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Frictional Energy Dissipation in a
Rough Hertzian Contact
The interfacial contact pressure and shear traction distributions are found for a sphere
pressed onto an elastically similar half-space whose surface is populated by a uniform
array of spherical asperities, when the normal load is constant and an oscillatory shear,
less than that needed to cause sliding, is imposed. Details of the load history suffered by
asperities in an outer sliding annulus and an inner disk, where they experience partial
slip, are found, together with the effects of the roughness on the overall tangential
compliance and the frictional energy losses. It is shown that for the example combination
of parameters chosen, under light shear loads, the rough contact absorbs less energy
than a smooth one subject to the same loading history, but that for larger shearing forces
the reverse is true. �DOI: 10.1115/1.3063697�

Keywords: Hertzian contact, rough surface, pressure distribution, tangential compliance,
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Introduction
A topographically smooth incomplete contact, such as a Hert-

ian contact �Fig. 1�a��, will dissipate energy by frictional hyster-
sis when it is subjected to a constant normal load and oscillatory
angential shear. The details of the mechanism underlying this
henomenon have been known for over 60 years, since the pio-
eering solution of Cattaneo �1�, rediscovered about 10 years later
y Mindlin �2�. Mindlin went on to refine the solution for various
oading histories �3,4�, and a very comprehensive summary of this
iece of work was provided by Deresiewicz �5�. It has proved
xtremely helpful in understanding the performance of many
roblems in so-called “partial slip,” where fretting damage occurs
6�. Although the dissipation of energy is, in some ways, a phe-
omenon to be avoided, because it leads to surface damage, it is,
t the same time, useful in a range of circumstances where absorp-
ion of mechanical energy is desirable, such as a frictional energy
amper.

The Cattaneo–Mindlin solution is exact only when applied to
he plane form of the contact. This is because, when superposition
s used with a three-dimensional problem the transverse compo-
ent of slip displacement is modified �7�, and hence the orthogo-
ality requirement of Coulomb friction is not strictly satisfied.
evertheless, the solution has been shown to describe well the

tick-slip pattern present �8�, and the error is usually very small
or contacts where the contacting materials have only low or mod-
rate Poisson’s ratios �7�. An important generalization of the
attaneo–Mindlin procedure was developed independently quite

ecently by Jäger �9� and by Ciavarella �10�, who showed that in
ny singly or multiply connected plane contact the Cattaneo pro-
edure for scaling the corrective shear traction will apply and, as
ith the Cattaneo problem, the technique may be applied with
nly limited error to a three-dimensional problem.

The design of frictional dampers is currently of considerable
nterest, particularly in the gas-turbine industry, and the limita-
ions of the classical solution are becoming more apparent in vari-
us ways. For example, it is not clear that a classical friction law
ill continue to apply at very small contact dimensions, and an-
ther problem addressed here is the effect of surface roughness.
here are many ways in which roughness can be tackled in con-

act problems, and the approach taken is a very idealized one,
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intended �a� to expose the general nature of the behavior of
partial-slip contacts in the presence of imperfections, �b� to give
some idea of the different distributions of dissipation present in a
rough contact compared with a smooth one, and �c� to reveal the
tangential compliance of the contact, together with its hysteresis
loop.

The problem we have tackled here is geometrically very simple,
and it is shown in Fig. 1�b�. An axisymmetric problem has been
chosen because it means that the absolute values of both normal
and tangential compliances can be found, and these terms have no
unique definition in a plane analysis. A sphere of radius R is
pressed normally by a force P onto a surface consisting of an
array of spherical asperities of radius � �Fig. 2�. The asperities are
regularly spaced on a grid composed of equilateral triangles of
side b, and there is one asperity that is located immediately be-
neath the center of the sphere. All the asperities are assumed to
have the same height in this very simplified model, although it
would not affect the behavior of the system if the asperities were
present on the surface of the sphere instead. It is simply easier to
think of the problem if we display it in this way. Extensions to the
problem by allowing the tip radii of the asperities, or their heights,
to vary would be very straightforward, following the Greenwood
and Tripp model of roughness �11� and no significant change in
the formulation would be needed, although, of course, the number
of independent variables would increase.

