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Stick-Slip-Slap Interface Response Simulation: Formulation and Application of a
General Joint/Interface Element

Yaxin Song !, D. Michael McFarland ', Lawrence A. Bergman ' and Alexander F. Vakakis >

Abstract: A general interface element is developed for
dynamic response analysis of structures with jointed in-
terfaces, which can account for damping due to both im-
pact and friction. Contact effects are included through a
segment-to-segment contact model which considers the
stick-slip-slap behavior at every point along the joint in-
terface. A nonlinear friction law is adopted at the inter-
face to describe microscopic relative motion due to the
deformation of the asperities on the interface. Numeri-
cal examples demonstrate that the general joint interface
element is capable of accounting for both friction and
impact damping in jointed interfaces, as well as captur-
ing the transfer of vibrational energy from low frequency
to high during impact. The development of an interface
slip zone is a combined result of the actual friction trac-
tion and pressure distribution along the interfaces. It is
shown that the general joint interface element is able to
address this effectively, and the segment-to-segment con-
tact model adopted here allows the general interface el-
ement to capture very detailed stick-slip behavior along
the interfaces even with a coarse mesh.

keyword: Joint, Friction, Interface, Finite element,
Contact model.

1 Introduction

Joint mechanics refers to the mechanical properties of
joints in multi-component systems and their impact on
the structural response of the system of which they are
a part [Segalman, Paez, Smallwood, Sumali and Urbina
(2003)]. The successful modeling of joints largely de-
pends on understanding their basic physics and the abil-
ity to accurately predict their behavior. The nonlinear
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behavior and energy dissipation associated with mechan-
ical joints are derived from two mechanisms: friction
and impact (slap/gapping) [Segalman, Paez, Smallwood,
Sumali and Urbina (2003); Folkman, Ferney, Bingham
and Dutson (1996)]. Friction-related joint properties re-
sult from micro- and macro-slip occurring along the joint
interface. The micro/macro-slip causes energy dissipa-
tion and change of interface stiffness, resulting in the
nonlinear hysteresis associated with mechanical joints
[Gaul and Lenz (1997)]. Impact occurs when two parts
of an interface, which are originally separated by some
finite gap, come into contact. Two mechanisms of en-
ergy dissipation are associated with impact. One is the
small plastic deformation occurring in the zone of contact
during the collision process, resulting in impact damping
[Khulief and Shabana (1987); Lankarani and Nikravesh
(1990)], and the other is the transfer of vibrational energy
from low frequency to high where it is dissipated rapidly
by material and friction damping mechanisms [Segal-
man, Paez, Smallwood, Sumali and Urbina (2003); Folk-
man, Ferney, Bingham and Dutson (1996); Onoda, Sano
and Minesugi (1993)].

Considerable modeling effort has been expended at-
tempting to quantify the nonlinear behavior of mechan-
ical joints in structures containing them. Among these
are the detailed finite element joint models that require
solving a contact problem which incorporates a particu-
lar friction law. These are versatile and simple in con-
cept [Lobitz, Gregory and Smallwood (2001); Segalman
(2001)]. However, to capture micro-stick-slip-slap be-
havior, an extremely fine mesh must be used at the joint
interfaces, which makes finite element joint models com-
putationally prohibitive for dynamic analysis of jointed
structures. A major difficulty arising in joint modeling
research is the multi-scale problem. The constitutive be-
havior of mechanical joints, which appears as nonlinear
damping, nonlinear stiffness, and a transfer of mechan-
ical energy from low frequency to high, largely stems
from micro-scale (say, 1 ~ several hundred microns) in-
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terfacial interactions generally of interest to tribologists.
On the other hand, the prediction of structural response
of multi-component systems, which are significantly af-
fected by those manifestations associated with the consti-
tutive behavior of the joint, belongs to the area of struc-
tural dynamics and is associated with length scales of the
overall structures (say, 1 ~ several dozen meters).

To circumvent the multi-scale difficulty, many re-
searchers turn to reduced-order whole-joint models that
can capture the overall effects of the joint on the dynam-
ics of the structure, instead of developing models that
exactly describe the micro-scale constitutive behavior of
the joint itself. At this stage, major efforts in joints mod-
eling focus on addressing friction-related joint behavior.
Some researchers studied the effects of joints using a
nonparametric joint model [Crawley and Aubert (1986);
Crawley and O’Donnell (1987); Wang and Sas (1990);
Ren and Beards (1998); Ren, Lim and Lim (1998); Liu
and Ewins (2000)]. Other represented the friction oc-
curring at contact interfaces by a single Coulomb fric-
tion model [Menq and Griffin (1985); Shaw (1986); Ferri
and Heck (1998)], which is capable only of describ-
ing either the full-slip or full-stick situation. Different
reduced-order models that allow partial slip on the fric-
tion interface were presented by Menq, Bielak and Grif-
fin (1986); Menq, Griffin and Bielak (1986); Haessig and
Friedland (1990); Canudas de Wit, Olsson, Astrém and
Lischinsky (1995); and Segalman (2001, 2002) to sim-
ulate the one-dimensional hysteretic behavior of joints.
Song, Hartwigsen, Bergman and Vakakis (2003) and
Song, Hartwigsen, McFarland, Bergman and Vakakis
(2004) developed the 2-D/3-D adjusted Iwan beam ele-
ment (AIBE) to represent joint behavior in two and three
dimensional beam structures. Good agreement between
simulated and experimental results showed that the AIBE
can capture the transient response of jointed structures.
However, as joints are often inseparable parts of struc-
tures with complex configurations, reduced-order whole-
joint models are somewhat limited in application. More-
over, a common problem in whole-joint models is their
inability to describe the transient relation between the
varying normal pressure and tangential traction.

