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Effects of Damping and Varying
Contact Area at Blade-Disk Joints
in Forced Response Analysis of
Bladed Disk Assemblies
An approach is developed to analyze the multiharmonic forced response of large-scale
finite element models of bladed disks taking account of the nonlinear forces acting at the
contact interfaces of blade roots. Area contact interaction is modeled by area friction
contact elements which allow for friction stresses under variable normal load, unilateral
contacts, clearances, and interferences. Examples of application of the new approach to
the analysis of root damping and forced response levels are given and numerical inves-
tigations of effects of contact conditions at root joints and excitation levels are explored
for practical bladed disks. �DOI: 10.1115/1.2181998�
1 Introduction
Bladed disks are subjected to high levels of vibration ampli-

tudes excited under service conditions by aerodynamics forces.
Such forces can have a very dense frequency spectrum and, simi-
larly, the spectrum of the natural frequencies of practical struc-
tures is also customarily very dense. These dense excitation and
natural frequency spectra combine to make the task of avoiding all
resonance regimes almost impossible. Because of that the problem
of developing methods in order to provide accurate, fast, and ro-
bust predictive tools for the analysis of forced vibration response
levels of bladed disks under operating conditions is a problem of
major practical importance.

Accuracy of prediction of forced response levels is dependent
on the modelling of bladed disk components �i.e., blades, disk,
shroud, damping devices, etc.� and on the modeling of the inter-
action forces at the contact interfaces between these components.

Demands made by the gas-turbine industry to increase the ac-
curacy of predictive analysis methods for forced response of
bladed disks require development of advanced models and meth-
ods describing in detail all components of the bladed disk includ-
ing the interaction of these components at the joints of the assem-
bly. Friction at blade-disk joints is an important source of
damping in bladed disk assemblies. It results from the action of
friction forces caused by usually small relative motions between
blades and the disk at the contacting surfaces of the blade roots.
The contact interaction forces have a strongly nonlinear character
due to: �i� slip-stick transitions, �ii� the unilateral character of the
interaction force acting along a normal to the contact surface, �iii�
the influence of normal force on slip-stick transitions and the mag-
nitude of the friction force, �iv� variation of contact area where
slip occurs during each cycle of vibration, and others.

Moreover, variation of the contact area at the blade roots in-
duced by the blade vibration also causes variation of the elasticity
and stiffness properties of blade-disk joints over each vibration
cycle and hence can affect resonance frequencies of a bladed disk.

Methods for forced response analysis of bladed disk assemblies
must allow calculations to be performed which include all these
nonlinear effects, i.e., they are to be representative.

Bladed disks are structures of complex geometric shape and
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dynamical properties. Numerical analysis of forced response lev-
els of bladed disks commonly requires the application of detailed
finite element �FE� models in order to describe realistic design
features and to achieve practically acceptable accuracy. The num-
ber of degrees of freedom in realistic finite element models can
reach 105–107 �see, for example, Ref. �13�� which makes the
numerical cost of forced response calculations large, even in lin-
ear forced response calculations. For the case of bladed disks with
friction contacts at the blade roots, a nonlinear vibration analysis
is essential. The nonlinear forced response analysis requires solu-
tion of nonlinear equations of motion, which is much numerically
more expensive than the conventional analysis methods used for
linear vibrations. Because of this, special reduction techniques are
necessary to make the use of large-scale models feasible in the
analysis of nonlinear vibrations of bladed disks.

There are several reported theoretical and experiments studies
of blade-disk joints �see, e.g., Refs. �1–4�� where static loading
and deformations are considered. These studies are focused
mostly on the analysis of contact stresses and stresses in areas
close to the contact interfaces. Detailed FE models are often de-
veloped only for small areas adjacent to the contact interface itself
to make the calculations feasible and cost effective. Solutions of
nonlinear dynamic problems in bladed disks �see Refs. �5–14��
have been performed for localized contacts in special devices,
such as friction dampers, or for localized contacts of blade
shrouds. The main problem for the dynamic analysis of bladed
disks with root joints, and the effects of root damping, on forced
response of bladed disks has not been investigated to date.

