Co-designing a Language,
Tool-chain, and Architecture:
Lessons Learnt from the POETS Project

David Thomas
University of Southampton (2021...)
Imperial College (1996..2021)

A, 2023/09/05 David Thomas (dbtlc21@soton.ac.uk)

POETS : What it is

* EPSRC Programme Grant
* Running 2016 till 2022

8 UNIVERSITY OF AR M ;; : CC F E

P CAMBRIDGE

* Four university partners: Imperial College cu
London e-Therapeutics plc Medicine
Y N ewca St | e See s i
Newcastle

* Imperial + University imagination MAXELER

* Southampton L e
. UNIVERSITY OF ®

» Cambridge Southampton ami nag

This talk is a bit of a retrospective

NANDA, 2023/09/05 David Thomas (dbtlc21@soton.ac.uk) 2

POETS : The big idea

“Create a new framework for developing and executing event-driven
applications using asynchronous algorithms in distributed hardware”

Event-driven = millions of shared-nothing threads sending tiny messages

e Research challenges:

* Applications: what should event-first algorithms look like?
* Languages: what language do we use?

* Compilation: how do we describe and compile such applications?
* Hardware: what does this distributed hardware look like?

* Management challenges:

 We don’t have a target application, language, compiler or architecture
* How do we even get started?

POETS : What we achieved over six years

* Applications: portfolio of asynchronous event-based applications
* Flagship is “Dissipative Particle Dynamics (DPD)”
» Allowed us to provide speed-up for used in published chemical research

DPD : Exploring phase transitions with POETS

< Protein Concentration

1M particles for 1M time-steps

NANDA, 2023/09/05 David Thomas (dbt1c21 @sREGConcentration (Yellow molecules) -

POETS : What we achieved over six years

* Applications: portfolio of asynchronous event-based applications
* Flagship is “Dissipative Particle Dynamics (DPD)”
» Allowed us to provide speed-up for used in published chemical research

* Compilers: multiple compilers and simulators for one language
* Main back-end is “The Orchestrator”
* Performs place and route for applications with 1M+ logical threads

* Architecture: bespoke CPU architecture and network called “Tinsel”
e Custom RISC-V architecture with deeply embedded routed network
e Currently supports 50K hardware threads on 50 FPGAs

Tinsel : 50K hardware threads per rack

. (R
J e

NANDA, 2023/09/05 David Thomas (dbtlc21@soton.ac.uk)

Lessons learnt

Experience of co-designing language, compiler, and hardware stacks

NANDA, 2023/09/05 David Thomas (dbtlc21@soton.ac.uk)

POETS : Lessons learnt

 Specific context:

* Co-design: languages, applications, compilers, and hardware

* Multi-partner team: 12-15 people across four universities

* Time-scale: 6 year project

e Changing team: no post-doc who started with project is still in post
* Who these lessons might be for

* PhD students considering combined hw+sw research (maybe)

* Long-term projects with a hardware+software stack
* Me (writing programme grants)

Lessons Learnt : stating the obvious

1. Abstractions:

1. Set the hardware free
2. Go formal or go home
3. Syntax doesn’t matter

2. Development:

Integration tests over unit tests
Waterfall sucks

Agile sucks

Document the “why”; show the “how”
Hardware in the loop verification is key

3. Management:
1. Once it all “works” most of the work is ahead of you
2. Everyone can see all the repos, all the time

Lnhwnh e

POETS : The management challenge

Architecture

arch
Applications ? e,b(c‘(\
re (e
S€arch
@sear
r h
e
. €ar res
Design 5 <h arch
Automation '
research
Hard (& qear ™ SSeg
hitectu i) ?

Year O

2016
NANDA, 2023/09/05

David Thomas (dbtlc21@soton.ac.uk)

Compiler

Architecture
Network

Year 6

2022
11

POETS : Compared with CUDA

CU-BLAS

Applications

Language

Design
Automation

IIISAII / IIABIII

Hardware
Architecture

Year O

NANDA, 2023/09/05 David Thomas (dbtlc21@soton.ac.uk)

12

POETS : Compared with FPGA HLS

Image

Applications Processing

C++ with
HLS Ext.