Impact-related behavior in joints is complicated and re-
mains an area of continuing interest [Gronet, Pinson,
Voqui, Crawley and Everman (1987); Crawley (1988)],
and much effort has been devoted to general contact-
impact problems. Some have investigated vibro-impact
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Figure 1 : Contact models. (a) Node-to-node contact
model, (b) Node-to-segment contact model

phenomena in dynamic systems, in which impacts occur
at discrete locations in flexible structures or collisions
occur between rigid bodies [Cone and Zadoks (1995);
Emaci, Nayfeh and Vakakis (1997); Knudsen and Mas-
sih (2000)]. Others have used finite element methods to
examine more general contact-impact problems in con-
tinua. As mentioned earlier, finite element methods de-
veloped for general contact-impact problems have been
employed directly to simulate the dynamics of joints with
friction. In those analyses, node-to-node or node-to-
segment contact models (NNC or NSC) are used, and
contact is represented at discrete nodes, as shown in Fig.
1 [Zhong (1993)]. Therefore, an extremely fine mesh
must be used along the joint interfaces to capture the
micro-stick-slip behavior. Also, in conventional contact
FE analysis, impact damping is generally neglected.

A general joint interface element incorporating both dy-
namic impact and friction is developed in this paper.
Here, segment-to-segment contact (SSC) is considered,
and contact effects are accounted for along continuous
edges of the elements. Thus, stick-slip-slap behavior at
every point along the joint interfaces is considered. In
the segment-to-segment contact model, segment pairs are
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specified in advance of the analysis, and contact is as-
sumed to occur only between those segment pairs. This is
generally true in dynamic analysis of jointed structures,
since only small displacements and micro- and macro-
slip occur at the joint interface. The general joint inter-
face element is comprised of two parts: the joint impact
element which accounts for impact effects (including im-
pact damping) normal to the direction of the interface,
and the joint friction element which considers friction
along the interface. The joint impact element consists
of a contact unit and a separation unit. The contact unit
describes the impact between two points on the joint in-
terface and will be active if the two points come into con-
tact; the separation unit prevents two points on the inter-
face from separating and is active when the two points
separate beyond an initial clearance. In the joint fric-
tion element, a nonlinear friction law by Oden and Pires
(1983) is adopted to describe the micro- and macro-slip
phenomena along the interface.

Two numerical examples are given to illustrate the ap-
plication of the general joint interface element. In the
first example, a system of two cantilever beams under a
concentrated impulse loading is considered, and the sim-
ulated results show that the general joint interface ele-
ment is capable of accounting for the impact and friction
damping in the joint, as well as capturing the transfor-
mation of vibration energy from low frequency to high
due to impact. In the second example quasi-static and
dynamic analyses of a contact system in which an elastic
plate is pressed against a rigid base with a constant pres-
sure and pulled laterally are presented. The two anal-
yses demonstrate that the development of the interface
slip zone is a combined result of the actual friction trac-
tion and pressure distributions along the interface, and
the general joint interface element is able to address this
effectively. It is shown that the segment-to-segment con-
tact model allows the general interface element to de-
scribe very detailed stick-slip behavior along the inter-
faces even with a coarse mesh.

