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What is Social Learning?

 Humans form their opinions via repeated interactions (even virtually
over social networks)

* Nature provides splendid examples of cooperative learning in the form of
biological networks

* Useful models across several disciplines: Cognitive Sciences (e.g.,
Psychology), Social Sciences (e.g., Economics), Statistics,...




A Virtuous Circle

Man-engineered systems for multi-agent decision-making

(loT networks, mobile phones, robotic swarmes,...)

Engineering
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Many other references focusing on different perspectives,
e.g., psychological, behavioral, or biological aspects



Our Social Research Network
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Outline

 Part I. Traditional (single-agent) belief formation

 Part Il. Social learning: Belief formation over graphs
* Agreement
* Discord, influencers vs. influenced agents, fake news,...

* Part lll. Recent trends in social learning
* Adaptive social learning
* Social learning with partial information
* Social machine learning
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Traditional (Single-Agent) Belief Formation



Hypotheses and Data
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which team wins? what weather tomorrow? which is the best road?
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temperature, humidity,...
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Likelihood

The likelihood encodes the probabilistic mechanism connecting the data to the hypothesis
e.g., which are typical values of humidity if it rains?
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scalar / vector
continuous (pdf) / categorical (pmf) / mixed




Belief

We assign probability scores to the hypotheses

m(0)
prior belief (no data!)
1/3 1/3 1/3
0
p(f]x)
0.5
. e 0.3
posterior belief given the observed data 0.2 T




probability that a team has the
highest rank at the end of the season
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BayeS’ R U |e build the posterior from the data

m(6)€(x|0)
Olr)=——=
J—— 0] m(x),
‘m(z) =Y w(0)(x|0) —
T SRS - marginal distribt\;tion of the data T(hf;'gg_sﬁzyf)s
s A\
p(Blz) oc w(0)L£(x|6)

* One pillar of Probability Theory \ J
* Optimal from an epistemological perspective hiding the

* Optimal from an information-theoretic perspective normalization factor

(see also the free-energy principle and variational Bayesian inference)

* Model for cognition: Bayesian brain [FristonKilnerHarrison2006]



Sequential Bayesian Updates
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All the necessary knowledge is stored in the last belief (6) (0)6(z4]6)
The last belief becomes the prior for the subsequent step - Het t
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Sequential Bayesian Updates
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Bayesian Learning at Work

data generated according to hypothesis 65
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Convergence of Bayesian Learning

4 )
D(fl1a) 2 Ey |log 77 |

The Kullback-Leibler divergence quantifies the
discrepancy between two probability measures

Andrej Nikolaevi¢ Kolmogorov
(1903-1987)

data generated according to distribution f

0" = argmin D(f||¢y) [Berk1966]
0cO

Convergence to the likelihood featuring the highest L e
match with the true distribution [ p(60) —— 1 almost surely J




Part I

Social Learning:
Belief Formation Over Graphs



From Single-Agent to Social Learning

—

__ data can be heterogeneous / N
across the agents

-
Ve

o Tkt € Aj\"k\, e Agents can only share
- beliefs (not private data)

k with their neighbors

_ W

private streaming data, agent k at time t

* ék(xkjt‘e) B

marginal likelihood, agent k 4 \
Joint Bayesian model

across the agents
not available
o e = [t (01), pire(02), - it (Oar)] _ Y

belief vector, agent k at time' t

(private model)

[ZhaoSayed2012] [JadbabaieMolaviSandroniTahbaz-Salehi2012] [ShahrampourRakhlinJadbabaie2016]
[Nedi¢OlshevskyUribe2017] [MolaviTahbaz-Salehiladbabaie2018][LalithalavidiSarwate2018]




Local Bayesian Updates

Each agent builds an intermediate belief (to be shared with its neighbors)
by updating its previous belief with its own private likelihood and data

a )
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Beli

ef Diffusion Over Graphs

fre,t—1(0)
local V¢ (0) pr,t (0)
agent K T . Bayesian update
)
> ®
¥5.1(6) p5,:(0)
local A
agentj T { Bayesian update }
> 9 yy
? *
@—’[ fj(xj,tIH)J 0
self-learning intermediate belief diffusion belief pooling

beliefs




Pooling From Information-Theoretic Viewpoint
[NedicOlshevskyUribe2017] [KolianderEl-LahamDjuri¢Hlawatsch 2022]

* Find a pmf p that globally matches the beliefs received from the neighbors

* Minimize a weighted combination of KL divergences

global pmf
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neighbors



Optimal Pooling Rule

pes =argmin »  a;eD(p|t);.)
P .
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geometric pooling
a.k.a. log-linear pooling



Pooling From Behavioral Viewpoint

[MolaviTahbaz-Salehiladbabaie2018]

* We can derive the pooling rule from "behavioral” constraints
* Bounded rationality
* Unanimity, monotonicity, independence of irrelevant alternatives,...

(The same rule is obtainedllj

e




Non-Bayesian Social Learning Algorithm

/ self-learning step

local Bayesian update

combination step
geometric averaging

g




Network Graph and Combination Matrix
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The combination weights and the communication structure involving
neighboring agents can be encoded into a weighted graph



Strong Graphs

A path between any two nodes (in both directions)

Primitive combination matrix

lim A =@l '
t— 00 S~ )

Perron eigenvector




Strong Graphs: Agreement

. 0" = arg min D, (0)
Perron eigenvector entry HcO
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Strong Graphs: Agreement

0" = argmin D, (0)

Perron eigenvector entry 0cO
N t—00
o \ pr t(0°) —— 1 almost surely
G\dlwdual divergence replaced bya\ [
network average divergence
K

