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Abstract

Friction in joints significantly contributes to the observed overall damping of mechanical structures. Especially if
the material damping is low, the frictional effects in joints and clamping boundary conditions dominate the structural
damping. The damping and the stiffness of the structure are nonlinear functions of the system states and consequently
of the excitation signal and amplitude. If these nonlinear effects should be incorporated in the design process, transient
simulations must be employed in order to predict and analyze the damping for a given excitation, though they need
excessive computation power due to the nonlinear constitutive laws and the high contact stiffnesses.

As one approach to alleviate transient simulations, the application of component mode synthesis (CMS) methods to
structures with friction is investigated exploiting the linearity of the jointed substructures. The nonlinear frictional effects
and the normal contact is modeled by constitutive laws implemented in a zero–thickness–element formulation. The
necessary considerations for accurate damping prediction by the reduced models, the accuracy and the computational
times for transient simulations are presented. The found model reduction techniques allow a strong reduction of the
computation time which in turn makes it a promising tool for model updating and predictive parameter studies. As
an application example, a beam–like structure with attached friction damper is investigated in simulations and the
obtained numerical results after model updating are compared to experiments.

Nomenclature

x, q physical, generalized coordinate vector

M ,K,M̂ , K̂ mass and stiffness matrix, hat indicates reduced mass and stiffness matrices
F ,BT,BN right–hand–side load vectors
g, gref gap vector, gap vector of reference solution
urel relative displacement
FN,1, FN,2 normal forces applied by the left and right bolt
E, Eref strain energy, strain energy of reference solution
µ friction coefficient
cN,0, cN,1, cT stiffness parameters in normal and tangential direction
g0, g1 gap parameters for normal contact law
ω, f angular frequency, frequency

1 Introduction

Most real–world engineering mechanical structures contain nonlinear elements, e.g. play, nonlinear springs and stiffnesses,
or joints with nonlinear contact and friction effects. It is known from experiments that friction, mostly microslip effects, in
joints contribute significantly to the overall structural damping in metal structures [6, 14, 13, 7]. Due to the nonlinearities,
analysis must be conducted costly in time domain or with special methods such as harmonic balance methods [17, 14, 12].
This is often avoided by using linear stiffness and damping models for harmonic analysis in frequency domain [1]. By
this, it is exploited that most nonlinearities are located on interfaces connecting substructures for model order reduction
therewith enabling transient analysis with fair cost for engineering mechanical structures. For example, one application is
closed–loop simulations of semi–active controllers for friction dampers with controlled normal forces [2].

Although many publications cover model reduction techniques for mechanical structures with isolated nonlinearities, e.g.
using Krylov–mode based reduction [8] or using proper orthogonal decomposition (POD) methods [16], only few consider
distributed nonlinearities. For the investigated structure, namely a beam with attached friction damper beam, friction and



contact nonlinearities act on the contact area between base structure and friction damper. Though the contact area is
small compared to the overall structure dimensions, it can not assumed to be point–like.

