
Figure 1: Overview of the system simulated using the presented MATLAB code
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Abstract
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here. This documentation explains the usage of the implemented finite element framework, and highlight
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1. Introduction

Development of cracks due to interactions with the environment is a common failure mechanism, with
causes of this environment-induced failure including stress-corrosion-cracking and hydrogen embrittlement.
Accurately predicting these phenomena does not only require capturing the metal and neighbouring elec-
trolyte, but also requires the effects of newly created and propagating cracks to be captured. One framework
enabling crack propagation in arbitrary directions and geometries is the phase field method, representing
cracks in a smeared manner. While the mechanical side of phase field fracture models is well-developed,
models to represent fluids and species contained within the cracks are usually of a more empirical nature
(for instance, requiring fitting parameters that are problem-dependent). Here, we present a MATLAB im-
plementation of a physics-based model for ionic diffusion and reactions within cracks compatible with the
phase field framework. This physics-based model is described in T. Hageman & E. Mart́ınez-Pañeda, A
phase field-based framework for electro-chemo-mechanical fracture: crack-contained electrolytes, chemical
reactions and stabilisation. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116235
[1], where its ability to accurately predict hydrogen uptake and expected failure times is shown. In the
remainder of this documentation, the physical models and mathematical objects included within this code
will be detailed. Special attention is given to the manner in which crack opening heights are reconstructed,
as this requires procedures that are non-standard in finite element methods.

Note: as this code is developed along other codes, parts of this code (and the documentation) correspond
to the codes accompanying [2] (hydrogen absorption stabilised with lumped integration) and [3] (corrosion
under charge conservation conditions).

1.1. Basic usage

For simulating the model as provided, running the function “main Static.m” performs all required
actions for simulating a static fracture: It automatically generates the geometry and mesh, initialises all
simulation components, and prints outputs to the screen and saves them to a folder within results. Simple
changes, e.g. editing parameters, can be done within main.m without requiring altering other files. Similarly,
“main.m” performs the simulations for a dynamic fracture. Files are also provided for the post-processing:
“Animations.m” to generate time-series for the output files, and “compare.m” to plot multiple simulations
at a set time.
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2. Summary of included files

The code is set up in a object-oriented manner, defining matlab classes for each sub-component and
providing their accompanying methods. As a result, a clear distinction is made between different components,
and each can be used and altered with limited/no impact on other components. Here, the different classes
are described. The commenting style employed within the code is compatible with the matlab help function,
as such information about all usable methods within a class can be accessed by including the relevant folders,
and typing, for instance, “help Solver” to print all variables contained within and all function available from
the solver.

2.1. main.m

This is the main file, from which all classes are constructed and the actual simulation is performed.
Within it, all properties used within other classes are defined as inputs, for instance for the momentum
balance and phase-field evolution equations within the solid domain:

main.m

69 %Momentum balance and phase -field evolution

70 physics_in {1}. type = "PhaseFieldDamage ";

71 physics_in {1}. Egroup = "Internal ";

72 physics_in {1}. young = 200e9; %Youngs Modulus [Pa]

73 physics_in {1}. poisson = 0.3; %Poisson ratio [-]

74 physics_in {1}. kmin = 1e-10; %residual stiffness factor [-]

75 physics_in {1}.l=l; %Phase -field length scale [m]

76 physics_in {1}.Gc=2.0e3; %Fracture release energy [J/m^2]

77 physics_in {1}. GDegrade = 0.9; %Maximum hydrogen degradation factor

78 physics_in {1}.NL = 1e6; %Concentration of interstitial lattice sites [mol/m

^3]

79 physics_in {1}.gb = 30e3; %Grain boundary binding energy [J/mol]

where “physics in” is the array of options (in this case, physical models) passed to the physics object at
construction.

The actual time-dependent simulations are also performed within this file:

main.m

177 for tstep = startstep:n_max

178 disp("Step: "+ string(tstep));

179 disp("Time: "+ string(physics.time));

180 physics.dt = dt *1.05^( min(100,tstep -1));

181 disp(" dTime: "+ string(physics.dt));

182
183 %solve for current time increment

184 solver.Solve();

Notably, while this performs the time-stepping scheme and controls the time increment size and termi-
nation of the simulations, it does not by itself solve anything, instead calling the “solver.Solve()” function
which performs a Newton-Raphson procedure using the parameters used to initialize the class, and once the
current timestep is converged returns to the main code.

2.2. Models

The files included within the Models folder form the main implementation of all the physical phenomena
involved. They implement the assembly of tangential matrices and force vectors, when requested by the
solving procedures, and store model-specific parameters.
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2.2.1. BaseModel

This is an empty model, inherited by all other models to provide consistency within the available func-
tions. While empty within here, the potential functions that can be defined within other models include
assembling the system matrix and force vector:

Models/@BaseModel/BaseModel.m

26 function getKf(obj , physics , stp)

and committing history dependent or path dependent variables:

13 function Commit(obj , physics , commit_type)

where the keyword “commit type” indicates the type of history or path dependence to commit at the current
point. It also provides a function for performing once per staggered solution step actions:

30 function OncePerStep(obj , physics , stp)