Duet(60) = ) _vs D(fxllCx.0)

k=1 |
[
I _4 1 ! 1 1 1 1
I 5 10 15 20 25 30 35 40 45 50
X \ time

¢
The agents agree on the hypothesis providing the best match
on average across the network
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Objective Evidence

Under the objective evidence model, the observations of each agent are
drawn from the model Zk,eo corresponding to a common true hypothesis 6
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global identifiability

[uk +(0o) 17201 almost surely ]




Benefits of Cooperation

* The learning accuracy can be improved by combining information from different agents

* Some agents might not be able to solve the problem on their own (lack of local identifiability)

Agent 1 cannot distinguish 01 from 05

Agent 1 learns well through social learning
4 |
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Subjective Evidence and Fake News

Under the subjective evidence model, different agents can have
different underlying hypotheses

Dot (0) = Z v D(Uk.0,|14k.0) 07 = argmin Dy (0)
k=1 N veo

\
\
\
\

But in this case...the agents agree on which hypothesis?



Majority Builds a Common Opinion

Here all agents place full mass on the hypothesis
supported by the majority

_v "blue" agents

~= "red" agents




Centrality Builds a Common Opinion

Here all agents place full mass on the hypothesis
supported by the agents with more neighbors

0 20 40 60 0 20 40 60 0 20 40 60




Truth is Somewhere in Between

Here half network says 61, the other half says 65
All agents opt for 02!




Weak Graphs

* Any graph that is not strong can be
represented in a canonical form
where it is partitioned into sending
and receiving networks

e Useful real-world examples:

e celebrities over social networks
* media networks

| As | Asz
A= |G
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Weak Graphs: Discord
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Recent Trends in Social Learning



Adaptive Social Learning



Stubbornness vs. Adaptation

—

Fluctuations keep adaptation alive

Traditional Social Learning

Adaptive Social Learning

drift here truth after drift drift here truth after drift
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Adaptive Social Learning

6053

NO. 9, SEVTEMBER 2021

Adaptive Social Learning

i ) MattaD- Member, IEEE,
O Graduate Student Member, IEEE., Vll"\CE’ﬂLO ;
Virginia Bordignor— ¢ and Ali H. SayedD, Fellow, TEEE
traditional B
Bayesian update T
\\\
\ -
i B ¥ N
— ] ~ Bayess no—pasty | \
Yr.+(0) = arg min {(1 — 5)D(p\([gk,t ") jjﬁD( m\%t 5 } \\
p -7 it |
: /// ////////// Bayesian update ignoring
adapration _==--= the past belief

Pa rameter




Adaptation and Learning
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Fundamental adaptation/learning trade-off

Problerror| ~ exp{—adaptation time}

error probability

1074

theoretical analysis: weak law

(prop. to adaptation time)

of slow adaptation,

asymptotic normality, large deviations,...
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Social Learning With
Partial Information




Social Learning With Partial Information

* In many applications, the agents share partial opinions

* For example, the agents want to form their opinions on some product brands,
but they talk only about a specific one

* How the learning mechanism changes?




Social Learning With Partial Information

* In many applications, the ager™ T —
IEEE TRANSA(‘T\ONS ON INF()RMAT[()N THEORY, . * Over
* For example, the agents want partial Information ngla::ciks
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All agents share the belief entry pertaining to a single
hypothesis of interest




FI”IHg Strategy hypothesis of interest

\
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v
« Agent K receives from its neighbors only the belief pertaining to 0°

* Fill in the belief entries for the complementary set 7 = {6’ cO:0F# 9'}
e Bayesian filling strategy 1%]? (‘9) — pk(efT) [1_¢j,t(‘9.)}

» agent k uses its most updated knowledge stored in its belief ¥k ¢ (0)

conditional belief given that the e
hypothesis is not 6° [pk OIT) = 1 — wk,t(ﬁ‘)]




Learning With Partial Information

The hypothesis of interest is false

0.4 1

0.3 1

beliefs

The hypothesis of interest is correctly rejected

The hypothesis of interest is true

0.4
theoretical limit: 1/(1+avg. indist.)

beliefs

\
decision threshold: 1/M

0.0 1

0 1|0 2|0 SIO 4|0 50
time
The beliefs of the true hypothesis converge to a

positive value. There exists a decision threshold
that implies truth learning




Learning With Partial Information

The hypothesis of interest is false

0.4 1

0.3 1

0.4 1

0.3 A

The hypothesis of interest is true

theoretical limit: 1/(1+avg. indist.)

\

beliefs

The hypothesis of interest is correctly rejected

——

0.0 1

,,,5

\
decision threshold: 1/M

1|0 2|0 SIO 4|0
time

50

The beliefs of the true hypothesis converge to a
positive value. There exists a decision threshold
that implies truth learning




Social Machine Learning



Social Machine Learning
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Training sets o A m

feature belief in the prediction phase
(2nd component)
pi,t(6)
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Consistent Learning

What is the probability that the training set
vields good decision models?

Rnet max. no. of training examples
&E(Rnet) ~ 0.2812 ( 1 Y,
log 2 -
s — N\
(]\7 N D —— —<)\2
Prob[consistent learning] > 1 — 2 exp {—\%l\—gg—s/ (é" (Rnet) —(pnet\D }
N_ 7/ ~_ _7
q/l *\ «
- ] \ AN
) \ ~~___ Rademacher
parameter accounting for _//// \\\ complexity
discrepancies across the agents N

“=-  global risk



Social Machine Learning Example

different agents observe different
portions of a "digit" image

—

Digits are correctly predicted
with social machine learning
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Concluding Remarks

There are several open questions and problems:

New update/pooling rules
Tracing the route of information (topology inference), privacy issues
Optimality and performance guarantees

Experimental analysis, proposing and testing new cognition models
And much more...

If you are interested in further details, please send me an e-mail
vmatta@unisa.it

Thank you for attending!
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