In this paper, a new method for the analysis of nonlinear forced
response of bladed disks with blade-disk joints in frequency do-
main is proposed. Special friction area contact elements are de-
veloped to the model nonlinear interaction phenomena which oc-
cur at the friction contact interfaces in the blade roots. These
contact elements take account of any time variation of the actual
contact area during vibration, the unilateral character of interac-
tion of mating surfaces along normal direction to the contact in-
terface and the stick-slip transitions for friction contacts. Large-
scale FE models describing design features in detail are
implemented. The method includes the multiharmonic balance
formulation of the equations of motion for steady response and a
technique developed for efficient reduction of the number of de-
grees of freedom in resolving nonlinear equations which preserves
the necessary accuracy and completeness of the initial large scale

finite element models. Numerical investigations of multiharmonic
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forced response accounting for nonlinear interactions at blade-
disk joints are performed for the first time for realistic bladed
disks.

2 A Method for the Predictive Forced Response Analy-
sis of Bladed Disks With Root Joints

The equation for motion for a bladed disk �see Fig. 1, where
one sector of a bladed disk is shown� with friction contact inter-
faces can be written in the following form:

K�q� + C�q̇� + M�q̈� + f��q�� = p��t� �1�

where q��t� is a vector of displacements for all degrees of free-
dom �DOFs� in the structure considered; K�, C�, and M� are
stiffness, viscous damping, and mass FE matrices used for de-
scription of linear forces; f��q� is a vector of nonlinear interface
forces, which is dependent on displacements DOFs at interface
nodes; and p��t� is a vector of excitation forces. Thus, the prob-
lem of modeling bladed disks with friction interfaces at the blade
roots can be separated into three major parts: �i� modeling of the
bladed disk assembly, or its components, when only linear forces
are allowed for �i.e., constructing matrices K�, C�, and M��; �ii�
modelling of the friction contact interaction at the root contact
surfaces �calculation of f��q��, and �iii� combining the models for
the bladed disk and the contact interfaces. Approaches developed
to resolve these issues in the analysis of bladed disks with friction
interaction at blade roots are discussed in this section together
with a multiharmonic formulation of the equation of motion and a
method for calculation of the amplitudes of vibration.

2.1 Models for Blades and a Disk. Models for bladed disks
with linear forces only allowed for are constructed using the finite
element method. This is now a well-established method widely
used in practice in the gas-turbine industry. Commercial FE soft-
ware packages available allow stiffness and mass matrices to be
routinely calculated for large-scale FE models. A specific feature
necessary for the FE models created for the analysis of bladed
disks with friction contact interfaces require introduction mating
nodes at all contact surfaces where nonlinear contact interaction
can be expected. These mating nodes can have the same spatial
coordinates, but the stiffness, K�, and mass, M�, matrices of the
FE model for the bladed disk are calculated assuming that these

Fig. 1 Bladed disk models: „a… a bladed disk sector; „b… master
nodes of the reduced model at blade contact surfaces; „c… mas-
ter nodes at disk contact surfaces; and „d… an area contact
element
nodes are disconnected and, hence, that all contact surfaces are
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free. The total number of degrees of freedom, N, in a large-scale
FE bladed disk model is usually too large to permit nonlinear
forced response calculations to be made using the matrices K�

and M� directly. In order to make use of these models in nonlin-
ear forced response analysis to be feasible, we apply the modal
synthesis method developed in Ref. �15� and which can efficiently
reduce the size of large FE models. To do this reduction, all DOFs
of a bladed disk, q�, can be expressed through a selected subset of
DOFs—so-called “master” DOFs, qm, and special modal DOFs, �,
in the following way:

q�
N�1

= �qm

qS �
N�1

= � I 0

B �
�

N�n

�qm

�
�

n�1

= T
N�n

�qm

�
�

n�1

�2�

Here, qS is a vector of so-called “slave” DOFs, which are elimi-
nated after reduction; and I�n�n� is the identity matrix. The num-
ber, n, of DOFs retained in the reduced model, q= 	qm ,�
T, can be
much smaller than total number of DOFs in the original structure,
N, i.e., n=size�qm�+size����N. Matrices B and � used in Eq. �2�
are determined from the solution of the following two conjugated
problems:

