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• � Active demand management is a crucial tool 
for balancing electricity markets and managing 
the increased volatility caused by intermittent 
renewable generation.

• � While much of demand management is focused 
on large industrial users, the POWBAL Tata trial 
focused on the potential of household customers 
to contribute to such load balancing. 

• � The POWBAL Tata Project rolled out Wi-
Fi connected power switches in over 1000 
households in Delhi and Mumbai.

• � Households could choose which appliances to 
connect to those switches with most opting (80%) 
for an air conditioning unit.

• � Randomized and remotely triggered switch off 
events lead to an average reduction of household 
electricity demand of 8%.

• � The reduction effect is much higher (up to 15%) 
during hours of the day that experience peak 
demand.

• � Users had the option to override switch-off events 
either directly on their devices or by responding to 
an announcement message on their smartphones. 
Approximately 30% of users chose to opt out of 
these events.

• � A comparison of household and device-level 
electricity consumption measurements indicates 
no evidence of demand leakage, where users 
might shift their electricity usage to other 
appliances not connected to the scheme.

• � Surprisingly, there is also no rebound effect 
in periods following a switch-off event, which 
points to inefficiencies in electricity use (e.g. air 
conditioning units operating without thermostats 
or being set at too low temperatures).

• �� Households were offered varying reward rates 
for participating in switch-off events without 
overriding them; however, there is no evidence 
that higher rewards led to increased participation.

• � There is also no evidence that users respond 
differently to varying announcement periods for 
the switch-off events.

• �� To assess the aggregate potential of a POWBAL-
like demand management approach, we conduct 
a counterfactual exercise. With new estimates of 
the marginal emission factors of the Indian power 
grid and estimates of fine-grained household level 
responses, we analyse the potential reduction in 
household carbon emissions achievable with the 
existing generation assets. 

• � We find an average CO2 emission reduction  
effect of around 2.3%, increasing to more than  
3% in some households, and an average cost 
saving of 2.5%.

• �� Taking the device and installation costs of the 
smart switches into account, the average net 
mitigation cost is -$23.1 per ton of CO2. We 
compute a negative net carbon mitigation  
cost for nearly three-quarters of the households  
in our sample. 

• � We conclude that household-level demand 
management can play an effective and 
economically meaningful role in the Indian 
electricity system. 

• � In future work, we will examine how a  
POWBAL-like demand management approach 
could interact with potential future investment 
pathways for generation assets. We will consider 
how demand management could reduce the 
system cost of adding intermittent renewable 
generation assets. 

Executive Summary
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In recent years, India has made significant progress 
in increasing renewable energy generation, while 
expanding access to electricity across its population 
and closing its power deficit. With its rapidly growing 
economy, electricity demand will continue to surge 
in the coming years. Meeting this demand with 
fossil fuels rather than clean energy would have a 
dangerous impact on global carbon emissions and 
local pollution levels. In signing the Paris Agreement 
in 2015, India has committed to reduce the emissions 
intensity of its economy by 45% between 2005 and 
2030 and to achieve net-zero emissions by 2070. 
Although renewable energy capacity (excluding 
hydro and nuclear) represents more than a quarter 
of total installed generation capacity, coal-fired 
electricity generation still accounts for three-
quarters of annual electricity output. According 
to the International Energy Agency, electricity 
and heat producers are responsible for 51% of the 
country’s total energy-related CO2 emissions, with 
power plants being the largest source. To achieve 
its climate aspirations, India will need to decouple 
energy demand from carbon emissions by replacing 
coal-fired generation with non-fossil-based energy 
capacity, which the government is already aiming 
for with over 500 GW due to be integrated by 2030. 
Investments in supply-side infrastructure including 
energy storage and transmission will be essential 
to enable the deployment of this new capacity 
and maintain security of energy whilst the share 
of fossil-based generation decreases. However, 
increasing the amount of renewable generation in 
the electricity supply mix creates challenges for 
electricity grid operators due to their intermittency, 

which makes it difficult to ensure electricity supply 
matches demand throughout the day. Demand side 
interventions, such as shifting electricity demand 
from periods when renewable energy is scarce to 
periods when it is more available, can therefore play 
an important role in maintaining balance across the 
system and reducing costs. In addition, with high 
levels of variable renewable energy on the grid, peak 
demand might not coincide with moments of the 
day at which the marginal cost of generation, or the 
marginal grid carbon intensity, are at their lowest. As 
a result, spreading demand more evenly across the 
day can avoid the need to dispatch expensive and 
polluting power plants, thereby lowering the carbon 
intensity of grid-supplied electricity and the overall 
cost of electricity generation. Lastly, greater demand 
flexibility can help system operators avoid outages at 
times of system stress when financial profit margins 
are tight.

