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Effect of Pressure Distribution on Energy Dissipation
in a Mechanical Lap Joint

Yaxin Song,∗ D. Michael McFarland,† Lawrence A. Bergman,‡ and Alexander F. Vakakis§

University of Illinois at Urbana–Champaign, Urbana, Illinois 61801

Mechanical joints, such as the bolted shear lap joint considered here, are ubiquitous in engineered structures,
which realize vibration damping as well as load transfer from them. However, the prediction of the energy-
dissipation characteristics of such joints remains a challenging problem. A cubic relationship between energy
dissipated and load magnitude is often assumed in classical joint dynamics, but experiments generally fail to support
this assertion. In nearly all of the joint models examined previously, Coulomb friction and uniform pressure in the
joint were assumed. Realizing that the Coulomb model may not adequately represent the actual dynamic friction
in the slip region of the joint interface and that the actual interfacial pressure is likely nonuniformly distributed, we
utilize a distributed-parameter joint model to investigate the constitutive relation and energy dissipation associated
with a shear lap joint under longitudinal loading. Two nonuniform pressure distributions in a one-dimensional
structure are considered. In both, under the Coulomb friction law, the energy dissipation resulting from microslip
can be expressed as a power series starting from the third order of the magnitude of loading. It is shown that
the exact cubic relation is valid only for the uniform pressure distribution. The distributed-parameter joint model
presented herein can be represented by a parallel–series Iwan model. The distribution function of critical slip
force in the Iwan model can be obtained analytically from the constitutive relation associated with the joint model;
results are given for the cases of the normal traction specified as a power function of the spatial coordinate, and as
a Gaussian function.

Nomenclature
A = cross-sectional area
c f = coefficient of normal traction
D = energy dissipation per cycle
d f ∗ = increment of critical slip force
E = Young’s modulus
Erf(x) = error function
Erf−1(x) = inverse error function
F, F0, Fmax = load (magnitude)
Fn = internal force at x = ln

f (x) = interface force distribution function
in stick zone

f ∗ = critical slip force
f ∗
i , i = 1, 2, . . . , N = critical slip force of the i th slider in the

Iwan model
k = stiffness of the Iwan model
L = half-length of joint
ln = length of stick zone
N = number of Jenkins elements
N f = force
n = exponent of energy-dissipation relation

and magnitude of applied force
P(x) = distribution function of normal traction

per length
u = displacement of the Iwan model
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uL = displacement of the upper bar at x = L
un = displacement of the upper and lower bars

at x = ln
tu(x), bu(x) = displacements of the upper and lower

bars, respectively
v = Coulomb friction coefficient
x = coordinate
α = exponent
γ, λ = constants
σ = parameter of Gaussian distribution

of normal traction
ϕ( f ∗) = distribution function of critical slip force

I. Introduction

I N assembled structures, mechanical joints have a significant ef-
fect upon structural response. They cause local stiffness and

damping changes and are often the primary source of energy dis-
sipation and vibration damping. Joint mechanics is of fundamental
importance in multicomponent systems such as bladed disks and
framed structures. Significant effort has been expended in an attempt
to develop predictive models for mechanical joints to facilitate more
accurate response analyses of these structures.

The successful modeling of joints largely depends on understand-
ing and reproducing their basic physics. Various studies have iden-
tified micro- and macroslip occurring along the joint interface as a
cause of hysteretic behavior and resulting energy dissipation. Typ-
ically, the normal interface pressure across a loaded joint is not
uniformly distributed, and microslip occurs in regions where the
contact pressure is insufficient to prevent it. The interface is thus
divided into zones of “stick” and “slip.” As the magnitude of the
transmitted load increases, slip zones enlarge and coalesce, eventu-
ally resulting in macroslip or gross sliding. Before the occurrence
of gross sliding, the load applied to the joint will be transferred
uniquely by the friction force. In this paper, we study only energy
dissipation in the joint due to microslip.

Several typical joint interfacial slip models have been studied
since the 1950s, including a shaft press-fit into a bushing subjected
to axial loading or cyclic torque; an elastic plate in press contact
with a rigid base and subjected to an exciting force parallel to the
interface; and a bending beam with two cover plates held together by
clamping pressure. Goodman1 surveyed these studies in his review
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paper. In all of the preceding, the joint interface model was described
by Coulomb friction. Goodman found that, in each of these cases, the
energy dissipated was proportional to the cube of the force (torque,
moment) range.

