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A B S T R A C T   

We present a computational framework to explore the effect of microstructure and constituent properties upon 
the fracture toughness of fibre-reinforced polymer composites. To capture microscopic matrix cracking and fibre- 
matrix debonding, the framework couples a phase field fracture method and a cohesive zone model in the context 
of the finite element method. Virtual single-notched three point bending tests on fibre reinforced composites are 
conducted. The actual microstructure of the composite is simulated by an embedded cell in the fracture process 
zone, while the remaining area is homogenised to be an anisotropic elastic solid. A detailed comparison of the 
predicted results with experimental observations reveals that it is possible to accurately capture the crack path, 
interface debonding and load versus displacement response. The sensitivity of the crack growth resistance curve 
(R-curve) to the matrix fracture toughness and the fibre-matrix interface properties is determined. The influence 
of porosity upon the R-curve of fibre-reinforced composites is also explored, revealing a higher crack growth 
resistance with increasing void volume fraction. These results shed light into microscopic fracture mechanisms 
and set the basis for efficient design of high fracture toughness composites.   

1. Introduction 

Lightweight fibre reinforced polymer (FRPs) composites are being 
widely used in aeronautical and automotive applications due to their 
high specific stiffness and strength. To meet the structural integrity re
quirements of composite structures used in transportation vehicles, FRPs 
need to be sufficiently damage-tolerant to sustain defects safely until 
they can be repaired [1]. This requires composite structures of high 
fracture toughness, a property that depends on the mechanical proper
ties of fibre, matrix, and fibre-matrix interfaces, as well as of their spatial 
distribution within the material. 

The fracture of FRPs can be generally classified into two categories: 
interlaminar fracture (delamination) and intralaminar fracture. Inter
laminar fracture toughness values are controlled by the matrix tough
ness, which typically ranges from 0.1 to 3 kJ/m2 [2,3]. Intralaminar 
fracture can be classified into two categories, namely fibre-dominated 
fracture and matrix-dominated fracture. The reported intralaminar 
fracture toughness FRPs are in the range of 1–634 kJ/m2 [3–5]. The 
matrix-dominated fracture toughness is comparable to interlaminar 
fracture toughness (∼ 1 kJ/m2), while the fibre-dominated fracture 
toughness is two orders of magnitude higher. This is primarily due to the 

fibre-bridging effect, where a significant amount of fracture energy is 
absorbed by the events of fibre-matrix debonding, fibre pull-out and 
fibre breakage. 

Avenues for improving composite fracture toughness include matrix 
modification, thermoplastic particles, nanomaterial veils, stitching, Z- 
pin and 3D fibre architectures. These methods generally take advantage 
of well-known toughening mechanisms such as crack deflection, 
microcrack toughening, fibre/grain bridging. While trial-and-error 
experimental techniques are available to improve the fracture tough
ness, another emerging approach is the application of computational 
micromechanics. This approach is based on the finite element simula
tion of the mechanical response of a representative volume element 
(RVE) or an embedded cell of the composite microstructure. This makes 
possible to (virtually) optimise the material properties by changing the 
properties of the constituents. It can also provide the homogenised 
constitutive behaviour of the composite material, which can then be 
transferred to simulations at a larger length scale [6–8]. 

Cohesive Zone Models (CZM) [9,10] and Continuum Damage Me
chanics (CDM) models [1,11] are being extensively used in computa
tional micromechanics. However, one source of mesh-dependence in 
CDM or CZM models is the mesh-induced direction bias. The 
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misalignment between crack band direction and mesh lines induces 
stress locking because of the displacement continuity condition. A 
practical solution to mitigate mesh-induced directional bias is to align a 
refined mesh with the fibre direction [12], requiring complex mesh 
generations and a high computational cost. To overcome this issue, 
different element enriched formulations have been proposed, such as the 
eXtended FEM (X-FEM) [13] and the Floating Point Method [14]. 
Despite their effectiveness, these techniques can also fail to track the 
actual crack path topology, whereby crack coalescence and branching 
scenarios may potentially occur. A promising alternative for modelling 
the progressive failure of materials is the Phase Field (PF) fracture model 
[15–17], which is gaining a growing interest in the scientific community 
[18]. In particular, this approach enables to accurately simulate com
plex crack paths, including crack branching and coalescence in arbitrary 
geometries and dimensions. The PF method is a variational approach to 
fracture that exploits the classical Griffith energy balance [19]; cracking 
takes place when the energy released by the solid reaches a critical 
value, the material toughness Gc. Recently, Quintanas-Corominas et al. 
[20–23] and Espadas-Escalante et al. [24] have successfully used the PF 
model to capture the intralaminar and interlaminar damage behaviours 
at the mesoscale level. However, important phenomena governing the 
crack path topology and macroscopic fracture toughness remain unad
dressed; these include the influence of fibre, matrix, and fibre-matrix 
interface, as well as other toughening or embrittlement mechanisms (i. 
e. fibre bridging, crack branching, voids, defects, etc). 

