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Difficulties in modelling contacts

" |n general, the normal and tangential stiffnesses
need to be experimentally measured, along with the
friction coefficient

" These properties may change with time (e.g. as the
contact wears, with position, and with load)

" Progress Is needed towards a model of interface
pehaviour, which is based on more fundamental

properties (material properties, surface geometry
etc).

— We also need to understand how to incorporate the
Interface behaviour into global (FE) models of the system




Measurement of Contact behaviour —

80 mm? flat and
rounded contact

1Hz Frequency
0.6mm sliding distance

Displacement
measurement by
remote LVDT or digital
Image correlation

Oxford and Imperial rigs

1 mm?2 flat on flat
contact

~100Hz Frequency
30um sliding distance

Displacement
measurement
Integration of LDV
measurements



= |dealised loop is characterised by
contact stiffness, k and friction
coefficient, u

® These can be reasonably
representative of real loops
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Variation of contact stiffness with

measurement location

Ti ‘rough’ experiment
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Kt (KN/mm)

Predicted (FE) variation of tangential stiffness
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FE predictions of stiffness based on smooth contact are much higher

than experimental measurements



Modelling - basic assumptions

— To develop a model for contact stiffness, we
need consider surface roughness

— Initial tangential loading is likely to be
predominantly elastic

— Consider a rough elastic surface in contact with
a smooth rigid one. This puts all the elasticity
and roughness on one surface and Is easier to
deal with

— At light loads, ‘asperity’ contacts will be relatively
widely-spaced and may be modelled as

Hertzian ’
4! p(r) = poJl—(;j




Formulation

— When tangentially loaded, all contacts will initially be
‘stuck’, so the shear traction at each contact will be
given by G

()
ai
— Mindlin gives the compliance for this traction distribution

as 1 A 1(2—1/) 1((1+v)(2—v)j

q(r) =

x Q 8al\ G ) 4a E
— From this, the Greenwood/Williamson approach can be

used to derive an expression for tangential stiffness



Result

— The approach leads to
_21-=v)P
- (2-v) o

— Note that this is independent of Young’s modulus

— This Is consistent with the results of Berthoud and
Baumberger (1997), who found limited effect of modulus

and P
K=—

A
— Where A is a length scale of the order of microns (i.e.
similar to o)

— Normalisation by area gives

kI 2(1—-v)p D
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Tangential Contact stiffness (kN/mm)

Area effect

Effect of contact area on tangential contact stiffness for 70 MPa average
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Experiments carried out with different contact area do suggest that stiffness is
approximately proportional to apparent area of contact

This is because almost all of the compliance is in the surface layer



Effect of normal load

Distance between
measured points 0.18 mm
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= As part of our joint 25

project with Imperial 20
College, Medina has
produced a numerical
model of rough elastic
contact

Comparison shows
good agreement at
low loads, but reduced
stiffness in numerical
model at higher loads

Effect is almost
certainly caused by

asperity interaction ]I I
Similar effect noted for

normal contact by
Ciavarella et al (2008)
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Comparison with ultrasound

measurements

= Recent work in collaboration with Sheffield Univ has
compared stiffness measured with DIC with that using
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= Note that (in this case) Initial value is very similar, but
variation with Q is very different

= Ultrasound is measuring an unloading stiffness



= Ultrasound measures an unloading stiffness:
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" |n the case of normal stiffness, there is a similar effect, in this
case there is an increase of stiffness with (normal) load and
growth of the real contact area



Perspectives

= Tangential stiffness models should almost certainly include a
dependence on normal load.
— What models are appropriate
— How can we improve the models we have?
— How do we capture time dependence?

= Measurement of stiffness in real contacts is not
straightforward.
— There is a need for reconciliation between different techniques.
— We cannot model what we cannot measure.

= Modelling friction is far more challenging than contact
stiffness
— More multiphysics in this problem
— Once again, time dependence is an issue
— We need better models for wear
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Simplified Model: Load vs. f Map

Imperial College
London
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Simplified Model: Load vs. f Map

Probing shakedown London

Imperial College
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Simplified Model: Load trajectories  Imperial College

London
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Loading Sequence:

History - 4 Cases

Imperial College
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Case 2 (no pre-stress)

Imperial College

Does it shakedown ? London
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Simplified Model: Load vs. f Map

Probing shakedown

Imperial College
London
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Imperial College
London

Loading Sequence: Interior (?) Cyclic Slip
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Simplified Model: Load vs. f Map

Imperial College

Probing shakedown
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Imperial College
London

Loading Sequence: Step 6
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