Metherell and Diller2 investigated a lap joint subjected to axial
loading. By making the correction to the coefficient of energy dissi-
pated per cycle for the rod press-fit into a bushing under axial loading
that was found by Panovko et al.3 and reproduced by Goodman,1

they also obtained a cubic relation between the energy dissipated
and the loading amplitude. Segalman4,5 also obtained a power-of-
three relationship for a semi-infinite rod held in a rigid semi-infinite
vise. It is worth noting that, in his review paper, Goodman1 also
investigated the Mindlin solution for two elastic spheres pressed to-
gether by a force N f along the line connecting their centers and sub-
jected to an oscillating lateral force with a maximum value of Fmax.
In contrast with the other joint-slip models studied in that paper,
the Mindlin solution involved a nonuniform pressure distribution
at the interface. Goodman obtained a relation between the energy
dissipation per cycle and the maximum of the applied force; this
consisted of fractional powers that could be approximated by a cu-
bic for small values of Fmax/(vN f ), where v is the Coulomb friction
coefficient.

Laboratory experiments have repeatedly failed to reproduce the
cubic relation between energy dissipation and magnitude of load-
ing. One explanation often given for this discrepancy asserts that the
Coulomb law does not adequately model the actual friction process
taking place in the slip region.4 Because of variation of the friction
coefficient during the loading cycle, a power smaller than analyt-
ically predicted relating the energy dissipation and the magnitude
of applied force will be observed in experiments. In the microslip
experiment conducted by Smallwood et al.,6 the exponent of the
power-law relation between energy dissipated and longitudinal load
applied to the shear lap joint was observed to range from 2.5 to
2.9. In that experiment, two rollers above and below a simple shear
lap joint were used to apply the normal load across the joint. We
conjecture that there are two reasons for the lower exponent ob-
served for the power law: 1) the variable friction coefficient in the
experiment and 2) the nontrivial energy dissipation due to friction
between the rollers and joint. We further conjecture that a value
larger than 2.5 ∼ 2.9 would be obtained if a quasi-static experiment
were carried out (generally the static friction coefficient is larger
than the sliding friction coefficient) and/or if the shear joint with
rollers were replaced by a bolted lap joint in the above experiment.

Rabinowicz7 and Polycarpou and Soom8 found an inverse rela-
tion between the kinetic friction coefficient and sliding speed in their
experiments. Goodman and Klumpp9 asserted that the friction co-
efficient is velocity-dependent and could change somewhat with an
increase in the number of loading cycles and with variation in normal
pressure. Because most energy-dissipation experiments are carried
out under dynamic loading, it would seem that the assumption of
a constant friction coefficient made in the Coulomb model is not
sufficiently accurate. Nevertheless, lacking better analytical models
to describe interfacial friction, it would appear that, for the moment,
we must accommodate the inaccuracy resulting from the Coulomb
friction law in energy-dissipation analysis. Therefore, we need to un-
derstand how, and to what extent, the adoption of the Coulomb fric-
tion law affects our numerical and experimental energy-dissipation
studies.

In addition to the adoption of the Coulomb friction law, another
common assumption made in analytical models is that of uniformly
distributed interfacial pressure at the joint interface, which is well
known to be unrealistic. For example, in a bolted shear lap joint,
the pressure is at a maximum nearest the bolt and decreases with
distance from the bolt. In the microslip experiment by Smallwood
et al.,6 the surface loading was carefully designed to simulate the
real pressure distribution in the vicinity of the bolt. Thus, it is natural
to wonder whether or not the cubic power law obtained analytically
under the assumption of uniform interfacial pressure persists for the
case of a nonuniform pressure distribution.

In this paper, we develop a distributed-parameter joint model to
examine the constitutive relation and energy dissipation in a shear

lap joint under in-plane loading. Two different pressure-distribution
functions (one a power function and the other Gaussian) are exam-
ined. Employing the Coulomb friction law, the study in both cases
reveals that the energy dissipation per cycle can be expressed as a
power series starting from the third order of magnitude of the applied
force on the joint. The exact cubic relation does not result. Rather,
it is a special case for uniformly distributed interfacial pressure.
Energy dissipation is inversely related to the friction coefficient.

The distributed-parameter model introduced here can be identi-
fied with a continuous parallel–series Iwan model.10,11 The Iwan
models are reduced-order models that appear capable of simulating
joint behavior, their hysteresis achieved through stick–slip behavior
of a series of sliders. However, it is difficult to ascertain directly
the parameters of this model. Segalman4,5 developed a method to
select parameters of the Iwan model by using the results of energy-
dissipation and force vs displacement relations from experiments
in regimes of small and large load. Here, by using the constitutive
relation for the continuous approximation for the shear lap joint, the
distribution function of critical slip force for the Iwan model can be
obtained analytically.

