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a b s t r a c t

Rail corrugation has been noticed at least for 100 years, but (particularly short pitch one in the range
20–80 mm) has been considered an enigma because measured corrugation wavelength did not relate well
with wear-instability models. The apparently large number of governing parameters has resulted in many
independent efforts to generate models, which do not entirely correspond to the collected experimental
evidence, and therefore there is still some uncertainty over the possible critical factors dominating the
phenomenon.

We show in the paper that there is a simple possible mechanism of corrugation in longitudinal direction,
apparently not noticed before in the literature by other authors, which does not necessarily correspond
to a resonance in the system, not even the pinned–pinned resonance associated with the effect of discrete
supports, but may depend on geometrical and loading conditions (normal load, creepage ratio, shape of

the contact area, etc.), in general overall agreement with experiments.

Additionally, some approximate calculations including discrete supports, using a typical concrete sleep-
ers vertical receptance of BR use, show no evidence of corrugation mechanism at the pinned–pinned
resonance, at least in the longitudinal direction. A full comparison between lateral and longitudinal
mechanisms would depend on the particular value of the lateral creepage vs. longitudinal creepage,
system-specific. The present “resonance-free” mechanism is a possible alternative for the data which fall

ed res
outside the pinned–pinn

. Introduction

Corrugation caused by the action of the railways wheels is a phe-
omenon observed throughout railways history (i.e. at least in the

ast 100 years) but not fully understood [1] particularly for short-
itch rail corrugation (“roaring rails”) in the range of 20–80 mm
avelength.

Most available data seem to show a non-linearly increasing
avelength with speed, i.e. an almost fixed-wavelength and not
xed-frequency feature if one searches a single mechanism (as
robably the earlier authors were doing) (see Fig. 1 adapted from
ig. 1 of Bhaskar et al. [2], with quite a lot of data in BR reports in
911, David Harrison’s Cambridge Ph.D. thesis [3] and the Vancou-
er SkyTrain data). However, if one accepts many possible regimes
t work, one not necessarily sees the “non-linearity”.
Instead, most models generally obtain a resonance on the sys-
em, the most obvious being the vertical direction ones, like in the
arly Hertz spring “contact resonance” mechanism of Carson and
ohnson [4] and Johnson and Gray [5], or the P2 or “loaded track”

∗ Corresponding author. Tel.: +39 080 5962811; fax: +39 080 5962777.
E-mail address: mciava@poliba.it (M. Ciavarella).

043-1648/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.wear.2008.12.003
onance range.
© 2008 Elsevier B.V. All rights reserved.

resonance, both of which have frequency of less than about 100 Hz,
inducing corrugation wavelengths several centimeters long for the
typical train speeds found in these resonances.

In the range of frequency of short-pitch corrugation, the nor-
mal force has its peak near the crest of the corrugation, and hence
a mechanism of plastic impacts cannot be active, as confirmed by
evidence suggesting plastic deformation (and sometimes marten-
sitic transformations) occurs on the peaks but not on the troughs
[6], and instead evidence of slip and wear. However, Frederick also
reported open hearth rail steel is much less prone to corrugate
than Acid Bessemer, and in general high plastic deformation resis-
tant materials show corrugation quickly, although the increase of
wear resistance slows the rate of formation. Therefore, a more com-
plete model probably should consider competing plastic and wear
mechanisms.

The first simple model involving a differential wear mecha-
nism with longitudinal creepage like in braking or acceleration,
was suggested by Grassie and Johnson [7], but instead of explaining

corrugation, seemed to act as suppressing corrugation. By now, after
about 15 years of research in Cambridge and at BR, the puzzle of rail
corrugation started to be spoken of as an “enigma”. Ciavarella and
Barber [8] recently suggested that this conclusion comes from erro-
neously assuming constant longitudinal creepage and when the

http://www.sciencedirect.com/science/journal/00431648
http://www.elsevier.com/locate/wear
mailto:mciava@poliba.it
dx.doi.org/10.1016/j.wear.2008.12.003
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sleepers at frequencies actually higher than the pinned–pinned
resonance (1200–1400 Hz) rather than that at above sleepers.
The “local” approach should be correct when the ratio wave-
length of corrugation over sleepers distance is small. Hence,

1 In Grassie et al. [19], calculated dynamic loads for a continuous model (see his Fig.
ig. 1. Variation of corrugation wavelength with speed (data from Bhaskar et al.
2], Fig. 1). Superposed are 3 lines which refer to the most commonly frequen-
ies associated to models of short pitch corrugation, clearly remote from most data
oints.

nertia of the wheel and the rotational dynamics of the system are
onsidered, a much better qualitative agreement with experimental
vidence is immediately found.

Later, BR introduced quite a few innovations in the Frederick
odel [6], with discrete supports, a sort of perturbation approach

sing complex transfer functions, and a detailed treatment of
he receptances in both lateral longitudinal and vertical direction,
ncluding also the mass of the wheel (as a concentrated mass) in
he analysis, hence a model not only satisfying the requirements
ut much richer than Ciavarella and Barber [8]. Frederick did find a
ew possible regimes of corrugation, but still he made a few assump-
ions and an approximate treatment for the discrete support effect.
e reached the conclusion that the dominant mechanism would
e lateral corrugation at the pinned–pinned resonance at about
00–1100 Hz in most railways systems, in which the rail vibrates
lmost as if it were a beam pinned at sleepers, which is strictly
ue to the effect of including the discrete nature of supports. Later,
any models assume this is a likely mechanism for corrugation, and

