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Abstract— We consider a communication scenario, in which
an intruder tries to determine the modulation scheme of the
intercepted signal. Our aim is to minimize the accuracy of the
intruder, while guaranteeing that the intended receiver can still
recover the underlying message with the highest reliability. This
is achieved by perturbing channel input symbols at the encoder,
similarly to adversarial attacks against classifiers in machine
learning. In image classification, the perturbation is limited to
be imperceptible to a human observer, while in our case the
perturbation is constrained so that the message can still be
reliably decoded by the legitimate receiver, which is oblivious
to the perturbation. Simulation results demonstrate the viability
of our approach to make wireless communication secure against
state-of-the-art intruders (using deep learning or decision trees)
with minimal sacrifice in the communication performance. On the
other hand, we also demonstrate that using diverse training data
and curriculum learning can significantly boost the accuracy of
the intruder.

Index Terms— Secure communication, deep learning, adver-
sarial attacks, modulation classification.

I. INTRODUCTION

SECURING wireless communication links is as essential
as increasing their efficiency and reliability, for military,

commercial, as well as consumer communication systems. The
standard approach to securing communications is to encrypt
the transmitted data. However, encryption may not always
provide full security (e.g., in case of side-channel attacks),
or strong encryption may not be available due to complexity
limitations (e.g., for IoT devices). To further improve security,
encryption can be complemented with other techniques, pre-
venting the adversary from even recovering the encrypted bits.

As outlined in [2], an adversary implements its attacks on
a wireless communication link in four steps: 1) tunes into the
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frequency of the transmitted signal; 2) detects whether there is
signal or not; 3) intercepts the signal by extracting its features;
and 4) demodulates the signal by exploiting the extracted
features, and obtains a binary stream of data. Preventing any of
these steps can strengthen the security of the communication
link. While encryption focuses on protecting the demodulated
bit stream, physical layer security [3], [4] targets the fourth
step by minimizing the mutual information available to the
intruder. Recently, there has also been significant interest in
preventing the second step through covert communications [5].
In this work, we instead focus on the third step, and aim
at preventing the adversary from detecting the modulation
scheme used for communications.

Modulation detection is the step between signal detec-
tion and demodulation in communication systems, and thus
plays an important role in data transmission, as well as
in detection and jamming of unwanted signals in military
communications and other sensitive applications [6]. Recently,
deep learning techniques have led to significant progress in
modulation-detection accuracy: methods based on convolu-
tional and other deep neural networks can detect the modula-
tion scheme directly from raw time-domain samples [7]–[11],
surpassing the accuracy of conventional modulation detectors
based on likelihood function or feature-based representations
(see [6] for a survey of these approaches).

Our aim in this article is to prevent an intruder that employs
a state-of-the-art modulation detector from successfully iden-
tifying the modulation scheme being used. If the intruder
is unable to identify the modulation scheme, it is unlikely
to be able to decode the underlying information or employ
modulation-dependent jamming attacks to prevent commu-
nication. To achieve this goal, we introduce modifications
to the transmitted signal. The main challenge here is to
guarantee that the intended receiver of the (modified) trans-
mitted signal can still receive the underlying message reliably,
while preventing the intruder from detecting the modulation
scheme being used. Otherwise, reducing the accuracy of the
modulation-detecting intruder would be trivial at the price of
increasing – possibly by a lot – the bit-error rate (BER) of
the intended receiver. We assume that the intended receiver
is oblivious to the modifications employed by the transmitter,
and therefore, the goal of the transmitter is to introduce as
small modifications to the transmitted signal as possible that
are sufficient to fool the intruder but not larger than the
error-correction capabilities of the intended receiver.

Introducing small variations into the modulation scheme
that can fool an intruder is similar to adversarial attacks
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on classifiers, in particular, deep neural networks
(DNNs) [12], [13]. In the literature, adversarial attacks
are mostly considered in the area of image classification,
where they pose security risks by exposing the vulnerabilities
of classifiers against very small changes in the input that
are imperceptible to humans but lead to incorrect decisions.
In contrast, we exploit the same approach here to defend a
communication link against an intruder that employs DNNs
or other standard classification methods for interception.

In [14], an adversarial attack for a deep-learning-based
modulation classifier has been proposed where the adversary
assumes the availability of noisy symbols received at the mod-
ulation classifier for generating the adversarial attack, which
makes it impractical and limited in scope. A similar method
has been proposed recently in [15], where modifications are
employed by the transmitter to evade a DNN-based jammer,
and the receiver uses another DNN (an autoencoder) to pre-
process the received signal and filter out the modifications.
However, no analysis has been provided on the impact of
this method on the BER of the intended receiver. In contrast
to [15], we do not limit our approach to a DNN-based jammer
and consider a receiver that is completely oblivious to the
modifications in the transmitter. Moreover, we also consider
the impact of the defensive perturbations on the BER at the
legitimate receiver. The results of [15] has been extended
in [16] to the detection of wireless communication protocols,
and targeted adversarial attacks are also considered to generate
the perturbations.1

A number of concurrent works have also appeared in the
literature (parallel or following the original publication of our
preprint on arXiv [18] and the conference version of our
article [1]). Most similar to ours is [19], which proposes
modifications in the transmitted signal using an adversarial
residual network at the transmitter to evade the modulation
detector at an intruder, while the legitimate receiver is able
to decode the signal with small bit error rate. Compared to
this article, we use different adversarial attack techniques,
propose different ways of improving the modulation-detection
accuracy of the intruder, and analyze the trade-off between
the code rate and the BER for defensive perturbations and
an improved intruder. Adversarial perturbations have also
been applied to attack a legitimate receiver in [20], [21].
In these works, the signal at the receiver is perturbed by an
over-the-air attack, i.e., by transmitting an adversarial signal,
to make the modulation classifier at the legitimate receiver fail
(in comparison, in our case the transmitter changes the signal
to fool the intruder). In [20], modifications in the transmitted
signals are also proposed to evade the modulation detector
at the intruder and are evaluated in terms of the BER at the
receiver, but the modifications in the transmitted signals are
not optimized with respect to the BER and induce larger errors
at the legitimate receiver. The over-the-air attack scenario has
been considered in [21], and attack methods of various strength
have been devised under more realistic assumptions about the
capabilities of the attacker, in particular about its information

1Targeted adversarial attacks [17] aim to modify the data so that the attacked
classifier predicts an incorrect class selected by the attacker.

on the signal received by the modulation classifier (fully
known vs. its distribution being estimated based on samples
available to the attacker) and on the channel noise from the
attacker to the receiver (knowing the exact realization or just
the noise distribution). While these attack methods share the
underlying idea with our defensive perturbations, they face a
much easier problem, as the attacks are not constrained by
ensuring a low BER at a distinct receiver.