The first step in the calculation is to determine the number of
asperities in contact for a given applied load, the load each indi-
vidual asperity carries, and the resultant contact pressure distribu-
tion. This is done by treating each individual contact as a conven-
tional Hertzian contact, and by thinking of each contact as a point
force when its effect on other contacts is being found. Clearly this
will not be precisely correct if the asperity spacing is not much
bigger than an individual contact disk, but it will improve in qual-
ity as the sparseness of the asperity positions, relative to the indi-
vidual contact diameters, increases. The advantage of this ideali-
zation is that it means that the resulting family of simultaneous
equations to be solved is linear everywhere except on the leading
diagonal. Note, though, that there are two levels of approximation
in the procedure. The first is in approximating the effect of an
individual asperity by a point force, and the second is in assuming
that each individual contact responds as an axisymmetric Hertzian
contact, so that the details of the influence of any local surface
normal displacement gradient are not taken into account, beyond a
constant depression. The primary output in this paper, though, is

not the effect of normal load but of shear. When once the normal
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ontact pressure distribution has been found, use may be made of
he Jäger–Ciavarella principle to find the effect of a monotonically
ncreasing shearing force. Most applications of this idea to date
ave centered on single contacts, but there is no reason why it
annot be applied to multiply connected contacts, as Ciavarella
oted �12�. If the coefficient of friction between the contacting
urfaces is f , and the applied shearing force has been increased to
value Q��fP�, the net shearing traction can be found by taking

he slipping distribution q�x� �where q�x ,y�= fp�x ,y� everywhere�
nd subtracting from it a scaled form.

Guided by an earlier plane form of the calculation �13�, we can
nfer the general response to be expected: If the contact were
mooth, it would consist of a central stick disk surrounded by an
nnular slip region. In the rough form of the contact, we expect
hose asperities lying in the macroscopic stick region to be in

ig. 1 „a… Hertzian contact problem and „b… equivalent ideal-
zed rough contact
Fig. 2 “Isometric” asperity distribution

21401-2 / Vol. 131, APRIL 2009
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partial slip, and those in the macroscopic slip region to be in
sliding, although the “smooth” stick/slip boundary may not coin-
cide exactly with the boundary between partial-slip/sliding asperi-
ties.

We will begin by solving the normal contact problem.

2 Normal Contact Problem
The standard Hertzian contact solution for a sphere �see Fig.

1�a��, of radius R, pressed onto the flat surface of an elastically
similar half-space by a contact force P, gives the approach of two
deep points: one within each body � as

�3 = � 9

16E�2R
�P2 �1�

where

E� =
E

2�1 − �2�
�2�

E is Young’s modulus and � is Poisson’s ratio. Thus, for a solitary
Hertzian contact �� P2/3. We will use this expression to describe
the effect of the deformation of an individual asperity at its own
location �14�. We need now to find the effects of the forces de-
veloped at all other asperities on the one under consideration. For
the other asperities, it is not necessary to allow for the distributed
nature of the contact pressure, and, by appealing to St. Venant’s
principle, we may idealize their influence as point forces. Thus,
the second result we need is the approach of two deep points, one
within each body, due to a normal force P applied to the contact-
ing bodies as a point force at the origin of the coordinate system.
This is given by

��r� =
P

�E�r
�3�

where

r2 = x2 + y2 �4�
Consider now the problem depicted in Fig. 1�b�. First, note that
for any individual asperity of radius �, in contact with the sphere
of radius R, the relative radius of curvature Rr is

1

Rr
=

1

R
+

1

�
=

1

R
�1 +

R

�
� �5�

For any given asperity i, the total surface normal displacement wi,
due to both its own contact load and those present at all other
asperities, is given by

wi = � 9

16E�2Rr
�1/3

Pi
2/3 +

1

E�� �
∀j�i

Pj

��xi − xj�2 + �yi − yj�2
�6�

where the first term represents the effect of the force transmitted
by asperity i while the remaining terms, under the summation
sign, give the influence of all other asperities. If the two bodies
approach each other by an amount �0 the normal approach of a
pair of surface points, evaluated at the center of asperity i is given
by

��xi,yi� = �0 −
xi

2 + yi
2

2R
�7�

Within the �initially unknown� contact patch

wi = ��xi,yi� �8�
which now forms a set of simultaneous equations, while outside
the contact patch

wi � ��xi,yi� �9�
which is the usual inequality for finite separation exterior to the

contact. We also require that
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Pi � 0, ∀ i within the contact

�no tensile forces are permitted� �10�
his pair of inequalities, encapsulating the Signorini conditions, is
ufficient to define the size of the contact or, here, the specific
umber of asperities in contact. Lastly, overall equilibrium de-
ands that

P = � Pi �11�

here P is the applied normal load on the macroscopic rough
ontact.