ately has actually been associated to a firm and definitive source
f short-pitch corrugation in a recent review by Grassie [9]:- . . .it is
ow clear that the wavelength-fixing mechanism for this type of cor-
ugation, on which the author believed it prudent to hold an “agnostic”
iew in 1993 [7], is indeed the so-called “pinned–pinned” resonance, in
hich the rail vibrates as if pinned at the sleepers. This is demonstrated

onvincingly by the linear modelling of Hempelmann from TUB. . ..
he frequency of this mode is typically about 800 Hz in the UK, for
sleeper spacing of 0.75 m and 56 kg/m rail, whereas in much of con-

inental Europe it is more commonly about 1200 Hz because of the
loser sleeper spacing (0.6 m) and heavier rail section (60 kg/m) [10].
he search for a mechanism that would give a constant wavelength,
hich had been central to the joint British Rail Research and Cam-
ridge University research project in the 1970s and 1980s, is evidently
chimera that had emerged because types of corrugation that arise
rom different mechanisms were then believed to have had the same
ause.

However, we think that it is still prudent to hold an “agnos-
ic view” even today, since the original data collected by British
ail Research and Cambridge University, which are probably still
ar 266 (2009) 934–944 935

the most reliable around, are still not explained in terms of
pinned–pinned resonance, as it is clear from Fig. 1. Therefore,
while we agree that there is not a single mechanism, we disagree
that pinned–pinned resonance is so clearly uniquely responsible
for short pitch corrugation. Also, short-pitch corrugation appeared
very strongly on Vancouver SkyTrain which has not a typical dis-
crete support, and indeed did not change when the spacing of
support changed (see Bhaskar et al. [2]).

It may be possible that the influence of the pinned–pinned res-
onance has been overestimated because:

(1) models with continuum support (Grassie and Johnson [7],
Bhaskar et al. [2]) have partly failed in quantitative prediction
of wavelength because of the erroneous tangential dynam-
ics assumptions, in particular, constant creepage. When the
wheel inertia and the transient contact mechanics effects are
considered, like shown in a recent model [8] using a contin-
uum description of the rail (hence neglecting pinned–pinned
resonance), the results seem to show a few possible regimes
where many wavelengths are unstable at low speed, and an
apparent regime of highest growth just above 400 Hz, not too
remote from the experimental evidence. At the other end of
the spectrum, some models [10,11] assume constant tangen-
tial load, and this is seen to show corrugation growth, perhaps
exaggerated. In this category falls also the model of Xie and
Iwnicki [12] who however seems to find that all initial sinu-
soidal roughness of wavelengths between 20 and 100 mm are
levelled out if one considers the full models with non-steady
effects included, whereas growth is only possible with a sim-
plified “steady” model. Somehow in contrast with this, Knothe
and Groß-Thebing [13] suggest critical importance of the “fil-
tering” effect of non-steady contact mechanics, particularly in
explaining why corrugation smaller than 20 mm is not found.

(2) models with discrete supports (Frederick [6], Hempelmann and
Knothe [14], Hempelmann [15]), in the attempt to introduce
their effect, tend to exaggerate the role of the pinned–pinned
resonance. In fact, they generally use local eigenvalue analysis,
which means that they assume a steady state is reached like if
the local receptance were valid for an infinite length. This may
exaggerate the amplification of normal load (or of lateral loads,
or both) above sleepers by a significant factor (for example, from
Grassie et al. [1], we estimated the error can be easily a factor
2 if not larger1). In particular, Hempelmann and Knothe [14],
Hempelmann [15], only looked at the lateral direction perhaps
because of the indication from [6] that in longitudinal direc-
tion the phase appears not appropriate for corrugation, despite
Frederick himself in a discussion of Hempelmann and Knothe’s
paper, question this simplification as “longitudinal creepage
tends to be much higher than lateral”. More recent models with
discrete support include parametric resonance (Wu and Thomp-
son [16], Sheng et al. [17], Wu and Thompson [18], which deal
with noise rather than corrugation). The effects are very difficult
even to describe and to study, they depend on stiffness of the
pad, a peak with the “local” calculation becomes distinctly mid-
3) without discrete supports are compared with measurements by load measuring
wheel (see his Fig. 12). The highest load is at about 1000 Hz, about 2.8 times higher
than at 600 Hz. We estimated the same increase to be a factor 5 with a “local” use of
receptances as in the Frederick or Hempelmann “moving perturbation” models, for
a BR track with the standard “Grassie” 280 MN/m stiff pad.
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Fig. 2. Coordinate system for the rotating wheel.

the very short wavelengths should be correctly modelled with
the local approach. We shall use in effect in our last paragraph
a local model to deal with discrete support effects, limited to
longitudinal direction.

So with this sort of background, we decided to look at the sim-
lest possible model, given we are not in a position to easily check
esults in the literature with often sophisticated numerical simula-
ions. To us, a lot more validation is needed for even the simplest
f these numerical models, and our own efforts to produce clean
nd closed form solutions is also along the lines of extending the
ossibilities to check these models. With respect to the previous
ontributions, here we improve the treatment from Ciavarella and
arber [8] as they assumed a simple full stick Winkler contact
echanics. Far from having the ambition to give a definitive and

nal word on this complicated problem, we shall simply elucidate
he effect of contact geometry in the likely short-pitch corrugation
egime, removing the Winkler approximation, and using a continu-
us analytical solution approximately valid for 3D elliptical contact
reas, and in partial slip. To simplify the discussion, we shall use an
xtremely simplified vertical receptance model, but valid in the fre-
uency range greater than 500 Hz, of course under the assumption
f neglecting pinned–pinned resonance due to discrete supports.
n doing the approximate 3D treatment, we differ from a previous
ttempt by Bhaskar et al. [2] who used a model validated only for
ariations of tangential load.