In this work, a coupled PF-CZM framework is presented to model the 
matrix cracking, fibre-matrix interface debonding, and homogenised 
fracture toughness. Finite element modelling of single edge notched 
three-point bending tests are conducted. The predicted results are vali
dated against the measured crack path and load-displacement curves. 
The main novel aspects herein are: (i) For the first time, a combined PF- 
CZM model is used to predict the microscale crack propagation and 
investigate the debonding and matrix bridging behaviour. (ii) The effect 
of matrix toughness, interface strength and toughness on the crack tra
jectory and the R-curve are firstly quantified. (iii) We explore the in
fluence on the fracture toughness of microstructures with varying 
degrees of porosity. Our model opens new opportunities for the efficient 
and cost-effective design of energy-absorbing materials and structures. 

2. Numerical model 

The formulation combines two fracture models. The phase field 
fracture method, capable of capturing arbitrary crack trajectories, is 
used to model crack initiation and growth along the matrix and the fi
bres. Furthermore, fibre-matrix debonding is simulated using a cohesive 
zone model. Both models are described below and implemented in the 
commercial finite element package ABAQUS by means of user 

subroutines. 

2.1. Phase field fracture model 

The phase field fracture method builds upon Griffith’s thermody
namics [19]; crack advance is driven by the competition between the 
work required to create a new surface and the strain energy released by 
the solid as the crack grows. Griffith’s energy-based failure criterion can 
be expressed in variational form [25]. Thus, consider an arbitrary body 
Ω⊂IRn (n∈ [1, 2,3]) with internal discontinuity boundary Γ. The total 
potential energy of the body will be a sum of the contributions associ
ated with the strain energy density ψ and the fracture energy Gc as, 

E (u)=
∫

Ω
ψ(ε(u)) dV +

∫

Γ
Gc dS , (1)  

where u and ε = (∇uT +∇u)/2 denote the displacement and strain 
fields, respectively. Minimisation of the Griffith energy functional (1) is 
hindered by the complexities associated with tracking the propagating 
fracture surface Γ. However, an auxiliary variable, the phase field ϕ, can 
be used to track the crack interface; ϕ is a damage-like variable that goes 
from 0 in intact regions to 1 inside of the crack - see Fig. 1. 

Following continuum damage mechanics arguments, a degradation 
function g = (1 − ϕ)2 is defined that diminishes the stiffness of the 
material with evolving damage. Accordingly, the total potential energy 
functional can be re-formulated as 

E ℓ(u,ϕ) =
∫

Ω
(1 − ϕ)2ψ(ε(u) ) dV +

∫

Ω
Gc

(
ϕ2

2ℓ +
ℓ
2

⃒
⃒
⃒
⃒∇ϕ

⃒
⃒
⃒
⃒

2)

dV , (2)  

where ℓ is a length scale parameter that governs the size of the fracture 
process zone; the non-local character of the phase field method gua
rantees mesh objectivity. As rigorously proven using Gamma- 
convergence, the (u,ϕ) sequence that constitutes a global minimum 
for the regularised functional E ℓ converges to that of E for a fixed 
ℓ→0+. Thus, ℓ can be interpreted as a regularising parameter in its 
vanishing limit. However, for ℓ > 0+ a finite material strength is 
introduced and ℓ becomes a material property governing the strength 
[26]; e.g., for plane stress: 

σf ∝
̅̅̅̅̅̅̅̅̅
GcE

ℓ

√

=
KIc
̅̅̅
ℓ

√ (3)  

where KIc is the material fracture toughness. 
Finally, the strong form can be readily derived by taking the first 

variation of E ℓ with respect to the primal kinematic variables and 
making use of Gauss’ divergence theorem. Thus, the coupled field 
equations read, 

Fig. 1. Schematic representation of a solid body with (a) internal discontinuity boundaries, and (b) a phase field approximation of the discrete discontinuities.  
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(1 − ϕ)2
∇⋅σ = 0 in Ω

Gc

(ϕ
ℓ − ℓΔϕ

)
− 2(1 − ϕ) ψ = 0 in Ω

(4) 

The discretised forms of the field equations are solved by using a 
staggered solution scheme [16,27]. 