While we consider adversarial attack methods that affect the
behavior of trained classifiers (i.e., the modulation classifier of
the intruder in our case) by perturbing their input data (these
attacks are known as test-time or evasion attacks), another
class of adversarial machine learning algorithms, called poi-
soning attacks, aim to compromise the training procedure of
classifiers and other machine learning models by modifying
their training data [22]. Poisoning attacks have been used
in launching and avoiding jamming attacks in wireless com-
munication [23]–[25]; however, since these methods address
the training of the machine learning models employed by
the jammer and the transmitter, they are orthogonal to our
developments.

In summary, our main contributions are as follows:
• We propose a novel defense mechanism that modifies

the channel input symbols at the transmitter in order
to reduce the modulation-classification accuracy at the
intruder while maintaining a low BER at the legitimate
receiver.

• We provide a thorough experimental evaluation of the
effect of these modifications on the BER of different
modulation schemes.

• We demonstrate that by using training data obtained from
different SNR values and employing curriculum learning,
an intruder can learn a classifier that is much more
robust against both the channel noise and the defensive
perturbations, improving upon the state of the art in our
experiments when no defense mechanism is applied.

• We also demonstrate that the usual trade-off between
the code-rate and the BER is still achievable under
our defensive modulation schemes, which introduce an
unusual compound noise due to the combined effects
of the introduced perturbations and the channel noise.
More precisely, we show that by using a stronger error
correction code, the BER at the legitimate receiver can
be reduced while the intruder achieves the same or worse
modulation-classification accuracy.

The rest of the article is organized as follows: The system
model is described in Section II, followed by the description
of our novel modulation perturbation methods in Section III.
Experimental results are presented in Section IV, while con-
clusions are drawn and future work is discussed in Section V.

II. SYSTEM MODEL

Consider a transmitter that maps a binary input sequence
w ∈ {0, 1}m into a sequence of n complex channel input
symbols, x ∈ Cn , employing forward error correction coding.
The input data is first encoded by the channel encoder, and
then modulated for transmission. Formally, the modulated
signal x is obtained as x = Ms (w), where s ∈ S is
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the employed modulation scheme with S denoting the finite
set of available modulation schemes, and for any s, Ms :
{0, 1}m → Cn denotes the whole encoder function with
modulation s. We assume that Ms satisfies the power constraint
(1/n)‖x‖2

2 ≤ 1 for any input sequence w. After encoding,
signal x is sent over a noisy channel, assumed to be an additive
white Gaussian noise (AWGN) channel: baseband signals y1
and y2, received by the intended receiver and the intruder,
respectively, are given by

yi = Ms(w) + zi = x + zi , i = 1, 2, (1)

where z1, z2 ∈ Cn are independent channel noise (also inde-
pendent of x) with independent zero-mean complex Gaussian
components with variance σ 2

1 and σ 2
2 , respectively.

The intended receiver, upon receiving the sequence of
noisy channel symbols y1, demodulates the received signal,
and decodes the underlying message bits with the goal of
minimizing the (expected) BER E[(w, y1)], where

e(w, y1) � 1

m

∑m

i=1
I{wi �= ŵi }, (2)

ŵ is the decoded bit sequence from y1, and the expectation is
over the uniformly random input bit sequence w and the noise
sequence z1.2

The intruder aims to determine the modulation scheme
employed by the transmitter based on its received noisy
channel output y2. The transmitter, on the other hand, wants to
communicate without its modulation scheme being correctly
detected by the intruder, while keeping the BER at an accept-
able level.

Formally, the aim of the intruder is to determine, for any
sequence of channel output symbols y2 ∈ Cn , the modulation
method used by the transmitter. This leads to a classification
problem where the label s ∈ S is the employed modulation
scheme, and the input to the classifier is the received channel
sequence y2 ∈ C

n . We consider the case in which the intruder
implements a score-based classifier, and assigns to y2 the label
ŝ = argmaxs ′∈S fθ (y2, s′), where fθ : Cn × S → R is a
score function parametrized by θ ∈ Rd , which assigns a score
(pseudo-likelihood) to each possible class s′ ∈ S for every y2,
and finally selects the class with the largest score. With a slight
abuse of notation, we denote the resulting class label by ŝ =
fθ (y2). The goal of the intruder is to maximize the probability
Pr(s = ŝ) of correctly detecting the modulation scheme, which
we will also refer to as the success probability of the intruder.3

For state-of-the-art modulation detection schemes [7]–[11],
fθ is a convolutional neural network classifier, θ is the vector
of the weights of the neural network, while the fθ (y2, s′) are
the so-called logit values for the class labels s′ ∈ S.

The performance of both the intended receiver, measured by
the BER, and the intruder, measured by the detection accuracy,
depend on the signal-to-noise ratio (SNR) of the corresponding
channels, 1

σ 2
1

and 1
σ 2

2
, respectively. We assume that these SNR

values are known by the legitimate receiver and the intruder,

2For any event E , I{E} = 1 if E holds, and 0 otherwise. Furthermore, for
any real or complex vector v, vi denotes its i th coordinate.

3Here we assume an underlying probabilistic model about how the the bit
sequence w and modulation scheme is selected.

which can employ a specific fθ for each SNR value. We will
also assume that the intruder has access to training data at the
SNR value 1

σ 2
2

to train fθ . This can be done offline as the

intruder can generate as much training data as required at a
specific SNR value.