2 Finite Element Procedures for Elastodynamic
Contact Problems

2.1 Overview

General contact problems are inherently nonlinear even
for cases involving small displacements and the sim-
plest constitutive relations because the contact area is un-
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known a priori and the boundary conditions are deter-
mined as part of the solution. Furthermore, for contact
problems considering friction, unknown friction direc-
tions and modes (sticking, sliding) also contribute non-
linearities [Zhong (1993); Zhong and Mackerle (1994);
Saleeb, Chen and Chang (1994); Farahani, Mofid and
Vafai (2000)]. In the standard displacement-based finite
element analysis of contact problems, displacements are
constrained by the kinematic contact constraint or impen-
etrability condition; i.e., no material particle of one body
is allowed to penetrate to the interior of another body.
Two constraint methods are commonly used to enforce
the impenetrability condition: the Lagrange multiplier
method and the penalty method. In the Lagrange mul-
tiplier method [Hughes, Taylor, Sackman, Curnier and
Kanoknukulchai (1976); Chaudhary and Bathe (1986);
Bathe (1982); Cook, Malkus and Plesha (1989)], the con-
tact forces (Lagrange multipliers) are calculated as un-
knowns, and the zero-penetration condition is enforced
exactly. The Lagrange method increases the dimen-
sion of the resulting system equations and is not consis-
tent with explicit integration procedures [Carpenter, Tay-
lor and Katona (1991)]. In the penalty method [Zhong
(1993); Bathe (1982); Cook, Malkus and Plesha (1989);
Hunek (1993)], a small amount of penetration is allowed
at contact points, and the contact force is assumed to
be proportional to the amount of penetration by intro-
ducing a penalty parameter (or normal contact stiffness).
The penalty method does not introduce new unknowns
into the system equations, and the application of the
penalty method with explicit integration is straightfor-
ward. However, the accuracy of the solution depends on
the choice of penalty parameters.

The penalty method is equivalent to a “gap” or “joint”
element method [Endo, Oden, Becker and Miller (1984);
Simons and Bergan (1986); Choi and Chung (1996); Ju
and Rowlands (1999)]. A gap element has nodes across
the gap and its nodal displacements are coupled by the
gap element stiffness matrix. When the gap is open (sep-
aration occurs) the element stiffness is set to zero, and
when the gap is closed (contact occurs) the element stift-
ness is set to the normal contact stiffness.

In the above constraint methods, contact points must be
determined first. A simple way of doing this is to spec-
ify node pairs prior to solution of the problem and to
check these node pairs during the analysis to see whether
they contact or not. This so called node-to-node inter-
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face model is valid only for problems with small dis-
placements, in which the deformed configuration does
not deviate much from the initial configuration. For
contact problems with large displacements or sliding, a
contact-searching algorithm, the master-slave algorithm
first presented by Hallquist (1978), is most widely used.
The master-slave algorithm is a node-to-segment inter-
face model.

2.2 Finite Element Procedures

We consider here deformable bodies Q CRY (N=2 for
two-dimensional problems; N=3 for three-dimensional
problems), which have the boundary

[=T,UT;UT. (1)

where I'; is the portion of the boundary subjected to pre-
scribed displacements; I'; is the portion of the bound-
ary subjected to applied tractions; and I'; is the contact
boundary between deformable bodies. I'y, I'r and I’ are
mutually disjoint.

Let displacement, velocity and acceleration fields in do-
main Q be u, 1 and ii €R", respectively. The governing
equations for the elastodynamic contact problem include
dynamic equilibrium equations (with kinematic and con-
stitutive relations), boundary conditions, initial condi-
tions, a friction law and contact conditions [Tamma, Li
and Sha (1994); Sha, Tamma and Li (1996)]. Specifi-
cally, for a time interval [0, 7] the contact conditions are

gn(x,u) >0 onT,x[0,T] (2a)
6, <0 onT.x][0,T] (2b)
Gngn(x,u) =0 onT, x[0,T] (2¢)

in which x €R" is the coordinate vector of a material
point, g, is the “gap” function between two bodies on
the contact boundary I';, and G, is the normal contact
stress on I'.. Condition (2a) describes the impenetrability
condition; (2b) implies that no tensile contact stress can
occur on I';; and (2c¢) is the complementary condition.

The elastodynamic contact problem stated above can be
discretized and solved by finite element techniques. The
equilibrium equation is first transformed into a varia-
tional equation by the application of the principle of vir-
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tual work

/piiifiuidQ—I—/cuiﬁuidQ—l—/GijSeide
Q Q Q

= /biﬁuidQ+/pi6uidr+/qi8uidr 3)
Q

Iy T

where ¢ and ¢ are stress and strain tensors, respectively;
p is the mass density; c is the linear viscous damping
parameter which represents the system material damp-
ing; b €RY is the body force; p €R" denotes the surface
traction on I'y; and q €R" is the contact traction on T,
which is constrained by contact conditions and friction
laws. In the standard procedure, the domain € is dis-
cretized into a collection of finite elements. We denote
the domain occupied by an element as ¢ and its dis-
placement, traction and contact boundaries as I', I'; and
I'¢, respectively. Within Q°, the displacement, velocity,
acceleration, strain and stress fields can be expressed as

u=Nd", ii=Nd°

u = Nd°, (4a)

e=Bd°, o =De=DBd* (4b)

in which d¢, d°, and d¢ are element displacement, veloc-
ity and acceleration vectors, respectively; N is the shape
function matrix; and B and D are the strain-displacement
and stress-strain matrices of the material, respectively.
Substituting (4) into (3), we obtain the discrete finite
element equations of motion for elastodynamic contact
problems

Z/pNTNdQ d-+ Z/cNTNdQ d
eQE eQE

+ Z/BTDBdQ d
ng

:Z/NdeQ—I—Z/NTde—I—Z/NquF (5)
e O e r; e Ie

which can be expressed as

Md+Cd+XKd =F,, +F. (6)

Here, M, C and K are the system mass, viscous damping
(associated with system material damping) and stiffness
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matrices; d, d and d are the system displacement, ve-
locity and acceleration vectors; Fex¢ is the external force
vector, including body and surface forces; and F, is the
contact force vector.

