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a b s t r a c t

The problem of model updating in the presence of test-structure variability is addressed.

Model updating equations are developed using the sensitivity method and presented in a

stochastic form with terms that each consist of a deterministic part and a random

variable. Two perturbation methods are then developed for the estimation of the first and

second statistical moments of randomised updating parameters from measured

variability in modal responses (e.g. natural frequencies and mode shapes). A particular

aspect of the stochastic model updating problem is the requirement for large amounts of

computing time, which may be reduced by making various assumptions and simplifica-

tions. It is shown that when the correlation between the updating parameters and the

measurements is omitted, then the requirement to calculate the second-order

sensitivities is no longer necessary, yet there is no significant deterioration in the

estimated parameter distributions. Numerical simulations and a physical experiment are

used to illustrate the stochastic model updating procedure.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The deterministic finite-element model updating problem [1,2] is well established, both in the development of methods
and in application to industrial-scale structures. The stochastic model updating problem includes not only the variability in
measurement signals due to noise, but also the variability that exists between nominally identical test structures, built in
the same way from the same materials but with manufacturing and material variability [3,4]. Similar variability is know to
result from environmental erosion, damage [5–7], or disassembly and reassembly of the same structure [8].

The propagation of uncertain parameters in finite-element models [9] has been carried out frequently but is of limited
value when the uncertain parameters cannot be measured, typically damping and stiffness terms in mechanical joints or
material-property variability. What can be measured is the variability in dynamic behaviour as represented by natural
frequencies, mode-shapes, or frequency response functions. Then the inverse problem becomes one of inferring the
parameter uncertainty from statistical measured data. This leads to improved confidence in the updated parameters of the
finite-element model.

Statistical methods for the treatment of measurement noise in model updating were established in 1974 by Collins et al.
[10] and more recently by Friswell [11]. In these approaches, the randomness arises only from the measurement noise and
the updating parameters take unique values, to be found by iterative correction to the estimated means, whilst the
variances are minimised. Mares et al. [3] adapted the method of Collins et al. [10] within a gradient-regression formulation
. All rights reserved.
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for the treatment of test-structure variability. Distributions of finite-element predictions were made to converge upon
measured vibration response distributions, with the result that the means and standard deviations of the updating
parameters were determined. Other statistical approaches that have been applied in model updating include Bayesian
methods (Beck and Katafygiotis [12,13], Kershchen et al. [14], Mares et al. [15]) and the maximum likelihood method
proposed by Fonseca et al. [16].

The use of randomised updating parameters leads inevitably to increased computation and therefore there is
interest in developing efficient solutions. The perturbation approach is promising in this regard although its range of
application is limited to small uncertainties. This restriction is in fact similar to the restriction on conventional
deterministic model updating, that the initial starting estimate should be close to the true value. Both versions
of the updating method, deterministic and stochastic, are applied iteratively so that the restriction applies step-by-step.
Also the data should be sensitive to the updating parameters, so that only small changes are encountered. A recent paper
by Hua et al. [7] addresses the problem of test-structure variability by a perturbation method. The predicted mean values
and the matrix of predicted covariances are converged upon measured values and in so doing the first two statistical
moments of the uncertain updating parameters are determined. The method is applicable to the problem of test-structure
variability whereas the methods described by Collins et al. [10] and Friswell [11], both minimum variance estimators, are
not. However, the method of Hua et al. [7] requires the determination of second-order sensitivities, which is an expensive
computation.

In the present article a new method, based upon the perturbation procedure, is developed in two versions. In the first
version of the method, the correlation between the updated parameters and measured data is omitted. This results in a
procedure that requires only the first-order matrix of sensitivities. The second procedure includes this correlation (after the
first iteration) but is a more expensive computation requiring the second-order sensitivities. It is shown in numerical
simulations that the first method produces results that are equally acceptable as those produced by the second method or
by Hua’s approach [7]. The article includes a discussion of different forward propagation methods (including mean-centred
first-order perturbation, the asymptotic integral [17,18], and Monte-Carlo simulation) used to evaluate certain covariance
matrices as part of the updating procedure. Issues of sample size and regularisation of the ill-conditional stochastic model
updating equations are considered. A series of simulated case studies are presented and finally the first version of the
method is applied to the problem of determining thickness variability in a collection of plates from measured natural
frequencies. Gaussian distributions are used in the simulated and experimental examples, but the method is not restricted
to Gaussian distributions in either the variability of samples or in measurement noise. The validity of the updated finite-
element model [19] is assessed using measured higher natural frequency distributions beyond the set of distributions used
for updating the first and second statistical moments of the parameters.

2. The perturbation method

According to the conventional, deterministic model updating method an estimate hjþ1 may be updated by using a prior
estimate hj as

hjþ1 ¼ hj þ Tjðzm � zjÞ (1)

where zj 2 <
n�1 is the vector of estimated output parameters (e.g. eigenvalues and eigenvectors), zm 2 <

n�1 is the vector of
measured data, h 2 <m�1 is the vector of system parameters and Tj is a transformation matrix. In order to take into account
the variability in measurements arising from multiple sources, including manufacturing tolerances in nominally identical
test structures as well as measurement noise, the modal parameters are represented as

zm ¼ zm þ Dzm (2)

zj ¼ zj þ Dzj (3)

where the overbar denotes mean values and Dzm;Dzj 2 <
n�1 are vectors of random variables.

The hyperellipses represented by fzm;Covðzm; zmÞg and fzj;Covðzj; zjÞg define the space of measurements and predictions,
respectively.