1. Each jth column of matrix B is determined from a solution of
the following static problem with respect to the vector of slave
DOFs, qS:

K�q� = 0 �3�

when the corresponding master coordinate q j
m=1 and all the other

master DOFs are zero.
2. The jth column of matrix � is the jth mode shape obtained

for vector of slave DOFs, qS, from solution of the following
eigenproblem when all master DOFs are fixed �i.e., when qm=0�:

K�q� = �2M�q� �4�
For analysis of variable contact and friction at root joints, mas-

ter degrees of freedom are selected at the mating nodes of the
blade root and disk contact surfaces. In addition, master nodes are
also selected in the blade body to ensure acceptable accuracy of
the dynamic model condensation. An example of master nodes
used for forced response analysis of a bladed disk with friction at
blade roots is shown in Fig. 1.

Substitution of Eq. �2� into Eq. �1� gives a reduced equation of
motion for the bladed disk

Kq + Cq̇ + Mq̈ + f�q� = p�t� �5�

where K=TTK�T; M=TTM�T; C=TTC�T and p=TTp�. The
ratio, n /N, of the number of DOFs before and after mode synthe-
sis method reduction can take values of 10−2–10−3.

2.2 Multiharmonic Balance Equation of Motion. Steady-
state periodic regimes of vibration response are sought by making
a transformation of the equation of motion �5� formulated in time
domain into the frequency domain. In order to search for a peri-
odic vibration response, the time variation of all DOFs of the
system is represented as restricted Fourier series, which can con-
tain as many and such harmonic components as are necessary to
approximate the solution with a desired accuracy, i.e.

q�t� = Q0 + �
j=1

n

Q j
c cos mj�t + Q j

s sin mj�t �6�

where n is the number of harmonics kept in the multiharmonic
solution; Q0, Q j

c, and Q j
s � j=1, . . . ,n� are vectors of harmonic

coefficients for the system DOFs; mj � j=1, . . . ,n� are the specific
harmonics that are kept in the displacement expansion in addition
to the constant component, and � is the fundamental vibration
frequency. In accordance with the multiharmonic balance method,
the expansion from Eq. �6� is substituted into Eq. �5� which is
sequentially multiplied by �cos mj�� and �sin mj�� and then inte-

grated over the vibration period. As a result, equations for deter-
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mining all the harmonic components are obtained in the following
form:

R�Q� = Z���Q + F�Q� + P = 0 �7�

where Q= 	Q0 ,Q1
c , . . . ,Qn

s
T is a vector containing all harmonic
coefficients for displacement; P= 	P0 ,P1

c ,P1
s , . . . ,Pn

s
T is a vector
of the harmonic coefficients of excitation forces, which for bladed
disks are usually due to the aerodynamic forces caused by inho-
mogeneous gas flow and F�Q�= 	F0�Q� ,F1

c�Q� , . . . ,Fn
s�Q�
T is a

vector of multiharmonic nonlinear friction contact forces acting at
the blade-disk interfaces. The dynamic stiffness matrix involved
in Eq. �7� has the form

Z���

= �
K 0 0 ¯ 0

0 K − �m1��2M m1�C ¯ 0

0 − m1�C K − �m1��2M ¯ 0

¯ ¯ ¯ ¯ mn�C

0 0 0 ¯ K − �mn��2M



�8�
The multiharmonic balance formulation avoids the conven-

tional time-consuming integration of equation. Instead, the non-
linear algebraic equation �7� is formed with respect to harmonic
coefficients of displacement. The matrix of multiharmonic dy-
namic stiffnesses in Eq. �8� is formed from the stiffness, damping,
and mass matrices of the linear part of the structure. Although it is
quasi-diagonal, the matrix in Eq. �7� represents a simultaneous
system of equations since coefficients for all harmonics are
interdependent through a vector of multiharmonic nonlinear
friction contact forces acting at blade-disk joints F�Q�
= 	F0�Q� ,F1

c�Q� , . . . ,Fn
s�Q�
T.