. The model

The model under investigation is initially that proposed in Bar-
er et al. [20](see Fig. 2). For a wheel rotating with radius R over
corrugated rail translating with velocity V, and concentrating all

he elastic deformation in the wheel (we shall use an equivalent
odulus for the wheel and treat the rail as rigid, in the tangential

irection), we can define a slip velocity in terms of the tangential
isplacements of the contacting pointsux. The condition of zero slip
assuming the coefficient of friction is sufficiently high to prevent
lip occurring anywhere), gives a partial differential equation for
x. Barber et al. [20] have shown how to find a small perturbation
olution, i.e. assuming that�(t) is a known function of the form

(t) =�0 +�1 exp(�ωt), (1)

here ω is the circular frequency and every other quantity has a
teady state and an oscillating component. For example, the normal
nd tangential forces P,Q have the sinusoidal form
(t) = P0 + P1 exp(�ωt); 1Q (t) = Q0 + Q1 exp(�ωt), (2)

here P0, P1, Q0, Q1 are constants and P1 � P0, Q1 � Q0. Also, the
nstantaneous contact semi-width a is

(t) = a0 + a1 exp(�ωt), (3)
ar 266 (2009) 934–944

where for plane contact

a0 =
√

4P0R

�E∗ ; a1 = P1
∂a

∂P
= P1

√
R

P0�E∗ = P1a0

2P0
(4)

and E∗ is the composite modulus

1
E∗ = (1 − �2

1)
E1

+ (1 − �2
2)

E2
. (5)

At any given time t, contact extends over −a(t)< x < a(t) and the
contact pressure is bounded at the leading edge x = −a(t) and sin-
gular at the trailing edge x = a(t). Barber et al. [20] show how to
produce a solution that is bounded at the leading edge x = −a and
singular at the trailing edge x = a, by superposing a series of solu-
tions of a special form. The derivation is somewhat lengthy, and the
reader is referred to the paper for details. The results can be rewrit-
ten concisely in terms of tangential load and energy dissipation
perturbation in full stick, as

Q1 = QPP1 + Q��1; W1 =WPP1 +W��1, (6)

where

QP(�)

Q0
P

= 1 + ��

2�D(�)
I1

(
�

2

)[
1 + ln

(
a0

2d

)]
;
Q�(�)

Q0
�

=
I1

(
�/2

)
�D(�)

,

(7)

WP(�)

V	0Q
0
P

= 1 + ��

D(�)
J0

(
�

2

)[
1 + ln

(
a0

2d

)]
;

W�(�)

2V	0Q
0
�

=
J0

(
�/2

)
D(�)

,

(8)

� is the imaginary unit, 	0 is the mean creep ratio and the function
D(�), which has a crucial role in transient effects, is also dependent
on the factor ln(a0/2d), where d can be interpreted as a measure
of the finite dimensions of the contacting body (e.g. the radius of a
cylinder),

D(�) = J0
(
�

2

)
− ��

2�
I1

(
�

2

)
ln

(
a0

2d

)
(9)

and

Q0
P = 	0

a0/R
, Q0

� = −�E
∗Ra0

2V
(10)

are respectively the values of the functions QP(�), Q�(�) in limit of
� → 0,where � = 2ωa0/V is a dimensionless frequency and I1(p) is
an integral which can be written in terms of Bessel functions

I1(p) =
∫ 1

−1

exp (�ps)

√
1 + s
1 − sds = �

{
J0(p) + �J1(p)

}
. (11)

In this same limit � → 0, the results of this model coincide with
previous results obtained by Ciavarella and Afferrante [8] already
perturbing Carter’s [21] steady state solution.

2.1. Partial slip 3D solution

The zeroth order coefficient of Carter’s solution can be equally
simply obtained in the partial slip conditions, not just in full stick.
Full stick conditions were assumed only because the full continuum
solution under partial slip would involve computation of the energy
dissipation in the slip area, by evaluating directly the product of
local shear traction, and local microslip. We can however neglect

further changes in the � dependence of the solution, and hence
obtain the coefficients in partial slip. In doing this, we shall also
profit to add also the 3D effect, since a full perturbed solution of 3D
continuum solution is not viable. In the next paragraph, hence, we
shall replace the zeroth order coefficients in the present solution,
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ith the zeroth order coefficients of the Carter equivalent solution
n 3D, with partial slip.

Bhaskar et al. [2] estimate the effect of a true elliptical Hertzian
ontact by introducing the equivalent of the Carter’s solution in 3D
hich is the case of pure longitudinal creep ratio (we assume no

ateral creep) [22], in terms of the tractive ratio 
 = Q/�P
= 	max

[
1 − (1 − 
)1/3

]
, (12)

here Q is the resulting tangential force which is only in the x-
irection, and 	max is given by2

max = 3�
C00

[
16P

9(1 − �)2R2
eG

]1/3

(13)

ith the Kalker’s creep coefficient expressed approximately as a
unction of a/b

00 = 2.84 + 1.2
a

b
≈ 2.84 + 1.2

(
R

Rr

)2/3
, (14)

here R is the rolling radius of the wheel, Rr the relative radius of
urvature between the wheel and the rail and Re = √

RrR. Now, (12)
an be rewritten as

= �P
(

1 − (	max − 	)3

	3
max

)
.

