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A B S T R A C T

We develop a strain gradient plasticity formulation for composite materials with spatially varying volume
fractions to characterize size effects in functionally graded materials (FGMs). The model is grounded on the
mechanism-based strain gradient plasticity theory and effective properties are determined by means of a linear
homogenization scheme. Several paradigmatic boundary value problems are numerically investigated to gain
insight into the strengthening effects associated with plastic strain gradients and geometrically necessary dis-
locations (GNDs). The analysis of bending in micro-size functionally graded foils shows a notably stiffer response
with diminishing thickness. Micro-hardness measurements from indentation reveal a significant increase with
decreasing indenter size. And large dislocation densities in the vicinity of a crack substantially elevate stresses in
cracked FGM components. We comprehensively assess the influence of the length scale parameter and material
gradation profile to accurately characterize the micro-scale response and identify regimes of GNDs relevance in
FGMs.

1. Introduction

Functionally graded materials (FGMs) are multifunctional compo-
sites with spatially varying volume fractions of constituent materials.
The resulting graded macroproperties enable designers to tailor the
microstructure to specific operating conditions while minimizing pro-
blems associated with discrete material interfaces. FGMs are widely
used in the biomedical, aerospace, and automotive sectors, and have
become particularly popular in microelectromechanical systems
(MEMS) [1]. Conventional continuum theories are limited when
dealing with micro and nano-sized functionally graded components
and, as a consequence, non-local approaches have been extensively
used to accurately characterize their mechanical behavior [2–7].
However, despite the fact that metal-metal FGMs dominate MEMS and
microelectronic applications, these studies limit their analyses to the
elastic response. Elasto-plastic investigations of deformation and frac-
ture in FGMs have soared in recent years (see, e.g., [8,9]) but they are
still confined to conventional length-independent plasticity. Numerous
micron scale experiments have shown that metallic materials display
strong size effects when deformed non-uniformly into the plastic range.
Particularly representative examples are indentation [10], torsion [11],
and bending [12]. The smaller is stronger response observed is attributed
to the work hardening contribution of geometrically necessary dis-
locations (GNDs) that arise in the presence of plastic strain gradients to

ensure geometric compatibility. A notable effort has been devoted to
extend classic plasticity to the small scales by the development of strain
gradient plasticity (SGP) models, which define the plastic work as a
function of both strains and strain gradients [13–16]. By introducing an
intrinsic length scale in the constitutive equations, SGP theories are
able to quantitatively capture the size-dependent response of metals.
Mao et al. [17] recently showed that size effects can significantly im-
pact the bending response of graded materials but they assumed a
constant length scale parameter throughout the beam. We compre-
hensively investigate the influence of plastic strain gradients in de-
formation and fracture of FGMs. The mechanism-based SGP theory is
extended to graded materials by defining elastic and plastic properties
as a function of the material volume fraction through an appropriate
homogenization scheme. The analysis of bending, indentation and
stationary cracks reveals a profound GND-effect and a strong sensitivity
of the results to the profile of the length scale parameter.

2. A size-dependent plasticity formulation for FGMs

We develop a mechanism-based model for graded materials that
incorporates the role of geometrically necessary dislocations (GNDs)
through a Taylor-based flow stress [13,15]. We consider a metal-metal
FGM specimen that gradually changes from 100% volume fraction of
titanium to 100% volume fraction of aluminum. Assuming an FGM
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beam with thickness h and material gradation along a y-axis centered at
the mid-plane, the volume fraction of material 1, V1, reads,
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where k is the material gradient index or volume fraction exponent.

2.1. Homogenization scheme

A Mori-Tanaka homogenization scheme is employed to obtain the
local effective elastic properties as a function of the volume fraction.
Thus, the effective bulk modulus Ke and shear modulus μe can be ob-
tained as,
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and one can readily compute the effective Young’s modulus Ee and
Poisson’s ratio νe from Ke and μe using the standard relations.

Furthermore, we compute the local effective yield stress σY e and the
effective strain hardening exponent Ne using the rule of mixtures. E.g.,
the effective yield stress is given by,

= +σ σ V σ VY e Y Y1 1 2 2 (4)

where σY 1 and σY 2 respectively denote the yield strength of material 1
and material 2.