2.2.2. Constrainer

This model is used to apply fixed boundary constraints to a degree of freedom at a set location. Within
the main file, the inputs required are:

main.m

90 %displacement constrain at bottom boundary

91 physics_in {3}. type = "Constrainer ";

92 physics_in {3}. Ngroup = "Bottom ";

93 physics_in {3}. dofs = {"dy"};

94 physics_in {3}. conVal = [0];

and multiple definitions of this model are allowed, allowing for constraints to be applied to several element
groups. These constraints are integrated within the tangential matrix and force vector through allocation
matrices Ccon and Cuncon, reordering the system into a constrained and unconstrained part. This allows
the constrained system to be solved as:

CT
unconKCuncony = −

(
CT

unconf +CT
unconKCconc

)
(1)

with the values of the boundary constraints contained in the vector c. After solving, the state vector is then
incremented through:

xnew = xold +Cuncony +Cconc (2)

2.2.3. LinearElastic

The linear-elastic model implements the momentum balance for the metal domain:

∇ · σ = 0 (3)

where the stresses σ are based on the displacement u = [”dx” ”dy”]. The properties used to initialize this
model given as input by:

main.m

61 physics_in {1}. type = "LinearElastic ";

62 physics_in {1}. Egroup = "Metal";

63 physics_in {1}. young = 200e9;

64 physics_in {1}. poisson = 0.3;

Notably, since the tangential matrix for linear-elasticity is constant, it is assembled once and saved locally
within the model, after which during the global matrix assembly process, it is copied over to the global
matrix:

Models/@LinearElastic/LinearElastic.m

113 physics.fint{stp} = physics.fint{stp} + obj.myK*physics.StateVec{obj.

dx_Step };

114 physics.K{stp} = physics.K{stp} + obj.myK;

with the force vector also being updated based on this locally saved stiffness matrix.
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2.2.4. HydrogenDiffusionUnDamaged

This model implements the hydrogen mass conservation, through the diffusion equation [4, 5, 6, 7, 8]:(
1 +

NT/NL exp (∆gb/RT )

(CL/NL + exp (∆gb/RT ))
2

)
ĊL −∇ ·

(
DL

1− CL/NL
∇CL

)
+∇ ·

(
DLCLV H

RT
∇σH

)
= 0 (4)

with the interstitial lattice hydrogen concentration CL indicated within the code by “CL”. Input properties
for this model constitute:

mainDiscreteFrac.m

66 physics_in {2}. type = "HydrogenDiffusionUnDamaged ";

67 physics_in {2}. Egroup = "Metal";

68 physics_in {2}.DL = 1e-9;

69 physics_in {2}.NL = 1e6;

70 physics_in {2}.gb = 30e3;

71 physics_in {2}.NT = 1e2;

This model presumes the first model provides the Young’s modulus and Poisson ratio. The hydrostatic
stress gradients required in this model are obtained as ∇σh = B∗

uu, with the B∗ matrix defined as:

B∗
u = E/(3(1− 2ν))

[
∂2Nu1

∂x2
∂2Nu2

∂x2 · · · ∂2Nu1

∂x∂y
∂2Nu2

∂x∂y · · ·
∂2Nu1

∂x∂y
∂2Nu2

∂x∂y · · · ∂2Nu1

∂y2
∂2Nu2

∂y2 · · ·

]
(5)

2.2.5. Electrolyte

The electrolyte model implements the Nernst-Planck mass balance for non-crack contained electrolytes
[? ]:

Ċπ +∇ · (−Dπ∇Cπ) +
zπF

RT
∇ · (−DπCπ∇φ) +Rπ = 0 (6)

for the ionic species and their name within the model file: H+ (“H”), OH− (“OH”), Na+ (“Na”), Cl− (“Cl”,
using lower case l; upper case L provides the lattice hydrogen concentration), Fe2+ (“Fe”), and FeOH+

(“FeOH”). Additionally, it implements the electro-neutrality condition [9, 10]:∑
zπCπ = 0 (7)

and bulk reactions:

H2O
kw−−⇀↽−−
k′
w

H+ +OH− (8)

Fe2+ +H2O
kfe−−⇀↽−−
k′
fe

FeOH+ +H+ (9)

FeOH+ +H2O
kfeoh−−−⇀ Fe(OH)2 +H+ (10)

with reaction rates:

RH+,w = ROH− = kwCH2O − k′wCH+COH− = keq (Kw − CH+COH−) (11)

RFe2+ = −kfeCFe2+ + k′feCFeOH+CH+ (12)

RFeOH+ = kfeCFe2+ − CFeOH+(kfeoh + k′feCH+) (13)

RH+,fe = kfeCFe2+ − CFeOH+(k′feCH+ − kfeoh) (14)

For this model, the input properties required are:
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mainDiscreteFrac.m

93 physics_in {7}. type = "Electrolyte ";

94 physics_in {7}. Egroup = "Electrolyte ";

95 physics_in {7}.D = [9.3; 5.3; 1.3; 2; 1.4; 1]*1e-9; %H OH Na CL Fe FeOH

96 physics_in {7}.z = [1; -1; 1; -1; 2; 1];

97 physics_in {7}. pH0 = 5;

98 physics_in {7}. NaCl = 0.6e3;

99 physics_in {7}. Lumped = [true; true]; %water , metal

100 physics_in {7}.k = [1e6; 1e-1; 1e-3; 1e-3]; %water , Fe, Fe', FeOH

This model employs a lumped integration scheme when the vector “Lumped” contains true. Details for the
implementation of this lumped scheme are given in [2].