t then follows that the dissipation is

= V	Q = �PV
(

1 − �R

V

)(
1 − (	max − (1 − (�R/V)))3

	3
max

)
,

(15)

here remember that 	max is a function of P (according to (13)).
ence, by differentiation, we obtain the zeroth order factors, which
ow depend on tractive ratio 
 (or equivalently, the ratio 	0/	max),
ut also on 	0 separately, as as well as friction coefficient

0
P,3D = ∂Q

∂P

∣∣∣∣
P0,�0

= 2�	0

	max

(
1 − 	0

2	max

)
, (16)

0
�,3D = ∂Q

∂�

∣∣∣∣
P0,�0

= −3�RP0

V	max

(
1 − 	0

	max

)2
, (17)

0
P,3D = ∂W

∂P

∣∣∣∣
P0,�0

= 2�V	2
0

	max

(
1 − 	0

2	max

)
= V	0Q

0
P,3D, (18)

0
�,3D = ∂W

∂�

∣∣∣∣
P0,�0

= 2	0VQ
0
�,3D

[
1 + ˇ

( 	0

	max

)]
, (19)

here( 	0

	max

)
= (	0/2	max)(1 − (2	0/3	max))

(1 − (	0/	max))2
. (20)

In Ciavarella and Barber [8], a Winkler model was used, with
inkler modulus kq chosen to fit some equations of the Carter solu-

ion. However, it resulted that the freedom to choose the Winkler
odulus is sufficient to match the steady state solution, but this

hoice does not fit the full perturbed solution not even in the limit
→ 0. Specifically, if we fitted the equation for Q�, the other two
erturbation coefficients QP , WP could not be matched by a factor

.

This means the transient effects are more complicated than what
pure Winkler model can predict (as already noticed by Kalker),

2 We are defining the Kalker coefficients as positive, for simplicity, and hence
hange the sign of the creep-load relationships as more commonly found in the
iterature.
ar 266 (2009) 934–944 937

and indeed similar difficulties have been noticed also by Alonso
and Gimenez [23] tuning the Winkler-based code FASTSIM to the
exact results of CONTACT. The full perturbation of the continuum
CONTACT code has been done by Gross-Thebing [24], and indeed
the generalized Kalker coefficients that he defines depend on many
factors (geometry of the contact, Poisson’s ratio, etc.), and even to
get the tangential load (either longitudinal or lateral), the perturba-
tion with respect to many parameters is needed in 3D (longitudinal
or lateral creepage, contact area ellipse semi-diameters, peak pres-
sure, etc.). Unfortunately, Gross-Thebing gives very limited results
for the energy dissipation which he finds correctly as the integral
of density over the slip area.

A possibility that was shown efficient and also based on rigorous
arguments in Barber et al. [20], and is here repeated, is changing
the ratio ˛ = (a0/2d), i.e. changing the length scale d, and then
assume that all the other relationships remain unchanged from the
2D solution, so that (7) and (8) can be rewritten as

Q̂P(�,˛) = QP(�,˛)

Q0
P,3D

= 1 + ��[1 + ln(˛)]
2�D(�,˛)

I1

(
�

2

)
;

Q̂�(�,˛) = Q�(�,˛)

Q0
�,3D

= I1(�/2)
�D(�,˛)

, (21)

ŴP(�,˛) = WP(�,˛)

W0
P,3D

= 1 + ��[1 + ln(˛)]
D(�,˛)

J0

(
�

2

)
;

Ŵ�(�,˛) = W�(�,˛)

W0
�,3D

= J0(�/2)
D(�,˛)

, (22)

where now the zeroth order factors Q0
P,3D,Q

0
�,3D,W

0
P,3D,W

0
�,3D

are obtained from the full partial slip 3D Carter solution (Eqs.
(16)–(19)), so depend on the ellipticity of the contact, the tractive
ratio 
 (or equivalently, the ratio 	0/	max), but also on 	0 sepa-
rately, as well as friction coefficient. The dimensionless functions
obtained in turn depend on the ellipticity of the contact area via
the coefficient ˛ only (although this is the chosen approximation,
not a result).

As explained in Barber et al. [20], to choose d, we can
best-fit results for the contact ellipticity, Kalker [25] used the
matched asymptotic expansion method to expand the general
three-dimensional deformation in powers of the small parameter
de fining the ratio between the small and large dimensions of the
contact region. The first term in this expansion is a two-dimensional
solution, but the logarithmic term, corresponding here to the choice
of d, is contained in the second term which for more general prob-
lems can be obtained as the solution of a line integral equation with
a logarithmic kernel. In particular, the tangential compliance of an
elliptical contact of semi-axes a and b will be equal to that of a two-
dimensional contact of semi-width a with the same force per unit
width if the latter is determined using the value

d = 2b. (23)

When using this approach, an extremely good fit of tangential load
results from Gross-Thebing’s thesis, par.7.1, i.e., for an ellipticity
b/a0 = 1.5, was found, in Barber et al. [20].

3. Global dynamics and limit cases
The dynamic equilibrium of the wheelset, which we simplify
now with no stiffness or damping, gives

Iw
d�
dt

= (Q − Q0)R, (24)
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Table 1
Operating parameters.