2.2. Cohesive zone model 

Debonding between the matrix and the fibre is captured by means of 
a cohesive zone model with a bi-linear traction-separation law, as shown 
in Fig. 2. For both normal and shear tractions, the constitutive behaviour 
of the cohesive zone interface is governed by the initial interface 
modulus K, the interface strength σI and the fracture energy GI. 

Following Camanho and Davila [9], an effective separation is 
introduced to describe the evolution of damage under a combination of 
normal and shear deformation 

δm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈δn〉2
+ δ2

s

√

(5) 

The onset of damage is predicted in terms of the normal tn and shear 
ts tractions using a quadratic nominal stress criterion, 
(

〈tn〉
σN

I

)2

+

(
ts

σS
I

)2

= 1 (6) 

Finally, damage evolution is governed by the energetic Benzeggagh- 
Kenane fracture criterion. Thus, the mixed-mode critical energy release 
rate GC will be attained when, 

GN
I +

(
GS

I − GN
I

)
(

GS

GN + GS

)η

=GC (7)  

where η is a material parameter, and GN
I and GS

I respectively denote the 
fracture energies required to cause failure in the normal and shear 
directions. 

3. Results 

3.1. Singe-edge cracked plate subjected to tension 

To verify our PF model on bulk matrix, we model a singe-edge 
cracked plate with the geometric setup, dimensions and boundary 
conditions given in Fig. 3a. The square plate of width H = 1 mm and 
height W = 1 mm has an initial crack length of a0 = 0.25 mm. We load 
the plate by prescribing the vertical displacement in the upper edge, and 
fix both vertical and horizontal displacements in the bottom boundary. 
We adopt the following epoxy material properties for the cracked plate, 

Young’s modulus E = 3.5 GPa, Poisson’s ratio ν = 0.35, tensile strength 
σN = 20 MPa and critical energy release rate Gm = 10 J/m2. 

To assess the effect of fibre reinforcement on the crack propagation 
of composite material, we use the same geometry, dimensions and 
boundary conditions as above, except for the additional fg = 37.2% fibre 
reinforcements, see Fig. 3b. We use E-glass fibre of Young’s modulus E =

74 GPa, Poisson’s ratio ν = 0.35 and critical energy release rate of Gf =

13.5 J/m2. Both glass fibre and epoxy matrix are assumed to be linear 
elastic, isotropic solids. A cohesive surface contact between fibre and 
matrix is defined and follows a traction-separation law with the prop
erties given in Table 1, where the interfacial tensile strength is assumed 
to be two-thirds of the shear strength, σN

I = 2σS
I /3 [8]. To compare the 

effect of matrix cracking and interface debonding, we choose two sets of 
material parameters: namely σN

I ≤ σN
m and σN

I > σN
m. 

Four-node quadrilateral plane strain elements were employed. After 
a mesh sensitivity study, a fine mesh with a characteristic element size 
h = 0.001 mm is used, eight times smaller than the phase field length 
scale [28]. When conducting the mesh sensitivity analysis, attention is 
paid to ensure that the fracture process zones associated with both the 
phase field and the cohesive zone model are resolved. In total, 11,221 
and 42,361 elements are used for the matrix and composite models, 
respectively. 

The predicted stress-strain responses of single edge cracked plate 
made from bulk matrix and fibre-reinforced composites are summarised 
in Fig. 3c. The stress-strain curve of the matrix model shows linear 
elastic behaviour until reaching the peak load. This is followed by a load 
drop, associated with crack evolution, see Fig. 3d. If fibres are added to 
the matrix, a stiffening and toughening effect is observed on the overall 
material behaviour. If the fibre-matrix interface debonding initiates first 
(σN

I ≤ σN
m), there is a notable non-linear behaviour prior to load drop. 