As mentioned in Section 2.1, in addition to the usual ini-
tial and boundary conditions, displacement vector d in
(6) is subjected to the impenetrability condition. The
Lagrange multiplier method or the penalty method can
be used to enforce the impenetrability condition, and
the “gap” element method is equivalent to the penalty
method. By introducing interface elements at joint in-
terfaces, the impenetrability condition is satisfied, albeit
approximately in the case of the penalty method. The
contact force vector I', is evaluated according to the con-
tact force model and friction law adopted in the gap ele-
ments.

3 A Joint Interface Element without Friction

3.1 Description of the Joint Impact Interface Element

A two-dimensional joint interface element without fric-
tion is shown in Fig. 2. The joint interface element is
placed between two adjoining edges of elements E; and
E,, which are used to discretize bodies 1 and 2, respec-
tively. Elements E; and E, could be any element type,
but here we use bilinear isoparametric elements with four
nodes. The interface element of Fig. 2 is composed of an
infinite number of interface units. Each interface unit has
a contact unit, with initial clearance ¢(s), and a separa-
tion unit, with initial clearance eg(s), where s is the local
tangential coordinate along the edge of the interface ele-
ment. Each separation unitis composed of a linear elastic
spring with distribution stiffness kg(s). The form of the
contact unit depends on the contact force model adopted.
For example, a linear contact unit consists of a linear
elastic spring and a viscous damper, as shown in Fig. 2.
The contact unit will be active if two points on the joint
interface come into contact, and the separation unit will
be active when two points on the joint interface separate
beyond the initial clearance eg(s). In Fig. 2, F{*(s), F;'(s)
are the normal interface distribution force functions and
Ui (s), UJ(s) are the normal displacements at point son
edges 1 and 2, respectively. A gap function g,(s) on the
interface is defined as

gn(s) = U3 (s) = Uj'(s) —es(s) ™

Within a bilinear isoparametric element, displacements
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3 Bilinear
Isoparametric elements

Impact
interface element

1 ooy —2 2
()

body 1

S Edge 1

n n
F(s>,Uds>

FEs,UXs>
X
(b)

Figure 2 : Impact interface element for mechanical joints

at a point are interpolated as

u = Nd° (8a)

u={u v} (8b)

d’ = { up vy UuUp vy U3z vV Us V4 }T (80)
N O N O N O Ny O

N= 0O N 0 M 0O N 0 N (8d)

where N;(§,m) (i = 1,2,3,4) is the shape function. Co-
ordinates within the element are defined by

4 4
x= Y Nixi, y= Y Nyi
i=1 i=1

where (x;,y;) are the coordinates of node i,i = 1,2,3,4.
In Fig. 2, atedge 1 (N = —1) and edge 2 (n = +1), we
can evaluate U}'(s) and U} (s) as

R,
g

€)

Up(s) = =Ny d§ (102)
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R
U3 (s) = = "Nad$ (10b)
where
[N 0 N O
N‘__O N 0 Nz]n__] (11a)
[N 0 Ny O
N, = 11b
710 Moo N4]n_+] (1)
Y x [y &
R, = P33 ag}n:_l ’ RQ—’[ i3 a&}n:+1
(11¢)
1:1/2\/(x2—x1)2+(y2—y1)2
= 1/2/ (6 —x3)>+ (4 —3) (11d)
d={w v w » };17
d§:{ Uz V3 Uy Va4 }22 (11e)

Here, in the expressions for df and d$, the subscripts
“E1” and “E2” denote from which element the displace-
ments are obtained. The gap function g,(s) can be ex-
pressed as

1
gn(s) = 7Pdf —ey(s) (12)
Obviously,
P=[ RNy RN, |, d¢={da a5} (13

where df is the nodal displacement vector for the impact
interface element, which has four nodes numbered clock-
wise as shown in Fig. 2(b).