2.1 Solution. As stated earlier, in the example problems ex-
mined so far, the asperities are distributed on the half-space using
n “isometric” grid �Fig. 2�, where the distance between each
sperity and its closest neighbors is constant and equal to b. We
ave chosen � /R=0.02, and b /R=0.0025, and an applied load
uch that 37 asperities are pressed into contact. Of course the
ontact size is unknown initially, and a first guess may be found
rom the solution of the equivalent smooth contact problem. In
ractice we choose a value for the remote approach �0 /R and this
s set to 5�10−5. The nonlinear simultaneous system of Eqs.
6�–�8� is solved using the conjugate gradient technique imple-
ented within a commercially available nonlinear solver, and is

ollowed by conducting checks for the inequalities in Eqs. �9� and
10�. The number of asperities in contact is modified and iteration
s carried out until Eqs. �9� and �10� are satisfied. P is then com-
uted using Eq. �11�. Once the solution to the rough normal prob-
em has been found, each asperity can be treated as an individual
ertzian contact and the individual contact diameters found. Fig-
re 3 shows the pressure distribution found; the x−y axes repre-
ent coordinates in the plane of the contact normalized with re-
pect to the equivalent smooth contact radius aH=�3 3PR /4E�,
hile the altitude denotes the pressure normalized by the maxi-
um Hertzian pressure for the equivalent smooth contact p0H
1
�
�3 6PE�2 /R2. Not only is the pressure distribution at each as-

erity in the form of a rotated ellipse, as expected, but the ordi-
ates of the individual asperity contact pressure distributions
hemselves lie approximately on an overall elliptical form, as

ight be expected.

Effect of an Increasing Shear Force
The next step is to determine the influence of the shearing force

pplied to the macroscopic contact and to find how it is appor-
ioned among the asperities. A direct approach would involve first
alculating the tangential compliance of each asperity. This would

Fig. 3 Example problem: pressure distribution
hen permit the individual asperity shear forces to be found, using

ournal of Tribology

aded 15 Apr 2009 to 129.31.215.68. Redistribution subject to ASME
the concept of a set of springs in parallel. While this is perfectly
feasible it is quite tricky to implement, and it is also not necessary.
The Ciavarella–Jäger principle demonstrates that, for any half-
plane contact problem, whether singly or multiply connected, the
shearing traction distribution in a partial-slip problem may be
found by the following three step procedure.

1. Solve the normal contact problem and corresponding contact
pressure distribution.

2. Note that the sliding shearing traction distribution is the
same function as the contact pressure distribution but scaled
by the coefficient of friction.

3. The net shearing traction in partial slip is found by subtract-
ing a further shearing traction distribution. This is scaled in
magnitude and extent, compared with the sliding distribu-
tion, and corresponds to the contact pressure distribution,
which would be present at a lower contact force.

It is this powerful result which obviates the need to conduct the
detailed individual contact model procedure described. It is
straightforward to find subsequently, for each individual asperity,
the shear load supported, and hence the ratio Qi /Q. The Cattaneo–
Mindlin problem can hence be solved at the asperity level for the
ith asperity.

It should be pointed out that if we increase the tangential load
Q monotonically from zero, all asperities will initially transmit no
shear, and may be thought of as “stuck.” As the shearing force is
increased, what appears macroscopically as a slip annulus will
start to develop from the outside of the contact, and the stick-slip
boundary will migrate inwards as the shearing force is applied.
Further, those asperities, which are in the macroscopic stick re-
gion will themselves exhibit partial slip, while those in the mac-
roscopic slip region, will slide. Therefore, all asperities not near
the contact boundary will go into partial slip as the shearing force
is applied, and if the shearing force becomes large enough, they
will experience a transition to full sliding. Figure 4�a� shows the
rings on which asperities are centered �labeled A–F, which will be
referred to shortly� while Fig. 4�b� shows an example distribution
of asperity responses, for the particular load Q / fP=0.5. Here only
six asperities belong to the slip annulus �schematically approxi-
mated by the dotted lines� and all the other asperities are still
within the macroscopic stick region and therefore are themselves
experiencing partial slip. The results are shown in detail in Fig. 5.
As expected, there is an outer annulus of sliding asperities and an
inner array of asperities, over an apparently adhering disk, which
are, in fact, in partial slip, as the magnified view of the central
asperity, which is the one exhibiting the smallest tendency to
slide, shows. A more quantitative display of the same information
is provided in Fig. 6, which shows the shearing traction distribu-
tion through the central plane y=0. It should be noted that the
Cattaneo–Mindlin solution at the single asperity level is recovered
and the results obtained using the 2D plane strain equivalent for-
mulation �13� can be easily retrieved. Figure 7�a� shows the evo-
lution of the dimensionless shearing force Qi / fPi supported on the
ith asperity, as the overall shearing force Q / fP is increased. The
letters A–F refer to the radial position of asperities introduced in
Fig. 4�a�.

