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Abstract

Documentation that accompanies the file PhaseFieldSCC.for, a user ele-
ment (UEL) subroutine for implementing the phase field model for dissolution-
driven stress corrosion cracking by Cui et al. (2021). The model enables
capturing capture pitting corrosion and stress corrosion cracking, incorpo-
rating the role of mechanics in enhancing corrosion kinetics and the film-
rupture—dissolution—repassivation (FRDR) process. An input file is also
provided for demonstration purposes. The files can be downloaded from
www.empaneda.com/codes. If using this code for research or industrial pur-
poses, please cite:
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driven stress corrosion cracking. Journal of the Mechanics and Physics of
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The main document describes the essential features of the method and pro-
vides instructions for using the ABAQUS subroutine. The appendices include
details of the theoretical formulation and the finite element framework.
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1. Phase field FRDR model

The use of an auxiliary phase field is a convenient tool to make the mod-
elling of evolving interfaces amenable to numerical computations. Phase field
methods have revolutionised the modelling of various interfacial problems
such as microstructural evolution (Provatas and Elder, 2011) and fracture
mechanics (see, e.g. Kristensen and Martinez-Paneda, 2020 and references
therein). Here, the phase field paradigm is extended to corrosion; i.e., the
phase field variable tracks the evolving interface between the aqueous elec-
trolyte and the solid metal. How the degrading surface of the metal evolves
will be driven by two aspects: material dissolution and the rupture of the
protective passive film. By capturing these two phenomena we will be able
to predict pitting corrosion and stress corrosion cracking.

Our formulation aims at capturing the process of film rupture, dissolution
and repassivation. Metals and alloys exposed to conditions of passivation are
protected by a nm-size impermeable film of metal oxides and hydroxides that
effectively isolates the material from the corrosive environment (Macdonald,
1999). Independently of the specific cracking mechanism, film-rupture is a
necessary condition for localised damage in these conditions. Also, a poten-
tial rationale for pitting corrosion and stress corrosion cracking is the rupture
of the film due to mechanical straining, followed by localised dissolution of
the metal (Scully, 1980; Jivkov, 2004). Repassivation follows each local film
rupture event, with the new film being deposited on the bare metal under
zero-strain conditions. Further input of mechanical work is thus needed to
fracture the new film, in a cyclic process governed by the competition be-
tween filming and mechanical straining kinetics.
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Figure 1: Schematic illustration of two cycles of the film rupture-dissolution-repassivation
(FRDR) mechanism at the tip of a defect.

As sketched in Fig. 1, the enhanced corrosion protection resulting from
the development of a passive film is characterised by a drop in the corrosion
current density ¢, relative to the corrosion current density associated with
bare metal 7y. After a drop time t, a film rupture event takes place and
the bare metal current density ig is immediately recovered. This is followed
by a time interval ¢y, during which the current flows before decay begins,
such that ¢; = ty + t; represents one film rupture-dissolution-repassivation
cycle. Following common assumptions in the literature (Parkins, 1987), the
mechanical work required to achieve film rupture can be characterised using
an effective plastic strain quantity, €, such that film rupture will take place
when the accumulation of the effective plastic strain over a FRDR interval
e? equals a critical quantity:

t;
el =ep with 5?2/ eP dt (1)
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where 7 is the effective plastic strain rate and € is the critical strain for film
rupture, which is on the order of 0.1% (Gutman, 2007). Thus, the duration
of each film rupture-dissolution-repassivation cycle, and the magnitude of
ts, will be dictated by the local values of the equivalent plastic strain and
their evolution in time. We proceed to define the degradation of the current
density as an exponential function of the time. Thus, during one rupture-



dissolution-repassivation cycle, i(t;) can be expressed as:
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where k is a parameter that characterises the sensitivity of the corrosion
rates to the stability of the passive film, as dictated by the material and the
environment.

The role of mechanical stresses and strains is typically restricted to the
film rupture event. However, we here consider recent experimental evidence
that suggests a further influence of mechanical straining, accelerating cor-
rosion. For example, in Dai et al. (2020) localised corrosion is observed in
Q345R . steel despite the negligible effect of the passive film in the hydroflu-
oric acid environment considered. Also, as pointed out by Gutman (2007),
localised corrosion rates can be notably accelerated by the influence of resid-
ual stresses. Thus, we enhance the definition of the corrosion current density
by considering a mechanochemical term ky, (Gutman, 1998) as:
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where 7, is the mechanochemical corrosion current density, e is the effective
plastic strain, ¢, is the yield strain, o, is the hydrostatic stress, V,,, is the
molar volume, R is the gas constant, and 7" is the absolute temperature.
We emphasise that k,, is a local variable, a function of the local P and o,
magnitudes.