The interface distribution forces at point s are

F'(s) = —F'(s)

= 0(s).fi(s) +B(s)ks(s) [gn(s) +-es(s) +er(s)]  (14)

in which the impact force fi(s) = fi(s) + fa(s), where
fs(s) and fy(s) are elastic and damping distribution
forces in the contact unit, respectively, and

_{ if gu(s)>0
If gu(s) <0

1,

(15a)
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B(s) = 1, if gu(s)+es(s)+er(s) <0
0, else
(15b)
The element nodal force vector for the joint impact inter-

face element due to contact-impact, f7, can be calculated
from the interface force distribution functions F{'(s) and
F}(s) in the form

fi={rfa fu fo fio fo fs fu fu }T

[ NTFrds
- }'ngglds
Scz
! —y /&
NTF”{ Y } d
_ _J]; 11 ax/(?f/a& _ {;
NT _n y } d
_J; 2( Fz){ _ax/aé _— {;
1
_ [ -N{R{ ] g
_/1 L
1
:_/wm@ (16)
—1

where f,; and fy; (i =1,2,3,4) represent the nodal forces
in the x and y directions for the ith node of the impact
interface element, and S.; and S, are edges 1 and 2, re-
spectively.

Assembling the element nodal force vectors for all joint
impact interface elements, we obtain the contact force
vector for the system as

F.=>f;

a7

In this joint impact interface element, the impact force
within the contact unit is the sum of elastic force f(s)
and damping force f;(s), which are given according to
the chosen contact force models. Generally, fi(s) is a
function of g, (s) and f,;(s) is a function of both g, (s) and
gn(s). Therefore, the contact force vector is a function
of displacement, velocity and clearance. Assuming that
es(s) and eg(s) are known, the system equation of motion
(6) becomes

Md + Cd + Kd = Fey¢ +F.(d,d) (18)
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3.2 Joint Interface Element with Linear Contact
Force Model

Many different contact force models have been devel-
oped (see, for example, [Khulief and Shabana (1987);
Lankarani and Nikravesh (1990); Hunt and Crossley
(1975); Khulief and Shabana (1986)]). In the contact unit
introduced in Section 3.1, if a linear contact force model
is adopted

fi(s) = f(s) + fa(s) = kign(s) + c1én(s)

(in which k; and c¢; are the coefficients of elastic and
damping distribution forces, respectively), the element
damping and stiffness matrices of the joint impact inter-
face element can be derived. Substitution of (19) and (12)
into (14) leads to

19)

F'(s) = —F'(s)
[ou(s)ki(ss) +B(s)ks(s)]

l
+B(s)ks(s)es(s) —ous)ki(s)es(s

(20)

By substituting (20) into (16), the element nodal force
vector for the joint impact interface element can be ex-
pressed as

f; = —K{dj — C{d] + E{ 1)
where
1
m:%/mb+mﬂﬂmﬁ (22a)
-1
1
(ﬁ:;/@qwr@ (22b)
—1
1
E:/Wmmwﬁm@& (22¢)
—1

Here, Cy and K7 are the elemental damping and stiffness
matrices, and Ef is the elemental nodal force vector due
to clearance, for the impact interface element. Therefore,
the system equation of motion in (18) has the form

Md+ (C+C;)d+ (K+K;)d = Fex; + E (23)
in which

Cy KY E{
=), K=>, E=) (24)
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4 A Joint Interface Element with Impact and Fric-
tion

4.1 General Joint Interface Element

The joint impact interface element given in Section 3
does not include frictional effects. A general joint inter-
face element considering both impact and friction effects
is presented in this section. This element is composed of
two parts: one is the joint impact interface element given
in Section 3, which accounts for impact in the normal
direction of the interface, and the other is the joint fric-
tion interface element, which considers the friction along
the interface. In both the impact and friction interface el-
ements, segment-to-segment contact along edges of the
elements is considered.

The general interface and friction interface elements have
the same element nodal displacements as the impact in-
terface element, given by

e __ e __ ge
dj, =dj =d5

T

:{m Vi Uy vy Uz V3y Uy V4}

:{{”1 Vi 2 » }El {”3 Vi U4 V4 }EZ }T

(25a)

The element nodal force vector for the general interface
element is composed of two parts

fe =+ 1
={ fa f fo fio fo fis fua fa }T(25b)

where f7 (as shown in (16)) and f; are element nodal
force vectors due to impact and friction, respectively.

4.2 Joint Friction Interface Element Using a Nonlin-
ear Friction Law

Although it has been widely used in engineering appli-
cations, the classical Coulomb friction law cannot de-
scribe the microscopic relative motion corresponding to
the deformation of the asperities of two contacting bod-
ies, which has been observed to occur even under a small
tangential force. Therefore, we adopt a more complex
nonlinear friction law by Oden and Pires (1983) for our
joint friction interface element. In this law, the friction
traction fr has a relationship with the tangential relative
displacement ur as illustrated in Fig. 3, where a constant
normal contact force f, is assumed. For monotonically
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Figure 3 : Relation of friction force and relative tangen-
tial displacement in the nonlinear friction law for initial
loading

increasing loading (in a positive or negative sense), we
have

tr—{

in which f. = u|f,| where u is the coefficient of friction
and € = f./E. The quantityE, referred to as the friction
modulus, is the slope of the curve before macro-slip.