The results presented here form an extension of widely cited
works by researchers such as Goodman1 and Metherell and Diller.2

The one-dimensional mechanical behavior is fundamentally the
same, but by relaxing the assumption of uniform pressure along
the joint in favor of explicit functions describing the variation of
pressure with distance from a central bolt, we begin with a more
realistic model of a lap joint. Although not suitable for the analysis
of actual joints (for which elaborate two- or three-dimensional nu-
merical models are often required) or for direct implementation in
structural analysis computer programs, the one-dimensional mathe-
matical model used here does lead to new quantitative results and to
better insight into joint behavior, especially regarding the influence
of pressure variation on energy dissipation under cyclic loading.

II. Distributed-Parameter Model
for the Shear Lap Joint

A. Governing Equations
We study a shear lap joint under a longitudinal force, as shown in

Fig. 1. Assuming that stresses in the two identical bars are uniformly
distributed and approximating the upper and lower portions of the
joint as rods (incapable of supporting bending moments), the shear
lap joint can be described by the distributed-parameter model shown
in Fig. 2. In this model, only the right half of the joint is considered.
The interface between the upper and lower bars is divided into stick
and slip zones. The pressure at the interface is at a maximum near
the bolt and decreases with distance from the bolt. We assume that
the distribution of normal traction per unit length P(x) is a mono-
tonically nonincreasing function in the interval x ∈ [0, L]. Thus, the
stick zone will extend from x = 0 to some point x = ln (ln is the
length of the stick zone), and the region beyond that point consti-
tutes the slip zone. The friction in the slip zone follows a Coulomb
law.

In the stick zone, 0 ≤ x ≤ ln , no slip occurs, so we have

tu(x) = bu(x), 0 ≤ x ≤ ln (1)

where tu(x) and bu(x) are the displacements of the upper and
lower bars, respectively. The equilibrium equation and boundary

Fig. 1 Shear lap joint under longitudinal force.
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a)

b)

Fig. 2 Distributed-parameter model for a shear lap joint under a
longitudinal force: a) shear lap joint model and b) free-body diagrams.

conditions (BCs) of the upper bar are

tu′′(x) = f (x)/(E A), 0 ≤ x ≤ ln

tu(0) = 0, tu′(ln) = Fn/(E A) (2)

in which tu′′(x) and tu′(x) are second and first derivatives of tu(x)
with respect to x , respectively; E is Young’s modulus; A is the cross-
sectional area of each bar; f (x) is the force distribution per length
along the interface 0 ≤ x ≤ ln ; and Fn is the internal force at x = ln .
The equilibrium equation and BCs of the lower bar in the stick zone
are

bu′′(x) = − f (x)/(E A), 0 ≤ x ≤ ln

bu(0) = 0, bu′(ln) = Fn/(E A) (3)

From Eqs. (2) and (3), we find that, in order for Eq. (1) to hold,
the force distribution function f (x) must satisfy

f (x) = 0 (4)

which implies that the forces in the bars are equal throughout the
stick zone, including at the junction of the stick and slip zones. This
is not an assumption; such a complete load transfer in the slip zone
is what must happen if there is to be a stick zone. Of course, it is
possible that full transfer does not take place, but this implies that
there is no sticking, and would lead to the result ln < 0 when the stick
zone length is calculated below. In this case, symmetry dictates that
slip must occur in the left half of the joint as well, and the joint may
be considered to have failed: it can never transfer the entire applied

load F0. Equations (2) and (3) give the displacements of the upper
and lower bars at x = ln as

un ≡ tu(ln) ≡ bu(ln) = Fnln/E A (5)

In the slip zone, ln ≤ x ≤ L , from the free-body diagrams of the
upper and lower bars, we have

F0 = Fn +
∫ L

ln

vP(x) dx (6a)

Fn =
∫ L

ln

vP(x) dx (6b)

which lead to

F0 = 2

∫ L

ln

vP(x) dx (7a)

Fn = F0

2
(7b)

where v is the coefficient of Coulomb friction. Equation (7a) can
be used to determine the length of the stick zone ln . Substituting
Eq. (7b) into Eq. (5), we obtain

un = F0ln/2E A (8)

