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Abstract

This paper presents a hierarchical multiscale framework for problems that involve multiscale source terms. An assumption on the
additive decomposition of the source function results in consistent decoupling of the fully coupled system and constitutes the new
method. The structure of this decomposition is investigated and its mathematical implications are delineated. This method results in var-
iational embedding of fine-scale information that is derived from the fine-scale equations, in the corresponding coarse-scale equations. It
therefore provides a mathematically consistent way of bridging information between disparate spatial scales in the response function that
are induced by multiscale forcing functions.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Multiscale problems exist in all fields of engineering and
sciences. Therefore, design of numerical methods that can
model multiple material, spatial and temporal scales has
been an area of active interest. A general trend in engineer-
ing practice toward miniaturization of mechanical and elec-
tronic components leading to micro-electro-mechanical
systems (MEMS) and nano-electro-mechanical systems
(NEMS) has highlighted the need for computational tech-
niques that can bridge disparate spatial and temporal scales
[20,40,42]. Concurrently, there has been a drive in the
mechanics and materials community to develop micro-
mechanics based constitutive models that can represent
the micro-scale behavior of materials [39]. Full potential
of these constitutive models can only be realized if they
are integrated in variational formulations that can recog-
0045-7825/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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nize and therefore model disparate scales in the problem.
In addition, there are many problems all across the various
engineering disciplines that are driven by scale dependent
source terms. For example, in the field of solid/structural
mechanics, elastic bodies can undergo deformations due
to body forces that may be operational over the entire
domain, as well as by applied point forces and moments,
the effects of which are more localized. Likewise, in the field
of reservoir simulation typical problems span a range of
scales from kilometers (size-scale of the reservoir) down
to micro-meters (size-scale of the grains). The flow of mul-
tiphase hydrocarbons is induced not only by the mean nat-
ural pressure in the reservoir but also by the induced
pressure at the injection and production wells that appear
as point sources and sinks on the physical length scale of
the problem.

In the last two decades there have been concentrated
efforts in the development of improved discretization meth-
odologies. There have been several attempts to work within
the variational structure of the problem to produce reliable
and accurate formulations. In the context of mixed finite
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element methods, an impressive number of finite element
formulations have been developed that abide critical
stability conditions (i.e., the Babuska–Brezzi condition
and kernel ellipticity) thereby producing reliable approxi-
mations that can achieve high coarse-mesh accuracy at a
relatively reasonable cost (see [5] and references therein).
However, these elements are generally not convenient from
the implementational standpoint. Their main drawback is
the lack of a general strategy when one switches from
one set of equations to another.

An attempt to develop a general methodology that
could result in finite elements with enhanced accuracy
and stability properties lead to the development of stabi-
lized finite element methods in 1980s. The underlying phi-
losophy of the stabilized methods is to strengthen the
classical variational formulations so that discrete approxi-
mations, which would otherwise be unstable, become stable
and convergent. In general stabilized methods are
developed by adding perturbation terms to the standard
Galerkin method [31], and these terms are usually of a
least-squares form. Perturbation terms being residuals
themselves imply that the exact solutions are satisfied by
these terms, and therefore consistency of the method is pre-
served. Stabilized finite element methods, originally pro-
posed as SUPG [8,30] or streamline diffusion methods for
advection dominated problems, have been generalized, set
in abstract frameworks, analyzed and denoted by Petrov–
Galerkin or Galerkin/least-squares methods (GLS) or sta-
bilized finite element methods (see e.g., [4,9,10,12–19,23–
27,33,41] and references therein). If we revisit the original
variational formulations as a starting point, enriching the
Galerkin method with some ‘‘bubble” functions, can repro-
duce some versions of the methods developed above [1,3]
or inspire alternative forms [11]. However, an open ques-
tion has been whether either of the approaches had ulti-
mately resulted in more stable and accurate methods, and
in case they had, then how could one systematically build
the ideal bubbles and/or develop the right stabilization
parameters. The stabilized methods viewed from either
point-of-view seem to be an unsuitable framework because
of the loss of accuracy that can be attributed to the inade-
quacy of these methods to deal for example with large zero
order terms in the differential equations. This issue was
later addressed in [34] and extended to discontinuous-
Galerkin methods in [7,28].