III. MODULATION PERTURBATION TO AVOID DETECTION

In this article we intend to modify the encoding
processes Ms such that, given a modulation scheme s ∈ S,
the new encoding method M ′

s ensures that the intruder’s
success probability gets smaller, while the BER of the receiver
(using the same decoding procedure for Ms ) does not increase
substantially. Our solution is motivated by adversarial attacks
for image classification, where it is possible to modify images
such that the modification is imperceptible to a human
observer, but it makes state-of-the-art image classifiers to
err [12], [13]. Adversarial examples are particularly successful
in fooling high-dimensional DNN classifiers. Applying the
same idea to our problem, we aim to find defensive modulation
schemes M ′

s such that M ′
s (w) ≈ Ms (w), but the intruder

misclassifies the new received signal y′
2 = M ′

s (w) + z2 with
higher probability.

A. Adversarial Attack in an Idealized Scenario

Following directly the idea of adversarial attacks on image
classifiers [13], an idealized yet impractical adversarial attack
mechanism is proposed in [14] which modifies a correctly clas-
sified channel output sequence y2 (i.e., for which s = fθ (y2))
with a perturbation δ ∈ Cn such that fθ (y2 + δ) �= fθ (y2),
the true label, while imposing the restriction ‖δ‖2 ≤ ε for
some small positive constant ε. Thus, to mask the modulation
scheme, the goal is to find, for each correctly classified y2
separately, a perturbation δ that maximizes the zero-one loss:

maximize I{ fθ (y2 + δ) �= s} such that ‖δ‖2 ≤ ε, (3)

where s = fθ (y2) is the true modulation label.
If the maximum is 1, such a δ results in a successful

adversarial perturbation and a successful adversarial example
y2 + δ (i.e., one for which the intruder makes a mistake).
This approach, however, has two limitations. First of all,
as opposed to image classifiers, we are not concerned with
the visual similarity of the perturbed signal y2 + δ to the
original one, y2. The reason for bounding the perturbation δ

is instead to guarantee that the BER at the intended receiver
is still limited. Moreover, in practice we do not have access
to y2, as it does not only depend on x, but also on the channel
noise z2, which is not available at the transmitter. Therefore,
the above mechanism, analyzed in [14], is an oracle scheme
working under some idealized assumptions, and we use it only
as a baseline.

It remains to give an algorithm that finds an adversarial
perturbation δ solving problem (3). However, we note that
the target function I{ fθ (y2 + δ) �= fθ (y2)} is binary, and so
no gradient-based search is directly possible. To alleviate this,
usually a surrogate loss function L(θ , y2, s) to the zero-one
loss is used (which is often also used in training the clas-
sifier fθ ), which is amenable to gradient-based (first-order)
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optimization. For classification problems, a standard choice
is the cross-entropy loss defined as L(θ , y2, s) = − log(1 +
e− fθ (y2,s)), and one can search for adversarial perturbations
by solving

maximize L(θ , y2 + δ, s) such that ‖δ‖2 ≤ ε. (4)

Different methods are used in the literature to solve (4)
approximately [13], [17], [26], [27]. In this article we use the
state-of-the-art projected (normalized) gradient descent (PGD)
attack [28] to generate adversarial examples, which is an
iterative method: starting from y0 = y2, at each iteration t
it calculates

yt = �Bε (y2)

(
yt−1 + β sign(∇y L(θ , yt−1, s))

)
, (5)

where β > 0 denotes the step size, sign denotes the sign
operation, and �Bε (y2) denotes the Euclidean projection oper-
ator to the L2-ball Bε(y2) of radius ε centered at y2, while
∇ denotes the gradient. The attack is typically run for a
specified number of steps, which depends on the compu-
tational resources; in practice yt is more likely to be a
successful adversarial example for larger values of t . We will
refer to this idealized modulation scheme as the Oracle
Scheme (Oracle).

Note that this formulation assumes that we have access
to the logit function fθ of the intruder; these methods are
called white-box attacks. If fθ is not known, one can create
adversarial examples against another classifier fθ ′ , and hope
that it will also work against the targeted model fθ . Such
methods are called black-box attacks, and are surprisingly
successful against image classifiers [29]. We will also con-
sider black-box attacks against intruders in our experimental
evaluations.

B. Adversarial Attack Through Channel Input Modification

As mentioned before, the Oracle scheme is infeasible in
practice as the transmitter can only modify the channel input
x = Ms (w) but not y2 directly. Thus, the new modulation
scheme is defined as

M ′
s(w) = α(Ms (w) + δ), (6)

where we will consider different choices for δ ∈ Cn , and the
multiplier α = √

n/‖Ms (w) + δ‖2 is used to ensure that the
new channel input x̄ = M ′

s (w) satisfies the average power
constraint (1/n)‖x̄‖2

2 ≤ 1. The signals received at the receiver
and at the intruder are ȳ1 = x̄+z1 and ȳ2 = x̄+z2, respectively.
The difficulty in this scenario is that the effect of any carefully
designed perturbation δ may be (and, in fact, is in practice)
at least partially masked by the channel noise. Furthermore,
since now the perturbed signal is transmitted at the actual SNR
of the channel, the effective SNR of the system is decreased,
as the transmitted signal already includes the perturbation δ,
which can be treated as noise from the intended receiver’s
point of view.

Our first and simplest method to find a perturbation δ

disregards the effects of the channel noise and the resulting
BER at the receiver. In this method, called the Perturbation-
Based Defensive Modulation Scheme (PDMS), we aim to

solve the optimization problem (4) with x in place of y2,
via (5) initialized at y0 = x and with projection to Bε(x)
(for a specified number of iterations t and perturbation
size ε).