Before reaching the peak load, a large number of fibre-matrix interfaces 
have experienced decohesion, which contributes to the unusual non- 
linear response. The multi-step load dropping in the softening regime 
is attributed to the coalescence of interface debonding and matrix 
cracking, see Fig. 3e. However, if the matrix cracking initiates first 
(σN

I > σN
m), no interfacial decohesion is observed. A linear elastic 

behaviour is predicted before the maximum load, followed by a zig-zag 
softening behaviour. This is mainly due to the crack deflection effect in 
the fibre-reinforced composites. Instead of a straight cracking trajectory, 
the crack propagating through the matrix will deflect upon encountering 
the fibres (Fig. 3f), hence increasing the fracture surface area and the 
macroscopic fracture toughness. To quantify the role of the fibres, we 
estimate an equivalent work of fracture as the area under the resulting 
stress-strain curve divided by the ligament crack surface area 0.75 mm2. 
We find that the composite with interface debonding has the highest 

Fig. 2. Sketch of the cohesive zone formulation employed for predicting fibre-matrix debonding.  

W. Tan and E. Martínez-Pañeda                                                                                                                                                                                                            



Composites Science and Technology 202 (2021) 108539

4

work of fracture, 21.7 J/m2, followed by the composite without inter
face debonding (20.4 J/m2), with the bulk matrix giving 14.3 J/m2. 
Therefore, to improve the macroscopic fracture toughness of fibre- 
reinforced composites, the fibre-matrix interface strength should be 
reduced, consistent with most toughening approaches used in ceramic 
fibre-reinforced composites [29]. However, to improve the strength of 
fibre-reinforced composites, a high fibre-matrix interface strength is 
required. 

Fig. 3. Single-edge cracked plate subjected to tension: (a) Model setup for matrix, and (b) composite. (c) Stress-strain response of single-edge cracked plates made 
from bulk matrix or fibre-reinforced composite. (d) Crack propagation of matrix. Crack propagation of composite where (e) σN

m ≤ σN
I and (f) σN

m > σN
I . 

Table 1 
Properties of fibre-matrix interface [8].  

σN
I 

(MPa)  
σS

I 
(MPa)  

KN 

(GPa)  
KS 

(GPa)  
GN

I 
(J/m2)  

GS
I 

(J/m2)  
η 
(-) 

40 60 1000 1000 125 150 1.2  

Fig. 4. Model set-up of single-edge notched bending tests. All dimensions are in mm.  
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3.2. Single-edge notched three-point bending test 

We proceed to simulate three-point bending (TPB) experiments on a 
notched beam to predict the microscale crack topology and the matrix- 
dominated toughness of the composite lamina. This is achieved by 
means of an embedded cell model, following the approach developed in 
Ref. [8,10]. As shown in Fig. 4, the complete composite microstructure is 
resolved in the fracture process zone as an embedded cell, while the 
remaining ply material is represented as a homogeneous, 
transversely-isotropic elastic solid. The two regions share nodes at their 
interface, implying a continuous displacement field between the 
homogenised region and the embedded cell. We calculated the material 
constants of the homogenised region based on Mori-Tanaka method 
[10]. The Young’s modulus is Eh = 11 GPa and the Possion’s ratio is νh =

0.3. The sample dimensions and experimental setup are given in Fig. 4. 
A single edge-notched beam with a support span L = 11.2 mm, equal to 
four times the width W, is loaded in three-point bending. The thickness 
of the beam is t = 2 mm. The initial crack length is a0 = 1.4 mm. Inside 
the embedded cell, the randomly distributed glass fibres of volume 
fraction fg = 54% are surrounded by epoxy matrix. Fibre diameter 
ranges from 13 μm to 17 μm. The characteristic element size is set to 1 
μm in the embedded region and gradually grows to 0.2 mm at the outer 

edges. The whole model is formed by 152,364 four-node plane strain 
elements. The fibre, matrix and fibre-matrix interface properties used in 
the previous section were taken as baseline input parameters. The 
applied load P, the loading point displacement δ and the crack mouth 
opening displacement (CMOD), Δ, were continuously recorded during 
the virtual tests. 