In mid 1990s Hughes revisited the stabilized finite ele-
ment methods from a variational viewpoint and presented
the Variational Multiscale method [21,22,29]. This paper
draws inspiration from [21] and presents a hierarchical var-
iational framework for application to problems subjected
to scale dependent forcing functions. Objective in the pres-
ent work is to develop a hierarchical multiscale framework
that can help in decoupling of the scales that are induced
by scale dependent source terms. A condition on the
unique additive decomposition of the source terms results
in a variationally consistent decoupling of the coupled sys-
tem into two sub-systems: (i) a system that is driven by
coarse-scale forcing functions, and (ii) a system that is dri-
ven by fine-scale forcing functions. This decomposition
facilitates the modeling of different scales independently
and their combined effect yields a physically and mathe-
matically sound solution to the problem.

An outline of the paper is as follows. Section 2 presents
ideas underlying the multiscale method with the help of a
model problem. Section 3 highlights the significant features
of the proposed formulation. Section 4 presents an exten-
sion of the ideas to a hierarchical multiscale framework,
and conclusions are drawn in Section 5.
2. The multiscale computational framework

This section presents a mathematically consistent multi-
scale theory for problems that are driven by scale depen-
dent forcing functions.
2.1. The model problem

Let L be the differential operator of the partial differen-
tial equation of interest

Lu ¼ f in X; ð1Þ

with prescribed boundary conditions on the response func-
tion, given as u ¼ g on Cg. The corresponding variational
form obtained via the standard procedure can be expressed
as

ðw;LuÞ ¼ ðw; f Þ; ð2Þ

where ð�; �Þ is the L2 inner product. It is important to realize
that (2) can also represent the linearized form of the corre-
sponding non-linear partial differential equation, in which
case the right hand side would represent the out-of-balance
residual force for the problem.
2.2. Multiscale decomposition

We consider the bounded domain X discretized into nel

non-overlapping regions Xe (element domains) with
boundaries Ce; e ¼ 1; 2; . . . nel, such that

X ¼
[nel

e¼1

Xe: ð3Þ

We denote the union of element interiors and element
boundaries by X0 and C0, respectively.

X0 ¼
[nel

e¼1

ðintÞXe ðelement interiorsÞ; ð4Þ

C0 ¼
[nel

e¼1

Ce ðelement boundariesÞ: ð5Þ

We assume an additive decomposition of the total
solution into resolvable scales ~u (i.e., scales that can
be modeled via standard finite element methods) and



2694 A. Masud, L.P. Franca / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2692–2700
unresolvable scales u0, also called the fine scales or the
sub-grid scales that are normally filtered out by the stan-
dard approaches

u ¼ ~u|{z}
coarse scale

þ u0|{z}
fine scale

: ð6Þ

Likewise, we assume an additive decomposition of the
weighting function

w ¼ ~w|{z}
coarse scale

þ w0|{z}
fine scale

; ð7Þ

where ~w represents the weighting functions for the coarse
scales and w0 represents the weighting functions for the fine
scales, respectively. To keep the presentation of ideas sim-
ple, we further assume that the fine-scales vanish at inter-
element boundaries, i.e. u0 ¼ w0 ¼ 0 on C0.

We now consider an additive decomposition of the forc-
ing function into coarse-scales ~f (mean or homogenized
force) and fine scales f 0 (high modes and/or localized force)
components

f ¼ ~f|{z}
coarse scale

þ f 0|{z}
fine scale

: ð8Þ
Remark 1. Various scale separations of the weighting
functions are possible in Eq. (7). However they are subject
to the restriction imposed by the stability of the formula-
tion that requires the spaces for the coarse-scale and fine-
scale functions to be linearly independent. Consequently, in
the discrete case the space of coarse-scale weighting
functions can be identified with the standard finite element
spaces, while the fine-scale weighting functions can contain
various finite dimensional approximations, e.g., bubble
functions or p-refinements or higher order NURBS
functions.

