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Electrification is inevitable, thermal management is critical 

for electric vehicle development, for better performance and 

safer operations. It is essential to: 

✓ Monitor cell heat generation & reduce thermal gradients

✓ Reduce the cost of thermal management 

✓ Minimise risk of thermal runaway 

Better cooling method

Longer usable battery life 

Lower operational costs

Cell / pack performance is restricted by its heat rejection capabilities: 

Elevated cell 

temperature
Large temperature 

gradients

Large current 

inhomogenities
Accelerated 

degradation

Power
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Energy density 
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Uneven heat generation

Conventional heat rejection measures 

(Biot number) are not suitable due to:
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Fig. 1: Li-ion battery pack (Nissan Leaf)

Summary

1. Lithium ion battery industry has fallen into the trap of ‘sub-system optimisation’ and 

optimised cells for energy density

a. As a consequence many cells are designed poorly for thermal management

b. It is often so bad it actually reduces useable energy and lifetime

2. Introduction of Cell Cooling Coefficient, as a standard metric to compare how easy or hard 

it is to cool a cell

a. Immediately useful for cell evaluation and system design

b. Potential to revolutionise battery industry if it triggers competition to design 

better cells

3. A virtual cell has been redesigned showing how straightforward it is to open up the 

thermal bottleneck and improve performance

❖ Cell suppliers and users should work together to optimise the whole system

2 essential methods to cool lithium ion batteries

Surface cooling

Tab cooling

Fig. 2: Cooling strategies

Tab cooling 

•Some thermal gradient within a layer

•Very low layer-to-layer thermal gradients

•Very low layer-to-layer current inhomogeneities

•Each layer behaves the same

•Each layer is loaded evenly over a dynamic drive cycle

•Higher average temperatures (current cell designs)

Surface cooling

• Low thermal gradients within a layer

•Significant layer-to-layer thermal gradients

•High cooling rates possible, lower average 
temperatures

•Significant layer-to-layer current inhomogeneities

• Layers behave differently to one another

• Layers are loaded unevenly over a dynamic drive cycle
[1-2]

Tab cooling

Minimum thermal gradient

High average temperature
(bottleneck is the tab)

Surface cooling

Large thermal gradient

Low average temperature

Thermal Gradients study 

[3]

High temperatures are observed in batteries with poor heat 
rejection pathways

As a result, thermal runaway is an increased risk

Consequence is over-engineered thermal management solutions
e.g. Tesla Model 3 battery pack is only 57% mass efficient

Thermal management system is 25% of the total battery pack cost

Pack Designers choose the most energy dense cells 

Cell manufacturers must optimise energy density

Cells are very energy dense, but unable to effectively reject heat

[1]

Increasing heat removal rate for tab cooling?

Surface Cooling

Tab Cooling

Yes

•Counter-sided 
tabs are better

•Wider tabs are 
better

But not enough to 
equal surface 
cooling.

These cells were 
used to re-
parameterise & 
validate the previous 
model*, and the 
model used to 
explore more design 
variables [3,6]

Optimising the cell design 

[6]

How do we improve cell thermal management?

[5]

Relevant Datasheet Information: LIB A

Capacity (Ah) 5

Energy Density (Wh/kg) 140

Rated Charge Rate (C-Rate) 2

Rated Continuous Discharge Rate (C-

Rate)
30

Rated Pulse Discharge Rate (C-Rate) 50

Cell Cooling Coefficient (W/K) ??

Energy 

Performance

Power 

Performance

Thermal 

Performance

1. To be able to quantify a cell’s heat 

rejection capabilities

2. Then to redesign cells to optimise this 

to improve internal thermal pathways

The first part needs to be:

1. A metric for cell designers to enhance

2. A standard against which all cells may 

be compared

3. A tool for battery pack design 

engineers to use in the initial design 

stages

What temperature gradient do you need 

to remove 1W of heat from your cell?

1. A tool to estimate the rate of heat rejection for a given thermal gradient

2. A constant for a particular cell and surface to be managed

3. A metric against which any two cells may be compared

4. A standard for competition and improvement

Fig. 7: Experimental Set up for tab cooling CCC

CCC: Tabs How to use CCC – Evaluate Cells (CCC ratio)

Large form factor 20Ah A123

High power 5Ah Kokam

A123

CCCtab (W/K) 0.243

CCCsurf (W/K) 4.081

CCCtab/CCCsurf 0.060

2C cycling at 20oC cooling surface 

temperature

Short life = tab cooling, long life = surface 

cooling

Bad

5Ah Kokam

CCCtab (W/K) 0.332

CCCsurf (W/K) 0.980

CCCtab/CCCsurf 0.339

6C cycling at 20oC cooling surface 

temperature

Short life = tab cooling, long life = tab 

cooling

Better

Is there another solution?

Safety: the problem with current cell designs

CCC: Cell Cooling Coefficient

New metric needed to quantify cell heat 

rejection rate through a thermal pathway:

CCC

(W.K-1)

1. How to compare thermal performance from 

different cells?

2. How to evaluate cell heat rejection rate for a 

particular thermal management strategy (i.e. 

tab cooling)?

• Quantifies the cell’s heat rejection 

capabilities

• Based only on a cell’s physical design

• Independent of cell chemistry, format or 

geometry
[5]

Increasing tab thickness is extremely effective in reducing average temperature: 

Make tab cross-sectional area more comparable to total current collector cross-

sectional area

The penalty on energy density is relatively small 

Width Thickness

[6]

Does this work for large format cell ?

Tab

Surface

Virtual cell 
• Similar to LG Chem E63 

• Capacity: 51.3 Ah

• Aspect ratio: 2.6

• Tab thickness:0.2 ->> 1.5mm 

• Tab width: 100 mm 

Results
• Same target Tmax

• Comparable cooling rates

• Much smaller thermal 
gradient for tab cooling

• Expected, better 
performance, slower 
degradation

[1]

Fig. 3: Modelling of thermal gradient effect

Fig. 4: Temperature rise of cells with various tabs configuration

Fig. 5: Temperature rise of cells with various tabs configuration: Width and Thickness

Fig. 6: Virtual cell simulation

Fig. 8: CCC for different cells
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