C. BER-Aware Adversarial Attack

Next, we consider methods that also take into account the
BER, e(ȳ1, w) at the receiver (see Eq. 2): that is, instead
of enforcing the perturbation δ to be small and hoping for
only a slight increase in the BER, we optimize also for
the latter. There is an inherent trade-off between these two
targets: a larger δ results in a bigger reduction in the detection
accuracy of the intruder, but will also increase the BER
at the receiver. We consider two methods to handle this
trade-off:

In the first one, called BER-Aware Defensive Modulation
Scheme (BDMS); we consider a (signed) linear combination
of our two target functions in order to balance the above two
effects,

Lλ(θ, x̄, s, z1, z2) = L(θ , x̄ + z2, δ) − λe(x̄ + z1, w)

for some λ > 0, where ȳi = x̄ +zi , i = 1, 2, and aim to find a
perturbation δ or, equivalently, a modulated signal x̄ = x + δ

that maximizes the expectation

Ez1,z2[Lλ(θ , x, s, z1, z2)] (7)

with respect to the channel noise z1, z2. Here we can use
stochastic gradient ascent4 to compute an approximate local
optimum, but in practice we find that enforcing δ to be small
during iterations improves the performance; hence, we use a
stochastic version of PGD optimization (5): starting at x0 = x,
our candidate for x̄ is iteratively updated as

xt = �Bε (x)

(
xt−1 + β · sign(∇x L(θ , xt−1, s, zt

1, zt
2))

)
,

where zt
i are independent copies of zi , respectively, for

i = 1, 2, and t = 1, 2, . . .. Although Ez1 [e(x̄ + z1, w)] is
differentiable, e(y, w) for a given fixed value of y is not
(since it takes values from the finite set {0, 1/n, . . . , 1}).
Similarly to [30], we approximate the gradient of the expected
error using simultaneous perturbation stochastic approxima-
tion (SPSA) [31] as

∇̂y e(y,w) � 1

K

K∑

k=1

e(y+ηrk, w) − e(y−ηrk, w)

2η
r�

k , (8)

where r1, . . . , rK are random vectors selected independently
and uniformly from {−1, 1}n (the notation ∇̂ is used to
indicate that this is not a real gradient).

In the alternative BER-Aware Orthogonal Defensive Mod-
ulation Scheme (BODMS), instead of maximizing the com-
bined target (7), we try to maximize the cross-entropy
loss L(θ , ȳ2, s) while not increasing (substantially) the BER
e(ȳ1, w). In order to do so, we maximize L(θ , ȳ2, s) using
stochastic PGD (again, in every step we choose independent
noise realizations), but we restrict the steps in the directions

4However, similarly to the literature on adversarial attack methods, we often
call these methods gradient descent instead of ascent.
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where the BER does not change. Thus, in every step we update
xt−1 in a direction orthogonal to the gradient of the BER
defined as

∇o L(θ , xt−1 + zt
2, s)

� ∇x L(θ , xt−1 + zt
2, s) − 〈∇x L(θ , xt−1 + zt

2, s), de
〉
de

where de = ∇̂xe(xt−1 + zt
1, w)/‖∇̂xe(xt−1 + zt

1, w)‖2 is
the (approximate) gradient direction of the BER (computed,
e.g., using SPSA as in Eq. 8).

IV. EXPERIMENTAL EVALUATION

In this section, we test and compare the performance of the
proposed methods through numerical simulations. We assume
that the binary source data is generated independently and
uniformly at random, and is encoded using a rate 2/3 con-
volutional code before modulation. Eight standard baseband
modulation schemes are considered: GFSK, CPFSK, PSK8,
BPSK, QPSK, PAM4, QAM16, QAM64. A square-root
raised cosine filter is used for pulse shaping of the modulated
data with a filter span of 10, roll-off factor of 0.25 and
upsampling factor of 8 samples per symbol and the modulated
data is sent over an AWGN channel with SNR varying between
−20 dB and 20 dB. We consider identical SNRs during both
the training of the intruder and at test time. After hard decision
demodulation, the receiver uses Viterbi decoding to estimate
the original source data.

We follow the setup of [8] for modulation detection: The
intruder has to estimate the modulation scheme after receiving
128 complex I/Q (in-phase /quadrature) channel symbols;
this is because we assume that the modulation detection is
only the first step for the intruder, which then uses this
information for either trying to decode the message or to
interfere with its transmission. Therefore, the modulation
detection should be completed based on a short sequence
of channel symbols. As the classifier, we first consider the
deep convolutional neural network architecture of [8] for the
intruder (given in Table I-a), which operates on the afore-
mentioned 256-dimensional data. We train this network for
100 epochs with a batch size of 100 samples and use the
Adam optimizer [32] with a learning rate of 0.001.

For each modulation scheme, we generate data resulting
in approximately 245000 I/Q channel symbols (note that for
different modulation schemes this corresponds to different
number of data bits), split into blocks of 128 I/Q symbols
(n = 128), as explained above. The last 300 blocks for each
modulation scheme are reserved for testing the performance
(tests are repeated 20 times), while we train a separate clas-
sifier for each SNR value based on the above data. As shown
in Fig. 1 (see the curve with label NoPerturb), for high SNR
values the accuracy of the modulation classification is close
to 90%. As expected, the classification accuracy degrades as
the SNR decreases (as the noise masks the signal), but even at
−10 dB, the intruder can achieve a 40% detection accuracy (as
opposed to the 12.5% accuracy a completely random detector
would achieve).

In the experiments, we compare this performance with the
following defensive modulation schemes and baselines:

Fig. 1. Modulation-classification accuracy of the intruder as a function of
SNR for different defensive modulation schemes.

TABLE I

NEURAL NETWORK ARCHITECTURES: (A) THE ARCHITECTURE

OF [8] USED FOR MODULATION CLASSIFICATION; (B) THE

MODIFIED ARCHITECTURE USED IN OUR BLACK-BOX

MODULATION SCHEME BB-DMSN

• Our three defensive modulation schemes, PDMS, BDMS,
and BODMS, as well as the Oracle scheme as a baseline;

• Adding uniform random noise of L2-norm ε to a block,
called random noise insertion (RNI), which is then nor-
malized for the power constraints;

• Black-box defensive modulation schemes that do not use
the classifier of the intruder, but calculate PDMS against
different classifiers. We consider two variants: Black-box
DMS-identical (BB-DMSI ) uses a classifier that has the
same architecture as that of the intruder’s, but is trained
separately (assuming no channel noise). Alternatively,
BB-DMS-non-identical (BB-DMSN ) employs a classifier
with a different architecture than the intruder’s, and is
also trained assuming no channel noise – its architecture
is shown in Table I-b.