Correspondingly, we define the variability in physical parameters at the jth iteration as

hj ¼ hj þ Dhj (4)

and now cast the stochastic model updating problem as,

hjþ1 þ Dhjþ1 ¼ hj þ Dhj þ ðTj þ DTjÞðzm þ Dzm � zj � DzjÞ (5)

where the transformation matrix becomes,

Tj ¼ Tj þ DTj (6)

DTj ¼
Xn

k¼1

qTj

qzmk
Dzmk (7)
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In the above equations, Tj denotes the transformation matrix at the parameter means, Tj ¼ TðhjÞ, and Dzmk denotes the kth
element of Dzm. We seek the parameterisation, hjþ1 þ Dhjþ1, that converges the prediction space, zjþ1 þ Dzjþ1, upon the
measurement space zm þ Dzm. Consequently, Tj becomes a function of measured variability Dzm according to Eqs. (6) and (7),
since the updated parameters are determined at each iteration by converging the model predictions upon the measurements.

Application of the perturbation method, by separating the zeroth-order and first-order terms from Eq. (5), leads to,

OðD0
Þ : hjþ1 ¼ hj þ Tjðzm � zjÞ (8)

OðD1
Þ : Dhjþ1 ¼ Dhj þ TjðDzm � DzjÞ þ

Xn

k¼1

qTj

qzmk
Dzmk

 !
ðzm � zjÞ

 !
(9)

Eq. (8) gives the estimate of the parameter means and Eq. (9) is used in determining the parameter covariance matrix.
It will be seen that Eqs. (8) and (9) are different from the equations developed by Hua et al. [7] using an apparently

similar approach. This difference arises because Hua et al. [7] expand zm, zj and Dhj in terms of Dzmk (just as we expanded Tj

in Eqs. (6) and (7)) before applying the perturbation method. Also, Hua et al. [7] worked in terms of the sensitivity matrix Sj

rather than the matrix Tj used in the present analysis. Both approaches are perfectly acceptable but the method described
in Ref. [7] does not contain an equivalent to the second right-hand-side term, TjðDzm � DzjÞ. We will see in what follows
that the presence of this term leads to significant advantages not available to users of the method by Hua et al. [7].

Changing the position of variable Dzmk and the vector ðzm � zjÞ in Eq. (9) leads to the expression,

Dhjþ1 ¼ Dhj þ
qTj

qzm1
ðzm � zjÞ

qTj

qzm2
ðzm � zjÞ � � �

qTj

qzmn
ðzm � zjÞ

" #
Dzm þ TjðDzm � DzjÞ (10)

or,

Dhjþ1 ¼ Dhj þ Aj Dzm þ TjðDzm � DzjÞ (11)

where the deterministic matrix,

qTj

qzm1
ðzm � zjÞ

qTj

qzm2
ðzm � zjÞ � � �

qTj

qzmn
ðzm � zjÞ

" #
is now replaced by the matrix Aj. The matrix ðqTj=qzmkÞ is deterministic since it is evaluated at the means of measured
system responses ðzmk ¼ zmkÞ.

It now becomes apparent, from Eq. (11) that the parameter covariance matrix can be found at j+1th iteration as,

CovðDhjþ1;Dhjþ1Þ ¼ CovðDhj þ AjDzm þ TjðDzm � DzjÞ;Dhj þ AjDzm þ TjðDzm � DzjÞÞ

¼ CovðDhj;DhjÞ þ CovðDhj;DzmÞA
T
j þ CovðDhj;DzmÞT

T

j � CovðDhj;DzjÞT
T

j

þ ðCovðDhj;DzmÞA
T
j Þ

T
þ Aj CovðDzm;DzmÞA

T
j þ Aj CovðDzm;DzmÞT

T

j � Aj CovðDzm;DzjÞT
T

j

þ ðCovðDhj;DzmÞT
T

j Þ
T
þ ðAjCovðDzm;DzmÞT

T

j Þ
T
þ Tj CovðDzm;DzmÞT

T

j � Tj CovðDzm;DzjÞT
T

j

� ðCovðDhj;DzjÞT
T

j Þ
T
� ðAj CovðDzm;DzjÞT

T

j Þ
T
� ðTj CovðDzm;DzjÞT

T

j Þ
T
þ Tj CovðDzj;DzjÞT

T

j (12)

A common assumption, that originated with the 1974 paper of Collins et al. [10], is to omit the correlation between the
measurement, zm, and the system parameters, hj. Friswell [11] corrected this omission by including the correlation after
the first iteration. In this paper we consider the effect of the omitted correlation on the converged prediction space using
the formulation described above.

When the measurements and parameters are assumed to be uncorrelated, then CovðDzm;DhjÞ ¼ 0 and also
CovðDzm;DzjÞ ¼ 0. It will be shown later that the matrix Aj vanishes under the same assumption. Consequently, Eq. (12)
simplifies to give,

CovðDhjþ1;Dhjþ1Þ ¼ CovðDhj;DhjÞ � CovðDhj;DzjÞT
T

j þ Tj CovðDzm;DzmÞT
T

j � TjCovðDzj;DhjÞ

þ TjCovðDzj;DzjÞT
T

j (13)

Eq. (13) does not include the second-order sensitivity matrix. This leads to very considerable reduction in computational
effort, of great practical value in engineering applications if the CovðDzm;DhjÞ ¼ 0 assumption is shown to be viable. Under
this assumption model updating is carried out using the two recursive Eqs. (8) and (13). The transformation matrix may be
expressed as the weighted pseudo inverse, which is analogous to the transformation used in deterministic model updating
[1,2]. To the zeroth order of smallness the same equation applies,

Tj ¼ ðS
T

j W1Sj þW2Þ
�1S

T

j W1 (14)

In Eq. (14), Sj denotes the sensitivity matrix at the parameter means, Sj ¼ SðhjÞ, and the choice of W1 ¼ I and W2 ¼ 0
results in the pseudo inverse. In the case of ill-conditioned model-updating equations, the minimum-norm regularised
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solution is obtained when W2 ¼ lI and l is the regularisation parameter that locates the corner of the L-curve obtained by
plotting the norms jjhjþ1 � hjjjvsjjSjðhjþ1 � hjÞ � ðzm � zjÞjj as l is varied [20].