2.2.6. ElectrolyteInterface

The electrolyteInterface model implements the metal-electrolyte coupling through the surface reactions
for explicitly represented electrolytes [11, 8]:

Volmer (acid): H+ +M+ e−
kV a−−⇀↽−−
k′
V a

MHads (15)

Heyrovsky (acid): H+ + e− +MHads
kHa−−⇀↽−−
k′
Ha

M+H2 (16)

Volmer (base): H2O+M+ e−
kV b−−⇀↽−−
k′
V b

MHads +OH− (17)

Heyrovsky (base): H2O+ e− +MHads
kHb−−⇀↽−−
k′
Hb

M+H2 +OH− (18)

Tafel: 2MHads
kT−−⇀↽−−
k′
T

2M+H2 (19)

Absorption: MHads
kA−−⇀↽−−
k′
A

MHabs (20)

Corrosion: Fe2+ + 2e−
kc−⇀↽−
k′
c

Fe (21)

with reaction rates:

Forward Backward

Volmer(acid) : νV a = kV aCH+(1− θads)e
−αV a

ηF
RT ν′V a = k′V aθadse

(1−αV a)
ηF
RT (22)

Heyrovsky(acid) : νHa = kHaCH+θadse
−αHa

ηF
RT ν′Ha = k′Ha(1− θads)pH2e

(1−αHa)
ηF
RT (23)

Volmer(base) : νV b = kV b(1− θads)e
−αV b

ηF
RT ν′V b = k′V bCOH−θadse

(1−αV b)
ηF
RT (24)

Heyrovsky(base) : νHb = kHbθadse
−αHb

ηF
RT ν′Hb = k′Hb(1− θads)pH2

COH−e(1−αHb)
ηF
RT (25)

Tafel : νT = kT |θads| θads ν′T = k′T (1− θads)pH2
(26)

Absorption : νA = kA(NL − CL)θads ν′A = k′ACL(1− θads) (27)

Corrosion : νc = kcCFe2+e
−αc

ηF
RT ν′c = k′ce

(1−αc)
ηF
RT (28)

These reaction rates are implemented in a separate function from the matrix assembly:

Models/@ElectrolyteInterface/ElectrolyteInterface.m

392 function [react , dreact , products] = reactions(obj , CH, COH , CFE , theta , phil , CLat

)

which takes the local hydrogen, hydroxide, and iron concentrations, the surface coverage, electrolyte poten-
tial, and interstitial lattice hydrogen concentration. It functions for both the integration-point variables as
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well as for the nodal values. In addition to the reaction rates, the electrolyte interface model also resolves
the surface mass balance:

Nadsθ̇ads − (νV a − ν′V a) + νHa + 2νT + (νA − ν′A)− (νV b − ν′V b) + νHb = 0 (29)

For this model, the input variables to define are given as:

mainDiscreteFrac.m

102 physics_in {8}. type = "ElectrolyteInterface ";

103 physics_in {8}. Egroup = "Interface ";

104 physics_in {8}. NAds = 1e-3;

105 physics_in {8}.k = k;

106 physics_in {8}.NL = 1e6;

107 physics_in {8}.Em = Em;

108 physics_in {8}. Lumped = [1 1 1 1 1 1 1];

9 k = [1e-4, 1e-10, 0.5, 0;

10 1e-10, 0, 0.3, 0;

11 1e-6, 0, 0, 0;

12 1e1 , 7e5 , 0, 0;

13 1e-8, 1e-13, 0.5, 0;

14 1e-10, 1e-14, 0.3, 0;

15 3e -5/(2*96485.3329) ,3e -5/(2*96485.3329) , 0.5, -0.4];

with the vector “Lumped” allowing for individual interface reactions to be either integrated using a standard
Gauss integration scheme (0) or a lumped integration scheme (1). the reaction constants matrix k is defined
as:

k =



kV a k′V a αV a Eeq,V a

kHa k′Ha αHa Eeq,Ha

kT k′T − −
kA k′A − −
kV b k′V b αV b Eeq,V b

kHb k′Hb αHb Eeq,Hb

kc k′c αc Eeq,c


(30)

with the empty entries not used within the model.