All the above schemes, except for RNI , are implemented
using the projected (normalized) gradient descent (PGD) [28]
method from the CleverHans Library [33], with 20 iterations,
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β = 0.2 and ε = 3. ε = 3 results in significant reduction in
modulation-classification accuracy without incurring too large
BER at the intended receiver and has been determined by
running experiments over different values of ε. RNI uses the
same ε. Note that a perturbation of this size accounts for
about 7% of the total energy of a block (which is 128 due
to our normalization to the energy constraint). Oracle serves
as an upper bound on the achievable defensive performance
given the parameters, while the role of RNI is to analyze the
effect of carefully crafted perturbations instead of selecting
them randomly. BB-DMSI , and BB-DMSN explore the more
practical situation in which the exact classifier of the intruder
is not known, but its training method and/or a similar classifier
is available to the transmitter.

A. Defensive Modulation Schemes With Norm-Bounded
Perturbations

We first consider defensive modulation schemes with a
bound on the L2 norm of the applied perturbation. Fig. 1 shows
the modulation-classification accuracy for several methods.
It can be seen that adding random noise (RNI) helps very little
compared to no defense at all (NoPerturb). The basic defense
mechanism PDMS and its black-box versions BB-DMSI and
BB-DMSN become effective from about −5 dB SNR, and,
as expected, PDMS outperforms BB-DMSI and BB-DMSN .
For smaller SNR values the classification accuracy is relatively
small (the channel noise already makes classification hard),
and only the Oracle defense gives noticeable improvement.
As expected, the performance of PDMS gets closer to its
lower bound, Oracle, as the SNR increases (note that the
two methods coincide at the limit of infinite SNR). The
similar performance of BB-DMSI , BB-DMSN , and PDMS
for medium SNR values shows a similar transferability of
adversarial attacks in our situation as was observed in other
machine learning problems, such as in image classification
[29], [34], although this effect deteriorates quickly as the SNR
increases and PDMS becomes more effective. Note that the
two black-box schemes, BB-DMSI and BB-DMSN , perform
very similarly. In a practical scenario, the transmitter may not
know the exact architecture of the intruder’s classifier. Nev-
ertheless, adversarial attacks designed against one classifier
are generally effective against another classifier [29], and the
results in Fig. 1 confirm this observation in our scenario as
well, and demonstrate that black-box defenses are possible
in general. Observe that the classification accuracy of PDMS
increases up to 0 dB SNR, when the channel noise during
both the training phase and test phase is higher than the
defensive perturbation and thus, channel noise is the main
cause of the performance limitation of the intruder, while
the accuracy decreases for higher SNR when the defensive
perturbation is larger compared to the channel noise and the
defense mechanisms start working.

Table II shows the modulation-classification accuracy for
the individual modulation schemes at channel SNR of 20 dB.
It can be seen that a defensive perturbation of the same
norm ε affects different modulation schemes differently, where
CPFSK and BPSK appear to be the most robust against

Fig. 2. BER vs SNR for PSK8 and QAM64 modulated signal for different
defensive modulation schemes.

TABLE II

CLASSIFICATION ACCURACY OF PDMS FOR DIFFERENT
MODULATION SCHEMES WITH ε = 3 AT SNR 20 dB

defensive perturbations. Note that QAM16 and QAM64 are
very difficult to classify even without any perturbations, which
is in line with the observation made in [8]. Modulated signals
without any perturbation and PDMS-modulated signals are
presented in Fig. 3, which shows that, even after perturbation,
CPFSK retains the modulated signal constellation and the
perturbed BPSK signals are still different from the output of
any other modulation scheme. On the other hand, it becomes
difficult to distinguish QAM16 and QAM64 signals.

The reduced classification accuracy of the intruder for
PDMS, BB-DMSI , and BB-DMSN is achieved at the cost of
an increased BER at the legitimate receiver. To illustrate this
effect, Fig. 2 shows the BER for PSK8 and QAM64; the
other modulation schemes, except for QAM16, show similar
relative behavior to PSK8, but with the error dropping sharply
for medium SNR values, with a few dB difference among
different modulation schemes (up to about 5 dB for PSK8).
On the other hand, the price of using any defense mechanism
on QAM64 is severe, resulting in a significantly higher
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Fig. 3. Original constellation points and the perturbed channel input symbols with PDMS for CPFSK, BPSK, QAM16 and QAM64 for the first three
inputs samples (3 × 128 channel symbols) at the modulation classifier.

BER in the high SNR regime; QAM16 behaves similarly
with somewhat smaller BER values. For the Oracle defensive
scheme, we directly feed the perturbed signal to the decoder
to calculate the BER, which is lower than the BER at the
decoder when the PDMS, BB-DMSI , and BB-DMSN defensive
schemes are employed for PSK8, while these BERs are
essentially the same for QAM64. We observe that BB-DMSI

and BB-DMSN achieve very similar BER performances. Since
the two black-box schemes perform similarly in terms of
both the modulation classification accuracy at the intruder
and the BER at the decoder, we consider only BB-DMSN in
the remainder of the article, and represent it by BB-DMS for
convenience.

This negative effect on the BER can be suppressed if the
perturbation size is decreased, which, at the same time, results
in increased detection accuracy. This is shown in Fig. 4 as a
function of the signal-to-perturbation ratio S P R � n/‖δ‖2

2
(recall n = 128, and S P R ≈ 11.5dB corresponds to
ε = 3). In every case, PDMS trades off increased BER for
reduced detection accuracy compared to the case when no
defense mechanism is applied. Also, increasing the number
of iterations used in the defensive schemes to compute the
perturbations has limited impact on modulation-classification
accuracy and BER as the total perturbation is limited to have
L2-norm ε.

