

Incentives for clinicians and CHWs

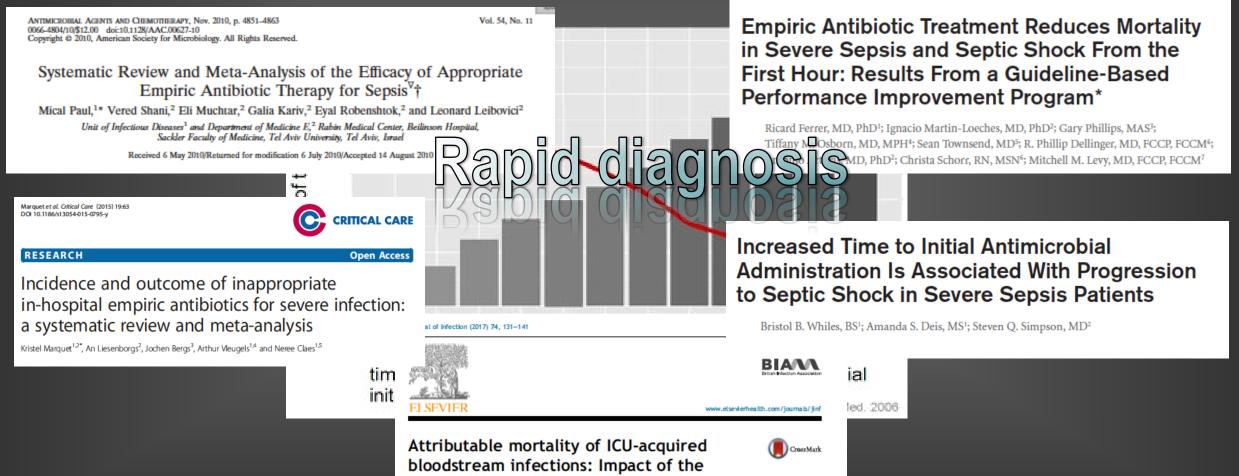
Jordi Vila Department of Clinical Microbiology Hospital Clinic, Barcelona Spain

Novel Diagnostics for Infectious Diseases, London; March 25-26th

Conflict of interest declaration

I have the following potential conflicts of interest to report

Type of Affiliation / Financial Interest	Name of Commercial Company
Receipt of grants / research supports:	Cepheid, STAT Dx (Qiagen), Astra-Zeneca, ABAC Therapeutics, Shionogi
Receipt of honoraria or consultation fees:	Roche Diagnostics, Siemens, Grifols, Quantum Dx, DeepUll
Participation in a company sponsored speaker's bureau	MSD, Gilead, Becton-Dickinson

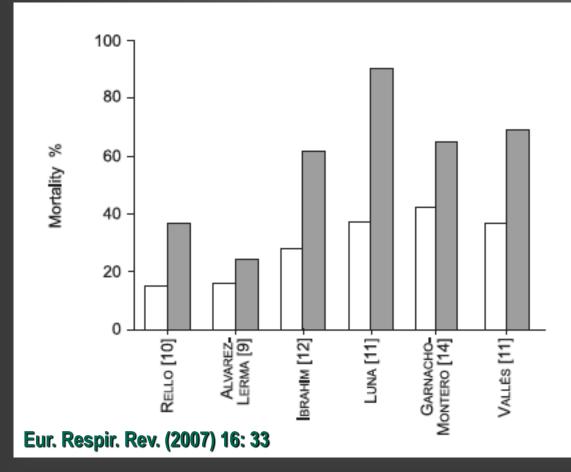

Financial incentives based on objectives

2. Rapid test to diagnose severe infections

3. Clinical Microbiology Laboratory 24/7

Delay in the administration of adequate empiric antibiotic treatment (Sepsis)