The governing equations with boundary conditions for the upper
and lower bars in the slip zone are, respectively,

tu′′(x) = vP(x)/E A, ln ≤ x ≤ L

tu(ln) = un = F0ln/2E A, tu′(L) = F0/E A (9)

bu′′(x) = −vP(x)/E A, ln ≤ x ≤ L

bu(ln) = un = F0ln/2E A, bu′(L) = 0 (10)

Equations (9) and (10) can be solved once the pressure distribution
function P(x) is known. The length of the stick zone ln can then be
obtained by solving Eq. (7a). Finally, the energy dissipation in the
system (the entire joint) during a cycle of load (i.e., the longitudinal
force changing from −F0 to F0 and then back to −F0) is

D = 2

{
4

∫ L

ln

vP(x)[tu(x) − bu(x)] dx

}
(11)

In summary, in this model, force is transferred from the upper bar
to the lower bar completely in the slip zone, and there is no friction
force along the interface in the stick zone. The length of the slip
zone, however, is not arbitrary: it is determined by the magnitude
of the applied force and the coefficient of friction, as well as the
interfacial pressure. Basically, under applied load, the slip zone will
grow from the right-hand side to the left-hand side until all the force
is transferred that can be.

B. Nondimensional Form of the Equations
Introducing the nondimensional parameters

x̄ = x/L , tū(x̄) = tu(x)/L , bū(x̄) = bu(x)/L

l̄n = ln/L , ūn = un/L , P̄(x̄) = P(x)L/(E A)

F̄0 = F0/(E A), D̄ = D/(E AL) (12)

and omitting the overbars gives the nondimensional equations

F0 = 2

∫ L

ln

vP(x) dx (13)

tu′′(x) = vP(x), ln ≤ x ≤ 1
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tu(ln) = un = F0ln

2
, tu′(1) = F0 (14)

bu′′(x) = −vP(x), ln ≤ x ≤ 1

bu(ln) = un = F0ln

2
, bu′(1) = 0 (15)

D = 8

∫ 1

ln

vP(x)[tu(x) − bu(x)] dx (16)

These will be utilized in our further studies of the problem.

III. Two Different Normal Traction Distributions
A. Normal Traction as a Power Function

We assume that

P(x) = c f xα, α < 0 (17)

and seek the nondimensional form. Because P̄(x̄) = P(x)L/(E A)
and x̄ = x/L , defining c̄ f = c f L1 + α/(E A) and omitting the over-
bars results in nondimensional normal traction in the same form as
Eq. (17). The length of the stick zone can be found from Eq. (13) as

ln =
[

1 − F0
(1 + α)

2vc f

]1/(1 + α)

(18)

From Eqs. (14) and (15), we have

tu(x) = vc f

(1 + α)(2 + α)

[
(2 + α + x1 + α)x − 2x(2 + α)l1 + α

n

+ (1 + α)l2 + α
n

]
, ln ≤ x ≤ 1 (19a)

bu(x) = − vc f

(1 + α)(2 + α)

[
(−2 − α + x1 + α)x + (1 + α)l2 + α

n

]

ln ≤ x ≤ 1 (19b)

The energy dissipation per cycle from Eq. (16) is now

D = − 16v2c2
f

(1 + α)(2 + α)(3 + 2α)

× [−1 + (3 + 2α)l1 + α
n − (3 + 2α)l2 + α

n + l3 + 2α
n

]
(20)

For a small force F0/(vc f ) < 1, we substitute Eq. (18) into Eq. (20)
and expand D in a power series in F0 about the point F0 = 0 to order
4, giving

D = v2c2
f

[
1
3 (F0/vc f )

3 + (α/12)(F0/vc f )
4 + O

(
F5

0

)]
(21)

For the small force, expressing the relationship between energy
dissipation and magnitude of applied force as a power law D = γ Fn

0 ,
in which γ and n are constants, Eq. (21) indicates that n will be a
value close to but greater than 3.0 (because α < 0). If α = 0 (i.e.,
the pressure is uniformly distributed), we recover the commonly ac-
cepted result: the energy dissipation is proportional to the cube of the
applied force magnitude, D = F3

0 /(3vc f ), or, in dimensional form,
D = F3

0 /(3E Avc f ), which is identical to the result of Metherell and
Diller.2

B. Normal Traction as a Gaussian Function
We now assume that

P(x) = c f e−x2/(2σ 2), σ > 0 (22)

Nondimensional parameters for Eq. (22) are c̄ f = c f L/(E A),
σ̄ = σ/L . P̄(x̄) = P(x)L/(E A), and x̄ = x/L . The nondimen-
sional pressure function (omitting the overbars) is now in the same
form as Eq. (22).