Young’s modulus E = 207 GPa
Poisson’s ratio � = 0.3
Friction coefficient � = 0.4
Wheel radius R = 0.46 m
Mass of the wheel Mw = 350 kg
Inertia of the wheel Iw = 27.77 kg m2

Mass of the rail mrail = 56 kg/m
38 L. Afferrante, M. Ciavarel

here Iw is the inertia of the wheel. Moving to the oscillatory parts
herefore, (24) reduces to

ωIw�1 = Q1R. (25)

ubstituting �1 from (25) into (6i), and collecting Q1, and using
= (2ωa0/V), we can write the tangential load oscillatory term in

he perturbation as a function of the oscillatory term in normal load
nly

1 = QP(�)
1 − Q�(�)(R/�ωIw)

P1. (26)

or dissipation, substituting�1 from (25) into (6ii), we have

1 =WP(�)P1 +W�(�)
R

�ωIw
Q1 (27)

nd using (26), (21), (22), we can write it in terms of normal load
nly

1 =
{
WP(�,˛) +W�(�,˛)

QP(�,˛)
(�ωIw/R) − Q�(�,˛)

}
P1. (28)

he present calculation associates dissipation with the position of
he wheel, whereas dissipation occur towards the rear of the con-
act. For this reason the lag of dissipation at a point on the rail is
verestimated by about 2�a0/� = �/2. However, when the tractive
atio is large, dissipation occur nearer the centre of the contact area.
or full sliding condition the lag of dissipation at a point on the rail
s overestimated by about �a0/� = �/4. In between full stick and
ull sliding we will assume a linear variation with the tractive ratio
of this correction.

The limit of constant creepage assumed by Grassie and Johnson
7] corresponds to the case where the wheel inertia is very large
Iw → ∞). At the other extreme, the assumption of constant tan-
ential load, as in Grassie and Edwards [26] and Meehan et al. [10],
orresponds to the case Iw → 0, where we can notice that assuming
dditionally � = 0, the dissipation function is simplified consider-
bly to nearly the negative of the normal load fluctuation

1 = −2�
	2

0
	max

(
1 − 	0

2	max

)(
1 + 2ˇ

( 	0

	max

))
VP1. (29)

his is a remarkably simple result, since now all the locations where
he normal load is highest, are automatically the locations of the
ighest minimum real part of dissipation. This already suggests the
ssumption of constant tangential load is even too favorable for
hort pitch corrugation.

. Example results

The vertical receptance of the rail depends on the particular case.
owever, the high frequency tail has a single functional form, which
epends on a single groups of parameters, and therefore permits to
resent results of general validity in terms of frequency, naturally
or this high frequency range. This is extremely convenient, and
erhaps corresponds also to the fact that the short pitch corrugation
oes not depend much on the particular system, as clearly seen in
ig. 1, where, despite railways and intercity systems are included
panning very different technologies (the old BR rails on wooden
upports with unwelded rails, the newer continuously welded rails
n concrete supports introduced in England by BR after 1966, the
ancouver SkyTrain), the corrugation is seen to have more or less

he same features.
This high-frequency tail of rail vertical receptance is described
ith a simple Euler beam model as in Afferrante and Ciavarella
27]. This simple model show a good agreement with the rail ver-
ical receptance from Bhaskar et al. [2], i.e. a continuous support
ypical rail for Intercity Track (the paper refers to the Vancouver
kyTrain, but in part II seems to deal with BR track constants), for
Inertia of the section area of the rail Jrail = 2.35 × 10−5 m4

Input ripple, displacement 
 = 50 �m

the frequency of interest for corrugation (greater than about 450
Hz). In other cases, for particularly stiff pads for example, the fre-
quency “crossover” may change, but these would be extreme cases
which require separate investigation.

We neglect effect of the pinned–pinned resonance at about 1
kHz, and also the difference between receptance mid-way between
sleepers with that at a sleeper. In reality, it would be extremely
easy for us to add the lower frequency range, as we have in our
database quite a few vertical receptance models. However, choos-
ing the frequency range f > 450 Hz permits to have a clean model,
which depends only on the asymptotic value of vertical receptance
obtained for a simple Euler beam modelHrail together withHw,1/kH
the concentrated mass receptance of the wheel, and the Hertz lin-
earized contact stiffness, respectively

Hrail = exp(−�3�/4)

2
√

2(m3
railEJrail)

1/4
ω3/2

;

Hw = − 1
Mwω2

; kH =
[

6G2P0Re
(1 − �2)

]1/3

, (30)

wheremrail and Jrail are the mass and the inertia of the section area
of the rail and ω is the circular frequency. From this, the normal
load P1 is evaluated as

P1 = 


Hrail +Hw + 1/kH
, (31)

where
 is the amplitude of the corrugated profile of the rail.
Hence, it is clear that the only parameter in the model here of

the rail ism3
railEJrail and the supporting pad or ballast has no role at

this frequency range.
The dissipation function therefore (28), depends in particular on

the following parameters, apart from the material and geometric
ones:

• inertia of the wheel, Iw;
• steady normal load P0;
• the tractive ratio 
 = Q0/�P0;
• speed V and wavelength � (i.e. frequency);
• the shape of contact area, i.e. the ratio of semi-axes b/a0. This

is taken into account in both the zeroth order coefficients via the
term 	max which depends on Kalker’s coefficient C00, and in fixing
the value of d = 2b.