Remark 2. The assumption that fine-scales vanish at the
inter-element boundaries helps in keeping the presentation
of the ideas simple and concise. Relaxing this assumption
in fact leads to a more general framework. This however
requires Lagrange multipliers to enforce the continuity of
the fine-scale fields across C0. It is important to note that
Lagrange multipliers can be accommodated in the present
hierarchical framework as well.

Remark 3. This method can be viewed as a procedure for
taking singularity out of the system. For example, for elas-
ticity problems driven by body forces as well as point
forces, ~f represents the body forces while f 0 represents
the point forces.

Remark 4. For a dynamics problem ~f represents the low
frequency components and f 0 represents the high frequency
components in the source terms.

Substituting u, w and f in (2) we get

ð~wþ w0;Lð~uþ u0ÞÞ ¼ ð~wþ w0; ~f þ f 0Þ: ð9Þ
In a linear problem (or a linearized problem in the case of
non-linear partial differential equations) the proposed addi-
tive decomposition of the forcing function gives rise to a
further decomposition of the coarse- and fine-scale
solutions.

~u ¼ ~u~f|{z}
coarse coarse

þ ~uf 0|{z}
coarse fine

ð10Þ

u0 ¼ u0~f|{z}
fine coarse

þ u0f 0|{z}
fine fine

; ð11Þ

wherein ~u~f and u0~f are the coarse- and fine-scale compo-
nents of the solution that arise because of ~f . Similarly,
~uf 0 and u0f 0 are the coarse- and fine-scale components of
the solution that are induced by f 0. Substituting (10) and
(11) in (9) we get

ð~wþ w0;Lðð~u~f þ ~uf 0 Þ þ ðu0~f þ u0f 0 ÞÞÞ ¼ ð~wþ w0; ~f þ f 0Þ:
ð12Þ

We assume that the forcing function f admits a unique
additive decomposition as given in (8). For linear problems
we employ linearity of the solution slot in (12), and for
non-linear problems we consider the linearity of the solu-
tion slot in a linearized setting, which leads to two sub-
problems as follows:

Sub-system 1 : ð~wþw0;Lð~u~f þ u0~f ÞÞ ¼ ð~wþw0;~f Þ; ð13Þ
Sub-system 2 : ð~wþw0;Lð~uf 0 þ u0f 0 ÞÞ ¼ ð~wþw0; f 0Þ: ð14Þ
Remark 5. The restriction on (12) that leads to (13) and
(14) is that the decomposition of f in (8) should be unique.
It is important to note that if we sum (13) and (14), we
recover Eq. (12).
2.2.1. Coarse-scale problems
Linearity of the weighting function slot in (13) and (14)

leads to two problems for the resolvable scales:

ð~w;Lð~u~f þ u0~f ÞÞ ¼ ð~w; ~f Þ; ð15Þ
ð~w;Lð~uf 0 þ u0f 0 ÞÞ ¼ ð~w; f

0Þ: ð16Þ
2.2.2. Fine-scale problems

Likewise, linearity of the weighting function slot in (13)
and (14) leads to two problems for the unresolvable or the
sub-grid scales:

ðw0;Lð~u~f þ u0~f ÞÞ ¼ ðw
0; ~f Þ; ð17Þ

ðw0;Lð~uf 0 þ u0f 0 ÞÞ ¼ ðw0; f
0Þ: ð18Þ

The general idea at this point is to solve the fine-scale prob-
lems locally, either using analytical methods or numerical
methods, and extract the fine-scale components u0~f and
u0f 0 . These can then be substituted in the corresponding
coarse-scale problems given in (15) and (16), respectively,
thereby eliminating the fine scales, yet modeling their
effects.
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2.3. The solution procedure

The solution of the uncoupled system of equations is
accomplished in two steps as follows.