In Gaul et. al. [8], Krylov reduction methods are employed to efficiently simulate the dynamics of a truss structure as a
typical lightweight construction. The truss is equipped with adaptive friction joints that can be semi–actively controlled
to damp out vibrations excited by a snap–back of the truss tip. Model reduction is applied for the simulation of the
closed–loop behavior and for the design of appropriate observers. In the first step of the model reduction, the dominant
modes of the structure are determined and retained by modal truncation. Then, Krylov modes are determined for the linear
transfer functions between every discrete adaptive joint model and the controlled variables and added to the reduction
base. By this technique, a strong reduction of the computation time is achieved as long as not too many nonlinear joints
have to be considered which would strongly increase the number of transfer functions that must be separately treated. A
strong disadvantage of this approach is that the dynamics of the whole structure can not be recovered from the reduced
solution, i.e. the interesting output variables must be already determined before the reduction step is conducted. Qu [15]
investigates model reduction techniques for finite–element (FE) models with local nonlinearities. He proposes an iterative
procedure to calculate reduced mass matrices from Guyan reduction that improves the accuracy at higher frequencies
without adding additional DOFs. For two test structures, nonlinear FRFs are calculated from time simulations and the
harmonic balance method for the full–order models of 82 and 165 DOFs, respectively, and are compared to results from
reduced models.
Witteven and Irschik [18] propose model reduction techniques specifically for structure with bolted joints. They model only
the nonlinear normal contact in the bolted joints without consideration of frictional effects. A reduction method based on
the Craig–Bampton reduction method applied to the whole structure is proposed that accounts for actio and reactio at
the contact interface. It is important to note, that the method is formulated for the whole structure only and does not
exploit that the structure is made up from different jointed substructures.
Jalali et al. [9] considered two beams connected by a rotational joint with friction that is modelled by a discrete nonlinear
joint model. Their dynamic model is based on the first bending mode obtained from a linear case. For vibrations close to
the one considered mode, the joint model parameters are identified from experimental data. Unfortunately, it is not tested
if the chosen joint model and the identified parameters are able to capture the dynamical behavior at other resonance
frequencies as well and the question how to replace the nonlinear elements by linear ones for the modal reduction is not
discussed.
Segalman [16] proposed the use of Eigenmodes in addition to special discontinuous global vectors (either eigenvector
sensitivities or so–called Milman–Chu vectors) in order to strongly accelerate convergence of a Galerkin reduction method
for model reduction of medium–scale mechanical systems with localized nonlinearities. The method is demonstrated for a
11 degrees of freedom (DOF) system with 1-D friction nonlinearities with the system energy time evolution as performance
criteria, for which superior convergence is shown if the proposed discontinuous vectors are used. Kappagantu and Feeny
[10, 11] apply proper orthogonal decomposition (POD) methods to determine reduction bases from arbitrary time signals
that are obtained from either measurements or simulations. However, such POD methods generally yield black-box models
that give no insight into the internal physics and the reduction quality strongly depends on a representative selection of the
excitation signals. Only the selected outputs can be recovered from the reduced model solution, which strongly restricts
the range of applications of these methods.

In summary – to the opinion of the authors – there is a lack of research of model–driven reduction strategies for mechanical
structures with friction that systematically exploits the separation of the overall structure into jointed substructures. Such
strategies are developed and investigated in the following, where they are used to efficiently predict the contributed damping
of bolted joints and frictional interfaces to the overall structural damping.

1.1 Basics Concepts of Component Mode Synthesis

Component Mode Synthesis (CMS) methods reduce the complexity of structural dynamics models leading to reduced
simulation time and reduced memory requirements. The linear subsystem models – in most cases obtained from FE
discretization – are reduced with special consideration of the interface degrees of freedom (DOFs) and for a given frequency
range of interest in a first step. Then, the reduced substructure models are assembled to the overall structural dynamics
that has significantly less degrees of freedom. After analysis of this reduced model, the solution is expanded and the original
vector of the physical DOFs is recovered.
In the following, displacement–based CMS is performed, i.e. approximate solutions in a reduced subspace (the range of
the rectangular matrix Θ) are sought in a Rayleigh-Ritz sense,

x ≈ Θ q (1)

where the vector x contains the N unknown physical displacements and rotations and the vector q the m << N reduced
model coordinates. The matrix Θ is called the reduction base or Ritz vector base. Because some kind of modes are used
for building the reduction base, it is often called modal base.
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Figure 1: Sketch of two substructures with degrees of freedom (DOF) marked according to Tab. 1.

Table 1: Definition of degrees of freedom (DOF) vectors according to Fig. 1.

