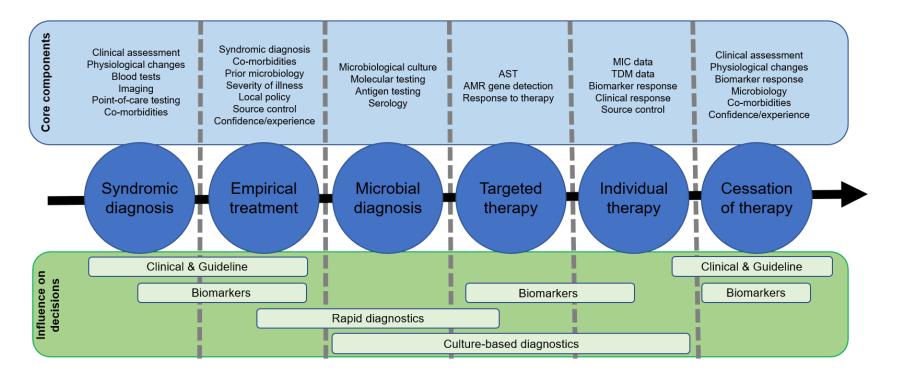
Imperial College London

Optimising antimicrobial prescribing: Challenges and solutions in diagnostic stewardship

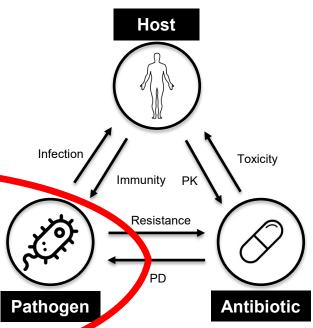
Novel diagnostics for infectious diseases 26/03/2024


Dr Timothy Miles Rawson, BSc (hons), MBBS, MRCP (UK), FRCpath, PDME, DTM&H, PhD Health Protection Research Unit for Healthcare Associated Infections and Antimicrobial Resistance Centre for Antimicrobial Optimisation, Imperial College London

Microbiological diagnostics

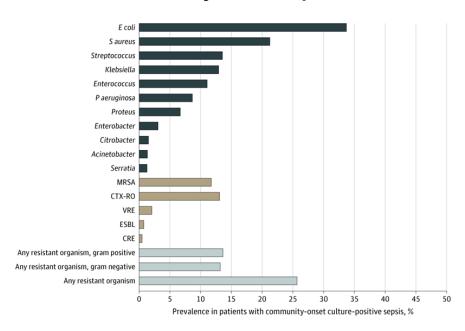
- Novel technologies to support the diagnosis and management of infectious diseases are emerging at an exponential rate.
- Diagnostics are important to help preserve the value of antimicrobials.
- Globally, the adoption of novel diagnostics within antimicrobial stewardship programmes is low.
- Generally, novel diagnostics remain undervalued.

Antimicrobial decision making


Traditional focus of diagnostics in antimicrobial stewardship

Optimal antimicrobial prescribing

Challenge for microbiology:


How do we deliver appropriate information in timely fashion to help influence decision making?

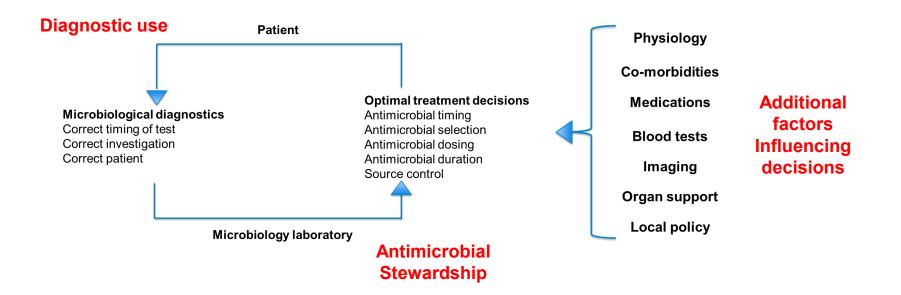
Organism identification
Phenotypic antimicrobial susceptibility

Antimicrobial stewardship

Community onset sepsis in the USA

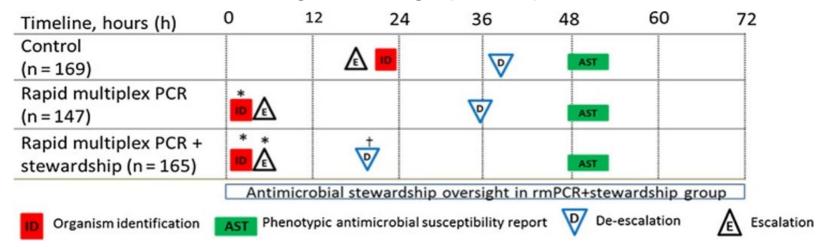
17,430 patients admitted to hospital with culture confirmed sepsis in the USA.