The predictions of the virtual three-point bending test using the 
embedded cell model presented above are shown in Fig. 5. First, the 
measured [10] and simulated load-CMOD curves are plotted in Fig. 5a. 
The numerical model accurately captures the measured behaviour 
including the linear-elastic response of the beam before the peak load, 
the CMOD at the maximum load and the softening regime of the curve. 
The maximum load is slightly underestimated (around 10%), within the 
experimental scatter. In addition to the load-CMOD response, the model 
is able to reproduce the microscopic deformation and failure mecha
nisms, see Fig. 5b. In agreement with what is observed in the scanning 
electron micrographs, damage began by interface debonding at the 
outer surface the fibres. Cracks propagated along the fibre-matrix 
interface and voids grew by distinct interface separation. A continuous 
crack path was finally developed by the coalescence of matrix cracking 
and interface decohesion, while a significant amount of matrix liga
ments were bridging the crack. The numerical simulations also precisely 

Fig. 5. Measured [10] and predicted (a) load-CMOD curve, (b)crack propagation at high magnification and (c) crack propagation at low magnification.  

W. Tan and E. Martínez-Pañeda                                                                                                                                                                                                            



Composites Science and Technology 202 (2021) 108539

6

Fig. 6. (a) Measured load-CMOD response [10] is compared with the predicted loading-unloading response (b) Measured [10] and predicted R-curves.  

Fig. 7. Sensitivity study of the parameters used in the simulations: (a) phase field length scale ℓ, (b) fracture toughness of matrix Gc, (c) fracture toughness of 
interface GN

I and (d) interface strength σN . 
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capture the crack evolution with increasing remote load. This is shown 
in Fig. 5c, where snapshots of scanning electron micrographs for 
different values of the CMOD are plotted together with the predicted 
results. 

Cyclic loading was also applied to the TPB specimen to investigate 
unloading and reloading behaviour and calculate the unloading 
compliance C = δ/P. This is facilitated by the linear elastic fracture 
response of composite materials, as confirmed by the unloading 

response to the origin shown in Fig. 6a - no plastic effects have been 
considered. Thus, we follow the ASTM standard [30] to calculate the 
R-curve. In brief, the elastic compliance is used to calculate the effective 
crack size ae, which is then used to calculate the geometrical correction 
factor f(ae /W). The stress intensity factor was then given by K =

PS(BW3/2)
− 1f(ae /W). Finally, the J-integral is estimated by substituting 

K into the plain strain equation below, 

Fig. 8. The role of porosity on: (a) the crack trajectory, (b) the load-CMOD response, and (c) the fracture resistance R-curves.  
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J =
K2(1 − ν2)

E
. (8) 

The change in J with crack extension determines the R-curve. 
The measured and predicted R-curves are plotted in Fig. 6b. Pre

dictions for the R-curve response of the TPB test agree closely with those 
measured in the experiments. The rising R-curves observed both in the 
experiments and in the numerical predictions are attributed to the 
bridging effect from the matrix ligaments and the softening behaviour of 
fibre-matrix interface decohesion. 

3.2.1. Sensitivity study 
The fibre, matrix, and interface properties used in the previous sec

tion were taken as baseline values and a parametric study was carried 
out by simulating the mechanical response of the single notched beam 
bending test for different values of the phase field length scale ℓ, matrix 
fracture energy release rate Gm, interface mode I fracture energy release 
rate GN

I and interface normal strength σN
I . The load-CMOD responses of 

these parametric analyses are plotted in Fig. 7. Fig. 7a shows that 
reducing the value of ℓ elevates the force-displacement response; in all 
cases, a constant ratio ℓ/h = 8 is adopted to ensure mesh independent 
results. This can be rationalised by recalling the relation between the 
phase field length scale and the material strength: σc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
27EGc/(256ℓ)

√

(see, e.g. Ref. [28]). However, the influence of ℓ appears to be small. In 
agreement with fracture mechanics, phase field predicts a strength 
dominated behaviour (i.e., sensitive to the choice of ℓ) when the initial 
defect is smaller than the transition flaw size, and a fracture dominated 
response (i.e., governed by Gc) for larger cracks [26]. In elastic-plastic 
materials, cracking always takes place at G = Gc if the initial flaw is 
sufficiently large but the dissipation (R-curve) is influenced by ℓ [31]. As 
expected, both the peak load and the CMOD at the maximum load in
crease with the increasing Gm, see Fig. 7b. However, the interface 
fracture toughness has a relatively small effect on the load-CMOD re
sponses, see Fig. 7c. Therefore, to enhance the overall fracture tough
ness, increasing the matrix toughness is more effective than increasing 
the interface fracture toughness. This supports the trend of using ther
moplastic materials for high fracture toughness applications [3]. The 
interface normal strength σN

I has a significant impact on the maximum 
load, which correlates to the initiation of fibre-matrix interface 
debonding. From the above analysis, we can conclude that interface 
strength σN

I determines the peak load, while both the matrix and the 
interface fracture toughness contribute to the softening behaviour of the 
overall mechanical response. 