2.2. Taylor-based dislocation hardening

The size-dependent response of metals is captured by means of a
mechanism-based approach that builds upon Taylor dislocation model
(see [13,15]). Thus, the shear flow stress τ is formulated in terms of the
total dislocation density ρ as,

=τ αμ b ρe (5)

Here, b is the magnitude of the Burgers vector and α is an empirical
coefficient that is generally taken to be 0.5. The mechanism-based
strain gradient (MSG) plasticity model provides an implicit multiscale
framework where the microscale concepts of statistically stored dis-
locations (SSDs) and geometrically necessary dislocations (GNDs) are
respectively linked to the mesoscale concepts of plastic strains and
plastic strain gradients. Accordingly, the dislocation density is com-
posed of the SSDs density, ρS, and the GNDs density, ρG,

= +ρ ρ ρS G (6)

The GND density ρG is related to the effective plastic strain gradient
by,

=ρ r
η
bG

p
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where r is the Nye-factor which is taken to be 1.9 for face-centered-
cubic (fcc) polycrystals. The effective plastic strain gradient is defined
as,

=η η η1
4

p
ijk
p

ijk
p

(8)

where the third-order tensor ηijk
p is given by,
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The tensile flow stress σflow is related to the shear flow stress τ by,

=σ Mτflow (10)

where M is the Taylor factor, taken to be 3.06 for fcc metals.
Rearranging Eqs. (5)–(7) yields,

= +σ Mαμ b ρ r
η
bflow e S

p

(11)

The SSD density ρS can be determined from (11) knowing the re-
lation in uniaxial tension between the flow stress and the material
stress-strain curve,
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Here, σref is a reference stress and f is a non-dimensional function of
the plastic strain ε p determined from the uniaxial stress-strain curve.
Substituting back into (11), σflow yields

= +σ σ f ε η( ) ℓflow ref
p

e
p2 (13)

where ℓe is the (effective) intrinsic material length, which depends on
parameters of elasticity (μe), plasticity (σref ), and atomic spacing (b),
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Here, we assume the following isotropic hardening law,
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where we define the reference stress as =σ σ E σ( / )ref Y e e Y e
Ne and

= +f ε ε σ E( ) ( / )p p Y e e
Ne.

2.3. Finite element implementation

We follow the work by Huang et al. [15] and adopt a lower order
implementation due to its robustness in finite strain problems (see
[18,19]). As discussed in [20,21] for homogeneous materials, Taylor’s
dislocation model relates the flow stress to both strains and strain
gradients,
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requiring higher order stresses to render a self contained constitutive
model. This can be overcome in a conventional setting by using a vis-
coplastic formulation that particularizes to the rate independent limit.
Thus, we define the plastic strain rate as a function of the effective
stress σe,
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and substitute the reference strain by an effective strain rate ε .̇ Values of
m larger than 20 have proven to capture the rate independent response
[15]. The field equations are therefore the same as in conventional
plasticity theories and ηp comes into play through the incremental
plastic modulus. The constitutive equation reads,
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with δij being the Kronecker delta and σij the Cauchy stress tensor. Both
lower and higher order versions of MSG plasticity predict identical re-
sults in their physical regime of validity [20].

The size-dependent plasticity formulation for FGMs outlined is im-
plemented in the well-known finite element package ABAQUS by means
of a UMAT subroutine. The plastic strain gradient is obtained by nu-
merical differentiation within the element: the plastic strain increment
is interpolated through its values at the Gauss points in the isopara-
metric space and afterwards the increment in the plastic strain gradient
is calculated by differentiation of the shape functions. In the present
finite strain analysis, rigid body rotations for the strains and stresses are
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carried out by means of the Hughes and Winget’s algorithm [22] and
the strain gradient is obtained from the deformed configuration. Post-
processing of the results is carried out by means of Abaqus2Matlab
[23].