2.2.7. PhasefieldDamage

This model implements the momentum conservation for a damaged linear-elastic material:

0 = ∇ ·
(
d(ϕ)

∂ψ0

∂ε

)
(31)

and the phase-field evolution equation [12, 13, 14, 15]:

ϕ

ℓ
− ℓ∇2ϕ = −∂d(ϕ)

∂ϕ
H where H =

ψ0

Gc(CL)
, Ḣ >= 0 (32)

using the linear-elastic energy function for an undamaged material:

ψ0 = ε : D : ε (33)

and the damage function:
d(ϕ) = k0 + (1− k0)(1− ϕ)2 (34)

Within this model, the displacement and phase-field damage variable can not be updated at the same time,
instead requiring Eqs. (31) and (32) to be set to different staggered solver steps. The history field required
within this model is calculated each time the tangent matrix is assembled:
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Models/@PhaseFieldDamage/PhaseFieldDamage.m

275 if (H>= Energy_el)

276 f_el = f_el + d_dam_fun*w(ip)*N(ip ,:) '*H;
277
278 K_el = K_el + d_dam_dphi*w(ip)*H*N(ip ,:) '*N(ip ,:);
279
280 HNew(n_el , ip) = obj.HistOld(n_el , ip);

281 else

282 f_el = f_el + d_dam_fun*w(ip)*N(ip ,:) '*Energy_el;
283
284 K_el = K_el + w(ip)*d_dam_dphi*Energy_el*N(ip ,:) '*N(ip ,:);
285
286 HNew(n_el , ip) = Energy_el;

287 end

and changes are committed to the new time increments once the phsics object calls its “Commit” function.
For the initialization of the phase-field parameter, an estimated history field is set via:

ϕinit = exp (− |dx| /ℓ) Hinit =
1/ℓ Nϕϕ

init + ℓ
(
∇Nϕϕ

init
)T (∇Nϕϕ

init
)

k0 − 2(1− k0) (1−Nϕϕinit)
(35)

the first time the “OncePerStep” function is called:

Models/@PhaseFieldDamage/PhaseFieldDamage.m

97 function OncePerStep(obj , physics , stp)

98 if (stp == obj.phi_step && obj.doInit)

99 Hdom = max(obj.mesh.Nodes (:,2));

100 Lfrac = 5e-3;

101
102 %% set Values

103 nodecons = [];

104
105 allNodes = obj.mesh.GetAllNodesForGroup(obj.myGroupIndex);

106 PhiDofs = obj.dofSpace.getDofIndices(obj.dofTypeIndices (3), allNodes);

107 initvals = 0* allNodes;

108 for i=1: length(allNodes)

109 xy = [obj.mesh.Nodes(allNodes(i) ,1), obj.mesh.Nodes(allNodes(i) ,2)];

110
111 if (xy(1)<Lfrac)

112 dst = Hdom/2-xy(2);

113 else

114 dst=sqrt((xy(2)-Hdom /2) ^2+(xy(1)-Lfrac)^2);

115 end

116
117 pf = exp(-abs(dst)/(obj.l));

118
119 initvals(i) = pf;

120 end

121
122 physics.StateVec{obj.phi_step }( PhiDofs) = initvals;

123 physics.StateVec_Old{obj.phi_step }( PhiDofs) = initvals;

124
125 %% set history field

126 for n_el =1: size(obj.mesh.Elementgroups{obj.myGroupIndex }.Elems , 1)

127 Elem_Nodes = obj.mesh.getNodes(obj.myGroupIndex , n_el);

128 [N, G, w] = obj.mesh.getVals(obj.myGroupIndex , n_el);

129 G2 = obj.mesh.getG2(obj.myGroupIndex , n_el);

130
131 dofsPhi = obj.dofSpace.getDofIndices(obj.dofTypeIndices (3), Elem_Nodes)

;

132 PHI = physics.StateVec{obj.phi_step }( dofsPhi);

133
134 for ip=1: length(w)
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135 NPhi = N(ip ,:)*PHI;

136 GPhi = squeeze(G(ip ,:,:))'*PHI;
137
138 d_dam_fun = -2*(1-obj.kmin)*(1-NPhi);

139 H = abs((NPhi/(obj.l)+obj.l*(GPhi '*GPhi))/( d_dam_fun+obj.kmin));
140
141 obj.Hist(n_el , ip) = H;

142 obj.HistOld(n_el , ip) = H;

143 end

144
145 end

146
147 obj.doInit = false;

148 end

As can be seen, this initial field is set based on the fracture length “Lfrac”, and inserted in the centre of the
domain.

Input parameters that need to be set for this model are:

main.m

69 %Momentum balance and phase -field evolution

70 physics_in {1}. type = "PhaseFieldDamage ";

71 physics_in {1}. Egroup = "Internal ";

72 physics_in {1}. young = 200e9; %Youngs Modulus [Pa]

73 physics_in {1}. poisson = 0.3; %Poisson ratio [-]

74 physics_in {1}. kmin = 1e-10; %residual stiffness factor [-]

75 physics_in {1}.l=l; %Phase -field length scale [m]

76 physics_in {1}.Gc=2.0e3; %Fracture release energy [J/m^2]

77 physics_in {1}. GDegrade = 0.9; %Maximum hydrogen degradation factor

78 physics_in {1}.NL = 1e6; %Concentration of interstitial lattice sites [mol/m

^3]

79 physics_in {1}.gb = 30e3; %Grain boundary binding energy [J/mol]

2.2.8. HydrogenDiffusion

Similar to the model presented in Section 2.2.4 for hydrogen diffusion in undamaged materials, this model
simulates the diffusion in damaged materials. While the governing equations displayed in Eq. (4) are still
being simulated, the hydrostatic stress gradient is now interacts with the phase-field damage as:

∇σh =
E

3(1− 2ν)

(
d(ϕ)B∗u+

∂d(ϕ)