source, causative micro-organism, resistance profile and antimicrobial therapy

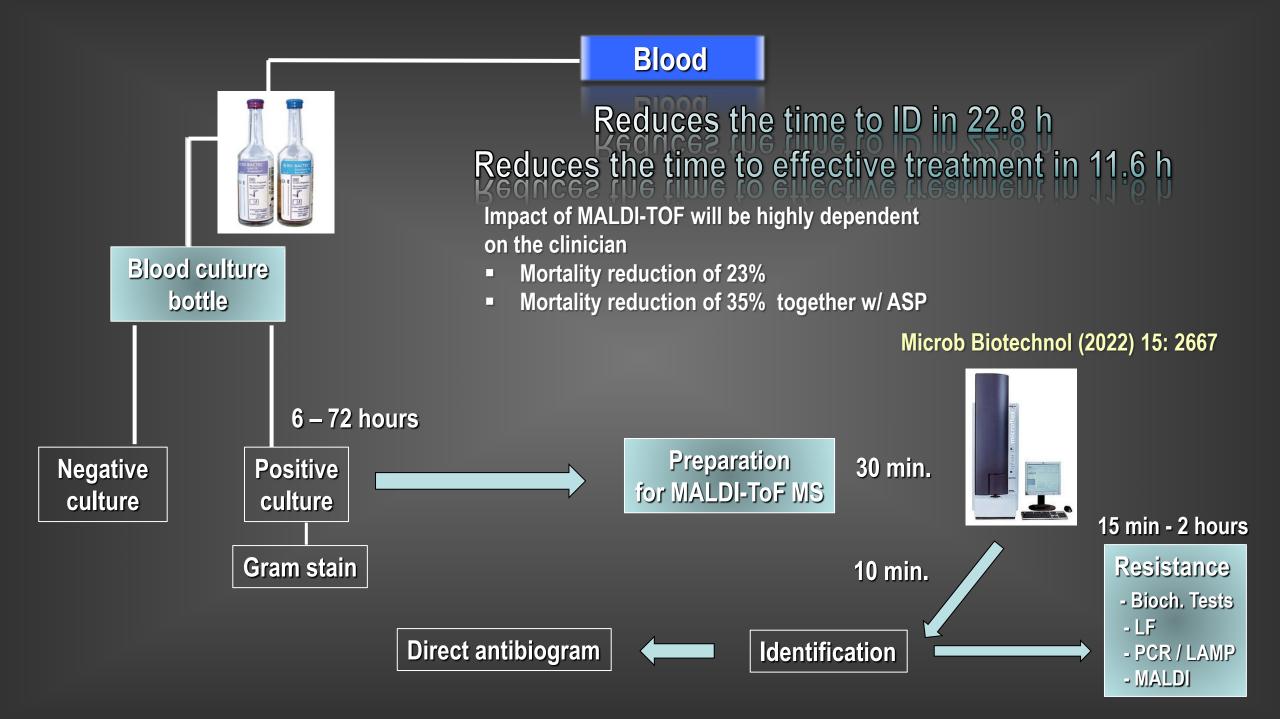

Kadri SS et al: Inappropiate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: a retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals

Lancet Infectious Diseases 2021; 21: 241

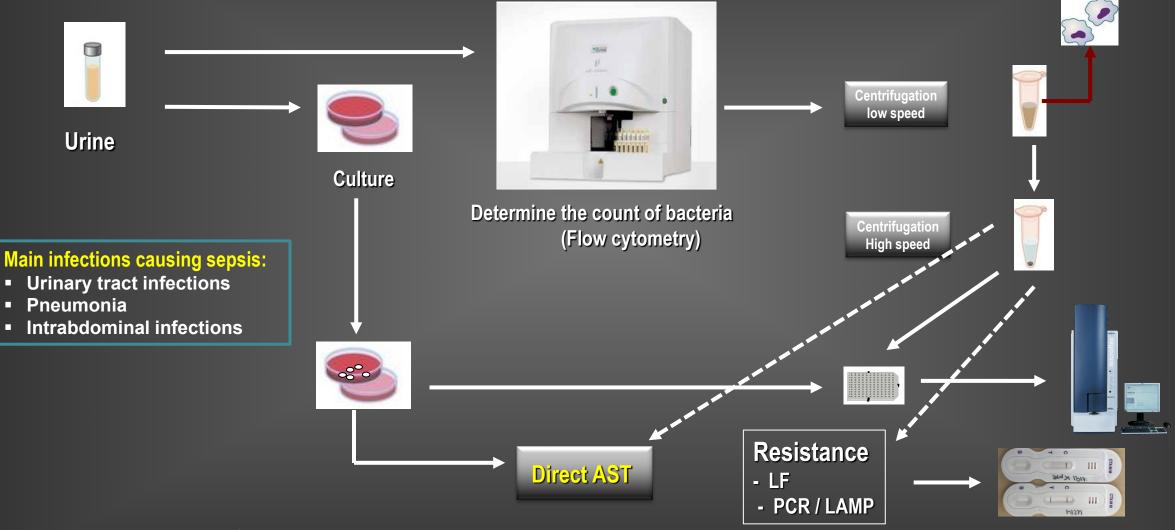
131 hospitals in the USA 21608 patients with bloodstream infectiions received empirical antibiotic therapy on the day of first blood culture collection		Concordant empirical antibiotic therapy (n=17 443)	Discordant empirical antibiotic therapy (n=4165)	
	Year of admission			
	2005-08	4824 (28%)	1041 (25%)	17.7%
	2009–11	5943 (34%)	1384 (33%)	18.8%
	2012-14	6676 (38%)	1740 (42%)	20.6%

Receiving discordant empirical antibiotic therapy was associated with increased odds of mortality overall, even in patients without sepsis.

Delay in the administration of adequate empiric antibiotic treatment (Hospital pneumonia)



Rapid diagnosis


Impact of the rapid test on therapeutic decisions

- Current value of rapid ID and AST or resistance determinants
 - Earlier appropriate treatment
 - Treatment with more narrow spectrum antibiotics
 - Reduce antibiotic consumption
 - Identify resistance trends to better prevent growth and spread of resistance
 - To decide if the patient needs to be isolated
 - Decreased the cost of the hospital

2. Rapid test to diagnose severe infections

Detection of the microorganism by MALDI-ToF directly from urine samples

Zboromyrska Y, et al. CMI (2016) 22: 561.e1-6

Fernandez-Pittol, et al. JCM (2024) 62: e0113623

Zboromyrska Y et al: Implementation of a new protocol for direct identification from urine in the routine microbiological diagnosis Antibiotics 2022; 11: 582

Regarding the 54 cases reliably and positively identified by culture, in 38 cases (70.3%), the patient received adequate empirical therapy and the treatment was not modified, while in 16 cases (29.7%) the treatment was modified, according to the results of direct identification and detection or not of ESBL and/or carbapenemases.

