymmetry of the mass matrix error

expressions was found to be produced by the non-proportionality

of the system and, for the fairly typical example used, was observed

as minimal. In general it was found that the move from the (nxn)

undamped problem to the (2nx2n) damped problem introduced rela-

tively few additional difficulties, but allowed a more rigorous

approach to error analysis using measured complex modes. The num-

erical experiments have indicated the possibility of detecting

areas of concentrated damping using this technique and so offer the

potential of rethinking the analysis in order to introduce a damping
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The possibility of improvi@g mass, damping and stiffness

matrices using a hybrid type of analysis was found to be limited

to the (2nx2n) problem and extracting the parts of matrices updated

is not feasible if the necessary constraints are to be satisfied.

Finally, a derivation of the frequency response function matrix

used in curvefitting routines is described to demonstrate how the

experiment and analysis are related when the problem is posed with

the inclusion of viscous damping.

The way forward for a realistic comparison of likely types

of measured and analytical information has been proposed. Indeed,

an error matrix of zeros is of use here, since then one may assert

that the mass and stiffness matrices derived for the undamped

problem have been verified using measured information. This is a

practical alternative, since it is unsound to compare undamped

normal modes with measured complex ones for the purpose of model

verification.

The effectiveness of the error analysis using this and p~-e-

ceding chapters hinges upon the fact that the measured modes need

to be known at all the nodes of an FE model. In general, this is

completely unachievable - since many of the nodes will be internal

and therefore inaccessible to measurement. The complete mode needs

to be determined by some sort of expansion process, and considera-

tion of this problem is the theme of the next chapter.

7

9.

7.
- 203 -



ProjS ( l ‘ze,ma
- ProjS Cea)zp

a 2m

c *error MaG-l(2A - s)s-lAQTMa

x
2 MLrror Mahd(2A - s)s-lQTMa
b
I
WI M2 *error Mad(2A - s)s-'AQTMa

'ix-ror Mad(2A - s)s_l@TMa

K *error

Mirror

'Error

'Zrror

MaQAs-f2A2 - t)s-lAd~~M a

Ma&-+2A2 - t)s-bTMa

MaQAs-+2A2 - t)s-bTM a

Ma@$(2A2 - t)s-'AQTMa

TABLE 5.1: Error Matrices
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Figure 5.1: Mass Error Test 1 (M=M,)
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Figure 5.2: Damping Error Test 1 (M=M,)
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Figure 5.3: Stiffness Error Test 1 (M=M,)
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Figure 5.4: Mass Error Test 2 (MIM,)
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MASS ERROR MATRIX (10 MODES)

I

0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 , 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  b.000 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 , 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 , 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0

I

MASS ERROR MAtRlX (5 MODES) ?.. f

0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000
0 .0000  0 .0001  0 .0001  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .000
0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .000
0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .000
0 .0000  0 .0000  ,o. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .000
0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .000
0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .000
0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .000
0 .0000  0 .0000  0 .~000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .000

Figure 5.7: Mass Error (M=M_)



DAMPINQ  E R R O R  M A T R I X  (10 M O D E S )

!

0 . 0 8 3  0 . 1 5 1  0 . 0 3 1  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 1 5 1  0 . 4 8 3  0.15~1  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 3 1  0 . 1 5 1  0 . 0 8 3  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  ‘0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 , 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  D.t-'!Jo  0.000 0.000 0.000J

D A M P I N Q  E R R O R  M A T R I X  (5 M O D E S )

0 . 0 1 8 2  0 . 0 0 3 8  0 . 0 1 4 0  0 . 0 0 2 1  0 . 0 0 5 5  0 . 0 0 1 5  0 . 0 0 2 3  0 . 0 0 1 5
0 . 0 1 8 2  0 . 1 5 0 8  0 . 0 2 8 5  0 . 1 1 4 1  0 . 0 1 8 2  0 . 0 4 3 5  0 . 0 1 1 8  0 . 0 1 8 8  0 . 0 1 1 4  0 . 0 0 5 7
0 . 0 0 3 8  0 . 0 2 8 5  0 . 0 0 5 7  0 . 0 2 2 1  0 . 0 0 3 4  0 . 0 0 8 8  0 . 0 0 2 5  0 . 0 0 3 8  0 . 0 0 2 4  0 . 0 0 1 2
0 . 0 1 4 0  0 . 1 1 4 1  0 . 0 2 2 1  0 . 0 8 7 2  0 . 0 1 2 7  0 . 0 3 3 7  0 . 0 0 9 2  0 . 0 1 4 5  0 . 0 0 9 0  0 . 0 0 4 5
0 . 0 0 2 1  0 . 0 1 8 2  0 . 0 0 3 4  0 . 0 1 2 7  0 . 0 0 2 0  0 . 0 0 5 2  0 . 0 0 1 5  0 . 0 0 2 2  0 . 0 0 1 4  0 . 0 0 0 7
0 . 0 0 5 5  0 . 0 4 3 5  0 . 0 0 8 8  0 . 0 3 3 7  0 . 0 0 5 2  0 . 0 1 3 5  0 . 0 0 3 8  0 . 0 0 5 8  0 . 0 0 3 7  0 . 0 0 1 8
0 . 0 0 1 5  0 . 0 1 1 8  0 . 0 0 2 5  0 . 0 0 9 2  0 . 0 0 1 5  0 . 0 0 3 8  0 . 0 0 1 1  0 . 0 0 1 8  0 . 0 0 1 1  0 . 0 0 0 5
0 . 0 0 2 3  0 . 0 1 8 8  0 . 0 0 3 8  0 . 0 1 4 5  0 . 0 0 2 2  0 . 0 0 5 8  0 . 0 0 1 8  0 . 0 0 2 5  0 . 0 0 1 8  0 . 0 0 0 8
0 . 0 0 1 5  0 . 0 1 1 4  0 . 0 0 2 4  0 . 0 0 9 0  0 . 0 0 1 4  0 . 0 0 3 7  0 . 0 0 1 1  0 . 0 0 1 8  0 . 0 0 1 0  0 . 0 0 0 5
0 . 0 0 0 7  0 . 0 0 5 7  0 . 0 0 1 2  0 . 0 0 4 5  0 . 0 0 0 7  0 . 0 0 1 8  0 . 0 0 0 5  0 . 0 0 0 8  0 . 0 0 0 5

Figure 5.8: Damping Error (M=M,)



S T I F F N E S S  E R R O R  M A T R I X  (10 M O D E S )

5183 7 . 5 9 9 1 . 5 9 1  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
7 . 5 9 9  2 4 . 1 8 8 7 . 5 9 9  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
1 . 5 9 1  7 . 5 9 9 3 . 1 8 3  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0 0 , 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0
0 . 0 0 0  0 . 0 0 0 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0

0.000
0.000
0.000
0.000
0.000I0.000
0.000
0.000
0.000
0.000

S T I F F N E S S  E R R O R  M A T R I X  (5 M O D E S )

0 . 0 5 2  1 . 2 2 5  0 . 0 1 8  0 . 1 6 6  0 . 0 4 7  0 . 0 5 2  0 . 0 2 2 0 . 0 2 2 0.019 0.00s
1 . 2 2 5  3 . 0 2 7  2 . 4 7 2  1 2 . 4 9 1 1 . 8 4 5  4 . 2 7 0  1 . 1 6 6 1 . 8 1 1 1 . 1 2 3  0 . 5 5 8
0 . 0 1 8  2 . 4 7 2  0 . 1 5 0  1 . 2 4 8  0 . 2 4 0  0 . 4 0 2  0 . 1 3 2 0 . 1 6 8 0 . 1 1 8  0 . 0 5 7
0 . 1 6 6  1 2 . 4 9 1  1 . 2 4 8  7 . 9 6 7  1 . 5 2 6  2 . 3 7 0  0 . 8 1 5 0 . 9 6 4 0 . 7 1 7  0 . 3 4 7
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Figure 5.9: Stiffness Error (M=M )
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Figure 5.10: Mass Error (M+Ma)
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FLgure 5.11: Damping Error (M+Ma)
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Figure 5.12: Stiffness Error (MfM,)
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CHAPTER 6

JNTERPOI,ATION OF MFASURED_MODES

$?

6.1 Preliminaries

In order to perform an analysis of the type described in

the previous chapters, there needs to exist a compatibility between

measurement and analysis, in terms of the dimension of the problem.

It is usual for the number of measured modes, m, to be measured at

n positions, which is often rather significantly smaller than the

number of degrees-of-freedom of the mathematical model, N. To

proceed, n needs to be set

uction of the mathematical

some sort of interpolation

equal to N. This involves either a red-

model using an established technique or

on the measured modes so that each mode
II-I _)-I\

has N elements instead of n. Reduction processes'4'r"'  condense

the information with the result that the reduced matrices cannot

readily be interpreted in terms of mass and stiffness distributions.

The more viable alternative is considered to be an expansion

of the measured modes. Two approaches are considered in this chap-

ter in order to achieve this goal: the first is the use of splines

and the second is the use of the mathematical model once more in

order to provide the information about the modes that has not been

obtained experimentally. Needless to say, the more information

that can be measured, the less the expansion process has to be rel-

ied upon. For simple structures such as beams, the number of unmeas-

ured coordinates is not so significant as it is for large structures

(such as dams) where the unmeasured coordinates would greatly out-

number those which have been measured. In general, measurement over

as many channels as possible is desirable, although it is unlikely
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that all the measurements can be made due to the difficulty of

measuring rotational motion and internal degrees-of-freedom.