if
if

_EfuT7
—feur/ |lur|,

Jur|| <e

lur > e (26)

Fig. 4 shows the joint friction interface element using the
nonlinear friction law, in which the normal contact force
distribution functions F{'(s) and F}'(s) account only for
compressive traction; that is,

Fi'(s) =

—F5'(s) = as) fils) 27)

(this may be compared to (14)). The relative displace-
ment function at point s on the interface is calculated as

U;(s) = (u1Ny + up N ) cos O+ (viNy +v,N,) sin

- (M3N3 + M4N4) cosO — (V3N3 —|—V4N4) sin® (28)

With the knowledge of F'(s), F;'(s) and U;(s), the fric-
tion tractions F;(s) and F; (s) can be determined through
the nonlinear friction law. The element nodal force vec-
tor for the joint friction interface element, f%, is obtained
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3 Bilinear
Isoparametric elements

Friction
interface element

(a)

(b)

Figure 4 : Joint friction interface element using nonlin-
ear friction law

as (refer to (25b))
S NTF(s)ds
fy = f NIF;(s)ds
Scz
! [ ox/dg }
NTFs { d
_f] 141 ay/aé e é

ox 0 29

1
TN { o

f.

5 Applications to Contact Problems

5.1 Numerical Example I: A System of Two Can-

tilever Beams

A system of two cantilever beams under a concentrated
impulsive load at the mid-span of the upper beam, as
shown in Fig. 5(a), is considered. The finite element
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Table 1 : Four dynamic simulation cases for the two-
cantilever-beam system of Example I

Impact Friction? | Separation?
damping?

Case I X X Vv

Case II Vv X Vv

Case Il | x X X

Case IV | x vV X

mesh for this system is shown in Fig. 5(b). The inter-
face between the two beams is represented by 20 gen-
eral joint interface elements. The two beams are iden-
tical in geometry and material properties, except that
they have different mass densities. The material prop-
erties for the two beams are Young’s modulus E =
2.0x10" N /m', Poisson’s ratio v = 0.0, and mass
density p; = 4.0x10° kg/m? for beam 1, while p; =
7.8x10° kg/m? for beam 2. The load is the half-sine
function

{

where fimp = 2000 Hz. Four cases are simulated to
demonstrate the application of the joint interface element
and its potential in dynamic response prediction of struc-
tures containing joints/interfaces. As shown in Tab. 1,
in Cases I and II the two beams can separate freely (the
stiffness of the separation units is zero), and there is no
friction in the interface. No impact damping is consid-
ered in case I, while it is accounted for in Case II. In
Cases III and 1V, the two beams are bonded so that they
cannot separate freely, and in both cases these is no im-
pact damping. The difference between Cases III and IV
is that in Case IV there is friction at the interface, while
there is none in Case IIl. The parameters of the inter-
face elements in the four cases are given in Tab. 2. In all
cases, the system material damping matrix Cin (6) is rep-
resented by Rayleigh damping in the form C = oM + BK
[Bathe (1982); Cook, Malkus and Plesha (1989)], where
the coefficients o and B were obtained by setting the first
two damping ratios of the system to ¢; = ¢, = 0.005.

1.0 x 107 sin(27 fipt ) N,
0,

0<1<1/(2fimp)
else

f(t)

(30)

Figures 6 through 9 show the acceleration histories in the
x and y directions at points A and B for the four cases. In
Figs. 6 (Case I) and 7 (Case II), the two beams impact
at some times because they have different dynamic char-
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Figure 5 : Two cantilever beams under a concentrated
load. (a) Configuration, (b) Finite element mesh

acteristics (the fundamental natural frequencies for beam
1 and 2 are 120.4 and 86.2 Hz, respectively). Compar-
ing the responses in Figs. 6 and 7, it is clear that impact
damping can have a significant effect on the dynamic re-
sponse of a system with an interface. In Figs. 8 (Case
IIT) and 9 (Case IV), the two beams are bonded together
and vibrate like a single beam without impact occurring.
Due to the damping resulting from frictional energy dis-
sipation, the responses in Fig. 9 decay faster than those
in Fig. 8, although the difference between them is not as
obvious as that between Cases I and II.