Equation (13) leads to the length of the stick zone

ln =
√

2σErf−1

[
Erf

(
1√
2σ

)
− F0√

2πvc f σ

]
(23)

where the error function is

Erf(x) = 2√
π

∫ x

0

e−t2
dt

Erf−1(s) is the inverse error function obtained as the solution for z
in s = Erf(z). From Eqs. (14) and (15), we have

tu(x) = vc f σ
2
(
e−x2/(2σ 2) − e−l2

n/(2σ 2)
) +

√
π/2vc f σ

× [
Erf

(
x
/√

2σ
) + Erf

(
1
/√

2σ
) − 2Erf

(
ln

/√
2σ

)]
x

ln ≤ x ≤ 1 (24a)

bu(x) = vc f σ
2
(
e−l2

n/(2σ 2) − e−x2/(2σ 2)
) +

√
π/2vc f σ

× [
Erf

(
1
/√

2σ
) − Erf

(
x
/√

2σ
)]

x, ln ≤ x ≤ 1 (24b)

As in Sec. III.A, we obtain the energy dissipation per cycle as a
function of F0. For a small force, F0/(vc f e−1/(2σ 2)) < 1, expanding
D in a power series of F0 about the point F0 = 0 to order 4 results
in

D = v2c2
f e−1/σ 2

×
[

1

3

(
F0

vc f e−1/(2σ 2)

)3

− 1

12σ 2

(
F0

vc f e−1/(2σ 2)

)4

+ O
(

F5
0

)]

(25)

Equation (25) also indicates that, for a small force, a power ap-
proximation such as D = γ Fn

0 will lead to a value of n close to but
larger than 3. Also, we note that, if σ → ∞, that is, the pressure
is uniformly distributed, D = F3

0 /(3vc f ), or in dimensional form,
D = F3

0 /(3E Avc f ); this is the same widely accepted result as was
obtained for this special case in Sec. III.A.

C. Discussion of Dissipation Expressions
The pressure-distribution functions adopted in Secs. III.A and

III.B are quite different, but we can rewrite the energy dissipation
per cycle given by either Eq. (21) or Eq. (25) as

D = (vP(1))2

[
1

3

(
F0

vP(1)

)3

+ λ

(
F0

vP(1)

)4

+ O
(

F5
0

)]
(26)

Obviously, for Eq. (21), λ = α/12, and for Eq. (25), λ = −1/(12σ 2).
Expression (26) leads us to some common observations about

the energy dissipation of a shear lap joint subjected to longitudinal
loading. For Coulomb friction with a constant friction coefficient
and for a small force F0 < vP(1), there is a power-law relation
between the energy dissipation and the magnitude of the applied
force with an exponent close to but larger than 3. The power law is
an exact cubic if the interfacial pressure is uniformly distributed; the
energy dissipation will increase as the friction coefficient decreases.

As mentioned in Sec. I, in any cyclic loading experiment the
friction coefficient varies during the loading cycle: it decreases as
the sliding speed increases. This produces an energy dissipation,
Dexperiment, larger than that in Eq. (26). If we attempt to find the value
of n in the approximation Dexperiment = γ Fn

0 , this larger Dexperiment

leads to a smaller value of n. Therefore, we expect that, in any
dynamic experiment, a lower value of the exponent than predicted
by our model will result.
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Fig. 3 Iwan one-dimensional
parallel–series model.

IV. Application to Parameter Identification
of the Iwan Model

A. Distribution Function of Critical Slip Force
Although not spatially distributed, the Iwan parallel–series

model10,11 of Fig. 3 is composed of a series of Jenkins elements.
Each Jenkins element consists of a linear spring with elastic stiffness
k/N in series with a Coulomb slider with a critical slipping force
f ∗
i /N , i = 1, 2, . . . , N . If we let the number of Jenkins elements

N → ∞ and let f ∗
i be defined in terms of a distribution function

ϕ( f ∗), then ϕ( f ∗) d f is the fraction of total elements having a slip
force between f ∗ and f ∗ + d f ∗.