;?;

6.2 Interpolation Using Splines

Possible methods of interpolation of mode shapes in order to

establish the full mode are many. They vary from literally drawing

the smoothest curve possible through the measurement points to estab-

lish the intermediate values, to surface splines and other sophisti-

cated techniques. The type of interpolation adopted depends largely

on the type of the problem being considered. For the pinned beam

investigated in this thesis, the use of the cubic spline was con-

sidered most appropriate for interpolating on the measured modes.

The cubic spline is an interpolation between two points with the use

of a polynomial of degree less than or equal to 3. The theory of

cubic splines is well established (2~7) , but is included here to

demonstrate its application to modal analysis. If we have a meas-

ured mode xi = (50, ." 5,) measured at positions (~0, . . . yn) and

we wish to complete the mode by obtaining the missing gradients

and displacements using the cubic spline, then we need to establish

the vector Q = (Qo,Qr, . . . Qnl such that on [y ,y ]i-l i the second

derivative of S, the cubic spline, is given by the linear function

(Yi - Y) (Y -
S”(Y) = Qi_1

Yi_1)
h

4
’ Qi h

i
I .L

whereh =y.-i 1 yi_j_s lsisn. This implies, on integrating each

segment twice with respect to y and determining the pairs of con-

stants of integration to make S(yi) = Si, that on bi_l,yi]

Q.
S(Y) = -@ (yi - y>3 + g

i i
(Y - Yi_1)3 +

Qihi*
5i - 61

(Y - Yi_1)

hi

I (Yi - Y>

hi



r
i :

r if
r 1:

!- 3

-

h

c ;
i

i-

-
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For any choice of the values Qi, this equation defines a piecewise

cubic function of y which is continuous over the mode and has a;";

smooth second derivative. For S to be a spline function, however,

we also require that S'(y) be continuous. This is the case if, and

only if, the derivatives of the cubits agree at the point yi. Then,

S'(y) will exist for all y and it will follow that S"(y) exists and

is continuous. Therefore, differentiating we obtain for y in

ry 3i-1 ’ yi

0. 0.
"(Y) = - ~ (yi - y)2 + ~ (y - yi_1)2 +

(5i - ‘i-1)

i i
h

i

h.
+ CO,_1 - Qi) ~ l

We impose continuity on S'(y) at yi, 1 s i 2 n-l. The derivative

at yi using the cubic over [~~_~,y~] is

Qihi Qi_lhi ci - 5i-l
3+ 6 + hi

and the derivative at yi using the cubic over I:yi,yi+lj is

Qihi+l Qi+lhi+l %+l - 'i
3 - 6 + hi+1 ’

Upon equating these two expressions and simplifying, we obtain

aiQi_1 + 2Qi + CiQi+l = di 1 5 i s n-l

where ai = hi/(hi + hi+l) c.=l-a
1 i

and di =
6C(ci+l  - ‘i)/hi+l - (5, - Ei_l)/hi]

The remaining

arbitrary end

written as

hi + hi+l
.

two equations for the Qi are obtained by imposing

conditions on Qo and Qn. For convenience these are
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240 + coQ1 = do

and y.,Qn_l + 2Qn = dn

where the choice of constants is at c&r disposal. These equations

were then used to interpolate on the first three modes of the undamped

pinned beam where the displacement at 6 nodes was taken as the meas-

urement and the displacement and gradient at 11 nodes were required,

so about one quarter of the required information was available

Each node was equally spaced along the beam, and every other

node was considered as being measured (see Tables 6.1 to 6.6). As

can be seen from the calculations, the quality of the first mode is

good, but this quality decreases as the mode gets more complex, as

would be expected.

Interpolation techniques clearly have their uses if the sit-

uation permits them, the beam example being one such case. However,

difficulties arise because of the fact that the measurements are

usually very sparse

especially when the

to measurement. If

compared to the amount of information required,

model has many degrees of freedom inaccessible

this problem is severe, caution needs to be

exercised upon applying interpolation techniques and inexplicable

interpolated modes may emerge as a result of leaning too heavily

on approximation methods where too much information is expected from

too little supplied. A popular approach in such circumstances is

the use of the FE mathematical model as the interpolating tool.

This is discussed in the next section.

6.3 Interpolation Using an Analytical Model

The notion of using an analytical model to expand the measured
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set of modes from that of (nxm) to (Nxm) has been discussed in the

literature. Here the problem is analped, bearing in mind the

likely scenario that will exist during an assessment-of the dynamic /

.properties  of a structure. For convenience, the envisaged situa-

tion involves three people referred to as the 'manufacturer' (or

the person intending to construct the structure in question), the

'analytical engineer' (who is essentially a numerical analyst, well

versed in the FE method), and the 'test engineer' (who is an experi-

mentalist with experience in the analysis of data and the extraction

of modal properties). The chain of events described here is a con-

sidered opinion, and is not an attempt to describe what happens in

practice.

(a) The

concern as

manufacturer has designed the new structure and expresses

to its likely dynamic performance.

(b) The analytical engineer is called in and performs the foll-

owing tasks:

(i) Constructs an FE model of the structure, with the

data available, in terms of mass and stiffness distributions.

Analytical modes and frequencies are extracted.

(ii) Programs expressions for error analysis, to be used

by the test engineer should the analytical modes and fre-

quencies not be verified by experiment.

(iii) Sets up the mathematical model for ease of modifica-

tion by the test engineer (in terms of ET, m parameters etc.).

(c) The manufacturer assesses the

and either redesigns or constructs a

predicted dynamic performance

scale model or prototype.

Cd) The test engineer is called in to take measurements on the
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model and extract measured modes and frequencies.

because they disagree with the predicted ones. An
;.‘;

Problems arise

error analysis

is conducted to estimate the regions of the FE model-that have been

incorrectly assessed. The software to do this is already available,

as left by the analytical engineer. Areas of inaccurate modelling

are identified, and the appropriate adjustments are made to improve

the model (again, this facility has been made available by the ana-

lytical engineer). Agreement between test and analysis is reached.

(4 The manufacturer constructs the structure.

The purpose of this section is to consider interpolating on

the measured modes in order to obtain full modes for use in the

error analysis. This is essentially a job for the analytical engin-

eer who, by the testing stage, has come and gone. The problem is

therefore approached with a view to its assessment prior to the

modal test being conducted.

In order to do this, the analytical engineer must know the

points at which measurements are going to be made. This usually

corresponds to the displacements of nodes at the surface of the

structure, or those which are readily accessible to measurement.

Two possible situations are examined: that where a preliminary test

has been conducted and measured frequencies only are available, but

not modes (assuming, for instance, that the scale model has already

been constructed and the manufacturer has some simple test equip-

ment with which to gain an initial assessment); and that where no

information at all is available.

The FE mathematical model that is available is typically of

the form
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MOaAa = KQa

or (hiaM - K)xia = 8
;.+

where M and K are, of course, Ma and Ka of the previous chapters.

Although the analysis here is, for convenience, carried through in

terms of partitions, the analysis is, in fact, totally suitable for

use in FE program equation solvers where banding is not disturbed

by rearrangement. We have

where a subscript of 1 denotes a measurement position. This may be

written as

i

Lll(~i) ’
I

L12(xi) ‘li = e
----------
L21(~i) I

I[ 1
L22(xi) ‘2-j.

We wish to determine the xti for each x_,ri. The F'E format of the

equations is retained and the known xri coordinates are eliminated,

essentially treating them in a standard way as boundary conditions

thus

r

T

‘ll(~i>  ’ 0
J 1_--- ----a

0 I L22(hi)J

X ii =
#I 1 L1l(xi)xli

- -
X
2i -L21(hi)Xli

Therefore these equations can be solved using standard FE solution

techniques. Since the xii are not known at the analysis stage, an

indirect method needs to be adopted by finding x2i for each of the

'basis unit measured modes'. xii can then be expressed at a later

stage in terms of these basis vectors. Thus the xri vectors on the

right-hand side are set to (l,O, . . . . O)T, then (O,l, . . . . O)T, and

so on, so that the problem is solved n times whichis merely an n-fold
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repetition of a standard FE solver for the structure. This will

produce n vectors for the xri given b& Ci (r), r = 1, . . . n. These

are interpolation vectors derived from a unit displacement at each

of the measurement nodes in turn. Thus, the interpolated xzi vec-

tor, when the measurements have been made, will be given by

'ri = where x li = (/$, . . . $)T, i = 1, . . . m

(r)If the experimental frequencies are known, the 5.1 may be determined

for each mode and all that is required of the test engineer is to

insert the values of Srl once the measurements have been made.

If the eigenvalues are not known then this approach requires

modification for a correction for Ai once they become available. We

make the assumption that the measured frequencies will not differ

greatly from the analytical ones, and again we use an indirect ana-

lysis which will allow the incorporation of measurements at a later

date. Essentially, the problem that has been solved is

L12T(~i)xli + L22(Xi)Xzi  = 9

or X
2i

z- L22-1(Xi)L12T(Xi)x~i

where the x ri and Xi have been measured for each mode i (i = 1, . . .

m>. If these are written as their analytical equivalents plus an

error we have

X ri =X ria + 6xri and Xi = Aia + 6hi.