The above procedure may be implemented in the following steps:
1.
 Determine the mean vector and covariance matrix of the measured data ðzm;Covðzm; zmÞÞ and set j ¼ 0.

2.
 Initialise the means and standard deviations of the system parameters.

3.
 Determine the mean value of the analytical output parameters, zj, and the covariance matrices,CovðDhj;DzjÞ and

CovðDzj;DzjÞ , using a forward propagation method such as perturbation, the asymptotic integral or Monte-Carlo
simulation.
4.
 Calculate the sensitivity matrix Sj at the current mean values of system parameters, choose suitable weighting matrices
for regularisation and determine the transformation matrix Tj according to Eq. (14).
5.
 Update the mean values and covariance matrix of the system parameters using Eqs. (8) and (13), respectively.

6.
 If both the means and standard deviations of the parameters have converged go to step (7); otherwise set j ¼ j+1, go to

step (3).

7.
 Stop.

If the correlation between the parameters and measurements is included, then CovðDhj;DzmÞ and matrix Aj must be
updated as follows,

CovðDhjþ1;DzmÞ ¼ CovðDhj þ Aj Dzm þ TjðDzm � DzjÞ;DzmÞ

¼ CovðDhj;DzmÞ þ ðAj þ TjÞCovðDzm;DzmÞ � Tj CovðDzj;DzmÞ (15)

The matrix Ajþ1 is determined from

Ajþ1 ¼
qTjþ1

qzm1

�����
zm1¼zm1

ðzm � zjþ1Þ
qTjþ1

qzm2

�����
zm2¼zm2

ðzm � zjþ1Þ � � �
qTjþ1

qzmn

�����
zmn¼zmn

ðzm � zjþ1Þ

24 35 (16)

where

qTjþ1

qzmk

�����
zmk¼zmk

¼
Xm

i¼1

qTjþ1

qyðjþ1Þ;i

qyðjþ1Þ;i

qzmk

�����
zmk¼zmk

; k ¼ 1;2; . . . ;n (17)

qTjþ1

qyðjþ1Þ;i
¼ ðS

T

jþ1W1Sjþ1 þW2Þ
�1 qS

T

jþ1

qyðjþ1Þ;i
W1 � ðS

T

jþ1W1Sjþ1 þW2Þ
�1 qS

T

jþ1

qyðjþ1Þ;i
W1Sjþ1 þ S

T

jþ1W1
qSjþ1

qyðjþ1Þ;i

0@ 1A
� ðS

T

jþ1W1Sjþ1 þW2Þ
�1S

T

jþ1W1 (18)

and,

qhjþ1

qzmk
¼

qhj

qzmk
þ Tj

qzm

qzmk
�

qzj

qzmk

� �
þ

qTj

qzmk
ðzm � zjÞ (19)

The terms of ðqzm=qzmkÞjzmk¼zmk
are given by

qzmj

qzmk

����
zmk¼z̄mk

¼
1 if j ¼ k

0 if jak

(
(20)

and from the chain rule,

qzj

qzmk
¼ S̄j

qhj

qzmk
(21)

Hence, a system of four recursive Eqs. (8), (12), (15) and (19) are required to determine the means and co-variance matrix
of the parameters.

By the analysis above it is seen that the parameter covariances CovðDhjþ1;Dhjþ1Þ are expressed in terms of the measured
output covariance matrix CovðDzm;DzmÞ together with the covariances CovðDhj;DzjÞ;CovðDzj;DzjÞ and in the case of Eq. (13)
in terms of CovðDhj;DzmÞ, which is updated using Eq. (15). The derivatives ðqTj=qzmkÞ, ðqzj=qzmkÞ and matrix Aj are found by
using Eqs. (17), (21) and (16), respectively, and

CovðDzj;DzmÞ ¼ Sj CovðDhj;DzmÞ (22)

This procedure may be implemented according the following steps:
1.
 Determine the mean vector and covariance matrix of the measured data ðzm;Covðzm; zmÞÞ and set j ¼ 0.

2.
 Initialise the means and standard deviations of the system parameters.
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3.
 Initialise CovðDhj;DzmÞ and ðqhj=qzmkÞ to zero—consequently matrix Aj and CovðDzj;DzmÞ are zero (Eqs. (16), (17) and
(22)).
4.
 Determine the mean value of the analytical output parameters, zj , and the covariance matrices, CovðDhj;DzjÞ and
CovðDzj;DzjÞ, using a forward propagation method such as perturbation, the asymptotic integral or Monte-Carlo
simulation.
5.
 Calculate the sensitivity matrix Sj at the current mean value of system parameters and choose suitable weighting
matrices for regularisation in order to compute the transformation matrix introduced in Eq. (14).
6.
 Update the mean values and covariance matrix of the system parameters using Eqs. (8) and (12), respectively.

7.
 Update CovðDhj;DzmÞ and ðqhj=qzmkÞ using Eqs. (15) and (19), then update Aj using Eqs. (16), (17) and (18) and

CovðDzj;DzmÞ using Eq. (22).

8.
 If both the mean values of the parameters and their standard deviations have converged go to step (9); otherwise set

j ¼ j+1, go to step (4).

9.
 Stop.

The covariance matrices CovðDhj;DzjÞ and CovðDzj;DzjÞ may be evaluated by forward propagation using a variety of
techniques including mean-centred first-order perturbation, the asymptotic integral and Monte-Carlo simulation as will be
explained in the following section.