3. Results

We comprehensively investigate the behavior of an aluminum-tita-
nium FGM under bending (Section 3.1), indentation (Section 3.2) and
fracture (Section 3.3). Applications of Al-Ti FGMs include jet engine
components and dynamic high-pressure technology [24,25]. The vo-
lume fraction of material changes gradually along the y axis, with
material properties at the edges given by Table 1.

The effect of geometrically necessary dislocations in the mechanical
response is accounted for by means of a mechanism-based strain gra-
dient plasticity formulation for graded materials. In addition, we take
into consideration the variation of the length scale parameter through
the thickness. Thus, the effective material length is given by (14) and its
variation along the specimen characteristic dimension is illustrated for
different values of the material gradient index k in Fig. 1. As shown in
the figure, the length scale parameter changes gradually from the

=ℓ 0.34 μm value for titanium to the =ℓ 6.23 μm value for aluminum;
increasing k entails smaller average values of ℓ. We investigate the
influence of the spatial variation of the length scale parameter by
considering four scenarios: (i) ℓ equals the Al value (ℓMAX ), (ii) ℓ equals
the Ti value (ℓMIN ), (iii) =ℓ 0 (conventional plasticity), and (iv) ℓ
changes gradually according to (14).

3.1. Micro-bending of thin FGM films

Bending of micron-sized foils is a paradigmatic benchmark of small
scale plasticity since the experiments of Stölken and Evans [12] (see,
e.g., [26,27] and references therein). We model a functionally graded
foil of thickness H and length W subjected to bending. Unless otherwise

stated, a foil thickness of =H 0.01 mm is considered. As shown in
Fig. 2, we take advantage of symmetry and model only half of the beam.
The longitudinal displacement component is prescribed at the beam end
( ±x W /2) as,

=u κ x y (19)

where κ is the applied curvature. The beam is uniformly meshed with a
total of 12000 plane strain quadrilateral quadratic elements with re-
duced integration. After a sensitivity study, 40 elements are employed
along the beam thickness. Material properties change gradually along
the y-axis from aluminum (top) to titanium (bottom).

We compute the bending moment and normalize by,
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where σY and ν correspond to the average yield stress (578MPa) and
Poisson’s ratio (0.338), respectively. Unlike the cases of indentation
(Section 3.2) and fracture (Section 3.3), the use of the infinitesimal
deformation theory is appropriate for bending, given the strain levels
attained. Results are shown in Fig. 3 as a function of the normalized
applied curvature for different values of the material gradient index. In
terms of the length scale parameter, we assess the role of an accurate
characterization of ℓ in the moment versus curvature response by
considering the four scenarios outlined above.

Results reveal a number of trends. First, the expected smaller is
stronger response is observed in all cases, with graded-enhanced models
predicting a stiffer response relative to the conventional plasticity case
( =ℓ 0). Moreover, there is a strong sensitivity of the results to the
choice of length scale parameter, with ℓMIN approaching the conven-
tional plasticity solution. Second, finite element computations show
that larger bending moments are attained, for the same applied cur-
vature, with increasing k. And third, the ℓFGM case shows larger dif-
ferences with conventional plasticity as k decreases. The different ef-
fects observed with varying k can be understood from the sensitivity of
the length scale parameter (smaller k entails larger values of ℓe) and the
stiffness (the average volume fraction of Ti increases with k) to the
material gradient index. Size effects can be neglected in Ti-Al func-
tionally graded foils with thicknesses on the order of 10 μm if k is larger
than 1.

Strain gradient hardening becomes increasingly noticeable for
thinner foils, in agreement with expectations. Fig. 4 shows the bending
response for different foil thickness, with H normalized by the average
length scale =ℓ 3.285 μm. The case of a gradually varying ℓ is con-
sidered and the material gradient index is assumed to be =k 1. The
applied curvature is normalized in all cases by the reference thickness
of the beam (i.e., =H 0.01 mm, as considered in Fig. 3). Results reveal
that thinner specimens strain harden more than thicker ones, as ob-
served in micro-bending experiments on homogeneous materials [12].