Inadequate spectrum:


• In-hospital death increased (aOR:1.19; 95%CI:1.03-1.37)

Unnecessarily broad spectrum:

- In-hospital death increased (aOR:1.22; 95%CI:1.06-1.40)
- C.difficile risk increased (aOR:1.26; 95%CI:1.01-1.57)
- **AKI risk** (aOR:1.12; 95%CI:1.00-1.26)


Diagnostics support stewardship

- Interventions are unlikely to be used in isolation.
- Numerous factors influence decisions on optimal treatment.
- Understanding integration with current decision pathways is key to adoption and impact.

Molecular diagnostics

Blood stream infection management using rapid multiplex PCR

Organism identification: Shortened by more than 20-hours Linked with stewardship: Quicker treatment de-escalation

Reduced: Broad spectrum antimicrobial use

Treatment of contaminants

No impact on: Mortality, length of stay, or cost

Impact of rapid AST on prescribing decisions

Authors	Method	Appropriate therapy	De-escalation	Clinical
Beuving et al. 2015	n = 129 FAST n = 121 SoC RCT GPC & GNR	19 hours faster (when used)		Poor adoptionNo difference
Hogan et al 2020	n = 671 GNB Pre – post quasi-exp.	10 hours faster	10 hours faster	Improved stewardshipNil difference on clinical outcomes
Kim et al. 2021	n = 56 rAST n = 60 SOC RCT Haem Malig with BSI	34 hours faster	80% vs 57% appropriate within 72-hours.	Not reported
Vazquez et al 2022	n = 93 RAST n = 98 SOC GNB RCT	 19.5 hours faster to optimal 18.5 hours faster to appropriate 	AG stopped 22 hours faster	Nil difference
Christensen et al. 2022	n = 274 enrolled RCT rAST vs. SOC GN-BSI & source control	9 hours faster - not significant	35-hours faster to oral therapy	Shorter length of stay – 2 days
Summary		 Faster time to appropriate/optimal therapy 	Reduce inappropriately broad therapy.Early switching	Limited data

Global barriers to use

Rapid Diagnostic Test Value and Implementation in Antimicrobial Stewardship Across Low-to-Middle and High-Income Countries: A Mixed-Methods Review

Luke S. P. Moore (5) · Maria Virginia Villegas · Eric Wenzler ·
Timothy M. Rawson · Rita O. Oladele · Yohei Doi · Anucha Apisarnthanarak

- Variable regional requirements
- Barriers to implementation
- Lack of high-quality evidence to support use of rapid diagnostics
- Defining added value

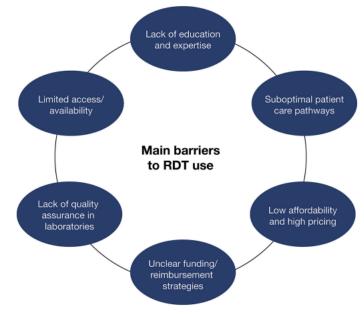


Fig. 1 Main barriers to use of RDTs, derived from EWG semi-structured interviews. EWG expert working group, RDT rapid diagnostic test

Defining value beyond the individual

Value framework modelled on STEDI principles used to evaluate the antimicrobial de-linkage pilot in England and consider value beyond the treated patient.

Value	Definition of benefit		
Programme support	Enable specific antimicrobial stewardship interventions and provision of meta-data for delineating key performance indicators		
Preserve	Quantifiable changes in antimicrobial consumption, appropriateness of antimicrobial prescriptions, and potential antimicrobial resistance		
Practicable	Impact on laboratory and clinical area sample flow (including logistics, information technology, and personnel) and patient flow (including admission avoidance, and length of stay) across LMIC and HIC settings		
Population health	Quantifiable impact on population health through both impact on infection transmission and speed of return to work		
Precision	Evaluable test performance characteristics which may supersede existing traditional laboratory 'gold standard' diagnostics		

Summary

- Novel diagnostics can potentially add significant value to stewardship programmes.
- Paucity of global high-quality evidence for clinical and economic value.
- Effective implementation strategies required to maximise adoption.
- Evaluation against broader framework (5P) to define value beyond individual impact.

Imperial College Healthcare NHS

FUNDED BY

NHS Trust

Imperial Biomedical Research Centre

Imperial College London