2.3.1. First step
Let us first consider Eq. (17) which can be written in a

residual form as

ðw0;Lu0~f Þ ¼ ðw
0; ~f �L~u~f Þ: ð19Þ

Motivated by [6,21] and without loss of generality we as-
sume that: (a) w0 and u0~f are represented via bubble func-
tions, and (b) we consider a constant projection of ½~f�
L~u~f � over the sub-domain X0 which in the finite element
setting is the sum over element interiors. With these two
assumptions we can solve the fine problem (19) and extract
the fine-scale component u0~f as

u0~f ¼
be R bedX
� �
ðbe;LbeÞ

~f �L~u~f

h i
: ð20Þ

This expression can be simplified for ease of presentation in
terms of a parameter s1 which, in the context of standard
stabilized methods is commonly called the stabilization
parameter

u0~f ¼ �s1½L~u~f � ~f �; ð21Þ

where s1 ¼ beð
R

bedXÞ=ðbe;LbeÞ.

Remark 6. The problem given in (19) is defined over the
sum of element interiors. It can therefore be solved at the
element level either analytically or numerically. It yields the
solution u0~f over element interiors, which is the sub-grid
scale, normally poorly approximated in the conventional
finite element schemes unless very fine meshes are
employed. A closer look reveals that the solution of the
Green’s function problem corresponding to the Euler–
Lagrange equations of this sub-problem yields
u0~f ðyÞ ¼ �
Z

X0
gðx; yÞðLð~u~f þ u0~f Þ � ~f ÞðxÞdXx; ð22Þ

where gðx; yÞ represents the fine-scale Green’s function. Eq.
(22) can also be expressed as u0~f ¼ MðL~u~f � ~f Þ where
L~u~f � ~f is the residual of the resolved scales or the
coarse-scales over element sub-domains.

Remark 7. Depending on the partial differential equation
being considered, the stabilization parameter s can be a
scalar valued function, or it can be a second-order
stabilization tensor (see e.g., [32,35–38]). Furthermore,
numerical implementation of a tensorial s leads to a full
stabilization matrix for triangular elements as well as for
distorted quadrilateral elements, which brings in the cross-
coupling effects in the stabilization terms. A tensorial s

leads to a diagonal stabilization matrix only for the
quadrilateral elements in their rectangular configurations
[36].
Considering (15), employing linearity of the solution
slot, and rearranging terms leads to

ð~w;L~u~f Þ þ ðL�~w; u0~f Þ ¼ ð~w; ~f Þ ð23Þ

where L� is the adjoint operator. The boundary term
appearing in (23) is annihilated due to the assumption that
u0~f ¼ 0 on C0. Substituting (21) in (23) and taking the force
term to the right hand side yields

ð~w;L~u~f Þ þ ðL�~w;�s1L~u~f Þ ¼ ð~w; ~f Þ � ðL�~w; s1
~f Þ; ð24Þ

wherein the second term in (24) is the stabilization term
and is a function of the residual of coarse-scales over the
sum of element interiors. Eq. (24) gives rise to a stabilized
form for the sub-problem which is driven by the coarse-
scale forcing function ~f .

2.3.2. Second step

Now consider Eq. (18), which is the fine-scale problem
driven by the fine-scale forcing function f 0. In a finite ele-
ment framework this problem is also defined element wise.
Employing linearity of the solution slot and rearranging
terms it can be written in a residual form

ðw0;Lu0f 0 Þ ¼ ðw0; f
0 �L~uf 0 Þ: ð25Þ

We again assume that w0 and u0f 0 are represented via bubble
functions. However ½f 0 �L~uf 0 � can not be considered con-
stant over the finite element sub-domains, which simply
means that we need a larger space of bubble functions to
approximate u0f 0 . With these two assumptions we can solve
(25) and extract the fine-scale component u0f 0 , which can be
written in a functional form as a projection from a higher
dimensional space to a lower dimensional space.

u0f 0 ¼ �s2½L~uf 0 � f 0�: ð26Þ

In the context of stabilized methods s2 is the commonly
termed stabilization parameter.

Remark 8. One can use the notion of residual-free bubbles
to help in the selection of bubble functions. For example,
consider the advection–diffusion operator L ¼ a � r þ jD.
For the advection dominated case the appropriate bubble
is a straight line from zero up until a small region before
the outflow, and thereafter it has an exponential decay to
zero. In the diffusive limit the right bubble is the usual
cubic bubble. With this in view one can pre-set the choice
as a linear combination of these two bubbles. This
substituted in Eq. (25) would give an expression for s2.