∂ϕ
∇ϕBu

)
(36)

where
B =

[
∂Nu1

∂x
∂Nu1

∂x · · ·∂Nu1

∂y
∂Nu1

∂y · · ·
]

(37)

Input parameters required for this model are:

main.m

81 %Interstitial lattice hydrogen diffusion model

82 physics_in {2}. type = "HydrogenDiffusion ";

83 physics_in {2}. Egroup = "Internal ";

84 physics_in {2}.DL = 1e-9; %Diffusivity [m/s]

85 physics_in {2}.NL = physics_in {1}.NL; %Concentration of interstitial lattice

sites [mol/m^3]

86 physics_in {2}.gb = physics_in {1}.gb; %Grain boundary binding energy [J/mol]

87 physics_in {2}.NT = 1e2; %concentration of trapping sites

88 physics_in {2}. kmin = physics_in {1}. kmin;%residual stiffness factor [-]
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2.2.9. PhasefieldElectrolyte

This model simulates the Nernst-Planck and electroneutrelity equations, surface adsorbed hydrogen
concentration, and bulk and volume reactions for a crack-contained electrolyte. This system is described
by:

0 = βcĊπ −∇ ·
(
RTβdRDπ∇Cπ

)
− zπF

RT
∇ ·

(
RTβdRDπCπ∇φ

)
+ βcRπ + βsνπ (38)

0 = βc
∑
π

zπCπ (39)

0 = βs

(
Nadsθ̇ads − (νVa − ν′Va) + νHa + 2νT + (νA − ν′A)− (νVb − ν′Vb) + νHb

)
(40)

The capacity, diffusion, and surface distributors are accordingly defined as:

Distributed diffusion Physics−based

βc = ϕm βc = h

(
1

2ℓ
ϕ2 +

ℓ

2
|∇ϕ|2

)
(41)

βd =

[
ϕmDπ,2/Dπ 0

0 0

]
βd =

(
1

2ℓ
ϕ2 +

ℓ

2
|∇ϕ|2

)[
h 0
0 D∞

]
(42)

βs =
1

ℓ
ϕ2 + ℓ |∇ϕ|2 βs =

1

ℓ
ϕ2 + ℓ |∇ϕ|2 (43)

where the distribution method is set within the code to either “WuLorenzis” for the distributed diffusion
model described in [15] or “Subgrid” for the physics-based model from this work [1]. The manner in which
the crack opening height is obtained is described in detail in Section 3.

Input parameters for this model are:

main.m

108 %Crack -contained electrolyte diffusion , electro -migration , and reactions

109 physics_in {6}. type = "PhaseFieldElectrolyte ";

110 physics_in {6}. Egroup = "Internal ";

111 physics_in {6}.D = [9.3; 5.3; 1.3; 2; 1.4; 1]*1e-9; %Diffusion coefficients for [H

OH Na CL Fe FeOH] species respectively [m/s]

112 physics_in {6}.z = [1; -1; 1; -1; 2; 1]; %ionic charges for [H OH Na CL

Fe FeOH] [-]

113 physics_in {6}. pH0 = 5; %Initial and boudnary pH [-]

114 physics_in {6}. NaCl = 0.6e3; %Initial and boundary Cl-

concentration [mol/m^3]

115 physics_in {6}. Lumped = [true; true]; %Flag indicationg whtehr to ude

lumped integration for the water autoionisation and metal ion reactions

116 physics_in {6}.k = [1e6; 1e-1; 1e-3; 1e-3]; %Dummy constant for the water

auto -ionisation reaction , and reaction rates for Fe, Fe', FeOH reactions

117 physics_in {6}. NAds = 1e-3; %Concentration of surface

adsorption sites

118 physics_in {6}. ksurf = [ 1e-4, 1e-10, 0.5, 0; %Reaction constants for surface

reactions , [k k' alpha E_eq]

119 1e-10, 0, 0.3, 0;

120 1e-6, 0, 0, 0;

121 1e1 , 7e5 , 0, 0;

122 1e-8, 1e-13, 0.5, 0;

123 1e-10, 1e-14, 0.3, 0;

124 3e -5/(2*96485.3329) ,3e -5/(2*96485.3329) , 0.5, -0.4];

125 physics_in {6}.NL = physics_in {1}.NL; %Concentration of interstitial

lattice sites [mol/m^3]

126 physics_in {6}.Em = 0; %Metal electric potential

127 physics_in {6}. Lumpedsurf = [1 1 1 1 1 1 1]; %Flags to indicate the use of

lumped integration for surface reactions

128 physics_in {6}.h0 = 1e-12; %small offset used to prevent

ill -conditioned systems
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129 physics_in {6}. Flowtype = model; % Model to use for electrolyte

diffusion , either Subgrid WuLorenzis

130 physics_in {6}.l = physics_in {1}.l; %Phase -field length scale

where the surface reaction rates ksurf follows the format from Eq. (30). This model also implements post-
processing functions specifically for the electro-chemical system contained within the crevasse:

Models/@PhaseFieldElectrolyte/PhaseFieldElectrolyte.m

795 function plotHeightData(obj , x_eval , h_est)

which plots the crack opening height and the crack-normal vectors,

833 function plotFields(obj , physics)

plotting electrolyte concentrations and the electrolyte potential, and

894 function plotFieldspH(obj , physics)

plotting the pH of the electrolyte. This last function solely show results where ϕ > 0.1, filtering out the
non-physical state of the electrolyte.