This briefing paper begins with a short overview of 
the latest literature on technological and behavioural 
tools for electricity demand flexibility. It then presents 
the results of a randomised control trial (RCT)2 with 
residential customers of Tata Power that studies 
the role of incentives and automation technologies 
in making electricity demand more flexible. This 
research provides valuable insight for electricity 
regulators and retail electricity suppliers looking to 
design and implement automated demand response 
programmes to minimise the cost of electric power 
procurement and balancing, whilst maximising 
decarbonisation of our energy system.

1. Introduction

4

2 In randomised control trial subjects are randomly assigned to one of two groups: the experimental group receiving the 
intervention that is being tested, and a comparison group that does not receive the intervention. Randomisation ensures 
that these two groups are similar on average, implying that any observed differences in outcomes can be attributed to the 
intervention and not to any other confounding factors.
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Demand-side management consists of a broad class 
of schemes aimed at modifying patterns of electricity 
use. In the retail market, these might include various 
forms of dynamic pricing, such as real-time, time-of-
use, variable peak and critical peak pricing, as well 
as schemes that reward consumers for shutting off 
low-value electricity consumption at specified times 
such as critical peak rebates (Badtke-Berkow et al, 
2015). Such measures can be optimised to maximise 
avoided climate and local pollution damages whilst 
lowering balancing and network reinforcement 
cost, as well as decreasing the likelihood of forced 
outages. Nevertheless, attempting to make demand 
more flexible by pricing electricity dynamically or 
by offering dynamic rewards may be less effective 
if consumers are inattentive to electricity prices as 
has been shown in the case of the residential sector 
(Jacobsen and Stewart, 2022; Parrish et al., 2019; 
Sexton, 2015; Jessoe et al., 2014; Gilbert and Zivin, 
2014; Houde et al., 2013, Fabra et al., 2021). In such 
cases, incentives alone may not always be enough to 
harness any latent demand flexibility.

As an alternative, with the installation of smart 
meters, retail electricity suppliers could control 
load at the meter level directly and in exchange 
offer discounted tariffs to consumers that sign up 
for interruptible or curtailable service contracts. 
However, the feasibility of this approach remains 
uncertain given the potential inconvenience to 
consumers from having the electricity to their entire 

house being shut off periodically. The development of 
Internet of Things (IoT) technologies has brought the 
possibility of automating demand-side management 
at the level of individual appliances, allowing 
consumers to tailor the parameters of automation to 
their preferences. Automation is increasingly being 
considered as a low-cost opportunity to make small 
changes in electricity demand that can result in large 
electricity supply cost reductions (Blonz et al., 2021; 
Bailey et al., 2023; Coutellier et al., 2020). In principle, 
dynamic pricing of electricity could encourage 
consumers to adopt these IoT technologies, however 
they can face technical barriers to adoption, such as 
difficulty in finding installers with the requisite skills. 
Adoption of automation may also be hampered if 
consumers are less concerned with the cost of their 
electricity consumption. Lastly, IoT technologies 
might generate concerns of safety and data security 
(Alaa et al., 2017; Nicholls et al., 2020; Parrish et al., 
2020). These factors are likely to constrain the large-
scale take-up of IoT technologies needed to induce 
greater responsiveness from the demand side to 
changing energy system conditions. 

The study we present in the next section builds on 
these different parts of the literature by exploring in 
an experimental setting (RCT) how consumers adopt 
and interact with automation devices and how this 
intervention can contribute to demand flexibility and 
load balancing in the Indian context.

2. �Existing evidence on 
demand management

5
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Overview:
Starting in March 2023, we invited over 850,000 
residential customers of Tata Power via SMS, email 
and WhatsApp to participate in a study in which 
they can earn rewards for using a Wi-Fi enabled 
“smart” switch, i.e. a Wi-Fi connected switch 
enabling to remotely turn off the electricity supply 
of connected appliances as well as to monitor their 
power consumption via a smartphone app.  As of 
July 2024, 1,000 residential customers of Tata 
Power have registered for the trial and are using the 
smart switches. Approximately two-thirds of these 
customers have smart meters. Households can 
choose which appliance to connect to the smart 
switch and about 80% connected an air conditioning 
(AC) unit. 