Also, we write

X
2i
=X2ia + 6x 2i*

Therefore

-
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L12T(Xia + bXi)(xlia  + 6x1$ +

L22(X ia + 6hia)(x2ia + 6x2i)+ 8

which, to a first order approximation, is equivalent to

L12T(hia)'x,i t M1lT("i)Xlia + L~z(X~~)~X~~  + M22(6$)~2~~ = 8

so that

6X 2i = L22-1(hia)Lr2T(Xia)6x,i  + L22-+Aia)(M1zTxlia  + M22X2ia)65

Also, we know that

aX2i
= L22-1(Xia)L12T(Xia)x~i

therefore

X2i = x2ia + 6Xzi

= L22-l(hia)L12T($a)(xli  + 6Xri)

+ L22-1(Xia)(M1,Txlia  + M22x2ia)~~i

r ; +ia(r) + jizidXi i = 1, . . . m
r=l

where % 2i = L22-1('ia)(M12Txlia  + M22x2ia)

Thus, calculations using analytical data can be corrected when mea-

surements are available. There is only one correction vector %2i

for each mode. This vector is found by solving

1
a
J

with the fri on the right-hand side being chosen arbitrarily. The

Sri and Xi are thus inserted by the test engineer at the measurement

stage in order to obtain the full mode. This is essentially inter-
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polation using the functions of the mathematical model. Since the

analytical model is invariably undamped, these expressions must be
,k

used to expand either real or complei.measured modes;

To illustrate this technique, the pinned beam of example 2

was used. Both the correct mathematical model and the incorrect

(or analytical) model were used for the interpolation of sine func-

tions. The measurements were taken as the displacements and the

slopes were determined by this method. These are compared with the

correct discrete sine functions. The first fivemodes only were

investigated.

As can be seen from the tables (numbers 6.7 to 6.10), the

good model interpolates effectively and very little error is produ-

ced, especially with the lower modes. The poor model (i.e. 'ana-

lytical') produces significant errors in the region of poor modell-

ing with regard to interpolation. Therefore, as is to be expected,

the quality of the model determines the quality of the full mode.

The fifth mode has zero displacements at all the nodes and interpo-

lation is found to be ineffective. However, this is not typical of

a likely test situation.

6.4 Overview

Two interpolation techniques have been investigated. The

first is the use of splines in order to determine the full mode.

The type of spline used is largely problem-specific, and for the

analysis of the pinned beam a cubic spline was adequate. In more

general cases, surface splines may be used with the same overall

conclusions applying. The second method is an interpolation tech-

nique which uses an existing analytical FE model. The method has
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been presented so that the interpolation vectors can be set up at

the analysis stage for subsequent use when the acquisition of meas-

ured modal information has been achi$ked and without having to

resurrect the whole FE computational program. The compatibility

of measured and analytical information is a necessary pre-requisite

for the comparison of the two with a view to establishing an accurate

finite degree-of-freedom representation of the structure under

investigation.
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Mode Number 1

-
i

f
1

(0--
S2, I ' s4%\/ \// \

sl,'
0 ' \s

0 K
\

0 1 2 3 '4 5

-

__--- chosen in advance

1
L

‘L

i 'i t i ai Ci di Qi

,.--
$5‘:

,*--\
0 0 0 :0 :._.' L_ 0.16317

1 0.6283185 0.5877852 0.5 0.5 -1.1706108 -0.65268

2 1.256637 0.9510565 0.5 0.5 -2.76053 -0.97368

3 1.884955 0.9510565 0.5 0.5 -2.76053 -0.97368

4 2.513274 0.5877852 0.5 0.5 -1.1706108 -0.65268
,--. .-.

l \
’

L5 3.141593 0 p.5': - : 0 ! 0.16317w--H --*

Table 6.1

- 231 -

L. ,



Mode Number 1
Q

r
r
r
r

i..

d=disp.
r=rot. EXACT MODE INTERPOLATED MODE

p

d 0 0

r 1 0.969663

d 0.3090169 0.30597077

r 0.9510565 0.95684812

d 0.5877852 0.5877852

r 0.8090169 0.815879

d 0.8090169 0.8095496

r 0.5877852 0.586568

d 0.9510565 0.9510565

r 0.3090169 0.3058887

d 1 0.9991

r 0 0

d 0.9510565 0.9510565

r -0.309017 -0.30589056
/

d 0.8090169 0.809550249

r -0.5877852 -0.58778566

d 0.5877852 0.5877852

r -0.8090169 -0.816825125

d 0.3090169 0.30936624

r -0.9510565 -0.955677

d 0 0

r -1 -0.96965

measured

r .

Table 6.2
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Mode Number 1
Qa

r
r
r
r

-.
t

d=disp.
r=rot. EXACT MODE INTERPOLATED MODE

2.

d 0 0

r 1 0.969663

d 0.3090169 0.30597077

r 0.9510565 0.95684812

d 0.5877852 0.5877852

r 0.8090169 0.815879

d 0.8090169 0.8095496

r 0.5877852 0.586568

d 0.9510565 0.9510565

r 0.3090169 0.3058887

d 1 0.9991

r 0 0

d 0.9510565 0.9510565

r -0.309017 -0.30589056
/

d 0.8090169 0.809550249

r -0.5877852 -0.58778566

d 0.5877852 0.5877852

r -0.8090169 -0.816825125

d 0.3090169 0.30936624

r -0.9510565 -0.955677

d 0 0

r -1 -0.96965

measured

.

Table 6.2
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Mode Number 2
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0 0

0.628318 0.951051

1.256637 0.58778.

1.884955 *0.58778!

2.513274 I.9510563

3.141593 0

a.
1

0.5

0.5

0.5

0.5
.--_

lIcJ.5 :1
w-0

Table 6.3

C .
1

- -_
5.5:_,'
0.5

0.5

0.5

0.5

di

.-a.
) \
:$I ’

_.’

-9.9876936

-6.1727329

6.1727329

9.9876936
d_\

’ ,[o )
L-r

,

Qi

1.16050

-4.64202

--2.56782

2.56782".

4.64202

-1.16050
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Mode Number

d=disp.
r=rot.

d

r

d

r

d

r

d

r

d

r

d

r

d

r

d

r

d

r

d

r

d

r

EXACT MODE INTERPOLATED MODE
,iz

0 0

2 1.75671

0.5877852 0.5614313

1.6180339 1.6655630

0.9510565 0.9510565

0.618034 0.662958

0.9510565 0.947316

-0.618034 -0.632466

0.5877852 0.5877852

-1.6180338 -1.602073'

0 0

-2 -2.005429

-0.5877852 -0.5877852

-1.6180338 -1.602078

-0.9510565 -0.947317

-0.618034 -0.6324654

-0.9510565 -0.9510565

0.618034 0.6629623

-0.5877852 -0.5614313

1.6180339 1.6655630

0 0

2 1.75671

measured

Table 6.4
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---- chosen in advance
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I--

?-

?-

i yi i i a. Ci di Qi -1

*- c
0 0 0 ,- (c),5) {;-;I 2.99433. -_'
1 0.6283185 0.9510565 0.5 0.5 -18.92095 -11.97730

2 1.256637 -0.5877852 0.5 0.5 11.69379 7.07298

3 1.884955 -0.5877852 0.5 0.5 11.69379 7.07298

4 2.5132741 0.9510565 0.5 0.5 -18.97095 -11.97730
.---, .- .

5 3.1415926 0 (0.5: - :0 ,-4' 2.99433-_m'

P
Table 6.5

I-
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d=disp.
r=rot. EXACT MODE INTERPOLATED MODE

h;

d 0 0

r 3 2.14078242

d 0.8090169 0.69717414

r 1.7633557 1.905609837

d 0.9510565 0.9510565

r -0.9270507 -0.681300607

d 0.309017 0.30264503

r -2.85316951 -2.9478778

d -0.5877852 -0.5877852

r -2.427051 -2.22204127

d -1 -0.93682217

r 0 0

d -0.5877852 -0.5877852

r 2.427051 2.2220384

d 0.309017 I! 0.302645833

r 2.85316951 2.94787445

d 0.9510565 0.9510565

r 0.9270507 0.68129664

d 0.8090169 0.69817422

r -1.7633557 -1.905609657

d 0 0

r -3 -2.14078242

measured

Table 6.6
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d=disp. MODE NUMBER 1 MODE NUMBER 2
r-rot.

EXACT MODE INTERPOLATED MODE EXACT MODE INTERPOLATED MODE

d 0 0 0 0

r 1 1.0021259 2 1.9989785

d 0.5877852 0.5877852 0.9510565 0.9510565

r 0.8090169 0.8094411 0.618034 0.6186028

d 0.9510565 0.9510565 0.5877852 0.5877852

r 0.309017 0.3075984 -1.6180338 -1.6185322 . -3

d 0.9510565 0.9510565 -0.5877852 -0.5877852

r -0.309017 -0.3075984 -1.6180338 -1.6185322

d 0.5877852 0.5877852 -0.9510565 -0.9510565

r -0.8090169 -0.8094411 0.618034 0.6186028

d 0 0 0 0

r -1 -1.0021259 2 -1.9989785

Table 6.7: Interpolation Using Good Model

f.