3. Evaluation of covariance matrices by forward propagation

In this section, the subscript j and prefix D on Dh and Dz is omitted for reasons of simplicity. The system parameters are
assumed to follow a chosen multivariate probability density function. Unless knowledge exists to contrary this will in
practice be a Gaussian density function expressed as,

h 2 Nnðh;Covðh; hÞÞ (23)

3.1. Mean-centred first-order perturbation

The output vector, z, is expanded about the mean value zðhÞ as,

z ¼ zðhÞ þ
Xm

i¼1

qz

qyi

����
yi¼yi

ðyi � yiÞ þ
Xm

i¼1

Xm

j¼1

q2z

qyiqyj

����� yi ¼ yi

yj ¼ yj

ðyi � yiÞðyj � yjÞ þ � � � (24)

and by truncating after the first-order term,

z ¼ zðhÞ þ Sðh� hÞ ) Dz ¼ SDh (25)

Therefore,

z � zðhÞ (26)

Covðz; zÞ ¼ S Covðh; hÞS
T

(27)

Covðh; zÞ ¼ Covðh; hÞS
T

(28)

The perturbation propagation approach has been used widely for its tractability and computational time-saving [16]. But
there are limitations in using this method, which works well when the uncertainties are small and parameter distribution
is Gaussian [18]. The asymptotic integral may be used for evaluating of z, Covðh; zÞ and Covðz; zÞwhen probability density of
the uncertain parameters is not assumed Gaussian.

3.2. The asymptotic integral

In this section the integrals that define all the terms of Covðz; zÞ and Covðh; zÞ are obtained by an asymptotic
approximation. In general we consider the multidimensional integral of the form,

J ¼

Z
<m

expð�f ðhÞÞdy1 dy2 . . .dym (29)

where f ðhÞ 2 < is a smooth function of h 2 <m, infinitely differentiable over the unbounded domain <m [17]. Adhikari and
Friswell [18] approximated an integral of this type by applying Laplace’s method of asymptotic expansion [21],

J � ð2pÞm=2 expf�f ðuÞgjjDf ðuÞjj
�1=2 (30)
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where Df(u) is the Hessian matrix of f ðhÞ at h ¼ u, defined as an optimal point at which f ðhÞ reaches its global minimum. The
method is based on the assumption that the integral is maximised when f ðhÞ reaches this global minimum.

Evaluation of the integrals appearing in the covariances,

Covðzi; zkÞ ¼ ½EðziðhÞzkðhÞÞ � EðziðhÞÞEðzkðhÞÞ�; i; k ¼ 1;2; . . . ;n, (31)

Covðyi; zkÞ ¼ ½EðyizkðhÞÞ � miEðzkðhÞÞ�; i ¼ 1;2; . . . ;m; k ¼ 1;2; . . . ;n (32)

is described in Appendix.

3.3. Monte-Carlo simulation

In the Monte-Carlo process a large number of samples of uncertain parameters h is generated according to the assumed
parameter probability density function and the respective response values, z, are evaluated from FE analysis. The mean
values of output vector from mathematical model, z, the covariances of system parameters and outputs,Covðh; zÞ and
covariance matrix of output parameters, Covðz; zÞ, can be directly evaluated from the scatter of responses and the system
parameters that provide the input to the simulation. Monte-Carlo simulation is the most accurate method but is
computationally expensive and can be extremely time consuming.

4. Case studies on the evaluation of covariance matrices

Two case studies are considered, a 3 degree-of-freedom mass–spring system and a finite-element beam model with
three elements having uncertain elastic moduli. In both cases the covariance matrices obtained by mean-centred first-
order perturbation and the asymptotic integral are compared to the covariance matrix obtained from Monte-Carlo
simulation.

4.1. Case study 1: 3 Degree-of-freedom mass– spring system

The model shown in Fig. 1 has deterministic parameters,

mi ¼ 1:0 kg ði ¼ 1;2;3Þ; ki ¼ 1:0 N=m ði ¼ 3;4Þ; k6 ¼ 3:0 N=m

and also uncertain random parameters,

h ¼ ½k1; k2; k5�
T 2 N3ðh;S

2
yyÞ

where

h ¼ ½2 2 2 �T and S2
yy ¼ diag½0:09 0:09 0:09 �

and N3 denotes the multivariate normal (Gaussian) distribution in three random variables.
The covariance matrix Covðz; zÞ being symmetric has six independent elements. The covariance matrix Covðh; zÞ has nine

elements. Fig. 2 shows the errors obtained by using mean-centred first-order propagation and asymptotic approximation
with respect to the results obtained by Monte-Carlo simulation. Generally, the errors are smaller when using the
asymptotic integral.

4.2. Case study 2: Finite-element model of a cantilever beam

The beam, with a rectangular cross-section 25 mm�5.5 mm and a length of 0.5 m, is modelled using 10 Euler–Bernoulli
beam elements as shown in Fig. 3. The elastic moduli of elements 3, 7 and 10 are considered as random variables,

h ¼ ½E3; E7; E10�
T 2 N3ðh;S

2
yyÞ
Fig. 1. Case study 1: 3 degree-of-freedom mass–spring system.
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Fig. 2. Mass–spring system—estimation of Covðz; zÞand Covðh; zÞ.

Fig. 3. Case study 2: cantilever beam.
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where

h ¼ ½2:1� 1011 2:1� 1011 2:1� 1011 �T and S2
yy ¼ diag½1� 1020 1� 1020 1� 1020 �

The errors in the estimated covariance matrices, with respect to Monte-Carlo simulation, are shown in Fig. 4. The errors
in elements (3,1) and (3,2) of Covðh; zÞappear larger than the others because the values of these terms are three orders of
smallness less than the values of the other terms.
5. Numerical case studies on the identification of uncertainty

Two numerical case studies are used to illustrate the working of the perturbation methods, namely the 3 degree-of-
freedom system described in Section 4 and also a finite-element pin-jointed truss structure. In addition to the present
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methodology, results obtained by using the minimum variance estimator of Collins et al. [10] and Friswell [11] are also
presented.