We use the POWBAL web platform,3 which was 
designed at Imperial College London, to monitor 
power consumption readings in real-time and to 
automatically trigger random 30-minute switch-off 
events at different times to each device. These 
events occur between 8am and midnight no more 
than twice a day and no more than eight times a 
week for each device. Participants can choose to 
opt-out when given notice, or to turn the device back 
on manually if it switches off. However, by incurring 
the switch-off, they are rewarded in proportion to 
the power consumption that is avoided relative to 
how much the appliance would most likely have 
consumed if there was no switch-off event.4

Using data from the households’ smart meters, we 
find that household energy demand reduces by 
about 8.5% on average during switch-off events. 
The size of the effect increases to 15% during the late 
afternoon and evening hours which coincide with 
peaks of aggregate power demand. The observed 
reductions in electricity consumption at the device 
level closely align with those measured at the meter 

level, suggesting that data from smart switches 
alone may suffice for implementing automated 
demand response programs, even for consumers 
without smart meters, without sacrificing grid 
benefits. Throughout the trial, we varied reward rates 
for each user event but found no evidence that 
households reduced their electricity usage more in 
response to higher rewards.

Interestingly, and contrary to expectations, we also do 
not find any evidence for compensating effects i.e., 
households do not consume any more electricity 
in periods shortly after a switch off, which might 
imply a certain degree of wastage in how energy 
is used. For example, if air conditioning units are 
operating without thermostatic control or are set too 
high, a temporary switch-off would not trigger any 
compensating response. We can also characterise 
this demand response trial as a virtual power plant 
where power generation corresponds to the energy 
consumption avoided due to the switch-off events.  
In this way, our virtual power plant has generated  
5.4 MWh since the trial began in the spring of 2023. 

Description of data collected 
during the trial:
The share of customers that accepted the SMS, 
email or WhatsApp invitation to participate and 
followed through with devices installed is 0.1%. 
These low sign-up and conversion rates might be 
driven by a reluctance to have appliances remotely 
controlled by an external entity or the absence 
of marketing campaigns on social and traditional 
media. Approximately 80% of the smart switches 
are connected to AC units, while the rest are mostly 
connected to refrigerators and electric geysers (i.e. 
water heaters) and a handful are connected to light 
bulbs, microwave ovens, washing machines, water 
pump motors and electric car chargers.

3. �POWBAL-Tata Power 
Randomised Control Trial

6

3 For further information, visit powbalenergy.net
4 We set rewards to be proportional to the per-kWh reduction in the energy consumed during the event relative to the energy 
the device consumed in the five minutes before the event started; i.e. we assume that in absence of the switch-off, customers 
would have used the same amount of electricity throughout the 30 minutes of the switch-off event as they did in the five 
minutes prior to switch-off.



5 The figures also depict a period in July 2023 when data could not be queried from the smart switches due to a malfunction 
with the device APIs.
6 Observations above the 95th percentile of meter-level electricity use are removed from the final dataset. 
7 We report summary statistics in the appendix.
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Figure 1 reports the number of connected devices and total power flow across all smart switches installed in 
Delhi and Mumbai since the trial commenced.5 The high prevalence of ACs connected to smart switches in 
the trial explains the steep incline in power usage at the onset of summer and sharp reduction at the onset of 
winter – a trend particularly driven by smart switch users in Delhi that experience hotter summers and colder 
winters than do users in Mumbai. Reductions in power usage could also reflect some users withdrawing from 
the trial and/or their smart switches going offline permanently. 

Figure 1: Online smart switches and total power usage across all smart switches
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Note: The figure on the left indicates smart switches connected to Wi-Fi at five-minute intervals since the trial started until July 2024. 
The figure on the right indicates total power usage across connected smart switches at five-minute intervals over the same period.