For the inertia, we shall compute

Iw =  

2
MwR

2,

where  is a factor ranging in general from 0.5 to 0.8, since the

mass of the wheel Mw is concentrated near the centre because of
the axle. Nielsen et al. [28] for example report data range from 35
to 125 kg m2, whereas previous traditional system may have some-
what lower values with mass of the wheel around 350 kg and hence
inertia in the range 18–30 kg m2. For simplicity, we shall consider as
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ig. 3. The expected corrugation wavelength for: (a) d = 2b = 3a0; (b) d = 2b = 6a0;
arrison [3]; crosses Vancouver ‘SkyTrain’, 1992).

reference case = 0.75 and the mass of the wheel 350 kg, with a
ormal load of 50 kN, as a realistic value for most systems. Reference
alues are summarized in Table 1.
Fig. 3 shows 10 equally spaced contour levels from zero to
he maximum negative real part of dissipation function (28), as a
unction of speed and wavelength of corrugation. Regular big dots
ndicate the highest predicted growth for a given speed. Color lines
how constant frequency 300,1100 Hz for reference, also equal to

ig. 4. (a) Variation of the minimum of the real part of W1 with the speed V for differen
orrugation with the speed V for different values of the parameter d (P0 = 50 kN; 
 = 0.1)
2b = 9a0; (d) d = 2b = 12a0 (P0 = 50 kN; 
 = 0.1) (circles BR survey, 1991; triangles

the lines in Fig. 1, and its experimental data points are also included.
Since the model for the rail is valid for f > 450 Hz, the data should
be taken accordingly. The shaded region denotes the zones at fre-

quency f < 450 Hz. The four plots of Fig. 3 are obtained for different
values of d, and respectively for d = 2b = 3a0,6a0,9a0,12a0. These
limits reasonably bracket the range covered by practical variation
of d, i.e. of ellipticity of the contact. The contours can be followed
by looking at the points of local maxima for any given velocity, in

t values of the parameter d (P0 = 50 kN; 
 = 0.1); (b) variation of the frequency of
.
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ig. 5. (a) The expected corrugation wavelength as a function of the tractive ratio 

art ofW1 with the speed V for different values of the tractive ratio 
 (P0 = 50 kN; d

he range of wavelengths in the figure. Notice two possible regimes
f corrugation:

at low frequencies (around 500 Hz) where the wavelength of cor-
rugation is linear with the speed V;
at high frequencies (> 1500 Hz) which compares only for elon-
gated contact where the wavelength of corrugation is almost
constant with the speed.

The results of this model in the “nearly circular case” seems
urprisingly in general overall agreement with the experimental
ndings collected in Fig. 1 of Bhaskar et al. [2], despite that considers
any different systems and clearly different operating conditions

panning more than a century (old BR data and Harrison’s data for
ritish railways, Vancouver SkyTrain).

Fig. 4a and b shows the same results in a different manner, show-
ng the effect of d, i.e. of contact ellipticity is relatively mild, at
east with these parameters. In particular, for the same values of
he parameter d, we show the variation with the speed V of the

inimum of the real part of W1 and the frequency of corrugation,

espectively. Notice the frequency of corrugation is almost constant,
ot too far from the Winkler results of Ciavarella and Barber [8], and
lose anyway to 500 Hz.

Fig. 5a shows the effect of the tractive ratio 
 = Q0/�P0 on the
xpected corrugation wavelength for d = 2b = 3a0. Notice, for fixed

ig. 6. (a) The expected corrugation wavelength for different inertia: Iw → ∞ (constant cr
a0; 
 = 0.5); (b) variation of the minimum of the real part ofW1 with the speed V for dif
ferent speed V (P0 = 50 kN; d = 2b = 3a0); (b) variation of the minimum of the real
= 3a0).

speed, the wavelength of corrugation increases with 
 (correspond-
ingly the frequency reduces). Fig. 5b shows that the minimum of the
real part of W1 decreases with the speed V, but increases with the
tractive ratio 
.

A comparison between constant creepage (large inertia) and
constant tangential force (low inertia) is proposed in Fig. 6, to show
that the effect of assuming constant creepage, or constant tangen-
tial load, is dramatic, and explains why the Grassie and Johnson
[7] simplified model could not justify the observed corrugation.
In particular, the results seem to suggest that the constant creep-
age predicts corrugation for very high frequency regimes and with
lower growth rates.

Finally, Fig. 7 shows the effect of the steady normal load P0 on
the expected wavelength of corrugation and on the minimum of
real part ofW1. Notice the frequency of corrugation increases with
the normal load P0. Also a new regime of corrugation with almost
constant wavelength at low speeds appears at high normal loads.

5. Discussion
The present model is limited in many respects:

1. It considers only longitudinal mechanisms. Frederick [6] found
a factor 20 more likely corrugation in lateral direction for the
same creepage ratio, which probably motivated the Berlin group

eepage), Iw → 0 (constant tangential force), Iw = 27.77 kg m2 (P0 = 50 kN; d = 2b =
ferent inertia (P0 = 50 kN; d = 2b = 3a0; 
 = 0.5).



L. Afferrante, M. Ciavarella / Wear 266 (2009) 934–944 941

F 0 (d =
s

2

3

F
1
a

ig. 7. (a) The expected corrugation wavelength for different steady normal load P
peed V for different P0 (d = 2b = 3a0; 
 = 0.5).

to look only at lateral creepage. However, the same Frederick,
in the discussion of the Hempelmann and Knothe [14] paper,
suggests to include longitudinal creepage, as more likely to be
much higher—up to 10 times higher than lateral one. Hence, since
corrugation grows with the square of creepage, here we have a
factor 100 in favor of the longitudinal mechanisms. It is clear
that in conditions with significant lateral creepage, this should
be further examined, and the present paper does not give enough
details to make the comparison.