Next, we analyze the influence of the material gradient index in the
moment versus curvature response in Fig. 5. The maximum value of the
bending moment is computed for a curvature level of =κH/ 3 0.04 for
different values of k and different thicknesses. As shown in the figure,
the bending moment increases with decreasing H and increasing k. This
could be expected as gradient effects become relevant when the

Table 1
Material properties of the metal-metal FGM under consideration.

Material E (GPa) ν σY (MPa) N ℓ (μm)

Aluminum 69 0.334 276 0.042 6.23
Titanium 113.8 0.342 880 0.21 0.34

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Fig. 1. Variation of the effective material length scale ℓe along the material
gradient direction.

x axis

y axis

Titanium

Aluminum

W/2

H

Fig. 2. Schematic representation of the numerical micro-bending experiments
on thin metal-metal FGM films.
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thickness approaches the length scale parameter and increasing k
augments the volume fraction of the stiffer constituent. However, one
should note that larger values of the material gradation index make ℓe

decrease, lessening strain gradient effects (i.e., for sufficiently thin
films, GNDs may dominate the response and inverse the qualitative

trend observed). Notwithstanding, results show that, for foil thicknesses
characteristic of microelectronic applications, (i) decreasing k makes
the response softer, and (ii) size effects are relevant and strain gradient
theories are needed to model the mechanical response.

(a) (b)

(c) (d)

Fig. 3. Normalized moment versus curvature for conventional ( =ℓ 0) and strain gradient plasticity theories. A functionally graded length parameter (ℓFGM) has been
considered, along with the limit cases of the stiffer (ℓMAX ) and the softer (ℓMIN ) compounds. Material gradient indexes: (a) =k 0.1, (b) =k 0.2, (c) =k 0.5, and (d)

=k 1.

Fig. 4. Normalized moment versus curvature for different foil thicknesses in a
functionally graded solid.

Fig. 5. Normalized bending moment in a functionally graded solid at a curva-
ture =κ H0.04 3 / for different foil thicknesses and as a function of the ma-
terial gradient index k.
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3.2. Indentation of FGM specimens

Since the pioneering works by Poole et al. [28] and Nix and Gao
[10], micro- and nano-indentation experiments have been widely used
to characterize size effects in metals, as well as to develop and bench-
mark gradient plasticity formulations. We examine the size-dependent
indentation response of FGMs modeling a flat indenter under perfect
friction conditions (see, e.g., [29]). Loading is imposed by prescribing
the displacements of the indented surface and material properties are
assumed to vary gradually in the vertical direction from aluminum
(top) to titanium (bottom) - see Fig. 6a. Unless otherwise stated, the
indenter size is chosen to be =H 0.02 mm and the characteristic length
of the indented solid is given by =B H/ 25. We take advantage of
symmetry in the finite element model and choose to examine a square
specimen of side length B (i.e., =L B). As shown in Fig. 6b the mesh is
particularly refined in the vicinity of the indented surface, where the
vertical displacement U is prescribed. The horizontal displacement is
set to zero to reproduce perfect friction conditions. We assume plane
strain conditions and employ a total of 18565 quadratic quadrilateral
elements.

The average normalized indentation pressure σ σ/ Y is given as a
function of the normalized indentation depth U H/ in Fig. 7 for various
choices of the material gradient index k. Here, σ is the average normal
stress component on the indented surface while σY denotes the average
yield stress of the two constituents (578MPa). Results show that the
response for a functionally graded length parameter follows closely that
of ℓMAX . This is traced to the fact that we are indenting the aluminum
region and consequently ℓFGM adopts values comparable to its max-
imum within the plastic zone. On the other hand, ℓMIN predictions only
slightly elevate the indentation pressure relative to the conventional
plasticity case for an indenter size of 10 μm. In addition, larger values
of the material gradient index entail larger differences between ℓFGM
and ℓMAX predictions; higher values of k result in a stronger reduction of
the length parameter with distance to the indented surface. It is also
observed that larger values of the gradient index lead to stiffer re-
sponses as the average volume fraction of Ti increases; this is further
examined in Fig. 8.

Fig. 8 shows the dependence of the indentation response on the
material gradient index k for the ℓFGM case. Higher values of the volume
fraction exponent lead to a stiffer response; increasing k brings higher
values of ℓe in the plastic zone but also decreases the average volume
fraction of the softer material. The indentation response is less sensitive
to changes in the material gradation profile when the effect of dis-
location hardening is accounted for.