Combining data from the devices with the smart 
meter readings and removing outlier observations,6 
we have 1,398,971 user-half-hours of meter-level 
and smart switch electricity consumption. On 
average, 71% of devices are online at any given time. 
The average household in the sample consumes 
349.50 Wh every half-hour, or 510 kWh per month, 
which is 2.5 times larger than the median electricity 
consumption for residential customers using 
traditional power meters in Delhi (Khanna and Rowe, 
2024). The power flowing through the smart switch 
accounts for 13% of meter-level consumption on 
average, with higher shares at night.7

Different appliances naturally display variance 
in the distribution of their power consumption in 
time. For example, if the difference between the 
room temperature and that of the refrigerator or AC 
thermostat setting is small, the appliance may remain 
on while consuming near-zero power. However, 
operating at full power, a refrigerator consumes 100-
200W and a room AC unit 1,500-2,500W depending 
on its size and efficiency. Figure 2 shows average 
device-level electricity usage by month-of-year, 
separately for both cities. The U-shaped pattern is 
driven by consumers running their ACs primarily at 
night. We see a stronger seasonal pattern, and greater 
night-time AC usage in Delhi due to temperatures 
peaking in June.   
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Note: The figure indicates 
the average device-level 
electricity use by hour of 
day, month, and city from 
February 2023 until  
October 2023. Participants 
were recruited starting in 
February 2023 in Mumbai 
and in March 2023 in Delhi.

With the described infrastructure of POWBAL switches in place, we conducted 
117,227 switch-offs at the user-event level between 8am and midnight. 29% of 
these events occurred at times when the power consumed through the smart 
switch was greater than 0W. 23% of these events were overridden by the user. 
Overrides are cases where the device was consuming power immediately before 
the event, but the customer either opted-out of the event on their app beforehand 
or immediately turned the device back on, such that there were no energy savings 
and therefore no reward was earned. The following sections present the impact of 
POWBAL events on electricity consumption and overriding behaviour.

Impact of POWBAL switch-off events on electricity 
consumption and drivers of flexibility
We study the effects of the switch-off events on electricity use both at the smart 
switch or device-level and at the household or meter-level during the 30-minute 
events, as well as the half-hour periods around these. We use an econometric 
estimation approach called panel data fixed effects. This approach allows us 
to account for any time-invariant differences between users that affect their 
electricity use, for example property size.  Factors that vary at the city-by-
half-hour-by-appliance type level such as weather differences that may drive 
systematic trends in appliance use are also accounted for. 
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Figure 2: Average device-level electricity usage by hour of day, 
month and cityswitches
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On average, switch-off events lead to a 60% reduction in device-level electricity 
consumption during the 30-minute event interval. This average reflects the fact 
that while some users may turn their devices back on either immediately or at 
various points during the interval, others may not turn them back on at all. Using 
data from the users’ smart meters, we find that this effect corresponds to an 8.5% 
average reduction in household-level electricity during switch-offs. 

This effect varies for different types of switch-off events and users. Figure 3 
shows that neither the notice period duration (whether two or eight hours before 
the switch-off event) nor the reward rate (multiples of INR 6/kWh) significantly 
influences the extent of the reduction in electricity consumption at the device 
level. This suggests that larger financial incentives may not have much of an 
additional impact when demand response is facilitated using smart technologies. 

In unreported results, we find that users do not increase their consumption in the 
aftermath of a switch-off, and that some users anticipate a switch-off by reducing 
their energy use before it starts. As a result, the reduction during the 2.5 hours 
that include the hours prior and after the 30-minute switch-off, amounts to 69%, 
corresponding to a 14% reduction in household-level electricity use.  

It is important to note that a two-hour notice period leads to a statistically 
significant 9% reduction in electricity use during the period immediately before 
the switch-off event, whereas an eight-hour notice period does not have the same 
effect. This reduction likely occurs because users manually turn off their devices 
upon receiving the notification about the upcoming switch-off. This behaviour 
may indicate a misunderstanding of the reward scheme by some users, as turning 
off the device prematurely results in no reward being earned. These findings 
suggest that a longer notice period or no notice at all could prompt a more optimal 
behavioural response.

9
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Note: The figure plots the 
estimates of percent changes 
in electricity use and 95% 
confidence intervals from 
Poisson regressions of 
device-level electricity use 
on a set of dummy variables 
indicating switch-off events 
in period t interacted with the 
length of the notice period 
(left) and the offered reward 
rate (right) for the event. The 
regressions control for user 
and city x appliance x t fixed 
effects and standard errors 
are clustered at the user level.
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Figure 3: Effect of switch-off events on device-level energy use 
by notice time and reward rate.