Language
Automation HLS

IIISAII / IIABIII

Hardware

Architecture Versal

Year O

NANDA, 2023/09/05 David Thomas (dbtlc21@soton.ac.uk)

13

POETS : Our approach

Applications

Simulators

Language Language

Automation

IIISAII / IIABIII

Design

Hardware
Architecture

Year O
2016

NANDA, 2023/09/05

_ Prototype
Compiler

Compiler

Emulators
Architecture

Network V1

Hardware

David Thomas (dbtlc21@soton.ac.uk)

Complete
Compiler

Architecture
Network Vn

Year 6

2022
14

Abstractions: set the hardware free

* Temptation: narrow down language to support software
* Makes it much easier to write and compile applications
* Makes it easier to verify applications
» Software+tools people can move faster and break things

* Problem: you’re imposing constraints on hardware architects
* Everything that makes software easier makes hardware harder
* |nitial assumptions become entrenched in apps and compilers
* You’ll end up with hardware that looks like everything else
* Hardware has a much slower cycle than software

POETS : Applications as graphs of FSMs

Applications are split into graphs of devices - -
* A device is a finite state machine
* Device state is a tiny part of the global state
* Only the device can read and write it's state =
* No shared memory — only messages

Receive: message m received by device d

d’ =receive_handler(d, m)

Send: device d sends a message m
(d’,m) = send_handler(d)

POETS: Inversion of control

class MyDevice

{ {

int state;

void run()

{
while(1){
msg = recv();
state = receive_handler(state, msg);
while(more_messages(state)){
(state,msg) = send_handler(state);
send(msg);
}
}
}

}s

}s
II)

Software is “in contro
Devices are finite state
Hardware buffering is un-bounded

class MyDevice

int state;

void on_recv(const Message &msg)

{
state = receive_handler(state, msg);
}
bool ready to_send() const
{
return more_messages(state);
}
void on_send(Message &msg)
{
(state,msg) = send_handler(state);
}

Hardware+compiler is “in control”
Software must wait for network capacity
Both devices and hardware can be finite state

Abstractions: set the hardware free

* Some key design decisions

State changes only occur on send or receive
Any message sent will eventually be delivered
Devices must wait for an opportunity to send
Devices can never delay receipt of a message
Messages can arrive in any order

— Makes software possible

— Gives hardware flexibility

_

* This allowed hardware and compiler innovation during project
* Network: changed buffering model and back-pressure
* CPU design: messaging and scheduling primitives changed
» Portability: we were able to compile for other hardware (GPUs and HLS)

Abstractions: go formal or go home

* Temptation: define semantics in terms of the implementation
* Writing the compiler is hard
* Writing the applications is hard
* Language semantics are defined by the documentation
» Test-cases make sure everyone agrees on expected behaviour

* Reality: there are too many corner cases
* People interpret things differently: applications, compilers, hardware
* When developing in parallel these will cause problems

POETS : Mis-implementations five years on

struct RunTime

struct RunTime

{
vector<Device> devices;
vector<bool> ready;
void run()
{
while(1){
Jevices[NOTRY
ready[i] = devices[i].ready_to_send(); |
if(ready[i] && !network_full()){
devices[i].on_send(...);
ready[i] = devices[i].ready_to_send();
}
}
}
}s

NANDA, 2023/09/05

{
vector<Device> devices;
vector<bool> ready;
void run()
{
while(1){
r.h;\‘/i coslil.on recv(Y -
| ready[i] |= devices[i].ready_to_send(); |
if(ready[i] && !network_full()){
devices[i].on_send(...);
ready[i] = devices[i].ready_to_send();
}
}
}s

David Thomas (dbtlc21@soton.ac.uk)

20

Abstractions: go formal or go home

* Writing formal specs is not enough

* We had formal semantics in year 1
* Dependently typed in Coq: a thing of beauty
* A more “readable” version in Haskell
* The formal specs need to be front and centre in the documentation

* They need to be in a form that everyone can read
* Five years later: expressed it in python

 When we used them, formal semantics had huge benefits
e Simulation, verification, model checking, equivalence checking, ...

Abstractions: Syntax doesn’t matter

* What should the application language look like?
* Applications are described and specified in this language
* Compiler will consume language and map into hardware

* Temptation: create a beautiful language for graphs and compute
 Wonderful bespoke grammar and elegant extension points
* Describes both the functionality of nodes and topology of graphs
* Implement parser in C++. Then in Python. Then in JavaScript; then...

* Practical: describe it in dumb XML
* Everyone has an XML parser and generator
e Automatic versioning support: we went through 4 language revisions
e Can exploit existing XML schema tools to get free grammar checkers
* Downside: humans hate reading/writing XML, but they can if they have to

Toolchain : appl. description

NANDA, 2023/09/05

<?xml version="1.0"?>
- <Graphs xmIns="http://TODO.org/POETS/virtual-graph-schema-v1">

\ - <GraphType id="gals_heat">
(Graph Type (XML)) + <Properties>

- <MessageTypes>
+ <MessageType id="update">
</MessageTypes>
- <DeviceTypes>
+ <DeviceType id="cell">
+ <DeviceType id="dirichlet_variable">
</DeviceTypes>