Variable Name Description
xj joint interface DOFs (gray) joint interfaces DOFs of substructure 1 and substructure 2

x
(k)
j joint k interface DOFs (gray) joint interface DOFs of substructure k

x
(k)
f free DOFs (white) inner DOFs of substructure k

x
(k)
l load DOFs (black) DOFs of substructure k where external loads are applied

Typical methods combine normal modes of components obtained by different imposed boundary conditions at the interfaces
(free, fixed or mass–loaded) and static modes from the static solution for applied interface loads (attachment modes) or
imposed boundary displacement (constraint modes). Generally, the selection of the appropriate reduction base is performed
in view of linear independence and completeness, low computational expense in their generation, automatic selection of
their number and good convergence of the obtained solution to the exact (full) solution [3]. In the following, two model
reduction techniques are derived using the nomenclature given in Tab. 1 and Fig. 1. Linear substructure models are
assumed, i.e. small deformations and linear elasticity.

2 CMS Methods for Structures with Friction

In the following, a structure consisting of two connected substructures with friction in the contact interface is considered,

[
M (1)

0

0 M (2)

]

︸ ︷︷ ︸

=M

[
ẍ
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where the system matrices are partitioned according to the DOFs of substructure 1 and substructure 2.

For the friction, a 2-D elastic–plastic model (or Jenkins element) is chosen. A nonlinear stiffness relationship is used for
the contact law Fig. 2. Please note that Eq. 2 is a general representation valid for a broad class of friction and contact
models although the special properties of the applied friction model are later exploited in the numerical implementation.

2.1 Craig-Bampton Method

The Craig-Bampton method [4] is shortly presented starting from the structural dynamics of a linear substructure k,

M ẍ+Kx = F , (5)

which is partitioned into free (inner) and interface DOFs. All quantities are related to the substructure k, the index is
omitted for brevity. The DOFs are transformed to interface and relative coordinates by
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]

. (6)
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Figure 2: Left: Elasto–plastic friction model (shown for 1-D case); Right: Nonlinear contact law in normal direction.

The key is the reduction of relative coordinates xr, whereas the interface DOFs are kept as physical coordinates. The
eigenvalue problem

Mffẍr +Kffxr = 0 (7)

gives the first mr fixed interface modes stacked in the modal base Θr. Thereby, the choice of the number mr of retained
modes depends on the desired dynamic bandwidth for which accuracy is demanded. Finally, it follows
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The modal base consists of two parts, the fixed–interface modes ΘIM and the constraint modes ΘCM, which are the static
solution for unit displacement of each individual interface DOF when the other interface DOFs are fixed. The reduced
mass and stiffness matrices are found by projection of the system matrices on the reduction base according to

K̂ = Θ
TKΘ, M̂ = Θ

TMΘ. (9)

The obtained reduced matrices are dense matrices whereas the original matrices are sparse. This reduction is performed for
each substructure k = {1, 2} individually, where the interface DOFs are the DOFs of the joint interface of the substructure.
The reduced matrices can be calculated for each substructure independently, i.e. the overall system matrices become block–
diagonal. Because of the similarity of the assembly step to the FE method, the reduced substructures can also be seen as
superelements.

2.2 Craig–Bampton Reduction Approach with Common Interface Reduction (Method A)

For further order reduction, the found constraint mode bases are reduced. This approach is extended in a novel way in
the following, where the interface DOF reduction is conducted for the overall structure in one step. This allows to reduce
all substructures by the standard Craig–Bampton method first and then the interface DOFs when the overall structure
model is assembled. It has the advantage that the number of retained interface DOFs are distributed between the separate
substructures in an optimal sense.

Each reduction base Θ
(k) consists of a normal mode base Θ

(k)
NM and a constraint mode base Θ

(k)
CM, i.e.