Remark 9. Having selected the bubble functions one can
derive the stability parameter s2. A derivation for s2 for
Eq. (25) is presented in Appendix A.

Now consider (16) which is the coarse-scale problem
that is driven by the fine-scale forcing function. Employing
linearity of the solution slot, applying integration by parts,
and the condition that u0f 0 ¼ 0 on C0, leads to

ð~w;L~uf 0 Þ þ ðL�~w; u0f 0 Þ ¼ ð~w; f
0Þ; ð27Þ
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where L� is the adjoint operator. We now substitute u0f 0
from (26) in (27) and take the force term to the right hand
side.

ð~w;L~uf 0 Þ þ ðL�~w;�s2L~uf 0 Þ ¼ ð~w; f 0Þ � ðL�~w; s2f 0Þ:
ð28Þ

It is important to realize that the solution of (28) gives ~uf 0

which is the coarse-scale component of the solution field
that arises because of the fine-scale component in the forc-
ing function.

Eqs. (24) and (28) are a system of two sets of equations
that provide the scale dependent response functions to the
partial differential equation that is driven by the coarse-
scale and fine-scale forcing functions, respectively.
3. Significant features of the proposed formulation

This section highlights the important features of the pro-
posed formulation:

1. From (17) we obtain u0~f which when substituted in
(15) gives rise to a stabilized form for coarse-scales
~u~f . This is the part of the unknown field that arises
because of ~f (i.e., coarse-scales or low-frequency
components in the forcing function).

2. From (18) we obtain u0f 0 which when substituted in
(16) gives rise to a stabilized form for coarse-scales
~uf 0 . This component of the unknown field in fact
arises because of f 0 (i.e., the fine-scales in forcing
function).

3. For linear problems the total solution is then
obtained via the principal of superposition as

~u ¼ ~u~f þ ~uf 0 : ð29Þ

4. The present method is also applicable to non-linear
problems wherein additive decomposition leading to
two sub-systems can be performed after carrying
out linearization of the problem. However, principle
Fig. 1. (a) Coarse- and fine-scale forcing f
of superposition is not directly applicable to the
linearized states of the non-linear problem. Conse-
quently, Lagrange multiplier methods for overlap-
ping solutions are required (see e.g., Belytschko and
coworkers [2,18]).

5. To give an example of scale dependent source terms,
let as assume that ~f and f 0 are given by the following
functions:

~f ¼ sin
2px

L

� �
ðcoarse-scale functionÞ;

f 0 ¼ A sin
npx

L

� �
ðfine-scale functionÞ;

where, as an example A ¼ 0:1 and n ¼ 8 (see Fig. 1).
6. For problems in mechanics that are driven by body

forces as well as localized forces and point forces, ~f
represents the body forces and f 0 represents the local-
ized force fields as shown in Fig. 2.

7. We want to point out that for problems wherein f 0 is
periodic, (28) can be solved over a smaller sub-
domain Xsub of X. In other words, one can have a rep-
resentative domain or a unit cell with periodic bound-
ary conditions. Once the fine problem is solved over
the unit cell Xsub, cell periodic conditions can be
employed to generate ~uf 0 over the entire domain X.
Consequently, the cost of solving (28) can be reduced
substantially.

8. For application to dynamics problems this approach
can help decouple the problem based on the additive
decomposition of the forcing function into the high-
frequency and the low-frequency components. Fur-
thermore, higher the frequency of the fine-scale forc-
ing function, smaller will be the representative unit
cell Xsub over which Eq. (28) will need to be modeled.
Consequently, a refined mesh will be required only
over a smaller sub-domain and it can substantially
reduce the cost of computation.

9. The proposed multiscale framework yields varia-
tional bridging scale methods. These methods can be
used for bridging the scales in computational micro-
unctions and (b) superposed function.
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and nano-mechanics. In this context u0~f and ~uf 0 can be
considered as the bridging scales as they transfer
information from one scale level to the next [37].

