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Difficulties in modelling contacts

 In general, the normal and tangential stiffnesses
need to be experimentally measured, along with the 
friction coefficient
 These properties may change with time (e.g. as the 

contact wears, with position, and with load)
 Progress is needed towards a model of interface 

behaviour, which is based on more fundamental 
properties (material properties, surface geometry 
etc).
– We also need to understand how to incorporate the 

interface behaviour into global (FE) models of the system



Measurement of Contact behaviour –
Oxford and Imperial rigs

 80 mm2 flat and 
rounded contact

 1Hz Frequency
 0.6mm sliding distance
 Displacement 

measurement by 
remote LVDT or digital 
image correlation

 1 mm2 flat on flat 
contact

 ~100Hz Frequency
 30m sliding distance
 Displacement 

measurement 
integration of LDV 
measurements



Measured and idealised hysteresis loops

 Idealised loop is characterised by 
contact stiffness, k and friction 
coefficient, 

 These can be reasonably 
representative of real loops
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Predicted (FE) variation of tangential stiffness
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FE predictions of stiffness based on smooth contact are much higher 
than experimental measurements

Compliant Elastic Layer
E = 2.29 GPa, ν = 0.32
Individual Layer 
Thickness: 50 μm 
(Total: 100 μm)

Bulk material: Ti-6Al-4V
E = 115 GPa, ν = 0.32

δ(t) = 0.1Sin(2πt) mm  

100 μm
p



– To develop a model for contact stiffness, we 
need consider surface roughness

– Initial tangential loading is likely to be 
predominantly elastic

– Consider a rough elastic surface in contact with 
a smooth rigid one.  This puts all the elasticity 
and roughness on one surface and is easier to 
deal with

– At light loads, ‘asperity’ contacts will be relatively 
widely-spaced and may be modelled as 
Hertzian

Modelling - basic assumptions
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– When tangentially loaded, all contacts will initially be 
‘stuck’, so the shear traction at each contact will be 
given by

– Mindlin gives the compliance for this traction distribution 
as

– From this, the Greenwood/Williamson approach can be 
used to derive an expression for tangential stiffness

Formulation
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Result
– The approach leads to
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– Note that this is independent of Young’s modulus
– This is consistent with the results of Berthoud and 

Baumberger (1997), who found limited effect of modulus 
and 

– Where  is a length scale of the order of microns (i.e. 
similar to )

– Normalisation by area gives
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Area effect
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Experiments carried out with different contact area do suggest that stiffness is 
approximately proportional to apparent area of contact

This is because almost all of the compliance is in the surface layer



Effect of normal load

Effect of normal pressure on tangential contact stiffness , N=20-25 
cycles

Distance between 
measured points 0.18 mm



Comparison with numerical model
 As part of our joint 

project with Imperial 
College, Medina has 
produced a numerical 
model of rough elastic 
contact

 Comparison shows 
good agreement at 
low loads, but reduced 
stiffness in numerical 
model at higher loads

 Effect is almost 
certainly caused by 
asperity interaction

 Similar effect noted for 
normal contact by 
Ciavarella et al (2008)
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Comparison with ultrasound 
measurements

 Recent work in collaboration with Sheffield Univ has 
compared stiffness measured with DIC with that using 
ultrasound

 Note that (in this case) initial value is very similar, but 
variation with Q is very different

 Ultrasound is measuring an unloading stiffness



Ultrasound measurement
 Ultrasound measures an unloading stiffness:

 In the case of normal stiffness, there is a similar effect, in this 
case there is an increase of stiffness with (normal) load and 
growth of the real contact area



Perspectives
 Tangential stiffness models should almost certainly include a 

dependence on normal load.
– What models are appropriate
– How can we improve the models we have?
– How do we capture time dependence?

 Measurement of stiffness in real contacts is not 
straightforward.
– There is a need for reconciliation between different techniques.
– We cannot model what we cannot measure.

 Modelling friction is far more challenging than contact 
stiffness
– More multiphysics in this problem
– Once again, time dependence is an issue
– We need better models for wear



FRICTIONAL SHAKEDOWN
Part 2:

16



Axis of symmetry 
Centreline

Grip – Fixed end

Bulk Load
T = 2t

Normal Load
P = 2ap

p

121º 121º

Pad

Speciment



2a

Punch on Half Plane with Tension
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f = 0.296

Corner 
Leading 
Edge 
Partial 
Slip (PS)

Fully Adhered

fcrit for 0 / p > 0

fMelan – Frictional Shakedown

Simplified Model: Load vs. f  Map

Probing shakedown
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Simplified Model: Load trajectories

TIME

LOAD

Normal   Load, P
1 2 3 4 5 6

Bulk  Load, T
Bulk Pre-load, T

Case 1

Case 2

Case 3

Case 4

Step:  0

Input Residual Stress Cyclical Loading

Case 1

Case 2

Case 3

Case 4

Melan’s Theorem 
predicts 

shakedown for      
ANY and all 

residual stresses
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Case 2 (no pre-stress)

Does it shakedown ?
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f = 0.296
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Partial 
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Simplified Model: Load vs. f  Map
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Loading Sequence: Interior (?) Cyclic Slip
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Loading Sequence: Interior (?) Cyclic Slip

TIME

LOAD

Normal Load, P
1 2 3 4 5 6

Bulk Load, T
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Loading scenarios designed to lock-in 
different sets of residual stresses

Melan’s theorem predicts 
frictional shakedown for 

all 4 cases



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

xy /( fyy )

x/a

Case 1 - Step 6

Case 2 - Step 6

Case 3 - Step 6

Case 4 - Step 6

Loading Sequence: Step 6

Slipping from the edge 
(a long way in)

Interior Trailing  Edge 
(PS and no shakedown)

Fully adhered

Fully adhered

TIME

LOAD
Normal Load, P

1 2 3 4 5 6

Bulk Load, T
Bulk Preload, T

Case 1

Case 2

Case 3

Case 4