Does the time of the day at which the event is scheduled alter the effect of 
switch-off events? Figure 4 compares the percentage load reduction potential 
observed during events with the average hourly meter-level consumption. The 
data reveals that household energy demand is more flexible at specific times 
of the day, particularly during peak hours. These are also the times when the 
distribution network is most susceptible to overload and when outages are more 
common. This finding suggests that scaling up automated demand flexibility 
programmes could reduce peak demand and the likelihood that outages occur in 
the first place.
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Note: The figure plots the 
estimated percent reduction 
in household electricity 
use during the automated 
switch-off events on the 
left y-axis and the average 
household-level electricity 
consumption on the right 
y-axis by hour of day. 
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Figure 4: Hourly Potential for Meter-Level Electricity Reduction 
vs. Average Consumption

This conclusion is further reinforced by the absolute impact of the 30-minute 
switch-off events on power consumption, as shown in Figure 5 for various 
times of the day. The most significant reductions in electricity use occur in the 
evenings, both at the device level and meter level. The similar magnitude of effects 
at both levels suggests that users do not offset these reductions by shifting 
their electricity usage to other devices during the 30-minute events. This also 
suggests that using readings from smart devices to implement demand-response 
programmes with consumers that do not have smart meters could be achieved 
without compromising on the benefits to the grid.
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Note: The figure plots the 
coefficient estimates and 
95% confidence intervals of 
ordinary least squares (OLS) 
regressions of device-level 
electricity use and meter-
level electricity use in Wh 
on a set of dummy variables 
indicating a switch-off event 
in period t interacted with the 
hour of day. The regressions 
control for user and city x 
appliance x t fixed effects and 
standard errors are clustered 
at the user level.
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Figure 5: Hourly Impact of Switch-Off Events on Electricity 
Consumption

Further analysis, detailed in the appendix, shows that the effects on device-level 
consumption are not influenced by the number of weeks a user has participated in 
the trial, nor by their preference for whether their device should turn off or remain 
on after each event. The most significant load reductions during the switch-off 
periods are observed for refrigerators, with slightly smaller but more precisely 
measured reductions for air conditioners (ACs). This difference reflects the 
distinct usage patterns of these appliances: refrigerators are typically powered 
continuously, while AC usage varies based on temperature and the presence of 
household members.

Finally, we divide households into quartiles of overall household electricity use.  
Figure 6 shows that the reductions in device- and meter-level electricity use is 
larger for users in the upper quartiles of household electricity consumption than 
among users in the lower quartiles.
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Note: The figure plots the 
coefficient estimates, and 
95% confidence intervals 
of Poisson regressions of 
device-level electricity use 
and meter-level electricity 
use on a dummy variable 
indicating a switch-off event 
in period t interacted with the 
quartiles of demeaned and 
detrended half-hourly meter-
level electricity consumption. 
The regressions control for 
user and city x appliance x 
t fixed effects and standard 
errors are clustered at the 
user level.
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Figure 6: Electricity Use Changes by Consumption Quartiles 
During Switch-Off Events

A Virtual Power Plant 
How do features of events drive overriding behaviour?  

Reward rates impact the probability of an override: doubling the reward rate 
from INR 6 per kWh to 12 is associated with a 4.9 percentage point reduction 
in the probability of an override, as shown in Figure 7. The effect becomes even 
more pronounced when we consider only those switch-off events where the 
device was actively consuming power at the time of the event. On the other 
hand, a longer notice period does not have a statistically significant effect on the 
probability of an override. 
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Note: The figure plots the 
coefficient estimates and 
95% confidence intervals 
of Ordinary Least Squares 
(OLS) regressions of the 
occurrence of a switch-off 
event overridden by the user 
on the reward rate (INR/kWh) 
that the user was offered 
for the event on a sample 
that consists of all events 
and a sample that includes 
only those events where the 
power consumed prior to the 
event was greater than 0W. 
The regressions control for 
user and city x appliance x 
t fixed effects and standard 
errors are clustered at the 
user level.
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Figure 7: Effect of the level of the reward rate on probability of 
overriding switch-off events

Given these findings, Figure 8 displays the computed capacity factor of our 
implicit virtual power plant, measuring the fraction of potential implied power 
generation that has been realised across all switch-off events. The capacity factor 
is calculated at five-minute intervals before and during the switch-off events 
and the dotted lines indicate the beginning and end of switch-off periods. On 
average, the power delivered to the grid is highest in the first five minutes of a 
switch-off event, with a capacity factor of 73%. This drops to 45% by the end of 
the event, indicating that some consumers override the switch-off. Even after the 
30-minute event concludes, devices typically do not return to their pre-switch-off 
consumption levels, meaning our virtual power plant continues to supply power. 
This suggests that some devices remain off, and those that do turn back on do 
not fully compensate for the power saved during the switch-off period.
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8 In Appendix C we describe how we estimate marginal emission factors for the Indian electricity grid.