10. The proposed framework can be applied to problems
that span a range of scales from micro-meters to kilo-
meters, as are encountered in the modeling of petro-
leum reservoirs. Flow of multiphase hydrocarbons is
induced by the mean pressure in the reservoirs in addi-
tion to the induced pressure at the injection and pro-
duction wells, that, on the length scale of the
reservoir, can be treated as localized or point sources
and sinks in the medium. Mean pressure can be repre-
sented via ~f therefore providing the reservoir model,
while the well pressure can be represented via f 0,
and therefore providing a variationally consistent
framework for the modeling of wells.
4. The hierarchical multiscale framework

This section presents an extension of the ideas pre-
sented in Section 2 to multi-level scale separation. We
consider the governing equation given by (1), forcing
function given by Eq. (8), and assume an additive decom-
position of the solution and the weighting function in
three-levels as follows:

u ¼ ~u|{z}
coarse

þ u0|{z}
fine

þ û|{z}
very-fine

; ð30Þ

w ¼ ~w|{z}
coarse

þ w0|{z}
fine

þ ŵ|{z}
very-fine

: ð31Þ

Substituting the additively decomposed u, w and f in (2) we
get

ð~wþ w0 þ ŵ;Lð~uþ u0 þ ûÞÞ ¼ ð~wþ w0 þ ŵ; ~f þ f 0Þ: ð32Þ
The proposed additive decomposition of the forcing func-
tion gives rise to a further decomposition of the coarse,
the fine, and the very-fine scale solutions as follows:

~u ¼ ~u~f þ ~uf 0 ; ð33Þ
u0 ¼ u0~f þ u0f 0 ; ð34Þ
û ¼ û~f þ ûf 0 : ð35Þ
Substituting (33)–(35) in (32), and assuming a unique
decomposition of the forcing function leads to the split of
(32) into two sub-problems

Sub-Prob: 1 : ð~wþ w0 þ ŵ;Lð~u~f þ u0~f þ û~f ÞÞ

¼ ð~wþ w0 þ ŵ; ~f Þ; ð36Þ
Sub-Prob: 2 : ð~wþ w0 þ ŵ;Lð~uf 0 þ u0f 0 þ ûf 0 ÞÞ

¼ ð~wþ w0 þ ŵ; f 0Þ: ð37Þ

It is important to note that if we sum (36) and (37), we re-
cover Eq. (32). We now employ the linearity of the weight-
ing function slot, and it leads to the following three-sets of
coupled equations.

Coarse problem: Coarse-scale weighting function com-
ponent ~w in (36) and (37) leads to two systems of equations
driven by ~f and f 0. These systems yield the coarse-scales
arising from ~f and f 0.

ð~w;Lð~u~f þ u0~f þ û~f ÞÞ ¼ ð~w; ~f Þ; ð38Þ
ð~w;Lð~uf 0 þ u0f 0 þ ûf 0 ÞÞ ¼ ð~w; f 0Þ: ð39Þ

Fine problem: Similarly, the fine-scale weighting function
component w0 in (36) and (37) leads to two systems of
equations driven by ~f and f 0. These systems yield the
fine-scales that also play the role of the intermediate scales

in the problem

ðw0;Lð~u~f þ u0~f þ û~f ÞÞ ¼ ðw0; ~f Þ; ð40Þ
ðw0;Lð~uf 0 þ u0f 0 þ ûf 0 ÞÞ ¼ ðw0; f 0Þ: ð41Þ
Very fine problem: Likewise, the very-fine-scale weight-
ing function component ŵ in (36) and (37) leads to two sys-
tems of equations driven by ~f and f 0, that yield the
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unresolved or the sub-grid-scales. These scales will need to
be modeled as explained below

ðŵ;Lð~u~f þ u0~f þ û~f ÞÞ ¼ ðŵ; ~f Þ; ð42Þ
ðŵ;Lð~uf 0 þ u0f 0 þ ûf 0 ÞÞ ¼ ðŵ; f 0Þ: ð43Þ

At this point we make a simplifying assumption that is
based on the notion of a clear separation between coarse
and the very-fine-scales and was first presented in [17].
We assume that the projection of the very-fine-scales onto
the coarse scales in (38) and (39) is approximately zero