3.2.2. The effect of porosity 
After validating our model against the experimental results, we shall 

now proceed to explore the effect on the fracture behaviour of other 
microstructures, such as those arising from an increase in porosity or 
voids. In a composite material, a void is a pore that remains unfilled with 
polymer and fibres. Voids are typically the result of poor manufacturing 
of the material and are generally treated as defects as they can degrade 
matrix-dominated properties such as interlaminar shear strength, 
transverse tensile strength and longitudinal compressive strength, hence 
affecting the overall mechanical properties. The effect of porosity on 
strength has been assessed by Vajari et al. [32]. Here, we quantify the 
influence of voids on both strength and fracture toughness. To achieve 
this, we introduce pores on the baseline model, with the porosity 
ranging from fp = 2% to fp = 10%. The porosity is represented by cir
cular voids within the matrix and all the other conditions are kept the 
same. 2D models can provide quantitative insight into the role of 
porosity as pores in unidirectional ply have a tubular shape [33]. The 
resulting crack trajectories for selected porosity levels are shown in 
Fig. 8a. Crack blunting was observed during the fracture process. The 
crack paths appear to be very sensitive to the porosity level. In addition, 
as shown in Fig. 8b, both modulus and strength decrease with increasing 
volume fraction of porosity. The strength is reduced by approximately 

17% in the presence of 10% porosity. A similar degradation was 
measured by Olivier et al. [34] and predicted by Vajari et al. [32]. Fig. 8c 
shows how the R-curve of fibre-reinforced composites changed from 
‘flat’-type to ‘rising’-type with increasing porosity. For the sample with 
higher porosity (10%), the fracture toughness rises continuously with 
crack advance, exhibiting a more stable crack growth. The sample with 
10% porosity has a 37% higher fracture toughness compared to the 
sample without porosity for Δa = 0.8 mm. This toughening effect can be 
attributed to the circular holes that blunt the crack tip and increase the 
fracture toughness [35]. This finding differs from the effect associated 
with manufacturing induced defects, where voids degrade the me
chanical behaviour [7]. It should be noted that manufacturing-induced 
voids are commonly not regular and are more likely to be located close 
to fibre-matrix interface; hence reducing the interface and the macro
scopic fracture toughnesses. For this virtual test case, all the voids have a 
regular circular shape and are located at the matrix pocket. Therefore, 
crack blunting effects are enabled. 

4. Conclusions 

In this work, we present a novel coupled phased field and cohesive 
zone model to explore the effect of microstructure and constituent 
properties on the macroscopic fracture toughness. Several boundary 
value problems of particular interest are modelled to showcase its ca
pabilities and gain physical insight. 

First, an analysis of simple single-edge cracked plate tension tests on 
fibre-reinforced composites suggests that a weak fibre-matrix interface 
strength will raise the fracture toughness but reduce material strength. 
Secondly, the model is validated against single-edge notched beam 
bending experiments. Our predictions exhibit an excellent correlation 
with the experimental results both qualitatively and quantitatively. 
Subsequent parametric analyses suggest that increasing the matrix 
toughness is a more effective toughening mechanism than enhancing the 
interface fracture toughness. Finally, the influence of different micro
structures with varying porosity levels is subsequently investigated to 
determine optimal toughening strategies. We show that introducing a 
volume fraction of void inclusions in the matrix-resin regions can 
enhance the composite fracture toughness due to crack blunting effects. 

This embedded cell-based, combined phase field and cohesive zone 
computational framework provides a compelling multiscale virtual tool 
to investigate the role of the microstructure and material properties. 
This will lead to more efficient and rapid designs for enhancing the 
fracture toughness of energy-absorbing materials and structures. 
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tualization, Data curation, Formal analysis, Investigation, Methodology, 
Validation, Visualization, Writing - original draft, Writing - review & 
editing. 

Declaration of competing interest 

The authors declare no conflict of interest. 

Acknowledgements 

W. Tan acknowledges financial support from the European Com
mission Graphene Flagship Core Project 3 (GrapheneCore3) under grant 
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gradient-plastic solids undergoing hydrogen embrittlement, J. Mech. Phys. Solid. 
143 (2020) 104093. 
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