2.3 Solution of the Nonlinear Equations and Tracing of the
Solution. Equation �7� represents a nonlinear set of equations with
respect to Q. One of the most efficient methods for solution of the
nonlinear equations is the Newton–Raphson method, which pos-
sesses quadratic convergence when an approximation is close
enough to the solution. An iterative solution process is expressed
by the following formula:

Q�k+1� = Q�k� − � �R�k�

�Q
�−1

R�Q�k�� �9�

where superscript �k� indicates the number of the current iteration.
By differentiating Eq. �8� with respect to Q, a recurrence formula
can be rewritten in the form

Q�k+1� = Q�k� − �Z��� +
�F�Q�k��

�Q
�−1

R�Q�k�� �10�

The matrix Z��� is a multiharmonic dynamic stiffness matrix
introduced in Eq. �7�. A matrix of derivatives, Knln�Q�
=�F�Q� /�Q, also called “a tangent stiffness matrix,” describes the
stiffness properties of the friction contact interfaces determined
for a current vector of multiharmonic amplitudes, Q. The vector
of nonlinear friction contact forces acting at blade-disk joints
F�Q� and the tangent stiffness matrix of the friction contact inter-
face, Knln�Q� fully describe interaction of bladed and disk at
blade-disk joints and allows the nonlinear forced response to be
determined.

2.4 Friction Contact Modeling: Area Contact Elements.
Special friction area contact elements have been developed to
model friction contacts of blade and disk at the blade root contact
surfaces. The friction contact elements allow for variation of area
of the contact patches during bladed disk vibration, friction
stresses with effects of variable normal stresses on stick-slip tran-

sitions and friction stresses’ levels. Moreover unilateral character
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of blade-disk interaction along normal to the contact surfaces can
be described. This unilateral interaction occurs due to the fact that
only compressing normal stresses can act at the contact surfaces
but not the tensile stresses. Because of that when the mating con-
tact surfaces are temporarily separated during vibrations the nor-
mal stresses become equal to zero and cannot take negative val-
ues. In order to model blade-disk interaction at the contact patches
of the blade roots the area contact elements are distributed over
the surfaces where nonlinear forces can be expected �as shown in
Fig. 1�d��. The friction area contact element developed allows
automatic determination of all possible contact interaction states
for a small area covered by the contact element including stick,
slip, and separation. Friction contact models for time-domain
analysis were developed in paper �16� and friction contact ele-
ments for frequency-domain analysis were developed in paper
�14�.

The friction contact elements developed in paper �14� are ex-
tended here to modeling area contact for analysis of bladed disks
with blade-disk contact interfaces. In contrast to paper �14�, these
friction area contact elements express contact stresses but not con-
tact forces in terms of the relative displacements along a direction
tangential to the contact surface, ux���, and a normal relative dis-
placement, uy���. There are several major possible states of the
contact interaction and expressions for tangential and normal
components of the interaction force are shown for each of these in
Table 1.

Here ut
�0�=ut��stick� and �n

�0�=�n��stick� are values of the tangen-
tial displacement and of the normal stresses at the beginning of
the current stick state, �stick, and �0 is static normal stresses
which are due to action of centrifugal, thermoelastic, and static
aerodynamic forces. kt and kn are contact stiffness coefficients
for tangential and normal deformations accordingly, and �
=sgn��t��slip��= ±1 is a sign function. Equations that are used to
determine time instants when contact state changes are given in
Table 2.

Since periodic steady-state vibrations are analyzed, the relative
displacements, x��� and y��� can be expressed as a Fourier series
with a restricted number of harmonics

ut��� = H−
T���X; un��� = H−

T���Y �11�

where H−= 	1,cos m1� , sin m1� , . . . , cos mn� , sin mn�
T; mj are
numbers of harmonics that are used in the multiharmonic expan-
sion, and X and Y are vectors of harmonic coefficients of relative
motion in the tangential and normal directions, respectively. The
nondimensional time, �=�t, is introduced here using the principal
frequency, �, of the multiharmonic vibrations which defines pe-
riod of the vibrations.