ð~w;Lû~f Þ � 0 and ð~w;Lûf 0 Þ � 0: ð44Þ

Consequently, in this framework the coarse scales are influ-
enced by the very-fine-scales through the fine or the ‘‘inter-
mediate” scales. Same argument leads to a restriction on
the opposite projection in (42) and (43), respectively

ðŵ;L~u~f Þ � 0 and ðŵ;L~uf 0 Þ � 0: ð45Þ
4.1. The solution procedure

The solution procedure for the above hierarchical, cou-
pled, multiscale system of equations follows the following
general steps. First consider the set of Eqs. (38), (40) and
(42) that are driven by the coarse-scale forcing function
~f . Applying (45)1 to (42) leads to

ðŵ;Lðu0~f þ û~f ÞÞ ¼ ðŵ; ~f Þ ð46Þ

Writing (46) in the residual form leads to

ðŵ;Lû~f Þ ¼ ðŵ; ~f �Lu0~f Þ: ð47Þ

Due to the orthogonality condition assumed in (45)1,
Eq. (47) is driven by the residual of the fine or the ‘‘inter-
mediate” scales. Solving for û~f leads to the functional form
for the very-fine solution as

û~f ¼ �s1½Lu0~f � ~f �; ð48Þ

where s1 is a function of the operator L acting on û~f . Since
the operator L is differential, so s1 is an integral operator
in nature. Substituting (48) in (40) leads to

ðw0;Lð~u~f þ u0~f ÞÞ þ ðL
�w0;�s1½Lu0~f �Þ ¼ ðw

0; ð1� s1Þ~f Þ:
ð49Þ

Simplifying further we get

ðw0;Lu0~f Þ þ ðL
�w0;�s1½Lu0~f �Þ ¼ ðw

0; ð1� s1Þ~f �L~u~f Þ:
ð50Þ

It is important to realize that the term ð1� s1Þ~f is the total
coarse-scale force ~f minus the component of ~f that is con-
sumed in driving the very-fine-scale problem (42) that
yielded û~f given in (48). As such, the right hand side of
(50) is the residual of the coarse-scales from where the effect
of the force component that has been used in driving the
very-fine-scale problem is subtracted away. Solution of
(50) yields the following functional form:

u0~f ¼ �s2½L~u~f � ð1� s1Þ~f �: ð51Þ

Consequently, the intermediate scale is driven by the resid-
ual of the coarse-scales with respect to a modified force
function. s2 in (51) is a function of the inverse of the oper-
ator on u0~f and therefore it is an integral operator.

Now consider Eq. (38). Applying (44)1 we get

ð~w;L~u~f Þ þ ðL�~w; u0~f Þ ¼ ð~w; ~f Þ: ð52Þ

Substituting (51) in (52) yields

ð~w;L~u~f Þ þ ðL�~w;�s2½L~u~f �Þ

¼ ð~w; ~f Þ � ðL�~w; s2ð1� s1Þ~f Þ: ð53Þ

In (53) the term s2ð1� s1Þ~f is the total coarse-scale force ~f
minus the parts that have been consumed in driving the
very-fine-scale problem (47) and the fine-scale problem
(50), yielding solution components û~f and u0~f , respectively.
To see this, write the right hand side of (53) as
ð~w; ~f �L½s2ð1� s1Þ~f �Þ in which ð1� s1Þ~f is part of the
force from which the component that is consumed in driv-
ing the very fine problem is subtracted away.

Remark 10. A solution procedure for (39), (41) and (43)
can follow along similar lines. Important consideration
would be that now one will need to work in a higher
dimensional functional space involving denser meshes.
However, following along the lines of Section 2 and
employing periodic boundary conditions, the cost of
computation for these problems can be substantially
reduced.
5. Conclusions