In both Cases I and III, no friction or impact damping is
considered. However, if we compare the response histo-
ries for Cases I (Fig. 6) and III (Fig. 8), it is obvious that
the vibration of the two beams in Case I decays much
more quickly than that in Case III. In Case I we have two
separate beams which impact each other during vibra-
tion, while in Case III there is practically no impact oc-
curring because the two beams are bonded together. As
mentioned in Section 1, the interfacial energy dissipation
stems from friction and impact (slapping). Further, the
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Table 2 : Parameters of interface elements in four simulations of Example I
k(N/m? [ a(Nsjm)> [ em) | ks(NJm)® | es(m) | E;(N/m)> | u
Case | 1.0x 10! N/A 0.0 N/A 0.0 N/A N/A
Case II 1.0x 10! 1.0x 107 0.0 N/A 0.0 N/A N/A
Case Il | 1.0x10'! N/A 0.0 1.0x 10! 0.0 N/A N/A
Case IV | 1.0x10" N/A 0.0 1.0x 10! 0.0 1.0x10'0 0.4
s><105 ‘ 12><1o5 ‘
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Figure 6 : Acceleration histories for points A and B in Case L. (a) In the x-direction, (b) In the y-direction
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Figure 9 : Acceleration histories for points A and B in Case IV. (a) In the x-direction, (b) In the y-direction

energy dissipation associated with impact is due to two
mechanisms: (a) small plastic deformation in the contact
zone, which is accounted for in the interface element by
the distributed dampers in the normal direction of the in-
terface, and (b) the transformation of vibrational energy
from low to high frequency where it is dissipated rapidly
by material damping. The rapid decay of vibration in
Case I is exactly due to the mechanism (b), which is

shown clearly in Figs. 10 and 11. These figures show the
magnitudes of the Fourier transforms of the acceleration
histories for the four cases for points A and B, respec-
tively. Comparing with Cases III and IV, the vibrational
energy in Cases I and II is distributed over a wider range,
to higher frequency, in the presence of impact. For Case
IV, as shown in Figs. 10 and 11, there are some peaks
excited by friction in the x direction. These peaks cor-
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respond to the first extensional modes of the upper and
lower beams (around 1768 and 1266 Hz). Therefore, the
presence of friction may also excite some high-frequency
vibration; however, this is less significant than the energy

transformation due to impact.

5.1.1 Preliminary Experimental Corroboration of Im-
pact Behavior Predictions

The above results may be compared to experimental data
taken with the apparatus of Fig. 12. The two impacting
cantilevered beams shown there are nominally identical
except for length, with one being 10% shorter than the
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other. The measured transverse accelerations following
impulsive excitation (with a modal testing hammer) are
plotted in Fig. 13, where qualitative agreement with the
above numerical findings is quite evident. Full-scale val-
ues in this plot represent accelerations of approximately
500 m/s?, which is significantly less than the values ob-
tained in the simulations; however, additional, unmod-
eled damping mechanisms, such as displacement of air
from between the beams, were present in the experiment.
Transformation of these signals to the frequency domain
(not shown here) reveals that significant vibrational en-
ergy is shifted from low to high frequency by the impacts
occurring early in the response.

5.2 Numerical Example 11: An Elastic Plate Pressed
Against a Rigid Base

Figure 12 : Cantilevered beams, identical except for
length, mounted in a bench-top clamping fixture

Figure 14(a) shows a contact system in which an elas-
tic plate is pressed against a rigid base with a pres-
sure P(x,t) and is pulled laterally at the right end of
the plate by a force distribution F(y,#). This system is
modeled as a plane-strain problem. The material prop-
erties for the elastic plate are Young’s modulus £ =
2.0x10'"" N /m!, Poisson’s ratio v = 0.3, and mass
density p=7.8x10> kg /m?>. The geometry of the plate
is length L = 0.36 m, height H = 0.09 m, and width
W = 1.0 m. The finite element mesh for this system is
shown in Fig. 12(b). Twelve general joint interface el-
ements are located at the interface of the elastic plate
and the rigid base. The parameters of the interface el-
ements used in the simulation are k; = 3.3 x 10" N/m?,

165

Beam tp accel
o

0.3

0.4

3o 0 0.0 0.02

Figure 13 : Acceleration of beam tips following impulse
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Figure 14 : An elastic plate pressed on a rigid base and
pulled laterally. (a) Configuration, (b) Finite element
mesh

¢ = 0.0 Ns/m?, e; = es = 0.0 m, Ef =1.0x10'° N/m?,
and 4 =0.4.

To carry out a quasi-static analysis for this system, the
pressure P(x,7)and the pulling force distribution F (y,7)
shown in Fig. 15 were applied, in which P(x,t) =
1.0 x 10* N/m and Fyax = O Fim /H, where Fiiy, = uPL
is the critical friction force and o is the loading fac-
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tor. In this quasi-static simulation, oy = 1.0, #; = 0.02
s, and t, = 0.04 s. No friction is considered when 1 < f;.
The system material damping matrix C is again repre-
sented by Rayleigh damping with very large damping ra-
tios (g1 = ¢ = 0.95) to help eliminate dynamic structural
response.