Θ
(k) = [Θ

(k)
NM, Θ

(k)
CM]. (10)

Fixed–interface modes are used following the Craig–Bampton approach, i.e. ΘNM = ΘIM. A static condensation on the
joint interface DOFs is performed for both interfaces by using
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which gives the reduced system matrices
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Now, a reduced eigenvalue problem on the interface is formulated,
(

K̂ − ω2M̂
)

ψ = 0, (13)



and solved for the desired number mi of eigenvectors for the overall structure. Expansion to the substructure DOF vectors
yields the reduced constraint–mode base Θ

∗

CM that is combined with normal mode base of the overall structure,

Θ = [ΘNM, Θ
∗

CM]. (14)

Then, the common reduction base Θ is applied to the mass and stiffness matrices, i.e.
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2.3 Free–Interface Reduction Approach with Reduced Set of Joint Constrained Interface
Modes (Method B)

The following reduction methodology is motivated by a publication of [18] where the law of actio and reaction at the joint
interface is exploited in order to introduce Joint Interface Modes. This is now applied to systems with friction for the first
time for the knowledge of the authors.

Starting again from the structural dynamics of the linear substructure k, free interface modes are calculated by the
eigenvalue problem

(

K(k) − ω2M (k)
)

ψ = 0. (16)

Then, a modal base is constructed by the combination of the m free interface normal modes with the lowest eigenfrequencies

to capture the system dynamics, Θ
(k)
NM, and the constraint modes Θ

(k)
CM from Eq. 8. After static condensation on the interface

DOFs similar to Eq. 12, the obtained system is additionally partitioned with respect to the substructures of the joint DOFs.
This gives the reduced local system
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If the friction interface is located between two completely separated substructures in this work, the coupling matrices
evaluate to zero (this important property is not mentioned in [18]), i.e.
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which is plugged back into Eq. 17. The obtained modified reduced local system dynamics leads again to an eigenvalue
problem,

(

K̂ − ω2M̂
)

ψ = 0, (20)

which is solved for the desired number mj of lowest eigenvectors for the overall structure. Expansion of this vectors to the
substructure DOF vector gives the reduced constraint–mode bases for mj joint interface modes,
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Finally, the derived base ΘIM is added to the reduction base according to Eq. 10,
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Additional static attachment modes may be added to the reduction base. Following the idea that any representative vectors
can be used as Ritz vectors, this can be further generalized such that nonlinear full–order model static solutions are added
to achieve excellent static solution prediction as it is later done.



3 Application: Prediction of Friction Damping by Transient Simulations

For linear structures, the main criteria in the application of model reduction and substructuring methods is the accurate
prediction of eigenfrequencies and eigenvectors whereas the prediction of damping in joints additionally demands accurate
prediction of the normal pressure. Hence, the error of the contact pressure should be specifically evaluated in order to
make sure that correct damping prediction is possible.

3.1 Investigated Test Structure

A beam with attached friction damper (see Tab. 2 for dimensions and Fig. 3 for FE mesh) is used to investigate the
proposed reduction methods. The bolts are modelled as discrete masses connected by shaft stiffnesses. The imposed
pretension by the tightened screws is captured by special pretension elements.

fixed clamping

FN,1

FN,2

bolt 1

bolt 2

Figure 3: FE mesh of test structure used for model reduction.

Table 2: Material and geometric properties of the investigated structure.

Parameter Beam structure Friction damper
length 775 mm 160 mm
width 40 mm 40 mm
Thickness 3 mm 3 mm
material steel steel
Young’s modulus 205 GPa 205 GPa
Poisson’s ratio 0.3 0.3
density 8000 kg/m3 8000 kg/m3

3.2 Convergence of the Static Solution

For all considered reduction methods, the static convergence behavior is investigated as a preliminary for accurate damping
prediction. Specifically, the convergence of the reduced model solution to the exact full order solution with increasing
number of retained generalized interface DOFs is evaluated. For that, all static loads are applied, i.e. the bolt pretension
is modelled by prescribed normal forces FN,1 and FN,2.