We have presented a hierarchical multiscale method for
consistently decoupling multiscale systems that are sub-
jected to scale dependent source terms. An assumption
on unique additive decomposition of the multiscale source
terms leads to two sub-systems: a sub-system that is driven
by the coarse-scale forcing functions; and a sub-system that
is driven by the fine-scale forcing functions. Accordingly,
the proposed method can be viewed as a variationally con-
sistent procedure for taking singularity out of the system.
The variational decoupling of the problem facilitates inde-
pendent modeling of phenomena at different scales. Con-
trary to the standard Galerkin approach where the fine
scales of the problem can only be resolved via successive
mesh refinements, in the present method fine scales are
embedded in the corresponding coarse-scale problems via
variationally consistent mathematical projections. The
hierarchical multiscale framework presented here yields
variational bridging scale methods that provide a mecha-
nism for passing information between disparate scales that
are induced by multiscale source terms.
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Appendix A. Derivation of stabilization parameter s2

Let us expand the fine-scale trial solution u0f 0 as
u0f 0 ¼ c1/1 þ c2/2; ð54Þ
u0f 0 ¼
/1½ð/2;L/2Þð/1; dÞ � ð/1;L/2Þð/2; dÞ� þ /2½�ð/2;L/1Þð/1; dÞ þ ð/1;L/1Þð/2; dÞ�

ð/1;L/1Þð/2;L/2Þ � ð/1;L/2Þð/2;L/1Þ
; ð64Þ
where c1 and c2 are the coefficients and /1 and /2 are the
interpolation functions for the fine-scale trial solutions.
Likewise, we expand the fine-scale weighting functions as

w0i ¼ ci/i: ð55Þ

Substituting the fine-scale trial solution and weighting
function in the scalar version of Eq. (25)
u0f 0 ¼
ð/1

R
/1ð/2;L/2Þ � /1

R
/2ð/1 �L/2Þ � /2

R
/1ð/2;L/1Þ þ /2

R
/2ð/1;L/1ÞÞ

ð/1;L/1Þð/2;L/2Þ � ð/1;L/2Þð/2;L/1Þ
ðf 0 �L~uf 0 Þ; ð65Þ
ðci/i;Lðc1/1 þ c2/2ÞÞ ¼ ðci/i; f
0 �L~uf 0 Þ: ð56Þ

Eq. (56) is required to hold for arbitrary weighting func-
tions for the fine-scales, and therefore it should hold for
all ci. Furthermore, taking the constant coefficients for
the fine-scale trial solutions out of the integral expression,
we get

c1ð/i;L/1Þ þ c2ð/i;L/2Þ ¼ ð/i; f
0 �L~uf 0 Þ: ð57Þ
s2 ¼
ð/1

R
/1ð/2;L/2Þ � /1

R
/2ð/1 �L/2Þ � /2

R
/1ð/2;L/1Þ þ /2

R
/2ð/1;L/1ÞÞ

ð/1;L/1Þð/2;L/2Þ � ð/1;L/2Þð/2;L/1Þ
ð67Þ
This leads to a system of linear equations

c1ð/1;L/1Þ þ c2ð/1;L/2Þ ¼ ð/1; f
0 �L~uf 0 Þ; ð58Þ

c1ð/2;L/1Þ þ c2ð/i;L/2Þ ¼ ð/2; f
0 �L~uf 0 Þ; ð59Þ

which can be simplified as follows:

ac1 þ bc2 ¼ f ; ð60Þ
cc1 þ dc2 ¼ g: ð61Þ

We solve the system for coefficients c1 and c2

c1

c2

� 	
¼ 1

ðad � bcÞ
d �b

�c a


 �
f

g

� 	

¼ 1

ðad � bcÞ
df � bg

�cf þ ag

� 	
:

ð62Þ

To reconstruct the fine-scale field u0f 0 , premultiply with
f/1/2g
u0f 0 ¼
1

ðad � bcÞ f/1/2g
df � bg
�cf þ ag

� 	

¼ 1

ðad � bcÞ f/1ðdf � bgÞ þ /2ð�cf þ agÞg:
ð63Þ

Substituting a; b; c; d; f and g, we get the expression for u0f 0
where d ¼ ðf 0 �L~uf 0 Þ. This expression provides a general
definition of the stability parameter s2.

If we assume the projection of the residual of the coarse-
scales to be constant over the sum of element interiors, we
get a simplified expression for u0f 0
which can be written in a concise form as
u0f 0 ¼ s2ðf 0 �L~uf 0 Þ; ð66Þ
where stabilization parameter s2 is defined as
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