5.1. Case study 1: 3 Degree-of-freedom mass– spring system

The simple example shown in Fig. 1 is considered, having known deterministic parameters,

mi ¼ 1:0 kg ði ¼ 1;2;3Þ; ki ¼ 1:0 N=m ði ¼ 3;4Þ; k6 ¼ 3:0 N=m

and the other parameters represented as unknown Gaussian random variables with mean values and standard deviations
given by

mk1
¼ 1:0 N=m; mk2

¼ 1:0 N=m; mk5
¼ 1:0 N=m

sk1 ¼ 0:20 N=m; sk2 ¼ 0:20 N=m; sk5 ¼ 0:20 N=m

The measured data, zm and Covðzm; zmÞ, are obtained by using Monte-Carlo simulation with 10,000 samples. This number
of measurements is unrealistic but is used here to demonstrate the asymptotic properties of the methods. Later, the
number of measurements will be varied to show the effect of this number on the parameter errors. The initial estimates of
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Table 1
Updating results obtained by various methods (10,000 samples)

Parameters Initial % error % Error (1) % Error (2) % Error (3) % Error (4) % Error (5)

k̄1 100 1.20 1.32 1.21 1.62 17.43

k̄2 100 �2.43 �2.26 �2.18 �2.35 36.81

k̄5 100 0.71 0.57 0.23 1.86 58.20

S.D.(k1) 50 0.31 0.88 �0.35 �89.80 �13.36

S.D.(k2) 50 1.77 0.46 �1.27 �89.85 �12.07

S.D.(k5) 50 1.96 0.24 �0.16 �90.20 �58.83
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the unknown random parameters are

k1 ¼ k2 ¼ k5 ¼ 2:0 N=m; CovðkiÞ ¼ ð0:3
2
ÞN2=m2 i ¼ 1;2;5

so that a 100% initial error in mean values and a 50% initial error in standard deviations is represented.
Results obtained by the present perturbation methods ðW1 ¼ I;W2 ¼ 0Þ, the method of Hua et al. [7], and the minimum

variance estimators of Collins et al. [10] and Friswell [11] are shown in Table 1. The numbers, (1)–(5) in the table denote the
following methods:
(1)
 The proposed method in which the correlation between measured data and system parameters is omitted (Eqs. (8)
and (13)).
(2)
 The proposed method in which the correlation between measured data and system parameters is included after the
first iteration (Eqs. (8), (12), (15) and (19)).
(3)
 Method introduced by Hua et al. [7].

(4)
 The minimum variance method of Collins et al. [10].

(5)
 The minimum variance method of Friswell [11].
It should be noted that the method of Hua et al. [7] does not require a starting estimate for the standard deviation of the
unknown random parameters, which start from zero at the first iteration. In all cases forward propagation was carried out
using Monte-Carlo simulation.

Firstly, it is seen that the results obtained by method (1), when the correlation of system parameters with the measured
data is omitted, are at least as good as when this correlation is included. Methods (2) and (3) require the evaluation of the
second-order sensitivity, which is an expensive computation and not needed when using method (1). Finally, it is seen that
the minimum variance methods (4) and (5) are really not intended for the estimation of randomised parameters to
represent test-piece variability. These methods work well when the variability is limited to measurement noise from a
single test piece. Convergence of the parameter estimates by each of the different methods is shown in Figs. 5–9. It is seen
from Fig. 8 that method (4) is slow to converge. Fig. 10 shows the convergence of the predictions upon experimental data in
the space of the first three natural frequencies using method (1).

Ten thousand samples are clearly enough to obtain an accurate estimate of the parameter variability. Fig. 11 shows the
convergence of the parameter standard deviations by method (1) as the number of samples is increased from 10 to 1000. In
each case 10 runs of the updating algorithm were carried out to enable a range of solution errors to be determined.
A different set of samples was used in each of the 10 runs. When only 10 samples were used errors were found in the range
of 24–54%, while in the case of 1000 samples the errors ranged from 3% to 7%.

Figs. 12–14 show the convergence of the parameter statistics using only 10 samples with methods (1), (2) and (3).
Converged results and percentage errors are given in Table 2. The 10 samples were different in each of the three cases,
which are shown to converge to similar results. Figs. 15 and 16 show the convergence of scatter of predictions upon the
scatter of simulated measurements in the planes of the first and second, and second and third natural frequencies,
respectively. Ten measurement samples and 10,000 predictions from the estimated parameter distributions by method (1)
are shown.

The effect of using different propagation methods (Monte-Carlo simulation, mean-centred first-order propagation, or
the asymptotic integral) is considered in Table 3 and Figs. 17–19. It is seen that in this case specifically there is little
advantage gained by using the more computationally demanding approaches (Monte-Carlo simulation, and the asymptotic
integral) over the mean-centred first-order perturbation technique.