We now turn to the tangential displacements at the contact in-
terface. The load-displacement characteristic for partial-slip load-
ing can be expressed as a relationship between the component of
the tangential displacement at the ith asperity, in the same direc-
tion as the applied shear force �t

i, the loading regime Qi / fPi, and
the elastic material constants, and is given by �2�

�t
i =

3�2 − ��fPi

16	ai
	1 − �1 −

Qi

fPi
�2/3
 �12�

The tangential displacement at each asperity �t
i increases with

overall applied shear �Fig. 7�b��. There are six curves, correspond-

ing to rings of asperities A–F �Fig. 4�a�� and they are labeled at

APRIL 2009, Vol. 131 / 021401-3
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he right-hand side of the plot. The important feature, here, are the
steps” in displacement evident at several points in the curves
and indicated by the black arrows�. These are not caused by
umerical problems, but they arise as asperities toward the edge
f the macroscopic stick region reach the sliding condition and so
ake the transition to the broadening slip annulus �the progres-

ion is also indicated by the letters A–E adjacent to the vertical
rrows identifying the ring of asperities entering the slip annulus
orresponding to each step, and first used in Fig. 4�a��.

We now consider the effect of a cyclic shear force. The com-
utation of the energy dissipated during repeated partial-slip load-
ng cycles requires both the evolution of shear traction and rela-
ive tangential displacements to be determined at asperity level. In
rder to calculate the shear tractions for a varying shear force Q,
wo corrective terms describing the redistribution of shear are re-
uired during the unloading and reloading phases. Again this may
e treated using the Ciavarella–Jäger principle and the shearing
ractions evolving found. The expression for the shearing force at
ach asperity is now given by the superposition of three terms,
ith the second and the third contributions scaled in both magni-

ude and extent.

Energy Absorption
A very powerful technique was evolved by Mindlin and col-

eagues �4� for determining the frictional energy expenditure, and

ig. 4 A discrete evolution of the stick region as a function of
he tangential load Q. „a… Due to the discrete nature of the prob-
em, the asperities centered on “rings” A–F „central asperity…
ill enter the slip annulus discontinuously while varying the

angential load Q monotonically from 0 to fP. „b… Example dis-
ribution for Q / fP=0.5: Here only six asperities belong to the
lip annulus „schematically approximated by the dotted lines….
ence the formation of hysteresis loops. The most direct way of

21401-4 / Vol. 131, APRIL 2009
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evaluating frictional losses would, of course, be to look at the
shearing tractions present within the contact and to determine the
slip displacement experienced during a loading cycle. This would
reveal the density of frictional work expended, which could then
be integrated over the true contact area. However, the approach is

Fig. 5 Shear traction distribution for Q / fP=0.5: „a… overall and
„b… localized „central asperity… three-dimensional distributions

Fig. 6 Normalized pressure and shear traction distribution for

Q / fP=0.5 and y=0

Transactions of the ASME
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umerically intensive and tedious, and Mindlin noted that the
osses are also manifested in the form of the changing tangential
ompliance/shearing force hysteresis loops of the contact. By
ooking at the losses in this way, the need to integrate the effects
ver the contact area is avoided, and, in this particular case, the
conomy in computational effort is even greater than in the case
f a solitary contact. Details of the calculation are given in Refs.
3,5�, and, for a single, topographically smooth Hertzian contact,
he hysteresis loop is displayed in Fig. 8�a�, for reference. During
he application of the initial shear, the deep-point tangential dis-
lacement �t is given by

�t =
3�2 − ��fP

16	a
	1 − �1 −

Q

fP
�2/3
 �13�

uring loading. During unloading,

�t,u =
3�2 − ��fP

16	a
	2�1 −

Qmax − Q

2fP
�2/3

− �1 −
Qmax

fP
�2/3

− 1

�14�

ig. 7 Dimensionless „a… shearing forces and „b… displace-
ents at asperity level as a function of the dimensionless tan-

ential load Q / fP
nd finally during reloading,

ournal of Tribology
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�t,r = −
3�2 − ��fP

16	a
	2�1 −

Qmax + Q

2fP
�2/3

− �1 −
Qmax

fP
�2/3

− 1

�15�

The last two equations define the form of the curve in the steady
state partial-slip cycle. The resultant energy expenditure can also
be found in closed form as reported in Ref. �5�.