Note: The figure plots the 
capacity factor of our implicit 
virtual power plant, i.e. the 
fraction of potential implied 
power generation that has 
been realised across all 
switch-off events. The data 
is discretised at the level of 
five-minute intervals. The 
dotted lines indicate the 
beginning and start of switch 
off periods.
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Figure 8: Average capacity factor of virtual power plant around 
switch-off period

The short run potential to avoid CO2 emissions
A key motivation for exploring demand management options is the potential to 
expand renewable energy generation while minimizing the reliance on expensive 
backup solutions like batteries or fossil fuels. In doing so, demand management 
reduces the emissions intensity, operating costs and the need for load shedding of 
any given electricity system. 

To explore this in our context, we measure the potential of the current POWBAL 
setup to mitigate CO2 emissions. Fundamental to this approach is the concept of 
marginal emissions (ME), i.e. the change in aggregate emissions resulting from a 
change in electricity production.8 Figure 9 plots the distribution of ME factors for 
all 30-minute periods in India throughout 2023. These factors vary from 0.4 tons 
of CO2 per MWh to over 1 ton of CO2 per MWh. Consequently, shifting 1 MWh of 
electricity consumption from a low ME period to a high ME period could result in a 
carbon saving of 0.6 tons of CO2. 
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9 We conduct this exercise for the 360 participating smart meter users in Delhi and 144 participating 
smart meter users in Mumbai for whom we received one full year of half-hourly household-level 
electricity consumption data from Tata Power.

Note: The figure plots 
marginal emission factors 
which are estimated for 
every 30-minute period in 
2023 by fitting a model of 
CO2 emissions from power 
production in India as a 
function of electricity system 
output and a set of weather 
bins: high solar radiation 
and low wind speed, high 
solar radiation and high wind 
speed, low solar radiation 
and high wind speed, and 
low solar radiation and low 
wind speed. We scraped 
five-minute data on CO2 
emissions from power 
production and electricity 
system output from www.
carbontracker.in and used 
hourly weather data from 
the ERA5-Land product of 
ECMWF.
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Figure 9: Estimated marginal emission factors, 2023

The carbon impact of load shifting depends on two key factors: (1) how marginal 
emissions factors (ME) fluctuate within short time frames, and (2) the degree to 
which consumer responsiveness to switch-off events aligns with these variations 
in ME factors. To analyse these impacts, we use real-world 30-minute response 
elasticity estimates from our trial to explore a counterfactual scenario. Imagine 
that in 2023, we had optimally switched off the devices of participating  
households no more than once every three hours, targeting the 30-minute period 
within each three-hour window when the ME factor was highest.9 We summarise 
the effect of this counterfactual scenario using two statistics: (i) the implied 
household and aggregate level reduction in carbon emissions, and (ii) the implied 
CO2 mitigation cost. 

We find that electricity could have been delivered with 2.3% less emissions for the 
504 households in our sample for which we have a full year of half-hourly electricity 
consumption data. There is however considerable variation across households. 

As shown in Figure 10, the percentage reduction in carbon emissions that can be 
achieved with the POWBAL switch-off events is larger for households with a larger 
emissions footprint.  
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Figure 10: Reductions in CO2 emissions from household 
electricity use: Counterfactual Analysis

Note: The figure plots the 
counterfactual percent 
reduction in carbon 
emissions because of 
the POWBAL setup for 
the distribution of 504 
households in our sample 
against their total carbon 
emissions from electricity 
use (in tons of CO2). In our 
counterfactual scenario, 
a switch-off event is 
conducted for the 30 
minute-period in every 
three-hour window in 
2023 when the estimated 
marginal emissions factor 
is the highest. We assume 
that households use the 
smart switch for five years 
and the same emission 
reductions can be achieved 
by repeating the schedule of 
switch-off events every year 
over that period.