If the strain energy norm is applied, the relative error is defined for the reduced model static solution u with respect to
the strain energy E composed of the linear parts and the contact and friction contributions

estrain =
E − Eref

Eref
. (23)

It is calculated for each reduction method and a fixed number of normal modes for an increasing number of retained
generalized interface DOFs, i.e. decreasing reduction level of the constraint modes. For this comparison, no additional
static attachment modes are used. As seen in Fig. 4, strictly monotonic behavior is observed as expected and both
methods show good convergence, although method B yields superior convergence for small DOF numbers in terms of all



investigated error norms. For accurate damping prediction, the relative normal displacement error in the contact area is
very important. Hence, the contact gap error is visualized for two example reduction degrees in Fig. 5 for method B. For
higher accuracy of the reduced solution, the error is more equally distributed on the contact interface. Furthermore, due
to the symmetry of the problem, the error profile is also symmetric.
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Figure 4: Comparison of the static strain energy norm error estrain (Eq. 23) for increasing number of (generalized) interface
DOFs for method A (—) and method B (– – –).

(a) 147 % relative gap error (42 interface DOFs) (b) 2.9 % relative gap error (102 interface DOFs)

Figure 5: Absolute gap error g − gref (individually normalized) visualized as vertical displacements on the contact area of
the FE model of the beam substructure (damper not shown, displacements outside of contact surface are set to 0).

3.3 Frequency Response Functions (FRF)

A set of accelerance frequency response functions (FRF) obtained from simulations of the exact full order model and
of the reduced models are compared in Figs. 6 and 7. The reduction method A is the Craig–Bampton method with
interface reduction for the whole structure with the exact nonlinear static solution added as additional attachment mode
to the modal base. Method B is based on the free interface reduction approach with joint interface mode reduction. As
in method A, the exact nonlinear solution is added as an attachment mode. The FRFs are calculated from simulated
transient responses of 2 s for experimentally measured impulse force excitation signals. In order to avoid leakage effects,
an exponential window of 1 s time constant is applied. Normal forces FN,1 of 333 N, 667 N and 1000 N are applied to
the variable screw at bolted joint 1 whereas the other screw is fixed by a normal force FN,2 = 4000 N. Example results
for the two methods compared to the exact solution are presented in Figs. 6 and 7. For comparable results, the method
A needs 71 DOFs whereas the method B only needs 56 DOFs for the same or even better prediction accuracy, which is
contributed to the faster convergence of the constraint mode reduction — see Fig. 4.

The plots and the calculated errors show that the eigenfrequencies, the peak heights and widths (which are important for
the damping prediction) as well as the transfer zeros are very well matched by the reduced models.

3.4 Evaluation of Computation Time Reduction

In transient simulations of nonlinear systems, the number of DOFs has a strong impact on the computation time because
nonlinear equilibrium iterations with updated tangential matrices must be performed at every time step. The nonlinear
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Figure 6: Impulse FRFs for method A for different normal forces (note the linear scale).
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Figure 7: Impulse FRFs for method B for different normal forces (note the linear scale).

Newmark time integration scheme with Newton–Raphson iterations is applied using consistent tangential matrices. These
iterations lead to very high computational costs which makes – in contrast to other CMS applications – the initial effort
to calculate the reduction base and to reduce the matrices vanish in the overall necessary effort for the analysis.

The found computation times for transient simulations of the full and differently reduced models are listed in Tab. 3 where
the standard Craig–Bampton method without interface reduction step, the improved Craig–Bampton method A and the
free–interface method B are compared to the original full model. In order to assess the required computation time, the
ratio of necessary CPU time to simulation time is determined. Additionally, the found ratios are set in relation to the full
order solution to obtain the improvement factors. For comparison reasons, the computation time for the full model with the
commercial FE code ANSYS is given (using Newmark scheme and a line search algorithm). In view that its algorithms
are implemented in a low–level programming language better optimized to the computer platforms in contrast to the
MATLAB implementation of the presented solutions, i.e. in a high–level script programming language, the performance
of the full order solution is considered very good. Please note that ANSYS does not give detailed insight and control over
the implemented algorithms, i.e. it is a somewhat black–box solution.