A method developed in Ref. �14� allows the exact determination
of the contact stresses and tangent stiffness matrix of the friction
contact interface as a function of relative displacements for a gen-

Table 1 Stresses of the friction contact interaction

Status Tangential force �t Normal force �n

Contact Stick: kt�ut−ut
�0��−���n

�0� �0+knun

Slip: ���n

Separation 0 0

Table 2 Conditions of the friction contact state transition

Stick to slip Slip to stick Contact to separation

�t���= ±��n��� �ktu̇t���=�knu̇n��� �n=0
��̇t	��̇n �ktüt	�knün u̇n	0
APRIL 2006, Vol. 128 / 405



eral case of multiharmonic vibrations. In accordance with the
method, the interaction stresses given in Table 1 are expanded into
Fourier series

�t��� = H−
T���St�X,Y�; �n��� = H−

T���Sn�Y� �12�

The vectors of multiharmonic components for tangential,
St�X ,Y�, and normal, Sn�Y�, stresses are obtained in an explicit
form as functions of vectors of harmonic coefficients of relative
motion along tangential and normal directions to the contact sur-
face, X and Y.

The contact area can be now covered by the area contact ele-
ments. These elements are usually chosen to be relatively small to
allow distributions of the traction and normal stresses to be accu-
rately interpolated over each of the elements. The values of the
contact stresses are evaluated at a set of nodes usually located
within and on boundaries of the area contact elements. For each
node, the tangential friction forces and normal unilateral forces
are calculated in the local coordinate system with axes directed
along normal and tangential directions of the contact surface that
are defined for a current point, xyz. The contact stresses in global
coordinate system, xyz, are then interpolated using the contact
forces evaluated at several nodes of the contact element area in
the form

�̄ = �
j

nnodes

N j�x,y�R�xj,yj���xj,yj� = �
j

nnodes

N j�x,y��̄�xj,yj�

�13�

where �̄= 	�x̄ ,�ȳ ,�z̄
T is a vector of contact stresses interpolated;
��xj ,yj�= 	�t ,�n
T is a vector of contact stresses calculated at the
jth point, �xj ,yj�; nnodes is number of nodes for the area contact
element; R�xj ,yj� is the so-called “rotation” matrix describing ro-
tation of for the local coordinate system with respect to a coordi-
nate system which is global and used for analysis of the whole
structure. N j�x ,y� are conventional shape functions used in iso-
parametric finite elements. The standard FE procedure for the re-
duction of the contact stress distribution to the nodes of the finite
element mesh can be applied. This procedure is based on equality
of works performed by the nodal forces and the stresses distrib-
uted over the area of the element, which gives the following ex-
pression for the nodal force:

f j =�
A

Nj�x,y��̄�x,y�dA = H−
T���F j �14�

where f j = 	fx , fy , fz
T is a vector of nodal forces at the jth node of
the area contact element and F j = 	Fx ,Fy ,Fz
T is a vector of har-
monic coefficients for the jth nodal forces. From Eqs. �12�, �13�,
and �14�, we derive expressions for harmonic coefficients of nodal
forces in the form

F j =�
A

Nj�x,y�S̄�x,y�dA �15�

where S̄= 	S̄0 , S̄1
�c� , . . . , S̄n

�s�
 is a vector of harmonic coefficients
for �̄.

For the simplest case of the area element with one node located
in the middle of the area, the multiharmonic components of the
nodal forces can be expressed in the form

F = �Ft

Fn
� = A�St�X,Y�

Sn�X,Y� � �16�

where A is area covered by the eth contact element. The tangent
stiffness matrix of this contact element is determined by differen-

tiating Eq. �16� with respect to vectors X and Y
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Ke = �Ktt Ktn

0 Knn
� =

�F

�	X,Y

= A��St/�X �St/�Y

0 �Sn/�Y
� �17�

Owing to analytical expressions obtained for St�X ,Y� and Sn�Y�
calculations of the tangent stiffness matrix for the contact inter-
face can be made exactly and very fast. Further details of the
contact force vectors and the stiffness matrix derivation can be
found in Ref. �14�. Vectors of multiharmonic components of the
contact forces, Fe, and tangent stiffness matrices, Ke, are calcu-
lated for all contact elements and added to the vector of nonlinear
friction contact forces F�Q� and the tangent stiffness matrix of the
friction contact interface, Knln�Q�.