2.3. Mesh

This class contains the nodes and elements that describe the geometry, and provides support for evalu-
ating shape functions. Within its implementation, it uses a multi-mesh approach, defining element groups
for each entity within the domain (for instance, defining an element group “Interior” for the metal domain
composed of surface elements, and defining an element group “Interface” composed of line elements which
coincide with the electrolyte-metal interface). The geometry of the problem is defined through procedures
within the mesh class.

The mesh class also provides a direct interfaces from which to get the element shape functions, second
gradients, and surface-normal vectors, providing an element group number and the index of the element
itself:

@Mesh/mesh.m

19 [N, G, w] = getVals(obj , group , elem);

20 G2 = getG2(obj , group , elem);

21 [n, t] = getNormals(obj , group , elem);

which returns a matrix containing the shape functions N within all integration points of the element, gra-
dients of the shape function G, and the integration weights for all integration points w. Additionally, for
the construction of the hydrogen diffusion model, the second-order gradients G2 are provided through a
separate function.

2.4. Shapes

The classes within this folder provide basic shape functions, and are used by the mesh to provide shape
functions and integration weights. The included shape functions are square Lagrangian and triangular
Bernstein surface elements (Q9 and T6), quadratic Lagrangian and Bernstein line elements (L3 and L3B),
and interface elements (LI6, unused).

2.5. Physics

This class provides all the support required for constructing and managing state and force vectors,
tangential matrices, and boundary constraints. Most notably, during its initialization it generates an array
of all the physical models, from which it then is able to construct the tangential matrix when required:
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@Physics/Physics.m

63 function Assemble(obj , stp)

64 %Assemble stiffness matrix and internal force vector for the

65 %current step

66
67 dofcount = obj.dofSpace.NDofs(stp);

68
69 obj.condofs{stp} = [];

70 obj.convals{stp} = [];

71
72 if isempty(obj.K{stp})

73
74 else

75 obj.nonz(stp) = round(nnz(obj.K{stp}));

76 end

77 obj.K{stp} = spalloc(dofcount , dofcount , obj.nonz(stp));

78 obj.fint{stp} = zeros(dofcount , 1);

79
80 disp(" Assembling :")

81 for m=1: length(obj.models)

82 obj.models{m}.getKf(obj , stp);

83 end

This calls each of the models, and passes a handle to the physics object itself through which the individual
models can add their contributions. Notably, the force vector and tangent matrix being assembled by this
function are those associated with the staggered solver step “stp”, with this step index being passed onto
the individual models, which then either add their contributions to the tangent matrix or do not undertake
nay action. In a similar manner, actions which should be performed once at the start of each staggered
solution step are performed via:

@Physics/Physics.m

54 function OncePerStep(obj , stp)

55 %procedures that should be performed once per step

56
57 for m=1: length(obj.models)

58 obj.models{m}. OncePerStep(obj , stp);

59 end

60 end

The physics class also provides the ability for post-processing the results through the function;

@Physics/Physics.m

26 PlotNodal(obj , dofName , dispscale , plotloc) %exterior defined , plots nodal

quantities

27 PlotIP(obj , varName , plotloc) %exterior defined , plots integration

point quantities

This function requires the name of a degree of freedom (for instance “dx” for the horizontal displacements,
or “H” for the hydrogen ion concentration), a scale to indicate whether the mesh is plotted in deformed
(scale>0) or undeformed (scale=0) configuration, and the name of an element group on which to plot the
results. Similarly, the “PlotIP” function plots integration-point specific variables, for instance stresses or
history fields.

2.6. Dofspace

This class converts the node numbering, degree of freedom type, and solution step to an index for the
degree of freedom, corresponding to its location within the unconstrained state vector and tangential matrix.
Specific types of degree of freedom are registered on initialization of the dofspace through:

@DofSpace/DofSpace.m

17 function obj = DofSpace(mesh , dofs_in)
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Algorithm 1 Overview of solution method

1: Start of time increment
2: while not converged do
3: Step 1: Update ϕ
4: Step 2: Update u
5: Perform OncePerStep 3: Update h
6: while CL, Cπ, φ, θ are not converged do
7: Step 3: update CL, Cπ, φ, θ
8: Calculate energy based residual for CL, Cπ, φ, θ
9: end while

10: Calculate energy based residual for u and ϕ
11: end while
12: Go to next time increment

18 %DOFSPACE Construct an instance of this class

19
20 obj.NSteps = max(dofs_in.Step);

21
22 obj.mesh = mesh;

23 obj.DofTypes = dofs_in.dofs;

24 obj.DofSteps = dofs_in.Step;

25 obj.NDofs = zeros(obj.NSteps ,1);

26 obj.DofNumbering = sparse(length(obj.mesh.Nodes), length(obj.DofTypes));

27 end

For the numbering scheme saved within “DofNumbering”, each solution step retains its own numbering.
After initializing the dofspace, degrees of freedom can be added to nodes through:

29 function addDofs(obj , dofIndices , nodeIndex)

30 % Adds degrees of freedom for type "dofIndices" to the nodes

31 % "nodeIndex"