Fig. 5 shows the trade-off between the average
modulation-detection accuracy of the intruder and the
BER for the individual modulation schemes for an intruder
DNN trained at an SNR of 10 dB (i.e., the training samples
are generated with this channel SNR) when the maximum
perturbation norm ε of PDMS takes values in the range [1, 6]
(smaller ε values correspond to points with smaller BER and
larger classification accuracy on each curve). It can be seen
that an effective perturbation that results in a reduction in the
modulation-classification accuracy also causes an increase
in the BER. The trade-off between the two is different for
different modulation schemes for the same perturbation

Fig. 4. Effect of signal-to-perturbation ratio (SPR) on the modulation-
classification accuracy and the BER (QAM64).

constraint ε (note that the reported classification accuracy is
an average computed over all modulation schemes). It can
be seen that an increase in ε needed to reduce the average
modulation-classification accuracy results in large BER for
QAM16 and QAM64. Note that in our experiments BPSK,
QPSK, GFSK and CPFSK have zero error rate for this
ε range, hence they are not included in the figure.

B. BER-Aware Defense Schemes

A more systematic way of improving the BER is to use
our BER-aware modulation schemes BDMS and BODMS.
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Fig. 5. Trade-off between the modulation-classification accuracy and the
BER for PDMS with code rate 2/3, where the L2 norm of the perturbations
is limited by ε ∈ [1, 6]. The accuracy is averaged over all modulation schemes
while the BER is shown for each modulation scheme separately. BPSK,
QPSK, GFSK and CPFSK have zero error rate for these perturbations.

In the numerical experiments, due to the large computational
overhead of calculating the SPSA gradient estimates in (8)
(with K = 400), we only used 400 signal blocks to measure
the test performance (instead of the 300 × 20 = 6000 blocks
used previously). Also, to keep the required computation
feasible, in (8) we used error rates calculated over 100 signal
blocks (that is, over 12800 perturbed channel input symbols
simultaneously). This approximation allowed us to run Viterbi
decoding once for every hundred blocks, instead of running
it from the beginning for every block, causing a substantial
reduction in computational complexity. The approximate gra-
dient of e computed this way was then used to calculate one
step of the optimization (i.e., the next candidate perturbation)
for each of the 100 blocks simultaneously. The drawback
of this approximation is twofold: (i) instead of taking the
gradient for a single perturbation, for each perturbation the
error gradient is computed as an average coming from per-
turbing each of the 100 blocks simultaneously (this affects
negatively the accuracy of the optimization); (ii) the applied
method introduces delays in the transmission as it assumes
that all signal blocks perturbed together are available at the
transmitter at the same time (this gives some optimistic bias to
the optimization compared to non-delayed real-time encoding).
Nevertheless, we believe that the negative effects are stronger
here, and the performance of our modulation schemes (BDMS
and BODMS) could be improved if the BER of the individual
signal blocks were used for gradient estimation in SPSA.

Fig. 6 and Fig. 7 show, respectively, the modulation-
classification accuracy and the BER for BDMS and BODMS,
also compared to PDMS, RNI and NoPerturb, against a
DNN-based intruder, which is trained with channel input
symbols at specific SNR values. The performance of BDMS is
presented for three different values of λ, namely 1, 103, 106.
As before, the BER is shown for PSK8 and QAM64, as again
QAM64 is the modulation scheme most affected by our
perturbations, and except for QAM16 (which is similar to
QAM64), and the error rate for the other modulation schemes
is similar to (in fact smaller than) that of PSK8 and is very
small under any defense mechanisms at high SNR values.

It can be seen that at high SNR (at least 12 dB), all defensive
schemes achieve roughly the same classification accuracy,

Fig. 6. Modulation-classification accuracy of BER-aware defense mecha-
nisms (ε = 3).

Fig. 7. BER for PSK8 and QAM64 for BER-aware modulation schemes
(ε = 3). In figure (a) the BER for RNI is 0 beyond 5 dB, and all BER values
are 0 when the SNR is larger than 12 dB.

while BODMS and BDMS for large λ provide significant
improvement in the BER (shown for PSK8 and QAM64).
Note, however, that the errors are still significantly higher than
for the standard QAM64 modulation with no perturbation.

For larger λ values, the BER of BDMS for QAM64 is
smaller than or approximately the same as for RNI , which adds
uniform random noise of the same perturbation size, while it
significantly outperforms RNI in classification accuracy (for
PSK8, both RNI and BDMS achieve low BER, although it
can be much smaller for RNI). Note that BODMS approaches
the performance of BDMS with a large λ (103 −106), without
the need to tune the hyperparameter λ, and these methods
provide a good compromise between the effectiveness of the
defense and the increase in the BER.

In addition to DNN-based detectors at the intruder, we also
examine defense against one of the best standard modulation
detection schemes in the literature, a multi-class decision
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Fig. 8. Modulation-classification accuracy of tree-based intruder and BER
(QAM64) for BER-aware modulation schemes (ε = 3).

tree trained with expert features obtained from [35], [36].
Fig. 8 shows the modulation-classification accuracy and the
BER achieved by employing various defense mechanisms
against this intruder. It can be seen that the BER achieved
against the tree-based classifier is approximately the same as
the one achieved against the DNN-based classifier with BDMS
and BODMS, while the accuracy of the DNN-based classifier
is consistently higher, except for some high SNR values,
when they are approximately the same. This demonstrates
that our observations and conclusions also apply to intruders
employing other types of detection mechanisms.

C. Robustness of the Intruder’s Classifier

In the previous sections we assumed that the intruder knows
the SNR of its received signals perfectly and trains its classifier
for this SNR value. Although this may not be possible in
practice due to estimation errors or variations in channel
quality, assuming more accurate information at the intruder
should allow us to design stronger defense mechanisms. In this
subsection, we study the robustness of the intruder’s detection
network against errors in its SNR estimate; that is, we study its
modulation-detection accuracy when it is trained for a specific
channel SNR, but tested at different SNR values. We show
in Fig. 9 the results for three cases: (a) when no defense
mechanism is applied (i.e., NoPerturb); (b) when uniform
noise is added (RNI); and (c) when our perturbation-based
defense PDMS is applied. In each figure, we plot the detection
accuracy with respect to the test channel SNR when the
intruder is trained at five different SNR values. Baseline
represents the case in which the test channel SNR matches
the training SNR.