3 Numerical Investigations
The method developed has been applied to analysis of realistic

bladed turbine and fan bladed disks of gas-turbine engines. One of
the considered test cases was a bladed turbine disk from a test rig
of the EU-funded project ADTurb �see �17,18��. A sector of the FE
model used in the analysis is shown in Fig. 2�a�. The FE model is
constructed using tetrahedral 10 node finite elements. The total
number of blades in the bladed disk analyzed is 64. The number of
DOFs in the FE model of one sector comprises 73,245 DOFs.
Root damping is analyzed at contact surfaces of the first lobe of
the two-lobe firtree blade root. First, a linear bladed disk model
was analyzed. To assess a range of the possible variation of the
resonance frequencies due to slip at blade root, the natural fre-
quencies were calculated for two extreme cases: �i� a case when
there is no contact between bladed and disk at the first lobe, and
�ii� a case when all contact surfaces are fully stuck and slip does
not occur. Due to confidentiality requirements, all frequencies in
this paper are normalized by the first blade-alone resonance fre-
quency and the forced response levels are also normalized. Cal-
culated natural frequencies are shown for all possible nodal diam-
eters numbers in Fig. 2�b�. One can see that variation of the
contact condition at the first lobe of the bladed disk can signifi-
cantly affect the resonance frequencies.

The blade-disk interaction at the contact surfaces is essentially
nonlinear since slip-stick or contact-separation transitions can oc-
cur at the contacting surfaces and, moreover, the contact area and
contact conditions can vary during period of vibration. In order to
predict forced response levels and damping caused by friction at
the root contact surfaces the developed friction area contact ele-
ments are applied at the contact surfaces of interest. The FE model
of the bladed disk is constructed for this purpose with the contact
surfaces set to be free and the friction one-node area contact ele-
ments are distributed uniformly over these surfaces to describe
nonlinear friction contact interaction between the blades and the
disk. The reduced model obtained by application of the modal
synthesis method has 332 DOFs. These DOFs includes 282 master

Fig. 2 Model „a…, natural frequencies of the bladed disk with
different contact conditions and frequency range of interest „b…
DOFs �3 DOFs for each of 94 master nodes� and 50 modal coor-
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dinates. From 94 master nodes 4�21=84 are chosen on blade-
disk mating contact surfaces at two contact patches of the blade
root and are uniformly distributed over the contact surfaces. 10
master nodes are chosen at airfoil of the blade.

Damping loss factor, 
, due to material and aerodynamic damp-
ing was assumed to be 0.001. Aerodynamic forces exciting the
vibration analyzed were determined from aerodynamic calcula-

Fig. 3 Forces response of the bladed disk with stuck contact
surfaces modeled by different number of the area contact
elements

Fig. 4 Errors in prediction of the resonance characteristics for
different number of the area contact elements: „a… For reso-

nance frequencies and „b… for resonance amplitudes

Journal of Turbomachinery
tions and are distributed over the blade airfoils. Excitation by 43th
engine-order is considered which corresponds to a vibration mode
of a tuned bladed disk with 64−43=21 nodal diameters and fre-
quency range corresponding to first flap-wise �1F� mode and first
torsional �1T� mode are analyzed. A green line marks a frequency
range for which the forced response analysis is performed. Fric-
tion coefficient at the contact surfaces was assumed to be 0.3.
Total damping including effects of friction forces and variation of
stiffness of the blade-disk joints due to variation of the contact
areas and slip-stick transitions at the contact interfaces were de-
termined in process of calculations by applied the friction area
contact elements.

The method developed reduces the number of DOFs in the
whole structure to the number of degrees of DOFs where nonlin-
ear contact forces are applied. Hence, the size of the resulting
nonlinear equation is proportional to number of the friction con-
tact elements applied to the bladed disk and, accordingly, the
speed of calculations is dependent on number of these elements.
In order to chose the number of contact elements providing ac-
ceptable accuracy for the area contact modeling together with
high speed of calculation, an investigation of influence of the
choice of number of the area elements on forces response levels
and values of the resonance frequencies is performed. Four cases
of �i� 3, �ii� 9, �iii� 15, and �iv� 21 one-node area contact elements
applied over each of two �left and right� contact patches of the
first lobe of the firtree root.