5.2. Case study 2: Finite-element model of a pin-jointed truss

The finite-element model consisting of 20 planar rod elements, each having 2 degree-of-freedom at every node, is
shown in Fig. 20. The elastic modulus, mass density and cross sectional area were assumed to take the values,

E ¼ 70 GPa; r ¼ 2700 kg=m3; A ¼ 0:03 m2
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The diagonal elements in the finite-element model were represented by generic rod elements [22], having the generic
stiffness matrices given by

K ¼ ki

1 �1

�1 1

� �
where ki is generic parameter for the ith diagonal element. This parameter was a Gaussian random variable defined by

mki
¼

EiAi

Li
¼ 1:485� 108;

ski

mki

¼ 0:135; i ¼ 1; . . . ;5

and the initial uncertain generic parameters were set as

k1 ¼ 0:85mk1
; k2 ¼ 1:05mk2

; k3 ¼ 0:95mk3
; k4 ¼ 0:90mk4

; k5 ¼ 1:1mk5

COVðk1Þ ¼ 2
ski

mki

,
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Table 2
Updating results by various methods (10 samples)

Parameters Initial % error % Error (1) % Error (2) % Error (3)

k̄1 100 4.53 �5.42 10.81

k̄2 100 �8.25 �1.52 1.73

k̄5 100 4.21 0.69 �2.86

S.D.(k1) 50 �20.03 12.60 10.32

S.D.(k2) 50 14.35 19.33 �7.26

S.D.(k5) 50 17.65 �13.66 �36.44
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where COV denotes the estimated coefficient of variation (ratio of the standard deviation to mean). The measurements
consisted of the first four natural frequencies and four vertical displacements at nodes 5, 6, 11 and 12 for each of the first
four modes, thereby generating 20 equations for updating five randomised parameters. Firstly, it was assumed that these
equations do not contain any measurement noise. As expected, method (1) is capable of regenerating the exact simulated
values of mean and COV for each of the randomised parameters as shown in Fig. 21. The weighting matrices were W1 ¼ I
and W2 ¼ 0.



ARTICLE IN PRESS

0.8 1 1.2 1.4 1.6 1.8 2 2.2
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

ω1
2 (rad/s)2

ω
2 2 

(r
ad

/s
)2

10 samples for simulating measured data

Initial model outputs
Measured data

Updated model outputs
Measured data

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
2

2.5

3

3.5

4

4.5

5

5.5

6

ω1
2 (rad/s)2

ω
2 2 

(r
ad

/s
)2

10 samples for simulating measured data

Fig. 15. Initial and updated scatter of predicted data (10,000 points) based upon 10 measurement samples: identification by method (1).

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
7.5

8

8.5

9

9.5

10

10.5

11

ω2
2 (rad/s)2

ω
32  

(r
ad

/s
)2

10 samples for simulating measured data

Initial model outputs
Measured data

Updated model outputs
Measured data

2 2.5 3 3.5 4 4.5 5 5.5 6
7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

ω2
2 (rad/s)2

ω
32  

(r
ad

/s
)2

10 samples for simulating measured data

Fig. 16. Initial and updated scatter of predicted data (10,000 points) based upon 10 measurement samples: identification by method (1).

Table 3
Results by different propagation methods for evaluating covariance matrices (measured data were simulated by using just one set of 10 samples)

Parameter Initial error (%) Monte Carlo (%) Perturbation (%) Asymptotic (%)

k̄1 100 �3.72 �3.71 �2.47

k̄2 100 �1.49 �1.49 �3.13

k̄5 100 20.20 20.20 16.22

S.D.(k1) 50 �19.99 �22.66 �20.72

S.D.(k2) 50 �21.48 �24.85 �21.81

S.D.(k5) 50 6.57 5.70 6.04

H.H. Khodaparast et al. / Mechanical Systems and Signal Processing 22 (2008) 1751–17731764
Method (1) was again applied, with and without regularisation, when 1% measurement noise with zero-mean Gaussian
distribution was added to the measured data. Considerable errors were found in the estimated distribution when
W1 ¼ I and W2 ¼ 0 as shown in Fig. 22. Regularisation was then applied with the regularisation parameter l ¼ 0:001
determined from the L-curve in Fig. 23. As can be seen from Fig. 24, the estimated distribution was greatly improved
by the regularisation. The standard deviations were affected more by the presence of the noise than were the estimated
means.
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Fig. 17. Convergence of parameter estimates by method (1) using Monte-Carlo simulation.
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Fig. 18. Convergence of parameter estimates by method (1) using mean-centred first-order perturbation.
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6. Experimental case study: Aluminium plates with random thicknesses

Ten aluminium plates were prepared so that a contrived distribution of thicknesses, close to Gaussian, was obtained by
machining. Care was taken to try to obtain a constant thickness for each plate. This was not achieved perfectly and the
thickness variations were measured using a long-jaw micrometer at 4�14 points as shown for example in Fig. 25. The
distribution of nominal thicknesses is shown in Fig. 26. The mean value of the thicknesses was 3.975 mm with a standard
deviation of 0.163 mm. In the experimental set up free boundary conditions were used to avoid the introduction of other
uncertainties due to clamping or pinning at the edges of the plates. All 10 plates had the same overall dimensions, length
0.4 m and width 0.1 m. A hammer test was carried out using four uniaxial fixed accelerometers. Fig. 27 shows the excitation
point, marked ‘F’, and the positions of four accelerometers, marked ‘A’, ‘B’, ‘C’ and ‘D’. The mass of each accelerometer was 2
grams represented by lumped masses in the finite-element model. The first 10 measured natural frequencies of all 10 plates
are given in Tables 4 and 5.

The thickness of the plates was parameterised in four regions as shown in Fig. 28 and a finite-element model was
constructed consisting of 40�10 four-noded plate elements. The first six measured natural frequencies were used for
stochastic model updating by method (1). A regularisation parameter, l ¼ 1� 1010, was found from an L-curve. Fig. 29
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Fig. 19. Convergence of parameter estimates by method (1) using the asymptotic integral.