Ef =
9�2 − ��f2P2

10	a
	1 − �1 −

Qmax

fP
�5/3

−
5Qmax

6fP
	1 + �1 −

Qmax

fP
�2/3

 �16�

Although this technique is very ingenious and can be applied
both at the macroscopic scale �for a smooth contact� and at the
asperity scale for a rough contact, it cannot be used to determine
the work done against friction by those asperities, which are slid-
ing. However, it is still not necessary to carry out an integration of
the work over the asperity contact area. Instead, we simply treat
each asperity contact as a sliding point force. Care is still needed
when calculating the sliding distance, as this is controlled by both
the macroscopic contact compliance �which drives the asperity
toward sliding� and the compliance of the individual contact
�which reduces slightly the distance slid�. Details are given in the
Appendix.

In Fig. 8�b� hysteresis loops are plotted for three individual
asperities present on the surface of the example rough macro-
scopic contact being studied. The normalization is itself now per-

i

Fig. 8 Normalized displacements versus normalized shear
force loops for Qmax/ fP=0.5: „a… smooth equivalent contact and
„b… asperities
formed at the asperity level, and the evolution of 16	ai�x /3�2

APRIL 2009, Vol. 131 / 021401-5
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��fPi is plotted as a function of Qi / fP. It should also be noted
ere that for the asperity in the slip annulus �A�, the flat portion of
he loop corresponds to saturated values of Qi= fPi and �x

i,max

�t
i,max represents the maximum relative displacement of the slid-

ng asperities with respect to the stick region. The central asperity,
hich is the one experiencing the lowest ratio of Qi / fPi, gives the
arrowest loop �F�, while those on the rings E–B in Fig. 4 are
haracterized by slightly wider loops, progressively larger as the
sperities approach the slip annulus �see B�. However, most strik-
ng are the loops for the sliding asperities, which form the ex-
remely broad loops with saturated shearing forces. It is quite
lear that, for problems of this kind, the vast majority of the en-
rgy is expended in sliding the asperities backward and forward in
he slip annulus, while the energy absorbed by those in the mac-
oscopic stick region is small. However, it should be again em-
hasized that the slip displacement exhibited by the partial-slip
sperities does control the overall tangential compliance of the
onfiguration, and therefore the magnitude of the slip displace-
ent of those asperities, which slide. They therefore effectively

ontrol the “width” of the sliding asperity loops, in the sense of
he width of the parallelogram, which constitutes the work asso-
iated with sliding. Note that the “barreled” sides of the loop
emain the same for any sliding asperity, regardless of the sliding
isplacement and are, in fact, of exactly the same shape as the full
ysteresis loop of an asperity about to undergo incipient sliding.

Discussion of Results
For the example geometry and for a fully reversing shearing

orce, oscillating between Qmax and −Qmax the energy absorbed by
he contact as a function of the magnitude of Qmax / fP is shown in
ig. 9�a�. This clearly shows how the hysteresis losses, while
emaining a monotonically increasing function of the dimension-
ess shearing force range, exhibit distinct steps in behavior as the
orce range is increased. Also shown on the same graph is the
nergy absorbed by a perfectly smooth spherical contact, devoid
f asperities, experiencing the same shearing force history. The
ondimensionalization of the energy expenditure used here is
0	aEf /9�2−��f2P2, plotted against Qmax / fP. When there are
elatively few asperities sliding, and the contact �as shown at a
arger scale in Fig. 9�b�� is in a near full-stick condition, the rough
ontact absorbs less energy than the smooth one. However, at a
atio of Qmax / fP of about 0.37 this property is reversed, and the
ough contact absorbs more energy. The gap between the two
olutions shows a very complicated trend, and this feature can be
raced back to the effect of asperities moving discretely from the
ulk stick to the bulk slip region, described in some detail in Sec.
. When plotted in this form, though, the effect is much more
ronounced.

Conclusion
The stick-slip regime prevalent in an idealized rough axisym-
etric Hertzian contact, subject to a constant normal load and an

scillatory shear, has been found. The details of frictional dissipa-
ion at the asperity level have been revealed, and the hysteresis
21401-6 / Vol. 131, APRIL 2009
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loop found both at the asperity level and at the aggregate level of
the macroscopic contact. It has been shown that the energy ab-
sorbed depends on the range of shearing force. For the example
case studied, a very lightly loaded smooth contact absorbs very
slightly more than the rough one, but when the shearing force
exceeds about 37% of the sliding value, the rough contact starts to
absorb more, and the difference increases as the sliding condition
is approached.