Figures16(a) and (b) show the histories of the pressure
and the friction state along the interface between the elas-
tic plate and rigid base. Due to the clockwise couple
caused by the pulling force, the pressure near the right
end of the interface is larger than the constant pressure P,
while the pressure near the left end is smaller. The pres-
sure around the center of the interface maintains a value
close to P (see Fig. 16(a)). This specific pressure distri-
bution has a direct effect on the development of the slip
zone along the interface. As shown in

Fig. 16(b) (a value of 1 represents sliding and a value of 0
means non-sliding), the slip starts from the left end of the
interface and extends gradually to the right as the pulling
force increases. This is quite different from the corre-
sponding one-dimensional problem, where the pressure
is constant all along the interface and the slip zone be-
gins and extends from the right-hand end of the interface
to the left.

A dynamic simulation was performed next. In the dy-
namic analysis, everything is the same as in the quasi-
static analysis except that the force distribution F(y,?) is
a harmonic function

0<r<n

0,
F(y,t)= { o Him sin[1000m(r —11)], else

H
(€29)

where o = 0.6 and #; = 0.02s. In this simulation,
the material damping matrix C is again in the form of
Rayleigh damping. When ¢ < #1, no friction is considered
and the Rayleigh damping coefficients & and P are deter-
mined by two very large damping ratios (g; = ¢ =0.95),
while for ¢ > #;, another Rayleigh damping matrix with
the first two damping ratios set to ¢; = ¢, = 0.005 was
used.

Figures 17(a) and (b) show the histories of the pressure
and the friction state at the interface, respectively. During
the simulation, the pressure distribution at the interface
is changing all the time with the harmonic force func-
tion F(y,t). Basically, as F(y,t) increases in the positive
x direction (the plate is “pulled” to the right), the pres-
sure near the right end of the interface (referred to as P»)

CMES, vol.10, no.2, pp.153-170, 2005
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Figure 15 : Pressure and pulling force functions for the
contact system. (a) Pressure, (b) Pulling force

increases to a value larger than the constant pressure P,
while the pressure near the left end of the interface (re-
ferred to as Py) decreases to a value smaller than P. As
F(y,1) increases in the negative x direction (the plate is
“pushed” to the left), the change in pressure distribution
is the opposite, i.e., P; increases to a value larger than P
and P, decreases to a value smaller than P. During the
“pulling” and “pushing” processes, the pressure around
the center of the interface is changing and has a value
between P; and P,. These effects of “pulling” and “push-
ing” loadings on interface pressure distribution have also
been observed by Heinstein and Segalman (2002). Along
with the dynamic effects on the structural response, this
changing pressure distribution at the interface causes a
very complicated friction state, as shown in Fig. 17(b).

In the above quasi-static and dynamic simulations, for
each interface element, sixteen Gauss points along the
edge of the element were employed in evaluating the ele-
ment nodal force vector due to friction (two-point Gauss
quadrature was used, and each interface element edge
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Figure 16 : Quasi-static simulation results. (a) Pressure
distribution, (b) Friction state

was divided into 8 parts). It can be seen from Figs. 16(b)
and 17(b) that very detailed stick-slip behavior along the
interface can be captured even with a coarse mesh.

6 Conclusion

Joint modeling research is hindered by the dramati-
cally different length scales associated with joint prop-
erties and the length scale characteristic of the overall
structures. In conventional finite element joint mod-
els, node-to-node or node-to-segment contact models are
employed, and the contact effects are accounted for at
discrete nodes. To capture the micro-stick-slip behav-
ior along joint interfaces, an extremely fine mesh must
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Figure 17 : Dynamic simulation results. (a) Pressure
distribution, (b) Friction state

be used. Also, in conventional contact finite element
analysis, impact damping due to small plastic deforma-
tion in the contact zone is generally neglected. Some
researchers have developed reduced-order whole-joint
models that can capture the overall effects of joints on
dynamics of jointed structures to overcome the multi-
scale difficulty in joint modeling research. However,
these reduced-order whole-joint models usually are not
versatile enough to model arbitrary structural configura-
tions and are incapable of describing the transient rela-
tion between the varying normal pressure and tangential
traction.

The authors have developed a general joint interface el-
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ement incorporating both dynamic impact and friction,
in which segment-to-segment contact is considered and
contact effects are accounted for continuously along the
edges of the elements. Thus, stick-slip behavior at every
point along the joint interfaces is considered even when
using a relatively coarse mesh. The general interface el-
ement is applicable to structure geometries and configu-
rations and it is easy to incorporate any dynamic friction
and contact model into it. Numerical examples demon-
strate that the general joint interface element is capable
of capturing all nonlinear joint properties due to interface
impact and friction.

The successful application of this element in dynamic re-
sponse analysis of jointed structures hinges on the deter-
mination of the interface parameters associated with the
dynamic contact and friction laws adopted. It is never
an easy job to choose the appropriate penalty parameter
(or normal contact stiffness), damping parameter, fric-
tion modulus (or tangential contact stiffness), and so on.
A promising methodology to overcome this is to find
ways to link the parameters of the joint interface element
with physical interfacial quantities as represented by an
asperity-based model developed in tribology.
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