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Many problems on the shock compression of solids (strength of dynamically
compressed material, shock transition and phase transformations) cannot be
resolved in scope of the traditional continuum mechanics. A change in the

fundamental assumptions is necessary to realize predictive capabilities.

Experiments on the shock loading of materials show that mesoscopic effects
determine the medium response to high-strain-rate, while the dissipation stage is

not yet reached.

The mesoscale level plays a role of an energy buffer between micro- and
macroscopic degrees of freedom. In turn, the mesoscopic effects are the result of
the nonlocal collective interaction initiating the self-organization and the feed-

back in a medium.

New self-consistent nonlocal approach based on nonequilibrium statistical
mechanics had been developed and applied to the shock compression of solids.
The set of integro-differential balance equations unites both wave and dissipative
transport properties. Boundary and integral conditions to the set determine the

internal scale spectra.

The model is completed by a feedback that introduces the structure evolution

based on the new methods of cybernetic physics.

Resonance criteria for the structure transformation in dynamically deformed

material is derived.
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TRANSITION PROCESSES AND MEDIUM MODELS

Elastic medium model — wave-type transport mechanism
(stress — strain) — reversible wave process
— valid for small time scales
IT=CGe th 1:r

and for small strains

Newtonian medium model — diffusive transport mechanism

(stress — strain-rate) — irreversible dissipative process

— valid for large time and space
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scales tl t

and for small strain-rates

What model between the limits?

(stress — strain, stress-rate, + memory effects, + structure transformation)

both wave and diffusive mechanisms
damping wave process

valid for intermediate scales t [t
multi-scale energy exchange between
different degrees of freedom including
vortex structures formation at

meso- and nano- scales

Nonequilibrium transport process ( high-rate, high-gradient) can be followed

by nonmonotonous stress relaxation, internal structure evolution (over

structure unstable states) and synergetic self-organization



NONLOCAL MATHEMATICAL MODEL BASED ON
NONEQUILIBRIUM STATISTICAL MECHANICS

(D.N. Zubarev)

Nonlocal relationships with memory between stress tensor J and strain-rate

ou Oe . .
tensor — = a ( u — momentum transport velocity, e — strain tensor) are

or

valid far from equilibrium

t
J(r,t)= —I dt’_[ dr'R(r,r',t,t") % (r',t")
0 \Y, r

Nonequilibrium correlation function SR(r, I",t,'[') determines the
collective interaction effects on the macroscopic medium response at an

intensive external loading

Unlike the local (limiting) medium models the nonlocal relationships are valid

over all range of the loading regimes for all time and space scales

Nonlocal model corresponds both to the elastic medium model at an initial
stage of loading t[| '[r and to the Newtonian model at a last
hydrodynamic stage {[] ’[r . includes the stress relaxation and

hardening at a transitional stage { [] t

Nonlocal model at the transition regime describes evolving structure unstable

states which can result new structure formation



PARAMETERS OF THE TRANSITION REGIME

CHARACTERIZING NONSTATIONARY WAVE PROPAGATION

t t. - relaxation time
r=—101 t. - loading time
L
L | - target width
— the shock velocity
vV, O C he shock veloci

C =const - jongitudinal sound velocity
vl C — mass velocity
In the transition regime momentum transport is a multi-scale group of
nonlinear damping waves propagating along the X axis at the sound
velocity for the elastic precursor.
New wave variables are introduced
X 0 0

=t—-—,¢=X; IR
4 C g PV Py (2 separated scales )

Nonlocal model in new wave variables takes a form
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Nonlocal effects along the X axis can be neglected

R(C,C1E,8)=3(5,8)5(E &)



MODEL OF VISCOUS ELASTIC MEDIUM

DERIVED FROM THE NONLOCAL MODEL

1) constant correlation function — elastic model of solid
~ n __ 2
‘S(C’C ) - pOC

2) O -correlation function (no correlations) — Newtonian model of fluid

(4 — viscosity)

3(6.8) =p,CtS(E L) =ud(E-C)

Linear combination of 1)-2) cases results in the model of viscous elastic

medium
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In this way one can construct any conventional medium model, but for
transition regime it is not correct, as far as the two limiting cases correspond

to different stages of loading



NONLOCAL THEORY OF NONEQUILIBRIUM

TRANSPORT

Nonequilibrium correlation function —
— unknown functional of strain and strain-rate.