Figure 11 reports the resulting in the net marginal abatement cost schedule.10 For 
more than 75% of the households the net mitigation costs are in fact negative. The 
mitigation costs will be higher for households that consume very little via the plugs 
at times when ME factors are high.11

Using data from the smart meters, we find that the electricity usage patterns of 
households that did not participate in POWBAL closely mirror those of households 
that did participate. If the nearly 250,000 residential smart meter users of Tata 
Power participated in POWBAL, 84,177 tons of CO2 mitigation could be achieved at 
negative cost. 

10 To obtain marginal abatement costs we consider the costs of procuring and installing smart 
switches in individual households, which currently amounts to $24 per household. Note that this 
abstracts from additional costs of operating the system. However, such costs would become 
negligible if a POWBAL-like approach were scaled to all residential customers of TATA Power or 
indeed to all Indian households. For further details on the mitigation cost calculation, see Appendix D.
11 e.g. see CO2 emissions abatement costs and drivers for Indian thermal power industry - ScienceDirect
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Figure 11: Net CO2 mitigation cost: Counterfactual analysis

Note: The figure plots the 
counterfactual net CO2 
mitigation cost ($ per ton of 
CO2) of the POWBAL setup 
for the distribution of 504 
households in our sample 
against their mitigation 
potential (in tons of CO2). 
In our counterfactual 
scenario, a switch-off 
event is conducted for 
the 30 minute-period in 
every three-hour window in 
2023 when the estimated 
marginal emissions factor 
is the highest. We assume 
that households use the 
smart switch for five years 
and the same emission 
reductions can be achieved 
by repeating the schedule of 
switch-off events every year 
over that period.
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How representative of a broader population are 
these results? While our study focuses on an urban 
population, the analysis suggests that our findings 
could be applicable to residential consumers in 
general. The key factor is that when a smart device 
automatically turns off an appliance, underlying 
differences in sensitivity to price incentives become 
less significant—no manual action is required to 
reduce consumption, and overriding the switch-
off via the app still demands some effort and 
attention. Additionally, even within our relatively 
affluent urban sample, there is no evidence of 
substitution to other electricity uses during switch-
offs. Less affluent consumers, who may have fewer 
alternative appliances, are even less likely to engage 
in substitution. Lastly, we observe no significant 
differences across different quartiles of household 
electricity use in terms of the percentage reduction 
during switch-offs.

Considering existing literature, our findings indicate 
that combining automation with price incentives 
can lead to greater reductions in consumption than 
relying on price incentives alone. (Sudarshan, 2017). 
A key explanation for this result is that automation 
reduces the cognitive burden on consumers to 
provide flexibility to the system. 

This project is the product of a long-standing 
research partnership between Imperial College 
London and Tata Power in India, demonstrates how 
energy suppliers and academics can collaborate 
effectively to design demand response programs 
that maximize grid benefits while minimizing costs 
to consumers through careful and thoughtful 
design. Evidence generated by the study could 
facilitate a dialogue on cost-effective strategies 
for scaling automated demand-side management 

and ultimately accelerate the transition to clean, 
reliable and affordable energy globally. Simple and 
innovative IoT-based technologies for automated 
electricity demand management have the potential 
to significantly reduce the carbon footprint of the 
energy sector by shifting consumption to times when 
power generation is less carbon-intensive, while also 
offering cost savings.

In a large developing economy like India, which 
is heavily reliant on fossil fuels yet has significant 
potential for renewable energy, demand-side 
management could be crucial in managing the 
growing intermittency of power supply and 
reducing the dependence on coal in the energy mix. 
Furthermore, it could help lower the likelihood of 
outages by making electricity supply more efficient.  
Highly subsidized residential electricity prices 
help keep power affordable for households but put 
electricity suppliers in a difficult position, forcing 
them to choose between supplying power at a loss 
or rationing it. When utilities opt to ration power, the 
heavily redistributive pricing structure creates strong 
incentives to impose outages on low-price residential 
customers, particularly those who struggle the most 
to pay their bills. Suboptimal energy supply can 
consequently adversely affect long-run economic 
growth. The increasing share of variable renewable 
energy in the energy mix offers a unique opportunity 
to reform retail electricity prices, aligning them with 
the social marginal cost of electricity delivery and the 
varying demand for uninterrupted power throughout 
the day. Automation and flexibility can serve as 
effective tools for optimally allocating electricity to 
those who value it most during specific times.

4. Conclusions
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