P

d=disp.

r=rot.

d

r

d

r

d

r

d

r

d

r

d

r

MODE NUMBER 3 lr
EXACT MODE

0

3

0.9510565

-0.9270507

-0.8577852

-2.427051

-0.5877852

2.427051

0.9510565

0.9270507

0

-3

MODE NUMBER 4 MODE NUMBER 5

INTERPOLATED MODE EXACT MODE

0 0

2.9907334 4

0.9510565 0.5877852

-0.9241929 -3.2360679

-0.8577852 -0.9510565

-2.4200583 1.2360679

-0.5877852 0.9510565

2.4200583 1.2360679

0.9510565 -0.5877852

0.9241929 -3.2360679

0 0

-2.9907334 4

Table 6.8 Interpolation Using Good Model

INTERPOLATED MODE EXACT INT.

0

3.828599

0.5877852

-3.094314

-0.9510565

1.1816023

0.9510565

1.1816023

-0.5877852

-3.094314

0

-3.828599

0

5

0

-5

0

5
. 9
0

-5

0

5

0

-5

w



d=disp. MODE NUMBER 1
r=rot.

EXACT MODE INTERPOLATED MODE

d 0 0

r 1 1.0201782

d 0.5877852 0.5877852

r 0.8090169 0.77177097

d 0.9510565 0.9510565

r 0.309017 0.31926434

d o. 9510565 0.9510565

r -0.309017 -0.31183598

d 0.5877852 0.5877852

r -0.8090169 -0.80890833

d 0 0

r -1 -1.00001908

Table 6.9: Interpolation Using Poor Model
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d=disp

r=rot.

MODE NUMI5ICK 3 MODE NUMBER 4 MODE NUMBER 5

EXACT MODE INTERPOLATED MODE EXACT MODE INTERPOLATED MODE EXACT INT.

d 0 0 0 0 0 0

r 3 3.310509 4 4.33066512 5 0

d 0.9510565 0.9510565 0.5877852 0.5877852 0 0

r -0.9270507 -1.50802283 -3.2360679 -3.87611616 -5 0

d -0.5877852 -0.5877852 -0.9510565 -0.9510565 0 0

r -2.427051 -2.24929326 1.2360679 1.4603033 5 0

d -0.5877852 -0.5877852 0.9510565 0.9510565 0 . ";i Lb
r 2.427051 2.3698065 1.2360679 1.08103498 -5 0

d 0.9510565 0.9510565 -0.5877852 -0.5877852 0 0

r 0.9270507 0.940022 -3.2360679 -3.054618129 5 0

d 0 0 0 0 0 0

r -3 -2.999258 4 3.80348868 -5 0

Table 6.10: Interpolation Using Poor Model
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Dynamic analysis, as it stands at present, is a two-pronged

attack. The first approach is an application of the FE method in

order to derive a mathematical model of the structure under inves-

tigation, and solve that model to extract analytical modes and

frequencies of vibration. Thereby the dynamic characteristics of

the structure are assessed and the likely subsequent performance

predicted. For many years, with the possible exception of the

aircraft industry, this was considered adequate - and if a satis-

factory performeblce was predicted, no further work was considered

necessary. The method is totally analytical. The predictions of

an FE model have to be accepted whether right or wrong.

Not surprisingly, this was considered unsatisfactory. What

was needed was a verification of the mathematical model with a test

on the actual structure itself. From this was born the field of

modal analysis, which is an experimental technique designed to do

just that. The growth of digital computer technology has greatly

enhanced the field of modal analysis. Test equipment and software

are rapidly being developed which can analyse structures and extract

measured modal parameters. In parallel with this, experimental

engineers with a wealth of experience in dynamic testing grow in

numbers. At present, very powerful and sometimes portable machines

which contain the hardware and software capable of testing a struc-

ture, analysing the data and extracting the modal parameters are

beginning to emerge. As the spread of knowledge increases, so will

this type of machine - thus making available, at reasonable cost,

t
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However, what has also come to liight is that a modal test

will often disagree with the mathematical model previously formu-

lated, in terms of modes and frequencies. One of the points that

has been stressed in this thesis is that it is not possible to

devise so-called measured mass and stiffness matrices that will

have any physical significance in terms of the mass and stiffness

distributions of the structure. This stems from the fact that the

measurements made are of a flexibility-type nature, and do not sat-

isfy the constraints necessary for a stiffness-type formulation,

whereas the FE method is a displacement method which leads to a

stiffness model. A flexibility model would arise from a stress FE

method but, except in special cases, it is not feasible in practice

to employ this approach. Thus, the FE displacement method is by

far the most widely used - and could never be abandoned since, as

far as a knowledge of mass and stiffness distributions goes, it is

all we have. The only sensible course of action is to use the modal

analysis measurements to improve the mathematical model so that it

more closely resembles the actual structure. The objective of this

thesis has been to explore this option.

Considering the case where damping is small and may be neg-

lected, in the light of the work done in this thesis, the proposals

sununarised in Diagram 7.1 are made. This is a procedure for correc-

ting and improving mathematical models using the information extrac-

ted from a modal test, It hinges upon an effective error analysis

being able to detect regions of poor modelling within the model,

thus emphasising some of the points made at earlier stages.
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If damping is not insignificant, the problem becomes more

difficult. It stems from the problems &at arise because of the

existence of real, normal analytical modes on the one hand (since

usually no analytical damping matrix exists), to complex measured

modes on the other. No direct comparison of the two is justifiable

if significant imaginary parts of the complex mode exist. In this

thesis a viscous damping model has been assumed, and the proposals

for the course of action, if in this situation, are given in Diagram

7.2.

Here the procedure is less clear-cut, since some intuitive

derivation of a viscous damping matrix is required, based only on

the indications extracted from an error analysis.

Future Work

The next stage of this work is clearly an application to a

full-size realistic problem. This thesis has dealt with simple

examples only in order to point the way to the type of approach that

needs to be adopted. A full-scale problem is, in itself, a long-

term project with the structure being studied, analysed and tested

in its entirety. Past work of this nature(103) has dealt with this

successfully, but has stopped short once the modal tests and FE

:izslysis had been completed - often with acknowledged discrepancies

between the two.

The problem of damping is clearly an area that is, as yet,

far from completely understood. Viscous damping has been studied

in this thesis, because it is more convenient mathematically. How-

ever, observations often indicate that damping is independent of
-

I
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frequency, and this is usually given the name hysteretic or struc-

tural damping. The use of a set of differential equations to des-i";
tribe this phenomenon runs into difficulties as frequency tends to

zero and the equations have little physical justification. The use

of integro-differential equations (65) allows the incorporation of

structural damping, but the extension of the analysis to multi-

degree-of-freedom systems, as in this thesis, will lead to consider-

ably more complex analysis.

On the experimental front, the curvefitting routines are far

from complete at present. Ideally, better data toanalyse need to

be made available. The curvefitter needs to be improved to account

for modes outside the frequency range of interc;t,  and adapted to

analyse ambient data. The implementation of some sort of graphics

facility to gain a visual insight into the modes of vibration would

clearly be advantageous.

This thesis has assumed linearity throughout, and as this

problem becomes understood the analysis could be extended to incor-

porate non-linearities. Some preliminary investigations into the

way in which non-linearities affect modal analysis have been con-

ductedCg2), but much scope for further investigations exists.

As mentioned earlier, machines which test data to establish

measured modal parameters are rapidly developing and becoming gener-

ally available. The original objective of this thesis was to write

a computer package which would use modal analysis to improve and

update existing mathematical models. However, a .survey of the lit-

erature exposed a serious gap in the consideration of this problem.

The problem had been neglected, perhaps because of the lack of a
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mathematical tool with which to analyse it. The development of a

computer package was soon seen as bang over-ambitious. The com-&._'

plexity of the problem meant that the analysis needed to be more

mathematical and centred upon the difficulties that were holding up

this area of research. The proposed schemes built up from the exper-

iences gained in this thesis and.summarised  in Diagram 7.1 and 7.2

are a result. The original optimism and simplicity expressed by

early authors on this subject are exposed. What is left is a pro-

cess to tackle the problems of the real world. The simple examples

have shown that as long as the experimentalist is proficient, an

error analysis can yield indications of areas of poor modelling,

even if it is up to the experimentalist to decide exactlv how the

model is to be improved.

The next step is

of

an application to an

possibly thousands - degrees of freedom.

a feel for how best to interpret information

example of hundreds -

With this will develop

from an error analysis.

Ultimately, especially for the undamped case, the process is capable

of being automated.

The situation envisaged is a dynamic analysis system consis-

ting of two machines. One conducts the modal test and extracts modal

parameters; the other stores the mathematical model. The data from

the modal test is fed into the second machine. This then expands

the measured data for compatibility with the model, conducts an

error analysis to identify areas of poor modelling, decides how to

change the analytical model, conducts a sensitivity analysis to see

whether this has corrected or improved the model - and if not,

repeats the error analysis in an

has been reached and the updated

- 245 -
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model is consistent and reproduces
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the measurements as closely as possible given the limitations of a

finite degree-of-freedom environmentk?  The computer's ability to

assess and interpret the indications of an error analysis and decide

the best changes in mass and stiffness parameters may well require

some fourth-generation programming. Ultimately, the emergence of

a 'mathematical model tuning machine' that uses experimental meas-

urements and is fully automated could conceivably be standard equip-

ment for dynamicists and vibration engineers in, say, 10 or 20

years from now.