Both presented reduction methods yield excellent accuracy and hereby make a complete analysis on a standard PC feasible.
For the considered scenario, one sensible analysis consists of a transient simulation of tsim = 6 s which takes either 71 min
or 42 min, depending on the chosen reduction method. For the full model, this would take about 193 hours which explains
why a simulation time of 2 s is chosen for the comparisons of the last section. The computation time for the reduced
standard Craig–Bampton model is found to be rather high because the reduction of the number of DOFs is compensated
by the extra effort for the dense system matrices.

3.5 Simulation and Analysis Framework

A simulation and analysis framework shown in Fig. 8 has been developed that is capable to use linear substructure models
from commercial FE codes. The substructures may be additionally moved in space and are then assembled with the
zero–thickness elements implementing the contact and friction effects on the defined contact areas in an assembly step.
Furthermore, reduction methods may be applied to the built overall structural dynamics or individual parts of it. Static
and transient solvers are implemented for both full–order and reduced models and the results can be post–processed. One
typical way of post–processing is to calculate frequency response function (FRF) and to estimate the modal parameters
or to export the FRFs to commercial post–processing tools for special analysis.



Table 3: Computation times for different reduction methods and reduced model sizes for transient simulation of an impulse
response. The given values are pure CPU times on a single CPU of a standard PC (3 GHz Intel Xeon/Core 5160).

Reduction method DOFs Ratio tcpu/tsim Improvement factor
full model (reference) 5955 36699 1.0
ANSYS (full model) 5955 90499 2.5
standard Craig–Bampton 533 73530 2.0
method A 73 709 51.8
method B 52 422 87.0
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Figure 8: Simulation framework for nonlinear structural analysis of mechanical structures with friction.

4 Experimental Verification

The developed efficient simulation framework employing model reduction is a key tool in order to perform model updating
or parameter variations on a standard PC. In the sequel, results from such an updating procedure of a FE model to
experimental data are presented. For similar material parameters as given before in Tab. 2 for the model in Fig. 3, a refined
FE model is used as shown in Fig. 9. Compared to the reduction test model, the bolts and holes are now modelled and
the discretization is refined close to the bolts where high normal pressures appear. The FE model has now 21564 DOFs
(603 pairs of contact nodes) and is reduced to 57 DOFs.

Figure 9: Mesh of investigated structure with attached friction damper (example deformation and undeformed reference).

4.1 Model Updating

For model updating, so–called linearizing excitation signals are employed because they yield linearized FRFs, i.e. FRFs
resembling those obtained from linear systems [19]. Although random excitation is found to be best linearizing in exper-
iments, deterministic impulse excitation is chosen because the necessary simulation time for random excitation would be
very large. In the experimental setup, the excitation is applied by an impulse hammer close to the tip and the responses are
measured at several points on the structure. The shown driving point FRFs are calculated from the measured acceleration
on the opposite surface. Excitation is located on the mid–line of the beam, hence virtually no torsional modes are excited.
Measurements are conducted for a set of different normal forces FN,1 whereas the normal force at the other damper end is



Table 4: Found contact parameters for best match of simulation with experiment.

Parameter Variable Value
friction coefficient µ 0.2
normal stiffnesses cN,0, cN,1 3.87 · 1011 N

m3 , 7.74 · 1011 N
m3

gap distances g0, g1 −5 · 10−7 m, 0 m
tangential stiffness cT 7.74 · 1011 N

m3

again constantly set to FN,2 = 4000. An exponential window of 2 s time constant is applied before the FRFs are calculated
from five individual measurements averaged in frequency domain.