These functions automatically check for duplicates, such that each model can safely add all the degrees of
freedom relevant to itself, without taking into account potential interactions with other models. During the
finite element assembly, the managed degrees of freedom indices are requestable by providing the degree of
freedom type index and the node number:

68 function DofIndices = getDofIndices(obj , dofType , NodeIndices)

69 % gets the indices for a combination of degree of freedom

70 % "doftype" and nodes "NodeIndices"

which assumes the model already knows which staggered solver step the degree of freedom is associated
with. These solver step indices can also be requested through:

51 function [DofTypeIndex , DofStepIndex] = getDofType(obj , dofnames)

52 % returns the dof type index for pre -existing degrees of

53 % freedom

which takes the name of the degree of freedom, and returns its index and the staggered step (and thus state
vector) associated with this degree of freedom.

2.7. Solver

The solver class implements a iteratively staggered Newton-Raphson type nonlinear solver, including the
ability to perform linear line-searches to improve the convergence rate and stability. During its creation, it
gets linked to the physics object, such that it can automatically request updated tangential matrices. An
example of the staggered solution scheme solved through this solver is shown in Algorith 1. Input parameters
controlling the solver behaviour are:
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Figure 2: Schematic overview of integrations performed to calculate the crack opening height

main.m

138 %% solver inputs

139 solver_in.maxIt = 100; %maximum amount of iterations within the nonlinear

solver

140 solver_in.Conv = 1e-6; %Relative Energy -based convergence criterion

141 solver_in.tiny = 1e-4; %Absolute Energy -based convergence criterion

142 solver_in.linesearch = false; %flag to indicate the use of a linear line -search

143 solver_in.linesearchLims = [0.1 1]; %limits within which the line -search is

performed

144 solver_in.OuterLoops = 10; %Maximum number of staggeres dolution loops to perform

3. Specifics: Fracture opening height

Within the model for the crack-contained electrolyte, Section 2.2.9, the estimated opening height of the
crevasse is needed. These opening heights are calculated through an integral normal to the fracture surface
[16, 17]:

h =

∫
u ·∇ϕ dn (44)

with the line along which this integral is performed shown in Fig. 2, and the normal vector based on the
phase-field as:

n =
∇ϕ

|∇ϕ|
(45)

These integrals are implemented in:

Models/@PhaseFieldElectrolyte/PhaseFieldElectrolyte.m

196 function Construct_H_map(obj , physics)

197 %Function which , for all integration points , calculates the

198 %crack opening heights

199
200 fprintf (" PhaseFieldElectrolyte Mapping Heights ")

201
202 obj.Heights = zeros(length(obj.ActiveElems), obj.mesh.ipcount1D ^2);

203 obj.Normals = zeros(length(obj.ActiveElems), obj.mesh.ipcount1D ^2,2);

which fills the “Height” and “normals” matrices with the opening heights and normal vectors for all elements
and all integration points. This function is only called once per staggered iteration step, as the phase-field
and displacements are assumed to stay constant during the electro-chemical solution step.

First, the displacements and gradients within all integration points are determined:
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Models/@PhaseFieldElectrolyte/PhaseFieldElectrolyte.m

205 %% get integration -point data

206 xy = zeros(length(obj.mesh.Elementgroups{obj.myGroupIndex }.Elems), obj.mesh.

ipcount1D^2, 2);

207 u = zeros(length(obj.mesh.Elementgroups{obj.myGroupIndex }.Elems), obj.mesh.

ipcount1D^2, 2);

208 dphi = zeros(length(obj.mesh.Elementgroups{obj.myGroupIndex }.Elems), obj.mesh.

ipcount1D^2, 2);

209
210 Svec = physics.StateVec;

211 xmax = 0; ymax = 0;

212 for el=1: length(obj.mesh.Elementgroups{obj.myGroupIndex }.Elems)

213 [N, G, ~] = obj.mesh.getVals(obj.myGroupIndex , el);

214 coords = obj.mesh.getIPCoords(obj.myGroupIndex , el);

215
216 Elem_Nodes = obj.mesh.getNodes(obj.myGroupIndex , el);

217 dofsX = obj.dofSpace.getDofIndices(obj.dofTypeIndices (1), Elem_Nodes);

218 dofsY = obj.dofSpace.getDofIndices(obj.dofTypeIndices (2), Elem_Nodes);

219 dofsPhi = obj.dofSpace.getDofIndices(obj.dofTypeIndices (3), Elem_Nodes);

220
221 X = Svec{obj.dx_step }( dofsX);

222 Y = Svec{obj.dx_step }( dofsY);

223 PHI= Svec{obj.phi_step }( dofsPhi);

224
225 for ip=1:obj.mesh.ipcount1D ^2

226 xy(el,ip ,1:2) = coords(:,ip);

227 u(el ,ip ,1:2) = [N(ip ,:)*X N(ip ,:)*Y];

228 dphi(el ,ip ,:) = squeeze(G(ip ,:,:))'*PHI;
229 end

230
231 xmax = max(max(coords (1,:)),xmax);

232 ymax = max(max(coords (2,:)),ymax);

233 end

and these opening heights are used to construct interpolation functions:

