Fondation Mérieux :

Building local capacity to improve AMR diagnosis and surveillance in LMICs

Workshop on Novel Diagnostics for Infectious Diseases March 25 – 26, 2024, London

An independent foundation fighting infectious disease

Working in limited-resource settings to improve health and living conditions for the most vulnerable

- The Mérieux Foundation: created in 1967 by Dr. Charles Mérieux in memory of his father, Marcel Mérieux
- A French non-profit Foundation with public interest status
- Focus on locally-driven work in the field, side-by-side with onsite teams and partners

OUR MISSION

Fighting infectious diseases affecting the most exposed populations in low- and middle-income countries

Strengthening local capacities in clinical biology and applied research to improve diagnosis and surveillance of infectious diseases

Encourage **knowledge-sharing and public health initiatives**, leveraging Les Pensières Center for Global Health

Improve conditions for **mothers and children**, taking a global health approach

More than 100 projects in 25 low- and middle-income countries

160 people in:

- Africa
- Asia
- France
- Indian Ocean
- Middle East

The AMR context of LMICs

- Limited access to diagnostics* → Lack of well-equipped microbiology laboratories
 - \rightarrow Lack of well-trained microbiologists
 - \rightarrow Reagent supply issues

The majority of diagnostic tests are restrained to hospitals and laboratories in urban settings:

- → Only 19% of patients have access to appropriate diagnostics at the primary health care level**
- → Patients paid for the majority of healthcare (diagnosis, treatment, surgery ...)
- \rightarrow Targeted antibiotic therapy is rarely prescribed.
- Weaknesses in their AMR and AMU epidemiological surveillance network, to generate robust data on AMR
- Weak research capacity with poor access to innovation and in particular to molecular microbiology; poor dissemination of research data
- Lack of regulation for antimicrobial use in animals
- Lack of access to drinking water and sanitation, precarious hygiene conditions
- Inadequate infection prevention and control measures.....

*Lancet 2021: Availability of diagnostics by tier and country ** PATH, 2022, Market failures and opportunities for increasing access to diagnostics in LMICs

A focus on our AMR activities

- 1. Capacity Building for Diagnostics and Laboratory Systems
- 2. Strengthening surveillance capacity with the One Health approach
- 3. Antibiotic stewardship program
- 4. Knowledge Sharing AMR course, to support the WHO AMR-Global Action Plan

Laboratory capacity

Introducing Bacteriology diagnostics in Madagascar

- Partnership with Ministry of Public Health (DPLMT / SLab)
- A network of 27 hospital labs
- 13 bacteriology units to date in CHU
 - Culture and antibiotic susceptibility testing
 - Capacity-building for AMR surveillance
 - Data for WHO GLASS
 - At the patient level: better treatment (right antibiotics)
 - At the population level: better visibility of which antibiotics work
- Contribution to national AMR action plan

resamad

Main AMR activities in applied research & surveillance

"One Health" surveillance & AMR transmission studies:

- Global surveillance: early information and spread of AMR
- Community level: human, animal and environment interactions
- Data sharing with the health authorities
- Simplified techniques adapted to LMICs
- NGS / bioinformatics for deep characterization of resistant strains

Capacity building:

- Mentoring PhDs and health professionals from LMICs
- NGS / bioinformatics training
- Fleming Fund Fellowship scheme program in Senegal & Laos

GABRIEL network coordination

LEBANON Rodolphe Mérieux Laboratory of Beirut, St Joseph University

Microbiology, Health and Environment Laboratory

Active surveillance of AMR with "One Health approach"

WHO Tricycle protocol / JPI AMR-TRluMPH

Rationale and unmet need Lack of AMR surveillance system in LMICs with "One Health approach" Lack of data on prevalence of resistant bacteria in the different sectors

Objective

To assess AMR prevalence in humans, animals & environment through analysis of a single indicator **ESBL** *E. coli*

Study design

- Simplified AMR surveillance across the three main sectors:
 Human, food chain and the environment
- Measured yearly in identical and controlled conditions
 - o to assess the impact of future AMR interventions
 - \circ to inform National Action Plan and Ministry of Public Health

🖸 jpiamr

Active surveillance of AMR with "One Health approach"

Upstream, downstream, waste water, slaughterhouse

Chicken from traditional farms

Pregnant women : representative of the community

Tricycle in Madagascar : the main results of one-year study Lancet microbe, 2024, in Press

ESBL *E. coli* carriage

Genetic relatedness of isolates based on single nucleotide polymorphism analysis

Force-directed Fruchterman-Reingold layout representing intra and intersectoral dissemination of isolates differing by less than 40 SNPs and harbouring the same ESBL enzyme.

Active surveillance of AMR with "One Health approach

Ongoing study

Data Science Center for AMR (BMGF)

Grand Challenges 2022 Partners: Madagascar, Burkina Faso

Rationale and unmet need

AMR data collected through research or active surveillance projects are often:

- of low quality and difficult to transcribe into electronic format
- · not shared with decision-makers, stakeholders or scientists

This leads to delays in data analysis and in the definition of relevant strategic indicators for monitoring the impact of public health measures and to a lack of decision-making by governance stakeholders

Objective

• Build an AMR data center with robust tools for collecting, analyzing, sharing, and disseminating data from active surveillance in Madagascar and Burkina Faso

Study design

- Ministries of Health, Livestock and Environment involved in AMR data center specifications
 - Especially intellectual property, data sharing and data governance
- Creation of a single platform interoperable with DHIS2 (or an equivalent, ENDOS) to centralize AMR data from active and passive surveillance in Madagascar and Burkina Faso

Antibiotic Stewardship

TSARA: An antibiotic resistance surveillance program*

*T*echnique de *S*urveillance *A*ctualisée de la *R*ésistance aux *A*ntibiotiques

A standardized data collection tool for monitoring **microbiological**, **clinical** and **epidemiological** data.

Objective: Combining patient data with laboratory and epidemiological surveillance data to provide a better understanding of the scope of AMR and improve antibiotic prescribing practices.

*Elias C, Raad M, Rasoanandrasana S, et al. Implementation of an antibiotic resistance surveillance tool in Madagascar, the TSARA project: a prospective, observational, multicentre, hospital-based study protocol. BMJ Open. 2024;14(3):e078504. Published 2024 Mar 19. doi:10.1136/bmjopen-2023-078504

TSARA: the main results

- Study implemented in 10 hospitals at Madagascar
- Hospitalized patients (N=2311) with a sample sent to the microbiology labs

Laboratory data

- <u>31.8 % positive cultures</u>
 - → 56.8% Enterobacteriaceae isolates
 - 60.0% C3G resistant Enterobactericeae
 - 12.9% Carbapenemase resistant Enterobactericeae
 - ightarrow 12.1% Staphylococcus aureus
 - 17.9% Methicillin-resistant

Clinical data

- 57.8% with empiric antibiotic therapy prescription
 - Ceftriaxone : the most commonly prescribed molecule as monotherapy (18,3 %)
 - Bitherapy with Ceftriaxone + Gentamicin (13,9%)
- 29.3% documented antibiotic therapy (after reception of the lab results)
 - 48.6% documented antibiotic prescriptions despite the reception of a negative bacterial culture

Thank you for your attention

50 YEARS IN THE FIGHT AGAINST INFECTIOUS D I S E A S E S