General form of correlation function is constructed in 3 statistical moments

approximation (ko, 7,0 - the model parameters that are also unknown
functionals)
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Stress tensor component with the model correlation function in the 1°

approximation at €[] 1
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The constructed model changes the type of the balance equations from the
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hyperbolic at the initial stage up to the parabolic one at the terminal

hydrodynamic stage depending on the loading regime.

The nonlocal model related to the Green function approach and can be used

to generalize the approach to nonlinear problems



MODEL PARAMETERS

FOR STRUCTURE UNSTABLE STATE

3 statistical moments for the model correlation function (the model
parameters) are related to evolving scales of wave-vortex internal medium
structure.

Statistical moments are coefficients in the series resulted from the integral

expression for the stress component above by the series

) OV
C é é’ 0g”
substituted under the integral
J(§,§)=k(§,§) (£.8)+ k(§§
T 4 c
w(:)
k,(£,€) = C'3(L,CE) - defines a relative effective medium
w(og) viscosity in structure unstable state

k(é”f)—f {'3(¢.¢58)(6-¢")=0(E)
If J(§,§;§)¢5(§—§'), 0+#0

— introduces new typical time — retardation time of the wave maximum
from the elastic precursor — rise-time for the plastic front. Its evolution
defines the plastic front propagation velocity as a group wave velocity
while the elastic precursor propagates at phase velocity of longitudinal
sound. o(0)

k(¢.&) = | d¢'3(¢.¢56)(¢-¢) =7 (£)-220(¢)
— defines the relgxation time as a typical time of correlation.
Statistical moments are used as parameters of the integral model.

The model parameters are connected to the boundary conditions.



INTERNAL STRUCTURE EVOLUTION

AND ADAPTIVE CONTROL WITH FEEDBACK

The nonlocal model parameters evolve according to the adaptive control

theory

Goal function — minimum of the integral entropy production in the wave

7(&-¢'-0()) | av
(&) oL’

ds ) K ov g | B '
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Speed gradient algorithm determines the parameters rates on the integral

entropy production surface.

dr dS do dS

dé dé dé dé )
According the evolution equation above the model parameters in structure
unstable state tend to move down the surface to reach stable state along

trajectories connected to the boundary conditions.

The structure evolution is connected to the nonstationary mass velocity
waveforms by feedback through the model parameters and therefore

results a change of dynamical properties of a medium.
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1°* APPROXIMATION SOLUTION

FOR NONSTATIONARY WAVEFORM

Nonstationary waveform is determined by the parameters of relaxation
and retardation and depends on the initial state and strain-rate history.
In a simple case of constant initial strain-rate the problem has an explicit

solution for the momentum transport equation

o(g) r_ 0 2
v(¢.9)= | d.f;'exp{—”(g Tf(; ©) } j}(@',éo), (4)

oV
%(cj,éo) =a =const

aT(erf \/;(g_e)+erf \/29} ;<1
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V(£ &) =1 ()

T T

+erf \/;(1—4’+6?)}’ ¢ >1

Internal energy transport equation for structure unstable states in

transition regime includes velocities at different states

d =0
o j £ 'ex = 84(4 ) ~g,(mo)

In the elastic limit 7 — cothe potential elastic energy loss is due to kinetic
energy growth and no dissipation is implied.
6Ee , OV 8(v /2)
)—(é’ &) =

% % % ——(¢:%)

h 2
In the limit 7 — 0 heat energy grows due to dissipation 88%:(84“ <, §O)j
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STRESS-STRAIN RELATION
FOR LOADING

As far as strain eN =a¢ ", Eq. (4) for £ <1 results stress—strain dependence
presented on Fig. 1. Linear elastic dependences reach for large ¢ (strain)

constant values ar (~ strain-rate) corresponding to hydrodynamic regime or
ideal plasticity. For changing strain-rates during the loading curves can

become nonmonotonuous.
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Stress — strain dependence

in the transition regime
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STRESS RELAXATION