Fig. 20. FE model of pin-jointed truss.
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Fig. 21. Identified parameters—zero noise.
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shows convergence of the mean values and COV for the four parameters. The initial mean and standard deviation of all four
parameters were taken to be, ti ¼ 4 mm, S:D:ðtiÞ ¼ 0:8 mm, i ¼ 1, y, 4. The initial mean value was chosen to be close to the
true mean while the initial standard deviation was deliberately overestimated to represent a realistic stochastic model
updating problem where little is known other than an approximation to the mean value.
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The updated and measured means and standard deviations of the plate thicknesses are given in Table 6. These results
are not in exact agreement but do show a considerable improvement in the thickness distributions when updated. It can be
seen that the initial values of the means were chosen to be extremely close to the measured mean values. Small changes are
observed in Table 6 after updating, away from the measured values obtained from averaged micrometer measurements at
discrete points. The convergence of the standard deviations (shown in Table 6) from a considerable initial error is a much
more significant result, demonstrating very clearly how well the method performs in converging the distribution of
updating parameters upon the collection of measured thickness values. Of course, the measured standard deviations are
likely to be less accurate than the measured means.

The means and standard deviations of the first six measured natural frequencies were used in updating, whereas 10
modes were measured in total. It is seen from Tables 7 and 8 that not only are the first six natural frequency distributions
improved by updating but also the 7th–10th natural frequency predictions (mean and standard deviations) are equally
improved. This provides a good demonstration of the validity of the updated statistical model.
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Fig. 24. Identified parameters 1% measurement noise and W1 ¼ I, W2 ¼ lI.

Fig. 25. Measured thickness of plate 1.
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Fig. 26. Distribution of plate thicknesses.
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Fig. 27. Arrangement of accelerometers (A, B, C, D) and excitation point (F).

Table 4
The first five measured natural frequencies (Hz) for the 10 plates

Plate no. Mode no.

1 2 3 4 5

1 119.774 284.283 331.970 589.404 656.359

2 121.615 291.922 337.186 605.160 665.854

3 123.156 291.440 340.184 602.603 673.357

4 128.048 298.163 355.210 620.139 700.798

5 128.533 303.809 357.110 630.809 704.505

6 128.596 301.010 361.488 635.533 713.207

7 129.796 311.726 361.114 646.765 712.792

8 135.058 315.393 374.368 653.584 738.395

9 134.478 312.215 374.406 649.130 737.256

10 138.141 321.812 382.932 667.203 755.189

Mean 128.720 303.177 357.597 630.033 705.771

S.D. 6.011 12.032 17.048 25.235 32.854

Table 5
The 6th to 10th measured natural frequencies (Hz) for 10 plates

Plate no. Mode no.

6 7 8 9 10

1 932.576 1091.603 1343.097 1628.879 1825.215

2 953.666 1106.861 1372.890 1650.395 1860.225

3 955.515 1119.445 1376.298 1669.899 1868.071

4 980.403 1165.177 1414.181 1736.714 1924.260

5 995.188 1169.660 1433.020 1743.750 1946.155

6 999.248 1184.455 1440.134 1765.415 1957.581

7 1019.052 1184.608 1467.366 1766.361 1987.556

8 1031.837 1225.375 1487.512 1825.602 2021.640

9 1023.229 1224.420 1479.268 1824.121 2013.354

10 1053.974 1253.610 1519.011 1866.665 2031.377

Mean 994.469 1172.521 1433.278 1747.780 1943.543

S.D. 38.877 53.840 56.771 79.232 72.908
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7. Conclusions

Two versions of a perturbation approach to the stochastic model updating problem, with test-structure variability, are
developed. Distributions of predicted modal responses (natural frequencies and mode shapes) are converged upon
measured distributions, resulting in estimates of the first two statistical moments of the randomised updating parameters.
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Fig. 29. Convergence of parameter estimates.

Table 6
Measured, initial and updated mean and standard deviation of parameters

Measured parameters Initial parameters Updated parameters Initial FE % error Updated FE % error

t̄1ðmmÞ 3.978 4.000 4.140 0.553 4.072

S.D.(t1) (mm) 0.159 0.800 0.129 403.145 �18.868

t̄2ðmmÞ 3.969 4.000 4.002 0.781 0.831

S.D.(t2) (mm) 0.161 0.800 0.204 396.894 26.708

t̄3ðmmÞ 3.982 4.000 3.986 0.452 0.100

S.D.(t3) (mm) 0.164 0.800 0.166 387.805 1.219

t̄4ðmmÞ 3.981 4.000 3.820 0.477 �4.044

S.D.(t4) (mm) 0.167 0.800 0.206 379.042 23.353

Table 7
Measured, initial and updated mean natural frequencies

Measured (Hz) Initial FE (Hz) Updated FE (Hz) Initial FE % error Updated FE % error

Mode (1) 128.720 128.321 128.111 �0.310 �0.473

Mode (2) 303.177 307.147 306.339 1.310 1.043

Mode (3) 357.597 356.645 355.185 �0.266 �0.675

Mode (4) 630.033 637.433 633.188 1.175 0.501

Mode (5) 705.771 705.467 701.777 �0.043 �0.566

Mode (6) 994.469 1002.229 996.865 0.780 0.241

Mode (7) 1172.521 1173.395 1169.087 0.075 �0.293

Mode (8) 1433.278 1444.018 1435.848 0.750 0.179

Mode (9) 1747.780 1748.977 1743.491 0.069 �0.245

Mode (10) 1943.543 1952.882 1935.851 0.481 �0.396

1 2 3 4

Fig. 28. Parameterisation into four regions of plate thickness.
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Table 8
Measured, initial and updated S.D. of natural frequencies

Measured (Hz) Initial FE (Hz) Updated FE (Hz) Initial FE % error Updated FE % error