Fig. 9. Modulation-classification accuracy of the intruder as a function of
the test channel SNR for total perturbation ε = 3.0.

We can observe in Fig. 9a that the intruder network trained
at channel SNR −20 dB is unable to learn any effective
classifier for higher SNR values. As the channel SNR at the
time of training increases, its performance improves for a
larger range of test SNR values as evident from the plots for
SNR −10 dB and 0 dB, but, as one would expect, the accuracy
achieved is below the peak accuracy values in the Baseline
curve. On the other hand, networks trained with high SNR
values of 10 dB and 20 dB achieve higher accuracy, close
to peak accuracy values in the Baseline curve, but tend to
breakdown when SNR goes below a certain value (2 dB and
6 dB for intruder networks trained at 10 dB and 20 dB,
respectively). It is due to the fact the DNNs learn the classifier
function from the training data, and for those trained at high
channel SNR, signals with higher noise may lie across decision
boundaries learned from less noisy training data, and are
wrongly classified.

Note that perturbations in Figs. 9b and 9c are generated with
total L2-norm ε = 3.0 for each trained network and at each
SNR value. It can be seen from Fig. 9b that adding random
perturbations does not reduce the modulation-classification

Authorized licensed use limited to: Imperial College London. Downloaded on October 11,2021 at 08:58:59 UTC from IEEE Xplore.  Restrictions apply. 



HAMEED et al.: BEST DEFENSE IS A GOOD OFFENSE: ADVERSARIAL ATTACKS TO AVOID MODULATION DETECTION 1083

accuracy, yielding similar performance to the case when no
defense mechanism is applied (Fig. 9a).

When PDMS is employed, if the network is trained for a
low SNR value, then test data with lower noise level (higher
SNR) will lie at a larger distance from the decision boundaries
(learned from noisy data), since the decision boundaries are
already accounting for a very high noise level. Therefore,
in this case the total perturbation ε may not be enough to move
the signal to the wrong side of a learned decision boundary of
the intruder, resulting in a higher accuracy. On the other hand,
when the network is trained for a higher SNR value than the
test channel, there is not much variation in the training data
due to the absence of noise, and an attacks with even limited
perturbation is enough to move the data point to the other side
of the learned decision boundary, changing the class label.

In case of PDMS, the intruder networks trained at low
channel SNR values of 0 dB and 10 dB are more robust against
PDMS as the decision regions learned by the intruder NN
account for larger channel noise and the perturbation norm ε
is too small compared to this noise at smaller test SNR values
to move a perturbed signal over a decision boundary. Once the
defensive perturbation ε becomes comparable in magnitude to
the test data channel SNR then both intruder networks show
similar performance for test SNR (≥ 5 dB). In the case of an
intruder network trained at SNR 20 dB, perturbation ε is large
compared to channel noise for higher test SNR values, and
thus, results in low modulation-detection accuracy. Also, since
the signal is perturbed before transmission, these defensive
perturbations are partially masked by the channel noise. This
effect of the channel noise is prominent in accuracy curves,
though PDMS perturbations significantly reduce the detection
accuracy as evident in Fig. 9c.

D. Improving Intruder’s Performance by Diversifying the
Training Data

In this section, we consider the scenario when the intruder
has training data available at different SNR values; more
precisely, we use 21 different SNR levels uniformly spaced
between −20 dB to 20 dB, leading to a total of 21 ×
12966 samples. We consider two different training strategies:
(i) randomly shuffle the training data of all channel SNR values
to train the intruder’s DNN; and (ii) curriculum learning [37],
where the training data is arranged in descending order of
their SNR values, and the training is started with samples of
training data from SNR 20 dB, gradually adding samples with
lower SNR values.

Fig. 10a shows that an intruder network trained with
data from all SNR values achieves a higher modulation-
classification accuracy for NoPerturb and against all defensive
modulation strategies compared to the case when only samples
from the same SNR values were used (cf. Fig. 1); this is
most likely due to the approximately 20-fold increase in
the number of training samples used. On the other hand,
we can see in Fig. 10b that curriculum training achieves
even higher robustness against all the defensive modulation
schemes, and even the idealized defensive modulation scheme
Oracle can be detected with more than 60% accuracy. This is

Fig. 10. Modulation-classification accuracy for an intruder trained
with/without curriculum training for a complete dataset of channel SNR values
ranging from −20 dB to 20 dB (ε = 3).

Fig. 11. BER for QAM64 for intruder trained with/without curriculum
training with complete dataset of channel SNR values ranging from −20 dB
to 20 dB (ε = 3).

because, in curriculum training, the neural network gradually
learns, starting from easier concepts to more complex ones
(more noisy channels in our case) and generalizes better to
unseen data including those generated by defensive modulation
schemes. In both cases, the improvement in detection accuracy
is more for higher SNR values. Fig. 11 shows the BER for
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Fig. 12. DNN classifier trained with training data of channel SNRs −20 dB
to 20 dB without any curriculum (ε = 3).

QAM64 when defensive perturbations are used against these
intruder modulation classifiers trained over the whole range of
SNR values without and with curriculum training, respectively.
The achieved BERs are similar to those achieved when the
intruder classifiers are trained for a particular SNR in Fig. 2.
This shows that the comparison of the detection accuracy
discussed above is fair (i.e., the improved detection accuracy
is not because the applied defensive perturbations are smaller).

Next, we consider the performance of BER-aware defensive
modulation schemes when the intruder classifiers are trained
with complete training data of all channel SNR values. The
results without any curriculum learning are shown in Fig. 12
for the same DNN-based classifier. It can be seen that the
modulation-classification accuracy is quite high, around 95%,
when no defense mechanism is employed (NoPerturb), and
over 90% when only noise is added (RNI). We can also
observe that, compared to results in Fig. 10a, BDMS is less
successful against this model for large λ (106); on the other
hand, the BER is significantly improved, as demonstrated by
comparing Fig. 11a and Fig. 12b. There is also a significant
improvement in detection accuracy for essentially the same
BER compared to the case when only training data for the
same SNR value is used (cf. Fig. 6 and Fig. 7).