Clearly there are many combinations of parameters, which can
be varied here, and the function of this paper has simply been to
display the method and show its effectiveness. Natural extensions
are to vary the degree of shear load reversal, so that frictional
shakedown is possible, together with a more realistic roughness
model allowing for a variation in asperity heights and tip radii.
This will be undertaken in due course.

During preparation of this paper two articles have appeared �in
electronic form� on related topics. The first, by Kasarekar et al.
�15�, seeks to address wear of rough surfaces in partial slip and
uses a formulation based on a Fourier representation of the sur-
face. The second, by Luan and Robbins �16� follows previous
studies by the same authors on comparing continuum contact me-
chanics to atomistic simulations. It should be noted that some of
the results obtained in terms of atomic interactions can be ex-
plained at the continuum level using the approach described here.
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Appendix: Surface Relative Tangential Slip Displace-
ment

The relative displacement between the adhered macroscopic
contact area and the asperities belonging to the slip annulus, when
they undergo gross sliding, is required to compute the energy
expenditure corresponding to those asperities. Therefore, the con-
tribution of every asperity to the relative surface displacement in
the tangential �x� direction needs to be taken into account. Once
the shear tractions at the interface have been computed at each
asperity, the tangential displacement can be computed following
the formulation given in Ref. �17�. For a fully reversing cycle, the
relative tangential displacement at the ith asperity at the maximum
load is given by

�s
i = ��

∀j

ux
i,j�ri,j�xi,yi�� − �adhered� �A1�

where

ux
i,j�ri,j�xi,yi�� = ux,fp

i,j − ux,q
i,j �A2�

and
ux,fp
i,j =�

�ajq0j

32	
	4�2 − �� − �4 − ��� �yi − yj�

aj
�2

− �4 − 3��� �xi − xj�
aj

�2
 , ri,j�xi,yi� 
 aj

�ajq0j

32	
	�2 − ��	D2i,j sin−1�D0i,j� +

D3i,j

D0i,j

 +

1

2
�D1i,j	� 1

D0i,j
�2

sin−1�D0i,j� + D0i,jD3i,jD2i,j

 , ri,j�xi,yi� � aj

 �A3�
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2

aj
q0j

32	
	4�2 − �� − �4 − ��� �yi − yj�

cj
�2

− �4 − 3��� �xi − xj�
cj

�2
 ,
ri,j�xi,yi� 
 cj

�
cj

2

aj
q0j

32	
	�2 − ��	D2ci,j sin−1�D0ci,j� +

D3ci,j

D0ci,j

 +

1

2
�D1ci,j	� 1

D0ci,j
�2

sin−1�D0ci,j� + D0ci,jD3ci,jD2i,j

 ,
ri,j�xi,yi� � cj


�A4�

q0j = fp0j =
f

�
�3 6E�2Pj

R2 �A5�

Fig. 9 „a… Normalized frictional energy dissipated as a function of the macroscopic normalized shear force.
Two examples of shear traction distributions corresponding to two loading conditions are also displayed as
an inset to the figure. „b… Zoom-in of the plot in Fig. 9„a… at low levels of normalized tangential forces. Two
examples of shear traction distributions corresponding to two loading conditions are also displayed as an
inset to the figure.
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cj = aj�3 1 −
Qj
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ri,j�xi,xj� = ��xi − xj�2 + �yi − yj�2 �A7�

D0i,j =
aj

ri,j�x,xj�
�A8�

D0ci,j =
cj

ri,j�x,xj�
�A9�

D1i,j = ��xi − xj�2 − �yi − yj�2� �A10�

D2i,j = 	2 − � ri,j�xi,xj�
aj

�2
 �A11�

D2ci,j = 	2 − � ri,j�xi,xj�
cj

�2
 �A12�

D3i,j =�1 − � aj

ri,j�xi,xj�
�2

�A13�

D3ci,j =�1 − � cj

ri,j�xi,xj�
�2

�A14�

ere �adhered is the �constant� displacement of the asperities be-
onging to the stick region, induced by the shear traction distribu-
ions at the asperity level.

�adhered = �s
i , ∀ �xi,yi� � Qi 
 fPi �A15�

he total displacement at the asperity level along the direction of

pplication of the load can hence be computed as
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�x
i = �t

i + �s
i �A16�
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