Models/@PhaseFieldElectrolyte/PhaseFieldElectrolyte.m

235 %% construct interpolation functions

236 x = xy(:,:,1); y = xy(:,:,2);

237 ux = u(:,:,1); uy = u(:,:,2);

238 dphix = squeeze(dphi (:,:,1)); dphiy = squeeze(dphi(:,:,2));

239
240 F_ux = scatteredInterpolant(x(:),y(:),ux(:));

241 warning('off','last')
242 F_uy = scatteredInterpolant(x(:),y(:),uy(:));

243 F_fx = scatteredInterpolant(x(:),y(:),dphix (:));

244 F_fy = scatteredInterpolant(x(:),y(:),dphiy (:));

These interpolation functions are then used to construct an interpolation function for the crack opening
height based on Eq. (44), for instance when the crack path is solely horizontal:

Models/@PhaseFieldElectrolyte/PhaseFieldElectrolyte.m

246 %% calculate opening heights

247 if obj.propDir == "Hor"

248 x_eval = linspace(0,xmax ,1000); ny = 1000;

249 h_est = zeros(size(x_eval));

250 for iy=0:ny

251 y_eval = 0* x_eval+iy*ymax./ny;

252 h_est = h_est + abs(F_ux(x_eval ,y_eval).*F_fx(x_eval ,y_eval)*0 + F_uy(

x_eval ,y_eval).*F_fy(x_eval ,y_eval))*ymax./ny;

253 end

254 h_est = h_est;

255 Fh = griddedInterpolant(x_eval , h_est);

and finally the crack opening heights and normal vectors within integration points are produced as:

15



Models/@PhaseFieldElectrolyte/PhaseFieldElectrolyte.m

269 for n_el =1: length(obj.ActiveElems)

270 el = obj.ActiveElems(n_el);

271 coords = obj.mesh.getIPCoords(obj.myGroupIndex , el);

272
273 for ip=1:obj.mesh.ipcount1D ^2

274 coords_ip = coords(:,ip);

275 if obj.propDir == "Hor"

276 obj.Heights(n_el ,ip) = Fh(coords_ip (1));

277 else

278 obj.Heights(n_el ,ip) = Fh(coords_ip (2));

279 end

280 obj.Normals(n_el ,ip ,1) = F_fx(coords_ip (1),coords_ip (2));

281 obj.Normals(n_el ,ip ,2) = F_fy(coords_ip (1),coords_ip (2));

282 obj.Normals(n_el ,ip ,:) = obj.Normals(n_el ,ip ,:)/(sqrt(obj.Normals(n_el ,

ip ,1) ^2+obj.Normals(n_el ,ip ,2)^2));

283
284 if obj.Heights(n_el ,ip)<obj.h0

285 obj.Heights(n_el ,ip) = obj.h0;

286 end

287 end

It should be noted that this does not produce opening heights which exactly match to the expected opening
based on the displacement and phase-field. However, as long as enough intermediate points are used (e.g.
the 1000 points declared on line 248), these results will be virtually indistinguishable from the opening
heights that could be calculated by evaluating the phase-field gradient and displacements exactly. The
implementation presented here furthermore does not take into account branching cracks, instead assuming
the phase-field tends towards zero away from the crack interface.

4. Sample results

4.1. Static cracks

For verification cases using a static crack, a single simulatioin can be run via “main Static(model, l, u)”,
where model is either “Subgrid” or “WuLorenzis” for the physics-based or distributed diffusion models, l is
the phase-field length scale, and u is the displacement (for instance, running “main Static(”Subgrid“, 5e-4,
1e-5)”). Once running, a folder is created in “./Results NoProp/” where output data is saved, and results
are plotted after each converged time increment. Results after the first time increment are shown in Figs. 3
and 4.

In addition to running a single case, the file “DoSweep.m” performs a parametric sweep over the two
models, and several external displacements and phase field length scales. It also runs simulations for a
discrete representation of the crack, and creates a figure showing the comparison between the models.
please note, as this function runs quite a few simulations, it takes a while to run fully.

4.2. Propagating cracks

The function “main.m” performs a simulation of a propagating crack in a square plate, using the param-
eters set in this main file. Please note that this function takes a while to run. Results after the first time
increment are shown in Figs. 5 and 6.
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Figure 3: Results produced by running “main Static(”Subgrid“, 5e-4, 1e-5)”. The first row shows the phase field, hydrostatic
stress, and interstitial lattice hydrogen concentration. The second row shows the avarage hydrogen uptake over time, interstitial
lattice concentration in the deformed configuration, and fracture length over time.

Figure 4: Results produced by running “main Static(”Subgrid“, 5e-4, 1e-5)”, showing the electrolyte pH, surface adsorbed
hydrogen concentration, electrolyte potential and Fe2+ concentration.
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Figure 5: Results produced by running “main(1)”. The first row shows the phase field, hydrostatic stress, and interstitial
lattice hydrogen concentration. The second row shows the avarage hydrogen uptake over time, interstitial lattice concentration
in the deformed configuration, and fracture length over time.

Figure 6: Results produced by running “main(1)”, showing the electrolyte pH, surface adsorbed hydrogen concentration,
electrolyte potential and Fe2+ concentration.
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