Mode (1) 6.011 20.943 5.750 248.411 �4.342

Mode (2) 12.032 47.385 13.777 293.825 14.503

Mode (3) 17.048 39.231 15.180 130.121 �10.957

Mode (4) 25.235 65.655 26.797 160.175 6.190

Mode (5) 32.854 71.379 28.644 117.261 �12.814

Mode (6) 38.877 108.445 40.166 178.944 3.316

Mode (7) 53.840 118.628 46.536 120.334 �13.566

Mode (8) 56.771 148.418 59.571 161.434 4.932

Mode (9) 79.232 177.244 70.452 123.702 �11.081

Mode (10) 72.908 202.753 83.427 178.094 14.428
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Regularisation may be applied when the stochastic model updating equations are ill-conditioned. A computationally
efficient solution, without any significant loss of accuracy, is obtained when the correlation between the randomised
updating parameters and test data is omitted. The method is demonstrated in numerical simulations and also in an
experiment carried out on a collection of rectangular plates with variable thickness.
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Appendix. Evaluation of covariances by the asymptotic integral method

Adhikari and Friswell [18] used the approximation (29) for evaluating the statistical moments of random eigenvalues.
In the present study, we are concerned with integrals having the forms,

EðziðhÞzkðhÞÞ ¼
Z
<m

ziðhÞzkðhÞpyðhÞdy1 dy2 . . .dym

¼

Z
<m

exp½�ðLðhÞ � lnðziðhÞÞ � lnðzkðhÞÞÞ�dy1 dy2 . . .dym; iak (A.1)

EðyizkðhÞÞ ¼
Z
<m

yizkðhÞpyðhÞdy1 dy2 . . .dym

¼

Z
<m

exp½�ðLðhÞ � lnðyiÞ � lnðzkðhÞÞÞ�dy1 dy2 . . .dym (A.2)

and

mi ¼

Z
<m

yipyðhÞdy1 dy2 . . .dym ¼

Z
<m

exp½�ðLðhÞ � lnðyiÞÞ�dy1 dy . . .dymayi (A.3)

the latter used in Eq. (32). It should be noted that miayi since the integral includes all the probability density functions
py(h). L(h) is the likelihood function.

In the case of the Gaussian distribution,

LðhÞ ¼
m

2
lnð2pÞ þ

1

2
lnjjCovðh; hÞjj þ

1

2
ðh� hÞT ðCovðh; hÞÞ�1

ðh� hÞ (A.4)

and the integrals (A.1)–(A.3) may be determined as follows:
1.
 Eq. (A.1)

EðziðhÞzkðhÞÞ � ziðuÞzkðuÞexp �
1

2
ðu� hÞT ðCovðh; hÞÞ�1

ðu� hÞ

� �
jjIþ eDf ðuÞjj

�1=2 (A.5)

where

eDf ðuÞ ¼
1

z2
i ðuÞ

Covðh; hÞdzi
ðuÞ � dzi

ðuÞT þ
1

z2
k ðuÞ

Covðh; hÞdzk
ðuÞ � dzk

ðuÞT

�
1

ziðuÞ
Covðh; hÞDzi

ðuÞ �
1

zkðuÞ
Covðh; hÞDzk

ðuÞ (A.6)
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and u is found by solving the following equation numerically,

u ¼ hþ
1

ziðuÞ
Covðh; hÞdzi

ðuÞ þ
1

zkðuÞ
Covðh; hÞdzk

ðuÞ (A.7)

with dzi
ðuÞ, the gradient vector of the ith output parameter, zi, with respect to system parameters, evaluated at the

optimal point h ¼ u.

2.
 Eq. (A.2)

EðyizkðhÞÞ � jizkðuÞexp �
1

2
ðu� hÞT ðCovðh; hÞÞ�1

ðu� hÞ

� �
jjIþ eDf ðuÞjj

�1=2 (A.8)

where

eDf ðuÞ ¼ ðu� h� Covðh; hÞfÞðu� h� Covðh; hÞfÞT ðCovðh; hÞÞ�1
�

1

zkðuÞ
Dzk
ðuÞ � Covðh; hÞ � N (A.9)

and u is found by numerical solution of

u ¼ hþ
1

ziðuÞ
Covðh; hÞdzi

ðuÞ þ Covðh; hÞf (A.10)

Also,

f ¼ ½z1; z2; . . . ; zj; . . . zm�
T ; zj ¼

1
ji

if j ¼ i

0 if jai

(
i ¼ 1; . . . ;m (A.11)

and,

N ¼ diagðwÞ and w ¼ ½c1;c2; . . . ;cj; . . . ;cm�
T ; cj ¼

� 1
j2

i

if j ¼ i

0 if jai

8<: (A.12)
3.
 Eq. (A.3)

mi � ji exp �
1

2
ðu� hÞT ðCovðh; hÞÞ�1

ðu� hÞ

� �
jjIþ eDf ðuÞjj

�1=2, (A.13)

where

eDf ðuÞ ¼ �Covðh; hÞN (A.14)

and u is found from the numerical solution of

u ¼ hþ Covðh; hÞf (A.15)

The asymptotic integral method is described in detail by Adhikari and Friswell [18]. As can be seen from Eq. (31) , the
diagonal terms of Covðz; zÞ require that EðzkðyÞÞ and Eðz2

k ðhÞÞ are evaluated as follows [18]:

Eðzr
kðhÞÞ � ð2pÞ

m=2zr
kðuÞ exp �

1

2
ðu� hÞT ðCovðh; hÞÞ�1

ðu� hÞ

� �
jjIþ eDf ðuÞjj

�1=2 r ¼ 1;2 (A.16)

where

eDf ðuÞ ¼
1

r
ðu� hÞðu� hÞT ðCovðh; hÞÞ�1

�
r

zkðuÞ
Covðh; hÞDzk

ðuÞ (A.17)

and u may be obtained according to

u ¼ hþ
r

zkðuÞ
Covðh; hÞdzk

ðuÞ (A18)
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