For the finite-time loading Eq

into account memory effects

Stress reach maximum for the

and elastic precursor amplitud

. (5) for ¢ >1 results stress relaxation taking

(hardening at large 7) presented on Fig.2.
retardation time & (Fig. 3) while the rise-time

e are damping with the relaxation time 7
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Retardation of t

he plastic front from the elastic precursor

with growing parameter ¢ at fixed 7



ELASTIC PRECURSOR RELAXATION
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Elastic precursor relaxes with growing retardation ¢ which is in turn growing

as far as the pulse propagates inside a target. The alternative behavior is

observed with growing relaxation parameter (Fig. 5). So, the formation of the

plastic front and elastic precursor (two-wave front) is an attribute of the

transition regime.
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Elastic precursor relaxation
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Elastic precursor amplitude
with the growing relaxation
parameter 7



WAVEFORM RELAXATION IN THE TRANSITION REGIME
9=0.5
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MASS VELOCITY DISPERSION

The difference E° —E =E® — pulsation energy

aE [V(é/ éo) V(é’ 5)] (§,§O)=O

Near stable state small velouty pulsations result in dlssipation

V(1 60) —V(£.8) = V(£ &) —V(g —6,5) = 0 (€. %)

o¢
OE¢ i
@ {E (¢, 50)}

Far from equilibrium, in structure unstable state, instead of the heat energy a

velocity dispersion is introduced

= D? /2:<v2>—<v>2
oD? /2

% =[v(¢, &) - V(< 5)] (é“ %)

Integration over the rise-time results the relatlonshlp on the pulse plateau
gpl

D7, =1-2] dev(¢. ) §<c )

The velocity dispersion on the pulse plateau determines the experimentally

measured wave amplitude loss in structure unstable state while in stable

state no loss is observed
é/pl

D?|, =1- ZIdév(mo é,(gf()) 1-1=0

: ov
Near stable state for stationary waveform D, U % max
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STRUCTURE FORMATION AND STORIED ENERGY

According to the 1% law of thermodynamics the integral over the whole
waveform determines the relation between the integral entropy production

and potential energy after the wave propagation

P (¢'=¢+6(8) | av

T +

TAS-AE=|dg | dg'expq- (é’ So) == (45)
! J 7*(8) o' Tag T

If potential energy after the wave AE =0, the integral entropy production

TAS >0 defines a surface above the model parameters plane

Y(7r,0,AS) =0 , which looks like a mountain with a top in structure

w 2
unstable state. TAS T—%nj.dé’{% ({,50)} —0
0

According to speed-gradient algorithm phase trajectories tend down surface
both to the hydrodynamic limit and back to the solid state depending on
initial state.

If no dissipation takes place TAS =0 and the full energy is conserved the

the elastic wave is not damping.

oo oo 165200

(&)

0

} {;(é“ %0) 4(4 So) =

ﬁjd:v@ &) é,(? £)=0

However, in a resonance case when impactor’s length coincides with | ~ 6N

o a($) 2]
-AE=[d¢ | df:'exp{ G f(; (5))} o 50)—5(4 &) <0

potential energy stays frozen after the wave propagation as storied energy

AE >0 or TAS < 0in new shear-vortex structures due to self-organization.
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ENTROPY PRODUCTION SURFACE

Integral entropy production surface for the initial pulse presented on Fig. 6

has a form in the phase space of the parameters (7,.9) as on Fig. 7.

For a long pulse (—100) it has a form presented on Fig. 8.
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According the Speed-gradient Eq. (3) the phase points (7,:$) can move down

the surface. The surface has a hole with negative entropy production values
which arise in a resonance case when the pulse duration coincides to the
retardation time. The resonance results new structure self-organization at
mesoscale inside the front that can stay frozen in the medium after the front.

The wave-vortex mesoscale structures are observed in experiments.
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EXPERIMENTAL CONFIRMATION

Target width, mm

Fig. 9. Experimental data on the phase evolution during wave propagation
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Fig. 10. Experimental data on the phase state depending on the shock velocity V,
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CONCLUSIONS

Nonstationary wave description requires correlation
dynamics involved.

Nonlocal model allows constitutive relationships
between macroscopic medium reaction to loading and
its internal medium structure evolution in the transition
regimes.

Internal control at mesoscale structure is an especial
feature of dynamic processes.

The internal control goal and evolution direction is
minimum of the integral entropy production in the
wave.

Synergetic shear-vortical formation at mesoscale after
the wave front is originated by the resonance
conditions between the loading pulse waveform and
retardating medium reaction.

External control via medium loading on the base of
nonlocal theory can be used for developping new
technologies to obtain nanostructures in volume.