A 4

</GraphType>
Instance Generator </Graphs>
v
(Graph Inst. (XML)) ' % %
<?xml version="1.0" encoding="ASCII"?>
- <Graphs xmIns="http://TODO.org/POETS/virtual-graph-schema-v1">
+ <GraphType id="gals_heat">
- <GraphlInstance id="heat_16_16" graphTypeld="gals_heat">
- <Devicelnstances>
- <Devlid="c_10_2" type="cell">
<P>"wSelf": 0.5, "nhood": 4, "iv": 0.0865356989435413</P>
Application Specific <M>"y": 2, "x": 10</M>

</DevI>
- <Devlid="c_13_8" type="cell">
<P>"wSelf": 0.5, "nhood": 4, "iv": 0.03876568223453081</P>
<M>"y": 8, "x": 13</M>

~IMauT~s

23

gals_heat_graph_type.xml
gals_heat_graph_inst.xml

Toolchain : development

(Graph Type (XML)

_y
Build C++ Model } Build JS Model Build TLA+ Model
(Graph Type (C++)> (Graph Type (JS)) (Graph Type (TLA+)>
4 v
Instance Generator Model Checking
v
(Graph Inst. (XML)
v > v
Parallel simulator Web Simulator
v
(Exec. Snaphots
v
Offline Visualisation Offline Analysis

v v
(Videos) (Perf. reports)

Application Specific Debug, analysis, and visualisation

Toolchain : execution

Graph Type (XML))
To RTL type N To Tinsel type
v v
(RTL Type (VHDL)) (Tinsel Type (C))
| X
Place-and-Route Instance Generator
| v
(HW Type (bitfile)) /(Graph Inst. (XML))
v 4
To Mem. Config To Tinsel inst
v v
CHW Config (binary)) Tinsel Inst (C))
v
MPI Simulator RISC-V Compiler
v
Tinsel binary)
y v
Raw hardware Tinsel simulator Tinsel hardware

Hardware Execution Application Specific

Conclusion

Conclusion (?)

e Genuine co-research in languages and architectur
* Chicken and egg problem: which one to tackle first?

* Big hardware+software research is complicated
* Can learn from enterprise management
e Can put academic research into practice

 POETS got some stuff right, and some wrong
* We built a complete stack
* It worked, and we are using it to do science
* So probably mostly right...?

NANDA, 2023/09/05 David Thomas (dbtlc21@soton.ac.uk) 27

NANDA, 2023/09/05

David Thomas (dbtlc21@soton.ac.uk)

28

Abstractions: Integration tests beat semantics

* We have semantics+language: full speed ahead

* Temptation: work independently on apps, compiler, and architecture
* We all agree on the formal definition, it’s bound to work together

* Reality: everyone interprets things slightly differently
* “Application: always eventually we may send a message”
* “Compiler: always eventually you will send a message”

 Lesson: full-stack integration tests are incredibly valuable

Development: Waterfall sucks

* We have semantics+language: full speed ahead (again)

* Temptation: each part is a big software/hardware project
1. Write documentation
2. Write specifications

Write test-cases

Implement the software/hardware

Unit test the software/hardware

6. Integration test against other components

* Reality: it might be years before integration tests
* Very slow feedback for a research project

e W

Development: Agile sucks

* We have semantics+language: full speed ahead (again)

e Temptation: sprints, story-points, stand-ups, oh-my!
* “We already have weekly meetings: those are stand-ups, right?”
* “This is research, we need to burst forwards and be incremental!”

* Reality: growing technical debt and unstable interfaces

 Different research strands have very different time-scales
* Applications: weeks
* Compilers: months
* Hardware: bi-yearly

* Recommendation: set project-wide targets; update them regularly

Development: document “why”™; show “how”

* Documentation is awesome in big software+hardware projects
* Transmits project knowledge over time
* Transmits project know-how between researchers

e Temptation: write lots of documentation about “how” to do things
* Long written tutorials used to explain how things are supposed to work

* Reality: this is research; tools and languages are not stable
e Tutorials get out of date and rot quickly (on a multi-year timescale)
* We often have to get together and change software+hardware APIs
* The most important documentation is often why it changed

* Recommendation: document “why”; show “how”
* Have good processes for recording design decisions: git commit logs don’t count
* We used a process inspired by Python Enhancement Proposals

* Record video tutorials on how to use tools and get started
* Low overhead, and much easier to keep up to date

Development: hardware-in-loop verification

* Problem: research created hardware is finicky and scarce

* There may only be one test-chip or test-installation
* There is competition for access to the test-hardware
* |t falls over all the time

e Temptation: “I'll run hardware integration manually on commit”
* Reality: integration tests are rarely run on test hardware

* Recommendation: hardware-in-the-loop continuous integration
* It is painful to set up
* It breaks all the time
* It interferes with other research activities
e But: you get immediate notice of functional and performance regressions