In relation to the empirical treatment in ten cases of the ESBL-producing strains, in four patients ceftriaxone was changed to ertapenem after receiving the results from the Microbiology Department. Two of these four patients were immunosuppressed (a heart transplant patient and a HIV patient) and presented bacteremia from a urinary focus, with the same strain being isolated in the blood culture.

Vila J, et al. Perspectivas de futuro de la espectrometría de masas Enfer. Infec. Microb. Clin. 2016; 34 (supl.2): 53

Direct detection of bacteria from a clinical sample

SAMPLE	GRAM STAIN	DIRECT MALDI-TOF MS ID	CONVENTIONAL CULTURE
Amniotic fluid	GNB	Capnocytophaga sputigena	Capnocytophaga sputigena
Amniotic fluid	GPB	L. monocytogenes	Listeria monocytogenes
Amniotic fluid	GPB	L. monocytogenes	Listeria monocytogenes
Cerebrospinal fluid	Not performed	P. aeruginosa	Pseudomonas aeruginosa
Cerebrospinal fluid	GNB	P. aeruginosa	Pseudomonas aeruginosa
Cerebrospinal fluid	GNB	P. aeruginosa	Pseudomonas aeruginosa
Amniotic fluid	GNB	P. mirabilis	Proteus mirabilis
Amniotic fluid	Streptococci	S. agalactiae	Streptococcus agalactiae
Amniotic fluid	Streptococci	S. agalactiae	Streptococcus agalactiae, Prevotella bivia
Amniotic fluid	Staphylococci	S. aureus	Staphylococcus aureus
Synovial fluid	Streptococci	S. pneumoniae	Streptococcus pneumoniae
Amniotic fluid	GNB	E. coli	Escherichia coli
Bile	Streptococci	E. faecium	Enterococcus faecium
Amniotic fluid	Staphylococci	S. epidermidis	Staphylococcus epidermidis
Amniotic fluid	Streptococci	S. oralis	Streptococcus oralis
Cerebrospinal fluid	No microorganisms	NP	Staphylococcus epidermidis
Peritoneal fluid	No microorganisms	NP	Acinetobacter pittii
Amniotic fluid	Yeast cells	NP	Candida albicans

2. Rapid test to diagnose severe infections

3. Clinical Microbiology Laboratory 24/7

Impact of the rapid test on therapeutic decisions

The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-analysis

Clinical Infectious Diseases (2017) 64: 15

Porque los pacientes no entienden de horarios Microbiología abierto 24 horas

Enferm Infecc Microbiol Clin (Engl Ed). 2022 Jan;40(1):1-4

Fidalgo B et al: Information delay of significant bloodstream isolates and patient mortality: A retrospective análisis of 6,225 adult patients with bloodstream infection Clinical Infectious Diseases 2023; 77: 680

- The aim of this study was to evaluate the clinical and prognostic impact of communicating microbiological information in real time in adult patients with a bloodstream infection
- We have retrospectively reviewed 6,225 clinical episodes of bacteraemia in a 700-bed tertiary teaching hospital from January 2013 to December 2019. Bacteraemia associated mortality was compared between periods where blood culture result was relayed to the infectious disease specialist [IDS] in real time and those periods where information was delayed to the following morning

Bacteraemia aetiology	Dead/Alive	Real-time information Dead/Alive	Delayed Information Dead/Alive	OR	(95% CI)	P-value
All	625/5600	193/1937	432/3663	1.18	(0.99, 1.42)	0.06
Enterobacterales	262/2867	58/957	204/1910	1.76	(1.30, 2.38)	0.00
Pseudomonas aeruginosa	65/466	21/156	44/310	1.05	(0.61, 1.83)	0.85
Staphylococcus aureus	72/430	21/137	51/293	1.14	(0.66, 1.96)	0.65
Enterococcus (E.faecalis and E.faecium)	94/625	32/231	62/394	1.14	(0.72, 1.79)	0.58

The need for a 24/7 hospital coverage for a clinical microbiologist and/or an ID specialist should be revisited in view of the important prognostic implications

- There is clinical evidence that rapid identification and determination of the antimicrobial susceptibility of sepsis or pneumonia helps in the implementation of appropriate antimicrobial therapy and, therefore, in reducing mortality
- The use of MALDI-ToF mass spectrometry together with the detection of resistant determinants from positive blood or urine cultures has a clinical impact on sepsis and urosepsis
- This rapid diagnostic approach will have a greater impact on mortality if the information is provided to the ASP team
- A 24/7 microbiological service is essential for the diagnosis of serious infections and microbiologists, physicians and administrators should make joint efforts to establish this service

jvila@clinic.cat

S