For the simulations, experimentally measured impulses are averaged and applied as loads. As in the measurements, FRFs
are calculated from the 6 s responses using an exponential window of time constant τ = 2 s. Classical Rayleigh damping
is assumed with parameters determined from experimental modal analysis of the base structure. In the model updating,
the friction coefficient, the tangential contact stiffness and the normal contact stiffness are varied in a systematic way to
match the experimental data to find the best match parameter set given in Tab. 4. For this parameters, the simulated
and the measured FRFs are compared in Fig. 10. Obviously, the chosen excitation force with roughly 100 N peak force
significantly excites higher harmonics of the system. Simulations have proven that they are mostly due to the normal
contact between damper and base structure. Due to internal resonances, the amplitudes of these higher harmonics depend
on their frequencies in relation to the resonance frequencies of the structure as well as on the spatial location of the friction
and contact interface which makes them not predictable by analytical means. The qualitative shape of the resonance peaks,
the width and height determining the damping and the locations of the higher harmonics are very well predicted by the
simulations. Obviously, a very good match quality is observed for all measured normal force cases between FN,1 = 13 and
FN,1 = 1000 N. Further results, presented in Fig. 11, show the effects of a higher friction coefficient of µ = 0.4.
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Figure 10: Comparison of measured and simulated FRFs for best match parameter case (cf. Tab. 4).

4.2 Evaluation of Modal Damping

Although friction is a nonlinear effect, there is a big interest in evaluating the damping effect in terms of modal damping
ratios known from linear structural dynamics. This is mainly because modal damping ratios can easily be measured and
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Figure 11: Comparison of measured and simulated FRFs for with varied friction coefficient µ = 0.4.

compared in engineering practice. For evaluation of modal damping for nonlinear structures – in contrast to linear structures
– the excitation type and amplitude must be controlled for fair comparisons and correct analysis. The modal damping
ratios are determined by the 3dB–bandwidth method from the FRFs [5]. As mentioned before, an exponential window is
applied to the simulated or measured acceleration responses to prevent leakage. For the chosen exponential window with
time constant τ , the artifical damping δwin

k added to the apparent modal damping δdet
k of mode k can be compensated for

(under the assumption of linear dynamics) [5], i.e. δk = δdet
k − δwin

k with δwin
k = 1/(2 τωk).

The modal damping ratios δk from simulations and experiments are compared in Fig. 12, where excellent agreement is
observed. The numerically predicted modal dampings match the experimental ones quite well, especially if one keeps in
mind, that measurement errors influence much more the damping identification than the eigenfrequency identification. The
variations in the damping of mode 1 is most probably due to the high constribution of artifical window damping and violation
of the linear dynamics assumption for the physical damping recovery. As expected, the corresponding eigenfrequencies and
the found damping ratios strongly dependent on the applied normal forces.

5 Conclusions

The usefulness of CMS methods applied to the simulation of mechanical structures with friction and joints has been
demonstrated, by which parameter updating has become feasible for a real–world structure on a single standard PC.
Excellent agreement between the simulated and measured FRFs shows that the inclusion of friction in the design process
allows to predict its influence on damping and eigenfrequencies as well as the generation of higher harmonics. As a
strong advantage, the output variables of interest need not to be known before the reduction step, because the full
displacement vector is recovered from the reduced solution. Furthermore, the applied substructuring approach allows to
efficiently assemble and quickly analyse different configurations made up from different combinations of substructures if
the substructures can be reduced once and saved in a database.
The development of own static and transient solvers offers the possibility to investigate various modifications of the contact
model, to relatively easily incorporate it into optimization procedures or to simulate a feedback controllers, that in general
can not be implemented in commercial FE codes in a straight way.

Currently, semi–analytical methods such as the harmonic balance method are investigated to directly obtain results in the
frequency domain. Further work may focus on optimization of the implementation and on applications of the presented
methodology to more complex structures or in industrial applications.
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Figure 12: Modal damping ratios δk from simulation and experiment (artificial window damping shown for information).
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