In each of the considered cases, the friction area contact ele-
ments cover the whole area of the contact patches; hence, area of
contact represented by each element for these cases is 14.17, 4.73,
2.83, and 2.02 mm2, accordingly. In order to explore the capabil-
ity of the relative small number of the area contact elements to
model a full stuck condition, the forced response was calculated
with the large normal load excluding possibility of slip-stick tran-
sition at the contact patches. Since for this case the structure with
friction contact elements exhibits linear behavior without friction
damping, the forced response is compared with the forced re-
sponse of linear structure determined for the FE model obtained
for a case of fixed firtree lobes. Closeness of the resonance fre-
quencies and amplitudes obtained for the model with the friction
contact elements and from the FE model with fixed firtree lobes
indicates accuracy of the contact modeling for a case of full con-
tact. The calculated forced responses are compared in Fig. 3. This
comparison is used to choose number of the area contact elements
required in the analysis.

Errors in the prediction of the resonance frequencies and am-
plitudes are shown in Fig. 4. One can see that for the case of 21

Fig. 5 The forced response levels for different levels of the
static normal stresses and different numbers of the friction
area elements applied at the contact surfaces
area contact elements, for each of the two contact patches accept-
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able accuracy is achieved for first 3 resonance frequencies �error
	2.7%� and resonance amplitudes �error 	5.8%�.

Moreover, realistic normal stresses which are due to action of
the centrifugal forces were calculated and then these static stresses
are used in the forced response analysis for the area contact ele-
ments. Variation of the normal stresses over the contact patches is
accounted for and hence different normal stress levels are applied
to different area contact elements. Three different levels of the
static normal stresses were studied, namely 100%, 50%, and 17%
of the maximum level. These static stress levels occur in the
bladed disk analyzed at rotation speeds: 100%, 70%, and 40% of
the maximum rotation speed, respectively.

Results of calculation of the forced response levels for cases of
3 different levels of the normal stresses and for 3 cases of the

Fig. 6 Effects of different levels of the static normal stresses:
„a… Forced response; and „b… contact area where slip occurs

Fig. 7 Harmonic components for the multiharmonic forced re-
sponse „calculated for the case of 50% of the normal stress

level…
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number of the friction contact element applied over each contact
patch are shown in Fig. 5. For comparison, forced responses cal-
culated for two linear systems are also plotted there: �i� the forced
response for a case when there is no contact with the disk at the
first lobe of the blade root; and �ii� the forced response for a case
when there is full contact at blade-disk joints and slip does not
occur. One can see that there is more than an 8% shift in the
resonance frequency between these two extreme linear cases.
When 21 friction contact elements are applied at each contact,
surface forced response level outside the vicinity of the resonance
frequency is practically coinciding with that of the linear system
with full contact. For these frequencies, the level of relative dis-
placements is too small to cause slip at the contact interfaces or
variation of the contact area. The resonance frequency for 100%
level of the static normal stresses is very close to resonance fre-
quency of this linear system. For cases of 3 and 9 friction contact
elements per contact surface, there is a difference, although small,
in resonance frequencies, which is due to a decrease in stiffness of
the blade-disk joints when too small a number of the contact ele-
ments is used for contact modeling. In all of the following figures,
results obtained with 21 friction contact elements at each of the
contact surfaces are shown.

The effect of the level of the static normal stresses on levels of
forced response is demonstrated in Fig. 6�a� for excitation fre-
quencies in the range of 4.8–5.15 corresponding to 1T mode. The
forced response of the linear system with full contacts is shown
here for comparison.

The method allows determination of not only the forced re-
sponse but also contact conditions at each point of the over area
covered by the friction contact elements, including occurrence
slipping parts. The size of the contact area where slip occurs re-
lated to the whole size of the contact patches is shown Fig. 6�b�.