__.
I
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MODAL ANALYSIS ON

STRUCTURE

EXTRACTION OF MODAL

PARAMETERS

EXPANSION OF MODES

(INTERPOLATION)

p
DERIVATION OF AN

ANALYTICAL MODEL

Ma'Ka

COMPUTATION OF
ANALYTICAL MODES AND

I FREQUENCIES

AGREEMENT

BETWEEN ANALYTICAL & YES \
EXPERIMENTAL MODES & K

FREQUENCIES ?

ERROR ANALYSI!. OF
CHAPTER 4 TO GAIN A
PICTURE OF REGION OF
POOR MODELLING

MODEL
VERIFIED

\
SENSITIVITY ANALYSIS

) TO ASSESS EFFECT OF
M & K ON ANALYTICAL

*/ * MODES & FREQUENCIES

Diagram 7.1: Undamped Model Procedure
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EXTRACTION OF COMPLEX

MODAL PARAMETERS

EXPANSION OF MODES

Ic ./ I

4!hRlVATION OF AN ANALYTICAL

MODEL Ma, Ka

ERROR
) ERROR ANALYSIS ON Ma & Ka .c

I SMALL Ma & Ka

USING THEORY OF CHAPTER 5 GOOD

.

I ERROR
I

/ I.
_I LARGE

ERROR ANALYSIS ON DAMPING
ADJUSTMENT OF Ma AND Ka

MATRIX TO DETECT REGIONS OF
IN LIGHT OF ERROR ANALYSIS HIGH DAMPING

I
1 I I

I INTUITIVE DERIVATION OF I
?

DAMPING MATRIX

NO

COMPUTATION OF COMPLEX
ANALYTICAL MODES AND
FREQUENCIES

BETWEEN TEST AND

I

?f
YES

MODEL VERIFIED

Diagram 7.2: Damped Model Procedure - 248 -
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APPENDIX 1

The viscous damping model has a constitutive equation of

the form

o= EE + d;.

where E = &. (Engineer's theory of bending beam)

This gives the terms

EI $+ d1
-

so the variational

3-ax at

equation of motion is

T-

r

r.

tl

If we assume that y a e At we have

x2 my2 + h a2 a22
died+

a2 a2z
EIdp=O

i.e. Mh2 + DX + K = 0

where d.. =
=J I

d1 yi" y .".
J

If we consider a uniform, simply-supported beam of unit mass then

the perturbation problem may be written as

(hi + 6hi)2(Xi + 6xi) + (Xi + bhi)bdxi + k(xi + &xi) = 0

which is, to first order,

(Xi2 + k)xi + 2hi6Xixi + hi26xi + XiGdxi + k6xi = 0

so, taking the inner product with x.,J

2Xi6hi <Xi,Xj> + xi 2 <6xi' J
x.> + hi <6dxi,xj> + k c6xi,xj> = 0.

We assume that

6x =i F "ikxk
k-l
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I- and if i f j then
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hence

2AiM..  +
1 1J ak’ x .>

J

2XiM..
1 =J

+ hi <bdxi,xj> + Xi2a_. - A.2a.. = 0
1J J 13

so if i = j then we have

2hishi + Ai <6dxi,xj> = 0

a
Ai <6dxi,x.>

ij'- AL-AL
i j

6d
so 6X ii

i = - - and a..2 =J

, a.. = 011

-A.6d..
=$-+.

i j

The perturbed eigenvalues are thefefore  given by

6d..
~~ + 6~. = A. - + @kk= -

1 1
A. k'

71 d
1 e I l

The first five may be calculated as:

1. 1 - 0.00024i

2. 4 - 0.01226i

3. 9- 0.09363i

4. 16 - 0.30444i

5. 25 - 0.625OOi

and the perturbed first mode, for displacement, is given by

0.46908 - 0.0002883.

0.7590 - 0.000013i

0.7590 + 0.000202i \

0.46908 + 0.000109i

These figures are in good agreement with those predicted by the FE

model (Figure 2.7), and serve as a good check of the analysis.
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1. INTRODUCTION

The solution of vibration prT:lems frequently requires a

knowledge of the principal modes of vibration of a structure.

Where the modes are obtained experimentally, in a resonance test,

the main difficulty lies in exciting the undamped modes of a struc-

ture.

The development of the MAMA (Manual-Automatic Multipoint

Apparatus) control system was initiated when the limitations of

its predecessor, GRAMPA (Ground Resonance Automatic Multipoint App-

aratus), came to light. It had been recognised  that the frequency

range over which GRAMPA operated was too restricted for use with

many structures, particularly model structures where mode frequen-

cies of interest might be as high as one Kilohertz. The MAMA sys-

tem sought to overcome this restriction, and also adopt a manual

adjustment of the force control when it became apparent that auto-

matic setting of force levels, as utilised in GRAMPA, was often

unnecessary and time-consuming.

Subsequently, due to recent developments in microprocessor

technology, a replacement

microprocessor-controlled

for the MAMA system - in favour of a

system - became desirable. MAMA-2 has

the major advantage of cheapness, and also utilises the facility

of each unit (i.e. VDU, cassette, plotter) communicating with the

microprocessor only, thus the system behaviour and characteristics

are a function of the microcomputer program.

The operational details of the MAMA-2 system are described

within this manual, and are designed as a guide to its use.
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(b) MAMA Microprocessor
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(~1 Keypad

KEYPAD FUNCTIONS

0\
0‘L

03

04
05
06
07
08

0s Channel 4 force level down

Master force level down 0to Channel 4 force level up

Master force level up 0\ Channel 5 force level down

Channel 1 force level down 0I2 Channel 5 force level up

Channel 1 force level up 0I3 Frequency sweep

Channel 2 force level down@+@ New frequency % delta f

Channel 2 force level up 0I4 Frequency down by delta f

Channel 3 force level down@@ Frequency up by delta f

Channel 3 force level up I60 Switch to A.F.C.

@+@ Change frequency
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(d) Excitor Apparatus
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3. OPERATION

(a) Manual Control

W Setting of Force

The excitors are connected to the test structure and to the

corresponding excitor outputs on the MAMA-2 unit. The excitors

need to be suspended freely so that their mass does not affect

the natural frequency of the test structure (see Diagram D). The

principal excitor should be located at the most important point,

i.e. where the maximum amplitude is anticipated. This is then

connected to the channel 1 output (extreme left). This is the

channel which should be set first, and subsequently controls the

frequency automatically. The remaining excitors may be set in

some order so as to avoid confusion as to which excitor is opera-

ting through which channel. The accelerometers are then set up

with the accelerometer measuring response at excitor 1 connected

to charge-amp 1, and so on.

MAMA-2 is then switched on and the software is run. The

channels being used, the frequency and the frequency step are set

initially. Operation is then transferred to the keypad, the con-

trols of which are shown in Diagram C. Operation of keypad func-

tion should be used in conjunction with a CR0 monitoring the out-

put and input of the system. The first operation is to set the

master force level at a fairly low level. Channel 1 force level

is then adjusted using the full force level range (O-255) until

the best sinusoidal response is observed on the oscilloscope. It

may be necessary to adjust other force channels to obtain a good

wave. At low forces, the sensitivity of the change-amp may be

increased by switching from Xl to X10, should this be found to be
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necessary. However, the corresponding noise content is also

increased and this should be avoided;$f  possible.1,

When a good sine wave has been obtained the frequency may

be altered up or down until a quadrature input/output phase shift

is obtained on channel 1 (either 90' or 270'). The quality of

the sine wave needs to be constantly monitored.

(ii) Changing Frequency

A jump in the frequency being considered may be achieved

by pressing m] and m] simultaneously.A  p r o m p t  f o r  t h e

new frequency will be observed, and this is input via the keyboard.

Operations will continue at the new frequency.

(iii) Frequency Resetting

Complete resetting of the frequency and frequency step may
ALT-be obtained by pressing ]SHIFTI and MODE .q

(iv) Frequency Sweeps

A frequency sweep is obtained by pressing . The upper

and lower values for the sweep will be required and also the fre-

quency step. At any time the sweep may be terminated by pressing

key to return the system to normal operation at the

frequency the system was at at interruption.

(v) The Plotter

A plotting routine also exists for use with the frequency

sweep. This shows the phase change as a result of steadily increa-

sing frequency, giving a cross of the y-axis at resonance.
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(vi) C.R.O. Connections

04

05

00

SYMC.
-TPq

0 Output from Charge Amps

@ Output from Charge Amps (measured from amplitude board)

03 Output from Charge Amps
@ Input to Excitors

@ Sync. Output (used as external trigger)
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(b) Transfer to Automatic Frequency Control

At this stage, if the ml button is depressed the system

will offer the option of transferring & automatic frequency con-

trol (via channel 1).

If using accelerometers, the required phase angle will nor-

mally be 90' or 270' (resonance). The frequency step (i.e. steps

used under automatic control) and control accuracy (i.e. the error

which decides whether or

are set according to the

the user.

not an adjustment in frequency is required)

time available and accuracy requirement of

The other channels are then adjusted (either in phase (0')

or antiphase (180')) carefully, constantly monitoring the quality

of the response signals, until all channels are as near to the

resonance phase measurement as is considered possible. Should the

adjustment of the other channels result in resonance on channel 1

being lost, the system will return to the

During automatic frequency control

control accuracy may be altered using the

manual mode after a while.

the frequency step or

keypad controls (see

list of alternative keypad controls used under automatic frequency

control).