The force associated with the initial loading is

F =
∫ ku

0

f ∗ϕ( f ∗) d f ∗ + ku

∫ ∞

ku

ϕ( f ∗) d f ∗ (27)

Introducing the parameters k̄ = kL , F̄ = F/(E A), and ū = u/L , and
omitting the overbars, the second derivative of Eq. (27) with respect
to u gives the distribution function of critical slip force as11

ϕ(ku) = − E A

k2

∂2 F

∂u2
(28)

For the distributed-parameter model in Sec. II, we have

u = tu(1) ≡ uL , k = E A (29)

Therefore, Eq. (28) becomes

ϕ(E AuL) = − 1

E A

∂2 F

∂u2
L

(30)

As we show in Sec. III, F and uL ≡ t u(1) are both functions of ln .
It will thus be easier to compute ∂2 F/∂u2

L by

∂2 F

∂u2
L

= 1

(∂uL/∂ln)2

[
∂2 F

∂l2
n

− ∂ F

∂ln

∂2uL

∂l2
n

/
∂uL

∂ln

]
(31)

B. Normal Traction as a Power Function
If the normal traction is a power function as in Eq. (17) (after

nondimensionalization), we know from Eq. (13) that

F = 2vc f
1 − l1 + α

n

1 + α
(32)

From Eq. (19a),

uL ≡ tu(1) = vc f

(1 + α)(2 + α)

[
3+α−2(2+α)l1 + α

n +(1+α)l2 + α
n

]
(33)

Equation (30) leads to the distribution function of critical slip force

ϕ(E AuL) = 2
/

E Avc f lα
n (2 − ln)

3 = 2
/

E AvP(ln)(2 − ln)
3 (34)

in which uL is a function of ln as in (33).
For a shear lap joint with parameters E = 2.0 × 1011 N/m2,

A = 4.0 × 10−4 m2, L = 0.008 m, v = 0.14, and c f = 104 N/m,
Fig. 4a shows the distribution function of critical slip force when
α = −0.2, −0.1, and 0.0.

a)

b)

Fig. 4 Distribution functions of critical slip force for the Iwan model:
a) normal traction as a power function and b) normal traction as a
Gaussian function.

C. Normal Traction as a Gaussian Function
If the normal traction is Gaussian distributed as in Eq. (22) (after

nondimensionalization), following a procedure similar to that in
Sec. IV.B, we obtain the distribution function of critical slip force as

ϕ(E AuL) = 2
/

E Avc f e−l2
n/(2σ 2)(2 − ln)

3 = 2
/

E AvP(ln)(2 − 1n)
3

(35)

in which uL is a function of ln that can be obtained from Eq. (24a)
by simply setting x = 1.

We note that Eqs. (34) and (35) have similar forms. They seem
to indicate that the distribution function of critical slip force for
the Iwan model depends only on the value of the normal traction
at x = ln . This is consistent with our intuitive understanding of the
one-dimensional mechanics presented here.

For a shear lap joint having the parameters E = 2.0 × 1011 N/m2,
A = 4.0 × 10−4 m2, L = 0.008 m, v = 0.14, and c f = 104 N/m,
Fig. 4b shows the distribution function of critical slip force when
σ = 0.1 and 1.0.

V. Conclusions
The complete representation of a real joint and the prediction of

its effects on structural dynamic response require modeling both
the spatial variation of interfacial pressure and the actual energy-
dissipation mechanism. A distributed-parameter joint model with
spatially varying interfacial pressure has been developed to study
the constitutive relation and energy dissipation of a shear lap joint
under cyclic longitudinal loading. When constant Coulomb friction
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is assumed and a realistic pressure distribution is prescribed, the
energy dissipated in the joint is found to be related to the driving
force by a power law with an exponent somewhat greater than 3.
Explicit analytical results are given for interfacial pressure described
by a power function or a Gaussian function of the joint’s single
spatial coordinate. The classical result, in which dissipation depends
on the cube of the driving force amplitude, is recovered when the
interfacial pressure is taken to be uniform.

Experimental results in the literature commonly report energy-
dissipation power laws with exponents less than 3, that is, exponents
departing from the theoretical value but in the opposite direction
from the deviations found herein to follow from changes in pres-
sure distribution. This implies that a simple Coulomb model with a
constant, uniform coefficient is inadequate to capture all of the sig-
nificant friction effects in a real joint. An Iwan model is suggested as
a more general representation of joint friction, and the distribution
functions of slider critical slipping force corresponding to the two
joint-pressure distributions considered in this paper are calculated
and compared.

Our purpose in analyzing this simple one-dimensional model was
to show the effect of varying one aspect of a classical problem—the
normal pressure distribution—with the goal of determining its effect
on the rate of energy dissipation in a simple shear joint. It is true
that the model adopted is an idealization, but the results obtained are
consistent with those of numerical and experimental studies from
the literature, where less idealized models were used.
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