Fig. 8 Effects of the excitation level on the forced response in
frequency range of 1F mode: „a… Displacement; and „b… dis-
placement normalized by the excitation level
One can see that the resonance frequency is not significantly af-
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fected by the level of normal stresses and accordingly by effects
of number of slipping nodes at the contact surface. Yet, the level
of forced response is very sensitive to the normal stress level since
the size of the contact area is involved in slip-stick transitions,
and, therefore, the vibration energy is dissipated by the friction
forces at these parts of the contact area. For the case considered,
accounting for root damping reduces resonance amplitude in 2.5
times for 100% level of the normal stresses and in 10 times for
17% level. For the resonance frequency, 18% �for 100% normal
stress level� and 22% �for 50% normal stress level� and 48% �for
17% normal stress level� of the whole contact area is subjected to
slip at least over small time interval.

Fig. 9 Effects of the excitation level on the forced response in
frequency range of 1T mode: „a… Displacement; and „b… dis-
placement normalised by the excitation level

Fig. 10 Effects of the excitation level on the resonance

displacement

Journal of Turbomachinery
It is also important to note that although the friction forces
produce strongly nonlinear blade-disk interaction at root joints,
the harmonic coefficients of the multiharmonic forced response
were small for all harmonics except of that coinciding with exci-
tation harmonic. In the calculations, the first 6 odd multiplies from
1 to 9 of the excitation harmonic, 43EO are kept. An example of
the amplitudes for all these harmonics in the multiharmonic ex-
pansion for displacement is shown in Fig. 7. One can see that the
43rd harmonic is predominant in the forced response and contri-
bution of all the other can be neglected.

The effect of the excitation level on the response level is dem-
onstrated in Fig. 8 for a frequency range including 1F mode, and
in Fig. 9 for a frequency range including 1T mode. Distribution of
the excitation loads over the blade airfoil in all cases was the
same, but these loads were multiplied by a factor kF with values
from 1/8 to 5. In Figs. 8�a� and 9�a�, the amplitude of the dis-
placement is plotted. One can see that shape of the forced re-
sponse curves significantly differs for the different levels of exci-
tation. In Figs. 8�b� and 9�b�, in order to clearly demonstrate the
nonlinear dependency of this amplitude to excitation levels, it is
normalized by dividing by kF. For the case of the linear structure,
the displacement normalized by kF would be identical for all
forced response levels, but they differ here and the highest level of
excitation produces the smallest value of the normalized forced
response. This is because at higher levels of vibration the larger
part of the contact area starts slipping and therefore friction damp-
ing increases.

The resonance amplitude level as a function of level of excita-
tion is plotted in Fig. 10 for both resonance modes analyzed: 1F
and 1T. These functions have essentially nonlinear character. For
comparison, straight lines show the resonance amplitudes that

Fig. 11 Effects of the excitation level on the slipping area at
resonance frequency
Fig. 12 Dependency of the Q-factor on the excitation level
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would realize if there were no friction damping at the blade root.
Relative size of the slipping part of the contact area is shown in
Fig. 11 for both resonating modes.

The calculations performed allow the determination of the
damping in the structure caused by friction at blade root joints.
The characteristics of the total damping in the structure, Q=1/

�
 is the total damping loss factor� were obtained directly from
the calculated forced response functions in vicinity of the reso-
nance frequency. The Q-factor extracted from results of the forced
response is plotted as a function of excitation level in Fig. 12. The
regression analysis was made for the calculated function and it
was found that the three-parameter exponential function Q=c0
+c1e−c2kF with values for the coefficient values given in Table 3
provides a good approximation for the Q-factor as a function of
the excitation level.

4 Conclusions
An effective method for predictive analysis of inherent damp-

ing at blade-disk root joints has been developed. The method can
use large-scale models for bladed disks with variable contact and
friction at root joints. In order to achieve high speed of calcula-
tion, the multiharmonic balance formulation for nonlinear equa-
tion of motion is used. The formulation allows accuracy required
to be achieved by keeping necessary number of harmonics in the
solution and by choosing those harmonic number that are needed
to approximate the solution sought.

The method is based on analytical formulation of friction area
contact elements which allows exact calculation of multiharmonic
components of interaction forces and of the tangent stiffness ma-
trix of the joints for friction contact. Reduction in size of the
model is performed by application of the modal synthesis method.
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