Hence, when all the responses are in quadrature an undamped

mode is being excited.

Keypad Functions Under Automatic Frequency Control

13

13 + 15 Break from automatic frequency control

14
Change frequency step

14 + 151
16 End program

15 + 16 Change control accuracy
- 269 -
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Programs SDOF and MDOF are si..le-degree-of-freedom  and

multi-degree-of-freedom curvefitting routines which fit an analy-

tical mathematical function to experimentally measured frequency

response function data in order to extract the modal parameters

of the structure under test. The programs use a non-linear least

squares NAG routine, employing single precision arithmetic, based

on the theory of Reference (1). In order to formulate a mathemat-

ical expression for the frequency response function we first con-

sider the one-degree-of-freedom equation of motion given by

rn? + cl + kx = f

where m, c and k are the mass, damping and stiffness respectively

and f and x represent the input and the output. It is usual to

divide through by the mass and so rewrite the equation as

;+; ,; + k f;;;x=;;;

or j; + 2pw; + w2x = 2
i-
,

1

Cwhere - = 2uw; k
m - = w2 and z = i.m

- Xt
If we let the input be of the form z = ze , then we may assume an

- Xtoutput of the form x = xe . ;X is complex and can take any values,

i.e. A = 5 + iR. We have

X2eA% + 2pwXeXtY

or (X2 + 2uwx + w2)Y

The transfer function is

+ w2eXty I ehty
= 2.

the output divided by the input, thus

H(X) =$= 1
x2 + 2UWX + w2*

If the equation X2 + 2~wX + w2 =

iw(1 - u2) 3 . The expression for
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0 is solved we get X = -LIW +

the transfer function may then be
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expanded as

j-
i

H(h) = 1
x2 + &WA + wz i-2,

1
= (A + uw - iw(1 -

L
v2>+)(A + VW + iw(1 - v2>2)

H(X) = a' + ia" + a' - ia"
Or

(A + uw - id1 - u2>+>
1

(A + pw + iw(l - P2)')

H(X) = A !‘A
1

+ x _“&
This analysis may be expanded to n degrees of freedom to give an

expression for the transfer function as

r ’

t

t.

H(X) =

The frequency response function is simply the transfer function

evaluated along the frequency axis and so 5 is set equal to zero,

giving X = iR, thus

H(iR) =

where ak =

+c
=

q,=
(100x) lJk =

-ukwk =

wk(l-$)f =

complex residue of kth mode

-pk%  + iwk(1 - uk*) 3

undamped natural frequency

percentage critical damping

damping factor

damped natural frequency.

If discrete values of Sl are taken (corresponding to meas-

urement frequencies) from j = 1 to M, then the measured frequency

response function data will be given by

HNEAsvRED(iQj) j = 1, . . . M M = no. of data points
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and the analytical function is given by

HANALYTICAL(i"j'  = k=l iR. '5 $ + iR
f ak ak*

J c‘. j - hk*

where the ak's and the hk's are to be fixed. These need to be

chosen so as to minimise the error function

E = y HMEASURED(i"j)  - HANALYTICAL(iRj)j=l

So, with SDOF and MDOF 11~11' = E: is minimised by allowing a

variation of the ak's and Xk's to obtain the closest analytical

expression to the measured information.

2. PRELIMINARY ANALYSIS

Prior to the implementation of SDOF and MDOF, a preliminary

analysis of the data under investigation is recommended. Initial

estimates may be extracted by analysing the magnitude of the fre-

quency response function data for each channel. An illustrative

example is given below:

wr is a well-separated peak, and it is assumed that the effect

other frequencies over the range al to a2 will be negligible.

of

SDOF
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i'- may be used to curvefit this peak. The peak will serve as an

initial estimate for the frequency of this mode and the frequency
-
I range al to a2 needs to be noted. & and ~3 are noted and used

as initial estimates for the frequencies of these two modes and the
i’-

frequency range br to bp is also noted. Again, the effect of modes

outside this frequency range is assumed to be negligible. This

type of preliminary data is required for all modes to be analysed,

for all channels available. Although some preliminary concept of

the values of damping and residues (for MDOF only) are advantageous,

they are not essential for an accurate curvefit, but will speed up

the process. A suitable estimate of damping of between 1 and 3%

will usually suffice and if no residue information is available

they may be set to 1. Other values may be tried if success is not

achieved in the first instance.

3. IMPLEMENTATION OF SDOF

Data for SDOF needs to be frequency response function data

in real and imaginary form. The data needs to be in DSP format (3) .

That is:

$$$$ : flag indicating DSP format

Title : 72 characters maximum
i

Data Type

Number of Channels

Number of Data Points

: (always = 2 (complex data))

: (always = 1)r-
:

r Sampling Interval : in Hz

Frequency of First Data Point : in Hz

Frequency of Last Data Point : in Hz

Data
..

l&d
- 276 -5
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SDOF curvefits for one-degree-of-freedom and requires an initial

estimates of the damping and frequeF+cy only. Residue initial

estimates are obtained by solving the linear least squares problem

using the damping and frequency initial estimates and the NAG

routine F04ARF. To run SDOF the following command in inputed:

RUN SDOF.

The channel that is to be analysed is then fed in when prompted.

The channel usually has the suffix '.DAT'. An initial estimate

for the frequency and damping are then fed in, followed by the

frequency range over which the fit is to take place. The program

informs the user when information from the relevant channel is

being read in and when the curve-fit is in progress, along with

the number of data points involved. The NAG routine used is called

E04FDF and is a non-linear least squares curvefitting algorithm.

On a successful fit the following results are outputed:

damping factor : -'kwk
% critical damping : Pk * 100

damped natural frequency : %(l - Vk2)f

undamped natural frequency : q,

real part of residue : Re(ak)

imaginary part of residue : Im(ak)

error message : Integer

The error messages are as those given in the E04FDF documentation.

0 indicates a successful curvefit, whereas errors 5 to 8 indicate

that there is some doubt about the quality of fit. Error =5 indi-

cates that the curvefit is most probably accurate, whereas error =8

(see NAG literature) indicates that it is very unlikely that the

curvefit  has been successful. The program may be rerun, starting
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at the last values of the previous run.

4. IMPLEMENTATION OF MDOF
“-

i

f

r,

MDOF is used in an identical fashion to SDOF, with the foll-

owing exceptions:

(4 The number of modes involved in the curvefit needs to be known.

(b) Residue initial estimates, as well as damping and natural

frequency for each mode, need to be available, although these estim-

ates need not be necessarily good - except in the case of frequency.

(cl The data is outputed with the relevant parameters for each

mode.

i

f

I

f.

I

5. DATA COLLATION

Once each channel has been analysed (assuming there are n

channels), n different estimates for the damping factors and natural

frequencies of the m modes will exist. If the structure is truly

linear, these will all coincide. However, in practice some varia-

tion may exist, especially with damping due to the effect of non-

linearities. Some averaging process will be required in order to

provide one estimate of damping and one of frequency for each mode,

as the theory requires. For each channel the residues will contain

modal information, with one element of each of the m modes being

provided by each of the n channels. These will be complex in

nature. The modes may be normalised so that the largest element
is

of each,equal to unity. If the other elements of the modes then

have negligible imaginary parts the damping may be assumed to be

proportional and the imaginary parts neglected. If this is not the
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case, the curvefit will have produced complex modes, and further

analysis will have to account for this. The end result will be a

knowledge of each of the modes investigated in terms of natural

frequency, % of critical damping and either complex or real mode

shapes. An error analysis of a corresponding mathematical model

may then be conducted as described in Reference (2).

REFERENCES

1. GILL, P.E. AND MURRAY, W: Algorithms for the Solution of
Non-Linear Least Squares Problems. SIAM Journal on Numeri-
cal Analysis, 15, 1978, pp.977-992.