Finally, we investigate the sensitivity of the indentation pressure to
the indenter size. As shown in Fig. 9, gradient-enriched results show an
increase in strain hardening with diminishing size. Strong size effects
are observed in small scale indentation of functionally graded solids
when indenting on the softer edge.

3.3. Fracture mechanics in elasto-plastic FGM specimens

Geometrically necessary dislocations play a fundamental role in
fracture problems as, independently of the size of the specimen, the
plastic zone adjacent to the crack tip is physically small and contains
strong spatial gradients of deformation. These large dislocation den-
sities promote strain hardening and lead to high crack tip stresses that
conventional plasticity is unable to capture [30,31]. Enriching con-
tinuum theories to accurately compute stress distributions has proven
to be pivotal in hydrogen embrittlement, where crack tip stresses
govern hydrogen diffusion [32] and decohesion [33]. Fracture in FGMs
has been investigated extensively in the context of conventional con-
tinuum theories of elasticity and plasticity (see, e.g. [34–37] and re-
ferences therein). We use the present mechanism-based FGM formula-
tion to investigate the influence of plastic strain gradients ahead of
cracks in functionally graded solids.

Crack tip fields are computed in an edge-cracked plate of height-to-
width ratio =W H/ 8 and crack size =a H/ 0.1. As shown in Fig. 10a,
the crack starts in the titanium edge and the plate is loaded in mode I by
prescribing the displacements at horizontal sides. The stress intensity
factor reads =K Yσ πaI R , where Y is the geometry factor and the re-
mote stress is given by = =σ σ x W( /2)R xx . A reference length of the
plastic zone size is defined based on Irwin,
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2
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with σY being the average yield stress. After a sensitivity study, the
specimen is discretized by means of 7560 finite elements. We use the
same type of element as for the indentation and bending case studies, 8-
node quadrilateral plane strain with reduced integration. As shown in
Fig. 10b, the mesh is gradually refined in the vicinity of the crack; the
use of a very fine mesh close to the crack tip is essential to capture the
effect of steep plastic strain gradients and ensure convergence of the
solution.

Crack opening stresses are shown in Fig. 11 for a given material
gradient index ( =k 1) as a function of the distance to the crack tip r.
The stress values are normalized by the average yield stress σY while the
horizontal axis shows the ratio r R/ p in logarithmic scale. As in the
bending and indentation cases, results are computed for four values of
the length scale parameter: (i) =ℓ 0 (conventional plasticity), (ii) ℓMAX
(Ti), (iii) ℓMIN (Al), and (iv) variable ℓFGM (14). Fig. 11 shows that all
cases agree far away from the crack tip but differences become sig-
nificant within a fraction of the plastic zone size. Large gradients of
plastic strain in the vicinity of the crack promote local hardening and
elevate opening stresses. The conventional plasticity solution reaches a
peak at a certain distance from the crack tip and then decreases as
stresses become influenced by large strains and crack blunting. This
stress triaxiality reduction is not observed in any of the ≠ℓ 0 sce-
narios, which translates into significant differences in the magnitude of

Fig. 6. Indentation in elasto-plastic FMGs: (a) geometry, and (b) finite element mesh.
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(a) (b)

(c) (d)

Fig. 7. Average non-dimensional indentation pressure as a function of non-dimensional indentation depth for conventional ( =ℓ 0) and strain gradient plasticity
theories. A functionally graded length parameter (ℓFGM) has been considered, along with the limit cases of the stiffer (ℓMAX ) and the softer (ℓMIN ) compounds. Material
gradient indexes: (a) =k 0.2, (b) =k 0.5, (c) =k 1, and (d) =k 1.5.

Fig. 8. Average non-dimensional indentation pressure as a function of non-di-
mensional indentation depth for different material gradient indexes in a func-
tionally graded strain gradient solid.