. It neglects possible coupling between low-frequency and high-
frequency, which however has often been found to be indeed
negligible [2]. In general, the corrugation phenomena can be jus-
tified if one takes an initial spectrum of roughness, and looks at
the transient amplification. Since the initial spectrum contains
various frequencies and in general more frequency content in
the longer wavelengths, the appearance of corrugation in the
short term may be different from the long term one, where one
expects that nonlinearity would lead to a limit cycle. Normally,
it is considered that for example, when amplitude of corruga-
tion in the short-pitch range reaches about 80 �m there is loss of

contact, but by then the noise is so large that most system main-
tenance strategies would have had to recur to grinding—indeed
most railways grind at amplitudes of about 50 �m.

. It does not consider discrete supports, although we shall make
some estimates in the next paragraph using the typical approx-

ig. 8. Vertical receptance for a rail under discrete support taken from Grassie et al. [19] sh
970s (pad stiffness 280 MN/m, pad mass 110 kg, rail mass 56 kg/m). The receptance above
pproximation in the asymptotic high frequency tail for Euler beam.
2b = 3a0; 
 = 0.5); (b) variation of the minimum of the real part of W1 with the

imate treatment considering local values of stiffness. What we
have done so far is valid for a continuous support model, or as
another approximation to the problem, considering a smoothed
out version of a discrete support model. In fact, many resonances
are neglected in models under the assumption that they are “nar-
row”. This may be the case of the pinned–pinned resonance too,
as in Bhaskar et al. [2]. On the contrary, the approximation of the
local approach neglects parametric resonance effects, which we
have explored only with a simplified model [29].

4. It does not consider interaction between wheels in waves reflect-
ing from one end to the other, and the many other possible
mechanisms for corrugation or interactions.

A general problem in this area was the unfortunate circumstance
that there was never much discussion and comparison of models,
many problems appear “specific” and prone to various interpreta-
tion. A good review of the corrugation problems in the railways is
in the Hempelmann thesis (1996). Interesting the case of BR, who
had long collected data but did admit serious corrugation prob-
lems only in the 1970s after the 1966 introduction of the concrete

sleepers and continuously welded rails. Surprisingly however, only
on the West Coast Main Line had problems, and not on the East
one (probably because of different re-railing with lesser conicity),
and also the corrugation stopped at the Scottish border where Acid
Bessemer steel was replaced by Open Heart steel (a difference that is

own in their Fig. 7 corresponding to concrete pads on a typical BR rail used after the
the sleepers, and midsleepers, is show schematically together with the continuous
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ig. 9. The expected corrugation wavelength for discrete supports (model of Fig
0 = 50 kN).
till mostly unexplained!). Later, BR stopped research and remained
ostly monitoring. The Chinese railways report corrugation when

rack irregularity disturb the hunting motion of the vehicle. USA,
anada and Australia mostly have long-pitch corrugation, while
etro systems tend to have problems in curves. German railways

ig. 10. The expected corrugation wavelength for a model with discrete supports but transi
w = 27.78 kg m2 with excitation force on sleepers; (c) Iw → 0 with excitation force between
= 0.5; P0 = 50 kN).
ith excitation force (a) on sleepers; (b) between sleepers (d = 2b = 3a0; 
 = 0.5;
(DB) have operated various test sites and found also that Thomas
steel was more likely to corrugate than Martins steel, and corruga-
tion was seen to depend on rail inclination. The Dutch seem to have
been between the first to use the idea of “preventative grinding” on
rails within the first 6 months after their pose because “for reasons

ent effect removed (“steady model”): (a) Iw → 0 with excitation force on sleepers; (b)
sleepers; (d) Iw = 27.78 kg m2 and excitation force between sleepers (d = 2b = 3a0;
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L. Afferrante, M. Ciavarel

nknown” rail corrugation started only rarely on such ground rails
efore they had seen significant traffic [30]. Similar forms of “pre-
entive grinding” or “regular grinding” is also the routine solution
or many railways (French never have admitted much corrugation
roblems probably because of a very serious such maintenance pro-
ram), and while steels are harder and harder and wear in principle
s reduced, regular grinding is nowadays conducted also as a means
o reduce cracks anyway [31] but this becomes then a matter hard
o judge scientifically also because of lack of data and the presence
bvious commercial, managerial and political interests.

To give an idea of the complexity of the problem which induces
t time trivial errors, and on the other hand of the unfortunate lack
f serious collaboration between industries and universities in the
eld, in the end of the 1990s, ERRI (European Railways Research

nstitute, which did not survive very long) sponsored some research
n order to make a comparison of predictive capabilities of the var-
ous models (Frederick’ BR one, Berlin ones, Cambridge ones). This
s hardly mentioned in the literature (perhaps for the prohibitive
ost of these reports) but it is unfortunate, since they are extremely
nteresting and elucidating.

In the report D185/RP1 [32], various interesting facts are worth
eporting:

(a) There was general agreement between the corrugation growth
rate prediction (surprisingly to us since Berlin used a full 3D
contact solution, while BR used a simplified method) at least
up to 1200 Hz, then considerable differences at 1500 Hz.

b) There was a difference in the vertical receptance by a factor 10
or 20, which is certainly not a good start for any modelling!

In another such useful report [33], not only more models are
ompared (Hempelmann’s, Frederick in the extended 3D contact
ersion of 1991, Bhaskar’s model from Cambridge, a large creep-
ge model from Clark at BR, and the Tassilly model by RATP and
ibratec), but an attempt is made to compare to experimental mea-
urements on test sites. The 1993 findings were repeated, probably
he 1500 Hz regime difference was associated to difference in cal-
ulating wear in the contact area. The experimental validation was
xtremely confusing, and even giving to the models the roughness
nput at the starting conditions, there was only vague qualitative
greement. But the most striking finding was that in the test site
here was development of the 20 mm roughness that everyone had
onsidered to be “suppressed by contact filter”!