2. BROWN, T.A: Ph.D. Thesis, Bristol University, 1985.

3. TAYLOR, C.A: BEEDAPS DSP Reference Manual, Bristol University,
1983.
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APPENDIX 4 Q

SDOF LISTING

PROGRAM SDOF

44444444444444tSINGLE DEGREE OF FREEDOil CUR'JEFIT PROGRAH44444444444444

444444444444444PARAtiETER DECLARATION444444444444444

IHPLICIT REAL44 (A-H,O-Z)
COPMON /DSPACE/FR,REHPID~
DIHENSION BUF(2048)
DIMENSION A1(2)rV2(2),V1(2)rV3(2)
DIMENSION V4(2)rVV1(2,2)rX(4)
KlIMENSION FR(300)rREH(300)
INTEGER IW(4)rFILLEN
BYTE FILE(64)~AST(4)rTITLE(69)
DATA FILLEN/
LOGICAL TRUEvFALSE
TRUE = .TRUE.
FALSE = .FALSE.
CALL ERRSET(73r TRUE, FALSE? FALSEI FALSE9 200)

4444444444444440UTF'UT TITLES444444444444444

WRITE (598)
WRITE (516)
WRITE (517)
WRITE (518)
WkITE(5~250)
WRITE(5,251)
WRITE(5,252)
WRITE(Sr253)
WRITE(Sr8)

444444444444444SELECT FILE FOR CURVEFIT

WRITE (5,102)
READ (5,301) FILE
CALL CHKNULtFILEvFILLEN)
OFEN(UNIT=lrTYPE='OLKl'~NAHE=FILE)

4444444444444441NPUT INITIAL ESTI~ATES444444444444444

WRITE (519)
READ (5~4) Al(2)
WRITE (5,101
READ (5~4) PC
Al(l)=- (PC/100)4A1(2)
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c
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30

C
c
C
C
C

39

C
C
C
C
C

45

46

47
C

Q

Wt****tt*St**tREAD DATA FROfl FILEtft*S*Xf*tS**tt

REWIND 1
READ(lr401) AST
READ(lr402) TITLE
READ(lr*:) ITYYE
READ(lrt) NCHN
READ(lrt) L2
READ(lrS) T4-.-READffv-#+'T5--
READ(lvS) T6
DO 30 I= lrL2

BUF(I)=(T4tI)tTS
L3=L2/4

t****f*S~tft**tD~TERMINE  UPPER AND LOWER*tS**tt*tt**ttf
***************FREQUENCY  F O R  CURVEFITt**t*ttt**********

WRITE (5139)
READ (5rS) ZZl
WRITE (5136)
READ (Sr*:) 222
IDl=O
ID2=0
DO 39 I=lpL2

IF (EUF(I).LT.ZZl) IDl=I
IF (BUF(I).LT,ZZ2) ID2=1

CONTINUE
IDl=IDltl
ID3=(ID2+1)-ID1
IF (ID3.GT.300)  GOT0 9999

XWt*t***tttt**READ HORE DATA 8 SET ARRAYS**tf***ttS*ttft

DO 45 I=IDlrID2
FR((I-(IDltl)))=BUF(I)

WRITE(Sr8)
wRITE(5~721
WRITE(5,8)
DO 46 1=l~L3
READ (l,$) RlrR2,R3rR4rR5,R6,R7,R8
BUF(((4tI)-3))=Rl
PUF(((441)-2))=R3
BUF(((4tI)-l))=R5
BUF((4*I))=R7

DO 47 I=IDlrID2
REH((I-(IDltl)))=BUF(I)
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fSSlSt*f**t*S*tLfNEAR LEAST SQUARES ESTIMATEStlt*t~S*tS*****
X**ttttttt*XttfOF RESIDUE FROM POLES**Xtt*fS*Stt**t*********

DO 48 I=112 he,
Vi(I)=0
V2(1)=0
V3(1)=0
DO 48 J=lrZ

VV~(IIJ)=O
DO 50 I=lrID3

Z=FR(I)
Y=REH(I)
Xl=A1(2)
X2=Al(l)
x3=z+x1
x4=z-Xl
X5=(X2*X2)+(X3*X3)
X6=(X2*X2)+(X4*X4)
V4(1)=((-X2/X5)t(-X2/Xb))
v4(2)=((-x3/x5)t(x4/x6))
DO 50 J-192
Vl(J)=Vl(J)t(YtV4(J))

DO 50 ti=112
VVl~J~K~=VVl~J~K~t~U4~J~~V4~K~~

IA=2
IFAIL=O
N=2

Sttt*W#t*t**t*SCALL  OF NAG iKNJTINE TO SOLVE AX=B*f*t**f********

CALL F~~ARF(VV~~IA,V~PN,V~,V~,IFAIL)

LIW=lO
LW=2048
IFAIL=l
DO 60 I=192

x((It2))=v2(1)
X(I)=Al(I)

WRITE(5961)  ID3
WRITE (5~8)
WRITE (5162)
WRITE (5~8)

t**f**t*tftt*tfCUHVEFIT  U S I N G  NAG SUDHOUTINE***************
CALL E04FDF(ID3r4~X,FSUMSQ,IW1LIW,BUF1LW,~UF,LW~IFAIL)

t*ttt*t**t*t*ttfUDF=UNDAnPED NATURAL FREQUENCY****f***fX*****
*tttt*t*********PCC=% C R I T I C A L  DAMPING*tttfftb*t*tt**********

UDF=SBRT((X(l)*X(l))t(X(2)))
PCC=-(X(l)/UDF)tlOO
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c”
C
C

C
C
C

c”
6
7
8
9
10
35
36
61
62
72
102
105
110
115
120
125
130
140
145
250
251
252
253
301
401
402
9999

C
C
C
C
C
C

100
101

*tttS*StSS*StltOUTPUT RESULTSStttXt~tXStttX

WRITE (51105)
W R I T E  (5rllO) X(l)
WRITE (5r115) PCC
WRITE (Sri201 X(2)
WRITE (51125) UfiF
WRITE (5,130) X(3)
WRITE (5r140) X(4)
WRITE (5,145) IFAIL
WRITE (5rl05)

FORMAT<’
FORMAT(’
FORMAT(’
FORMAT(’
FORMAT(’
FORMAT(’
FORMAT{’
FORMAT(’
FORMAT(’
FORMAT<’
FORMAT<’
FORMAT( ’
FORMAT{’
FORMAT(’
FORHAT(’
FORMAT(’

SDOF CURVEFIT  PROGRAM MARK 4: PDPll FORTRAN’)
*******************************************’~

‘1 .
INPUT INITIAL NATURAL FREQUENCY ESTIMATE > ‘I$)
INPUT INITIAL XCRITICAL DAMPING ESTIMATE > ‘9%)
INPUT LOWER FREQUENCY LIMIT FOR SIiOF FIT > ‘9%)
INPUT UPPER FREQUENCY LIMIT FOR SDOF FIT > ‘9%)
NUMBER OF CURVEFIT  POINTS = ‘914)
t*St**t*tCURVEFIT NOW‘ IN PROGRE&S**t*XStt*‘)
tXtt**ttfDATA NOW BEING READ FROM FILES$t*t***t’)
INPUT FILENAME > ‘~$1
****************************~*********************‘~

DAMPING VALUE:‘rF12.4)
PERCENTAGE CRITICAL DAMPING:‘,Fl2.4)

DAMPED NATURAL FREQUENCY:‘rF12,4)
UNDAMPED NATURAL FRERUENCY:‘rF12.4)

_FfJ~T(eL- - e--  _.._  _.-
- REAt -FtE3Hwt3 ‘-*~%4-P-

FORMAT(’ IMAGINARY RESIDUE:‘,F12.4)
FORMAT(’ ERROR MESSAGE:‘tIl2)
FORMAT(’ ****VERSION 4.2 -Up S I N C E  J A N  1985*:1$* ‘)
FORMAT(’ CURRENT MAX LENGTH OF FILE=2048 COMPLEX flATA POINTS ‘1
FORMAT(’ -TRANSFER FUNCTION DATA REAL AND IMAGINARY PARTS ‘1
FORMAT(’ CURRENT MAX NUMBER OF CURVEFIT  POINTS =300 ‘1
FORMAT(64Al)
FORMAT(4Al)
FORMAT(64Al)
STOP
END

==========SUBROUTINE  TO ADD  A ZERO  TO FILENAME==========

SUBROUTINE CHKNUL(FILNAMvNBYTE)
BYTE FILNAMtl)
J=NBYTEtl
DO 100 I=lrNBYTE
J=J-1
IF(FILNAM(J).NE.‘40) GOT0 1 0 1
CONTINUE
J=Jtl
FILNAM(J)=O

!'40 = SPACE



?

C
C
C
C

190

2 0 0

C
C
C
C
C:

C
105
9 9 9 9 9

Q

p

SUBROUTINE LSFUNl(H,N,XCvFVECC)
COMON /DSPACE/FR,REH,ID3
D I M E N S I O N  FVECC(tl)r XC(N)v FR(300)r REH(300)
REAL*4 FVECCI XCP FRtREH
REAL*4 HHw X l r  X2r Ut UI A t  BP VZlr V Z 2
R E A L * 4  VZ31 VZ4, VZ51 VZ6r VZ7r V Z 8
I N T E G E R  Ir JP ID3r MI N
DO 200 I=lrID3

HH=O.O
Xl=FR(I)
X2=REH(I)
N2=N/4
DO 190 J=lrN2

U=XC( J)
W=XC((JtN2))
A=XC((Jt(2fN2)))
B=XC((Jt(3*N2)))
vz1=x1tw
VZ2=Xl-w
vz3=(u*u)t(vzl*vz1)
vz4=(u*u)t(vz2*vz2)
VZ5=(U*U)-(VZl*VZ1)
VZ6=(UfU)-(VZ2*VZ2)
VZ7=((AIU)-(BbVZ2))/VZ4
VZ8=((A*U)t(BtVZl))/VZ3
HH=(X2/N2)tVZ7tVZ8tHH

FVECC(I) =  HH
CONTINUE
RETURN
END

=========NAG NAME PRINT=========

SUEROUTINE PRNAME(NAME)
KEAL*8 NAME
WRITE (5,105~ERR=99999)  NAME
FORMAT (lXrA8)
RETURN
END

- 284 -



T-

T

I- c
C
C

T- C
’ c

-i-

I-

I- C
C
C

-i- c
C

l-

C
-7

C
C
C

-I- c

1..