On the other hand, using this larger set of training data
yields no significant improvement in the performance of the
tree-based classifier, and the results are very similar to those
reported in Fig. 8 (hence, they are omitted).

When the DNN-based classifier is trained using the com-
plete dataset with curriculum learning, a significantly higher
modulation-classification accuracy can be achieved against all
defensive modulation schemes, as shown in Fig. 13. Compared
to the non-curriculum learning results in Fig. 12, we can see

Fig. 13. DNN classifier trained with data of channel SNRs −20 dB to 20 dB
with curriculum learning (ε = 3).

that the improved detection accuracy also results in a smaller
BER. This suggests that, for a fair comparison between the two
approaches, we can increase the attack strength in the case of
curriculum learning until we achieve similar BER values as
in Fig. 12.

To this end, we increase the norm of perturbations for
the BDMS scheme against the DNN-based intruder network
trained with curriculum learning. Note that to make the defense
mechanisms work, we need to increase the value of λ, and we
have found that (the surprisingly large) λ = 1020 works well
in our experiments. The results are shown in Fig. 14. It can be
seen that defensive perturbations with larger norms decrease
the modulation-detection accuracy of the intruder, but they
also result in significantly higher BER despite the very large
λ value.

The results in this section showed that using more and
diverse data and curriculum training can significantly improve
the performance of the intruder and its robustness against
various defense mechanisms. While designing better defense
mechanisms against these intruders is an interesting and chal-
lenging future research direction, one method that can be
employed directly at the transmitter is to reduce the code rate,
which allows employing stronger attacks at the transmitter.
This is explored in the next section.

E. The Effect of the Code Rate

Error correction codes have been traditionally designed and
tested against independent Gaussian noise, and it is not clear
how they perform in the presence of the adversarial perturba-
tions we introduce, which are statistically very different from
the channel noise. In the experiments below we show that the
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Fig. 14. Modulation-classification accuracy and BER (QAM64) for an
intruder trained with a dataset of channel SNR ranging from −20 dB to
20 dB with curriculum learning (code rate = 2/3, BDMS with λ = 1020).

Fig. 15. Modulation-classification accuracy of DNN-based intruder and bit
error rate (QAM64) for code rate 1/2 for BER-aware modulation schemes
(ε = 3).

conventional trade-off between the code rate and the BER still
applies and can be exploited to achieve the desired BER level
while keeping the adversary’s accuracy low.

In our previous experiments we considered a fixed code
rate of 2/3. To illustrate the effect of the code rate, we eval-
uate the performance of our BER-aware defense schemes

Fig. 16. Modulation-classification accuracy and BER (QAM64) for an
intruder trained with a dataset of channel SNR ranging from −20 dB to
20 dB with curriculum learning (code rate = 1/2, BDMS with λ = 1020).

(with ε = 3) for a channel code of rate 1/2 against the
usual DNN-based intruder trained for a specific SNR. The
results, shown in Fig. 15 demonstrate that both the BER and
the detection accuracy can be substantially reduced compared
to the case when the code rate is 2/3 (see Fig. 6 and Fig. 7
for comparison). For example, even for QAM64, BDMS
(with λ = 106) achieves zero BER for high SNR values
(at least 16 dB).

The very small BERs (obtained in the previous exper-
iment) allow the application of more aggressive defensive
perturbations when the intruder employs a stronger classifier.
Accordingly, we evaluate the BDMS defensive scheme (with
a large λ = 1020) for different perturbation norms against a
DNN-based intruder trained with curriculum learning over a
range of SNR values (the setup is the same as for Fig. 13
except for the code rate). The results, shown in Fig. 16,
demonstrate that, compared to Fig. 14, using a lower code rate
of 1/2, the modulation-classification accuracy of the intruder
trained with curriculum learning can be reduced without
incurring a large BER at the legitimate receiver.

V. CONCLUSION AND FUTURE WORK

We proposed a novel approach to secure wireless communi-
cation by preventing an intruder from detecting the modulation
scheme employed, which is typically the first step of a more
advanced attack. In the proposed scheme, the I/Q symbols of
the modulated waveform at the transmitter are perturbed using
an adversarial perturbation derived against the modulation
classifier of the intruder. The perturbation is designed using
PGD, whose goal is to identify a perturbation with a limited
norm that is sufficient to fool the intruder’s classifier. More
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advanced methods are also proposed, whose goal is also
to keep small the BER caused by the perturbation at the
legitimate receiver. Experimental results verify the viability
of our approach by showing that our methods are able to
substantially reduce the modulation-classification accuracy of
the intruder with minimal sacrifice in the communication per-
formance. We have also shown that the intruder can improve
its detection accuracy significantly by training with a dataset
of samples taken from a range of SNR values, especially when
curriculum learning is also employed. This provides robustness
against channel noise as well as potential defense mechanisms
against the intruder, and has led to improvements upon state-
of-the-art modulation detectors in our experiments. Finally,
we have shown that a better trade-off between the intruder’s
detection accuracy and the BER at the legitimate receiver can
be achieved by sacrificing the communication rate.

An immediate challenge in the implementation of the pro-
posed defense mechanism in practice is the computation of
the proposed perturbations, which may introduce some delay.
While this can be done in an offline fashion and tabularized
for small n, some delay may be unavoidable for large n values,
hence efficient methods to calculate the perturbations are of
natural interest.

Utilizing the rapid advances in the field of adversarial
machine learning, our defense methods can certainly be
improved in the future by applying more advanced as well as
more universal (e.g., black-box) adversarial attack methods.
Another interesting avenue for future research is to develop
sophisticated defensive perturbations that can exploit different
channel characteristics both at the intruder and legitimate
receiver. On the other end of the problem, one can develop
better training strategies for the intruder that can achieve more
robust performance against these defense mechanisms, for
example, by applying adversarial training methods [28].
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