Fig. 9. Average non-dimensional indentation pressure as a function of non-di-
mensional indentation depth for different indenter sizes in a functionally
graded strain gradient solid. The indentation depth is normalized by the re-
ference indenter size: =H 20 μm.
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the opening stress predicted at the crack tip. Specifically, σxx is roughly
3, 4 and 5.5 times the conventional plasticity result in the vicinity of the
crack for ℓ , ℓMIN FGM and ℓMAX , respectively. As it could be expected, by
further reducing ℓ beyond ℓMIN the solution transitions towards the
conventional plasticity prediction ( =ℓ 0).

The stress attenuation intrinsic to conventional plasticity is not
observed in the graded-enhanced results. This is due to the contribution
of the strain gradients to material work hardening, which significantly
lowers crack tip blunting. Hardening increases in the vicinity of the
crack due to the large GND density; geometrically necessary disloca-
tions act as obstacles to the motion of statistically stored dislocations,
reducing plastic deformation and elevating the stresses. Fig. 12 shows
the GND density contours predicted by the present formulation - see Eq.
(7). Results are shown for the length parameter of Al, taking the Burgers
vector to be that of fcc materials. Large GND densities are obtained
ahead of the crack, dominating the contribution to the flow stress.

We investigate the influence of the material gradation profile on the
stress elevation intrinsic to gradient dislocation hardening. Fig. 13
shows the opening stress ratio between conventional and strain gra-
dient plasticity predictions as a function of the material gradient index
k. The ≠ℓ 0 solution corresponds to that obtained considering a
functionally graded profile of the length scale parameter.

Results reveal a significant increase in the gradient-enhanced stress
elevation with decreasing k. As shown in Fig. 1, high material gradation

x axis

y axis
Aluminum

Titanium

W

H

a

(a)

(b)

Fig. 10. Fracture analysis of a functionally graded plate: (a) Geometry and loading configuration and (b) finite element mesh.

10-2 10-1 100 101
0

5

10

15

Fig. 11. Crack opening stress distribution in an FGM specimen for conventional
( =ℓ 0) and strain gradient plasticity theories. A functionally graded length
parameter (ℓFGM) has been considered, along with the limit cases of the stiffer
(ℓMAX ) and the softer (ℓMIN ) compounds. Material gradient index: =k 1.

Fig. 12. Contour plot of the density of geometrically necessary dislocations in m−2. Results are shown for the case of ℓMIN and =R 0.00027p mm.
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indexes translate into convex aluminum volume fraction profiles along
the relevant dimension of the specimen, with the effective length
parameter adopting lower values over the characteristic length of the
specimen. Thus, ℓe in the vicinity of the crack will increase with de-
creasing k as the softer compound gains weight. The stress elevation can
therefore be substantially attenuated if the gradation profile of Ti is
concave downward.

4. Conclusions

Size effects in elastic-plastic functionally graded materials (FGMs)
have been extensively investigated by means of a strain gradient plas-
ticity formulation for graded materials. A suitable homogenization
scheme is employed to accurately sample material properties as a
function of the volume fraction of material. The analysis of (i) bending
of thin functionally graded foils, (ii) small scale indentation in the
gradient direction, and (iii) stress fields in cracked FGM specimens re-
veals that,

• Gradients of plastic strain have a profound effect on the mechanical
response of metal-based FGMs. Large geometrically necessary dis-
location densities significantly elevate the flow strength when non-
homogeneous plastic deformation is confined to small volumes.

• The smaller is stronger behavior is very sensitive to the material
gradation, with aluminum convex volume fraction profiles ex-
hibiting considerably smaller size effects. The design strategy of
increasing the volume fraction of the harder metal to maximize
stiffness will be compromised when the specimen size is on the order
of a micron (or less).

• Neglecting the length scale variation across the specimen brings
important differences in the macroscopic response. The intrinsic
gradation of the length scale parameter must be accounted for to
accurately characterize gradient effects in FGMs.

Results highlight the need to conduct critical experiments to accurately
characterize the behaviour of elastic-plastic FGMs at the micro scale.
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Fig. 13. Crack tip stress ratio as a function of the material gradient index k.
Results are shown for the case of ℓFGM and =R 0.0027p mm.
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