17

T

7
25
C

-i

-

APPENDIX4

PROGRAM HDOF MDOF LISTING

444444444444444HULTI-DEGREE  OF FREEDOil CURUEFIT PROGRAM4*4444444444l
p

444444444444444PARAMETER DECLARATION444444444444444

IMPLICIT REAL44 (A-HvO-Z)
COMON /DSPACE/FRvREH,ID3
DIMENSION FR(300)rREH(300)rX(20)rUDForgUF(5~~BUF~2048~~~vx~5~
INTEGER IW(2O)rFILLEN
BYTE FILE(64)vAST(4)rTITLE(64)
DATA FILLEN/
LOGICAL TRUEvFALSE
TRUE = .TRUE.
FALSE = .FALSE.
C A L L  ERRSET(73r TRUEI FALSE? FALSE? FALSE9 200)

444444444444444OUTPUT TITLES444444444444444

JRITE (5~1)
JRITE (5~2)
JRITE (593)
dRITE (591)
JRITE (5~250)
ARITE (5r251)
JRITE (5~252)
JRITE (5~253)
dRITE (5~1)

444444444444444SELECT FILE FOR CURVEFIT.

WRITE (5rl02)
READ (59301) FILE
CALL CHKNUL (FILEvFILLEN)
OPEN (UNIT=lrTYPE='OLD'rNAME=FILE)

444444444444444INPUT INITIAL ESTIMATES444444444444444

WRITE (517)
READ (594) Ll
LL1=44Ll
DO 25 I=lrLl
WRITE (591)
WRITE (5,101 I
READ (514) x((ItL1))
WRITE (5~11)
READ (594) F'C
X(I)= -(PC/100)4X((ItL1))
WRITE (5~12)
READ (5~4) X((It(24Ll)))
WRITE (5113)
REAIS (594) X((It(34Ll)))

CONTINUE
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SitJctc#t&#ttSl*f*READ  DATA FROM FILCtttt**********

REWIND 1
READ (1~401) AST
READ (lr402) TITLE P.
READ (lrt) ITYPE
READ (1rS) NCHN
READ (iv*) L2
READ (it*) T4
READ (lrt) T5
READ (lrt) T6
DO 30 I=lrL2

BUF(I)=(T4tI)-TS
L3=L2/4

***************DETERnINE UPPER AND LOWER*t**t*tt*t*tttt
ttXt*ttt*****t*FREQUENCY  FOR CURUEFITS*lSttt*ftt*******

WRITE (5,l)
WRITE (5r35)
READ (5r$) ZZl
WRITE (5~36)
READ (5rf) 222
ICI=0
ID2=0
DO 38 I=lrL2

IF (BUF(I).LT,ZZl)  1X11=1
IF (BUF(I).LT.ZZ2)  IDZ=I

CONTINUE
IDl=IDltl
LIW=lO
LW=2048
IFAIL=l
ID3=(ID2+1)-ID1
IF(ID3.GT.300) GOT0 9999

tttt**tt%$tttt*READ  HORE DATA AND,SET ARRAYS*ttt**t**ttf***

DO 45 I=IDlrID2
FH((I-(IDltl)))=BUF(I)

WkITE(5vl)
: ;Tr15,72)---: :5rl)

'C I=lrL3
r\ikL~ (lrt) Rl,R2,R3,R4rRSrR6,R71R8
EUF(((4tI)-3))=Rl
EUF(((4*1)-2))=R3
EUF(((4*1)-l))=RS
EUF((4*I))=R7

DO 47 I=IDl,ID2
REH((I-(IDltl)))=BUF(I)

WRITE(Sr61)  ID3
WRITE (511)
WRITE (5139)
WRITE (511)

tt*t**tlt**St**CALL NAG CURVEFITTING ROUTINEtXtttt*ttttSttt
CALL E04FDF(ID3,LLlrX~FSUMSQ1IWILIW,EUF,LW,IFAIL~
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C
C
C
C

65
C
C
C

cc

70

C
C
C
C
C
1
2
3
7
10
11
12
13
35
36
39
61
72
99
100
102
110
120
130
140
150
160
170
2 5 0
251
2 5 2
2 5 3
301
401
4 0 2
9999

P

*f*ttfSt*ttSfSfUDF=UNDAnPED NATUR FREQUENCY***************
tf*S***S***St*fPCC=X  CRITICAL GSf*t**f***tttttXtttXftt

DO 65 I=lrLl
UDF~I~=SRRT~~X~I)~X~I~~t~X~~ItLl~)IX~~ItLl~~~~

.PCC(I)F-(X~~~/UDF(I))*~OO p

ftt*SS***tttt*fOUTPUT  RESULTS~tSt***SSSlt***

DO 70 I=lrLl
WRITE (5199)
WRITE (5,100) I
WRITE (511)
WRITE (5~110) X(I)
WRITE (5~120) PCC(1)
WRITE (51130) X((ItL1))
WRITE (5~140) UDF(I)
WRITE (5~150) X((It(2tLl)))
WRITE (5~160) X((It(3*Ll)))
WRITE (5~170) IFAIL

WRITE (5r99)

FORMAT< ’
FORMAT(’
FORMAT( ’
FORMAT{ ’
FORMAT( ’
FORMAT<’
FORMAT(’
FORMAT ( ’
FORMAT(’
FORMAT(’
FORMAT ( ’
FORMAT ( ’
FORMAT(’
FORMAT ( ‘
FORMAT(’
FORMAT ( ’
FORMAT(’
FORMAT ( ’
FORMAT ( ’
FORMAT ( ’
FORMAT ( ’
FORMAT{’
FORMAT( ’
FORMAT ( ’
FORMAT ( ’
FORMAT(’
FORMAT(’

‘1
MDOF CURVEFIT PROGRAM MARK4: PM'11 FORTRAN’)
******************************************’~
INPUT THE NUMBER OF MODES RECOGNIZED > ‘~$1
INPUT NATURAL FREQUENCY ‘r12r’ > ‘I%)
INPUT XCRITICAL DAMPING ESTIMATE > ‘I$)
INPUT REAL RESIDUE ESTIMTE > ‘I%)
INF’UT I M A G I N A R Y  R E S I D U E  E S T I M A T E  > ‘~$1
INPUT LOWER FREQUENCY LIMIT FOR MDOF FIT > ‘9%)
I N P U T  U P P E R  F R E Q U E N C Y  L I M I T  F O R  MrlOF FIT > ‘I%)
t**ftttttCURVEFIT NOW IN PROGRESS*t***tt*t’)
N UM BE R  O F  CURVEFIT  P OIN T S  =  ~~14)
tk#*t*t**DATA NOW BEING READ FROM FILEt*ttttf*t’ 1
******************************************’~
MODE NUMBER ‘,I21
I N P U T  F I L E N A M E  > ‘9%)

DAMPING FACTOR:‘rF12,4)
PERCENT CRITICAL DAMPING:‘vF12.4)
DAMF’ED NATURAL FREQUENCY:‘pF12.4)

UNDAMPED NATURAL FREQUENCY: ’ rFl2.4 )
REAL RESIDUE:‘rF12,4)

IMAGINARY RESIDUE:‘rFl2,4)
ERROR MESSAGE:‘rIl2)

t**tVERSION 4 . 2 - U p  S I N C E  J A N  1985t$$* ‘1
CURRENT MAX LENGTH OF FILE=2048 COMPLEX DATA POINTS ‘1
-TRANSFER FUNCTION DATA REAL AND IMAGINARY PARTS’)
CURRENT MAX NUMBER OF CURVEFIT POINTS =300 ‘)

FORMAT(64Al)
FORMAT(4Al)
FORMAT(64Al)
STOP
END
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=========SUBROUTINE TO ADD A ZERO&O FILENAME=========

SUBROUTINE CHKNUL(FILNAii,NBYTE)
BYTE FILNAM(1)
J=NBYTEtl
DO 100 I=lrNBYTE

p

J=J-1
IF(FILNAfl(J).NE.‘40) GOT0 101 !*40 = SPACE
CONTINUE
J = J t l
FILNAM( J)=O
RETURN
END

SUBROUTINE LSFUN~(MPN~XCIFUECC)
COtlMON /DSPACE/FRIREHIID~
DIHENSION FUECC(H)r XC(N)v FR(300)v REH(300)
REAL*4 FUECCI XC9 FR, R E H
REAL*4 HHP Xlt X2r Ut Wt A t  BP UZl, UZ2
REAL*4 VZ3r VZ41 VZ5r VZbt VZ7r V Z 8
I N T E G E R  I t  Jv ID3, HP N
DO 200 I=lrID3

HH=O.O
Xl=FR(I)
X2=REH(I)
N2=N/4
DO 190 J=lrN2

U=XC(J)
W=XC((JtN2))
A=XC((Jt(2tN2)))
B=XC((Jt(3tN2)))
uz1=x1tw
UZ2=Xl-w
uZ3=(U*U)t(uZl*VZ1)
VZ4=(U*U)t(uZ2*uZ2)
vz5= (u*u)-(uzl*uz1)
uz6=(u*u)-(uz2*uz2)
UZ7=((A*U)-(B*UZ2))/UZ4
UZ8=((AtU)t(B*VZl))/UZ3
HH=(X2/N2)tUZ7tVZ8tHH

FVECC(I)=HH
CONTINUE
RETUKN
ENI1

SUBROUTINE PRNAHE(NAME)
REAL*8 NAME
WRITE (5~105rERR=99999)  NAME
FORMAT (lXvA8)
RETURN
END

- 288 -

c.