. Final remarks on pinned–pinned resonance

Since our model does not consider discrete supports, our claim
hat pinned–pinned resonance may have been overestimated as a
xplanation for short-pitch corrugation, remains somehow weak.
ence, in this paragraph we attempt to address the question more
recisely, although limiting attention to the longitudinal mecha-
isms.

First, we shall consider a discrete support receptance for the
ail taken from the Literature, in particular, that due to Grassie et
l. [19] shown in their Fig. 7 corresponding to concrete pads on a
ypical BR rail used after the 1970s (pad stiffness 280 MN/m, pad

ass 110 kg, rail mass 56 kg/m). The receptance above the sleepers,
nd midsleepers, is show schematically in Fig. 8, together with the
ontinuous approximation in the asymptotic high frequency tail for
uler beam.
Fig. 9 shows the energy dissipation function using the recep-
ance above sleepers and mid-sleepers, locally. Clearly, there is
o corrugation growth predicted at the pinned–pinned resonance,
hereas corrugation is predicted to growth at about 300 Hz,

lightly differently from the results of the continuous model. Notice
ar 266 (2009) 934–944 943

that this is equally true above or mid-sleepers, naturally because at
that frequency the two receptances are identical. On the contrary,
the predicted corrugation growth was found at lower frequency
than in the model with continuous support, due to a more marked
anti-resonance at about 300 Hz in that model.

In connection to the results of Xie and Iwnicki [12], we tried to
make the same estimates using a model with the transient effects
removed (”steady”, in their terminology), and instead we find pos-
sible corrugation between sleepers (Fig. 9). However, when using
their assumption of constant tangential load (zero inertia of the
wheel) we did find large differences but not between steady and
non-steady model (Fig. 10), and anyway not suggesting absence of
corrugation growth. Their results therefore appear in contrast to
our findings.

We are not in a position to completely clarify the source of
the rather contrasting results, but according to the experiments
just presented, or similar recent investigations (see Afferrante and
Ciavarella [27] where non-steady effects are neglected, in compar-
ison with Barber and Ciavarella [8], where non-steady effect are
included), we find that the critical assumption concerns the tan-
gential dynamics of the system, more than steady vs. non-steady.
When authors assume constant creepage, like Grassie and Johnson
[7], our investigations suggest corrugation suppression instead of
corrugation growth, explaining the negative conclusions of Grassie
and Johnson [7]. Constant tangential load seems in our findings not
to lead to corrugation suppression, but actually enhancement of
the growth. In particular, the frequency corresponding to the high-
est growth of corrugation is close to the pinned–pinned resonance,
despite we do not include that resonance in the model.

On reflection, our findings in longitudinal direction correspond
and confirm previous findings by Frederick [6] where the phase
appears not appropriate for corrugation. Hence, the lateral direc-
tion mechanism, which Frederick reported of possible growth at
the pinned–pinned resonance, requires some additional effort and
investigation.

7. Conclusions

Despite the large literature review on the problem, different
models in the literature make very different assumptions, and
hardly make estimates over the entire frequency range, so that a
full comparison over the “dominant” mechanism of corrugation is
still very difficult to make, and is necessarily system-specific. In
this paper, far from giving a final answer to this problem, we have
reviewed some results, and suggested a new mechanism (in pure
longitudinal direction) as a possible alternative for the corruga-
tion data which fall outside the pinned–pinned resonance range.
This is particularly appropriate and perhaps the only explanation
when the support is indeed continuous and not discrete, and where
corrugation has also been observed outside the resonant frequen-
cies, possibly with indication that longitudinal creepage is the most
important mechanism. In particular, our main interest is in the
frequency range higher than about 450 Hz, where we can use
the asymptotic tail of the Euler beam solution for the rail recep-
tance, which is independent on the details of the pad and the
supports.

From the contact mechanics point of view, we have suggested
an approximate but simple solution generalizing the 2d continuum
full stick problem found in Barber et al. [20], for elliptical contact
and partial slip. Contrary to the models assuming constant creepage

[7,2], the results show a possible regime of corrugation, as they
suggest possible growth of corrugation.

As final remarks on pinned–pinned resonance, we made some
experiments using a discretely supported model, corresponding to
a typical BR rail with concrete pads. We did not find evidence of
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ossible corrugation growth at the frequency of pinned–pinned
esonance, neither above pads, or above pads, in longitudinal direc-
ion. On the contrary, the predicted corrugation growth was found
t lower frequency than in the model with continuous support, due
o a more marked effect of the anti-resonance at about 300 Hz in
hat model.

Anyway, given the still limited capabilities of the models, and
he effects which we have omitted (lateral direction mechanisms,
or example), we prefer to maintain a prudent agnostic view over
hich mechanism is dominant, as this is likely anyway to be

ystem-specific. The comparison between lateral mechanisms and
ongitudinal inevitably depends on the absolute value of lateral and
ongitudinal creepage, the latter generally being often much larger
han the former, and this difference is likely to be enhanced as cor-
ugation growth factor, since this is proportional to the square of
reepage ratio.

We prefer to indicate the regime found here as very persistent,
ince it would be present in most systems due to the high frequency
ail of the rail receptance, which depends only on the rail itself, and
ot the details of the supports.
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