Localised corrosion can be diffusion-controlled or activation-controlled.
In the latter, the velocity of the moving pit boundary I' follows Faraday’s

second law,
(2

(4)

where n is the unit normal vector to the pit interface, F'is Faraday’s constant,
z is the average charge number and cy.;q is the concentration of atoms in the
metal. Then, the concentration of dissolved ions ¢, (x,t) at a point x in the
interface can be calculated according to the Rankine-Hugoniot condition as,

VUp =V -1l =
ZFCsolid

[DV e + (em(x,t) — Csotia) v] -0 =10 (5)
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where D is the diffusion coefficient.

On the other hand, corrosion becomes diffusion controlled when the sur-
face concentration reaches the saturation concentration cg,, due to the ac-
cumulation of metal ions along the pit boundary. The pit interface velocity
becomes then controlled by the diffusion of metal ions away from the pit
boundary and the moving pit boundary velocity can be obtained by consid-
ering a saturated concentration in (5), such that
_ DVe, -n (6)

Csolid — Csat

Modelling the moving pit interface requires the application of both Robin
(5) and Dirichlet (¢, = ¢sat) boundary conditions for the activation-controlled
and diffusion-controlled processes, respectively. Instead, we circumvent these
complications by following the phase field paradigm proposed by Mai et al.
(2016), approximating the interface evolution implicitly by solving for an aux-
iliary variable ¢. As shown in Fig. 2, the phase field takes values of ¢ = 0
for the electrolyte and ¢ = 1 for the metal, varying smoothly between these
two values along the interface I'. Also, for consistency, a normalised concen-
tration is defined as ¢ = ¢, /csona (Mai et al., 2016). Thus, the normalised
concentration ¢ will equal 1 in the metal (solid) phase, and will approach 0
with increasing distance from the metal-electrolyte interface.
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Figure 2: Schematic of the phase field approximation of the localised corrosion damage
process, including the electrolyte phase (¢ = 0), the solid metal phase (¢ = 1), and the
interface I' at a time ¢.



In our current phase field method, material dissolution is governed by
the interface kinetics coefficient L rather than the current density ¢,. The
magnitude of L can be considered to be a constant positive number (see, e.g.,
Mai et al., 2016). Here, we assume a time-dependent L instead, enriching
the modelling capabilities by establishing a relation with our FRDR mech-
anistic interpretation and our definition of a mechanochemically-enhanced
corrosion current density 7,(¢;). Thus, from Egs. (2)-(3) and assuming a
linear relationship between L and i,, the interface kinetics coefficient over a
time interval ¢; is defined as

I — km(gp,O'h)Lo, 1f0<tz<t0
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(7)

Our phase field formulation can capture both pitting corrosion and stress
corrosion cracking by coupling the displacement w, the phase field order
parameter ¢, and the normalised metal ion concentration c in the electro-
mechanical system. The theoretical formulation behind our model is de-
scribed in Appendix A, while further details of the numerical implementation
are given in Appendix B.

2. Abaqus UEL subroutine

The phase field model for corrosion is implemented by means of an Abaqus
UEL subroutine which allows for user-defined computation of the element
tangent stiffness matrices and the nodal force vectors. We consider isopara-
metric 2D quadrilateral elements (linear and quadratic) with 4 degrees of
freedom per node, i.e. ug, u,, ¢, and ¢, and four integration points. The ex-
tension to a three dimensional case is straightforward. Note that, following
(Martinez-Paneda et al., 2018), we use the temperature degree-of-freedom to
model the concentration field. This will allow us to define initial conditions,
run transient and steady-state analysis and impose different convergence cri-
teria (if needed).

A number of quantities are stored as solution-dependent state variables
SVARS to ease postprocessing and store history dependent variables. These
are shown in Table 1. The stress variables refer to the undamaged stress



tensor o but the hydrostatic stress refers to the damaged one:
Op = (h(ﬁb) + ’f) Oho = (—2¢3 + 3¢2 + ff) Oho (8)

where K = 1 x 1077 is a small positive parameter introduced to circumvent
the complete degradation of the energy and ensure that the algebraic condi-
tioning number remains well-posed.

The work hardening behaviour of the material is calculated by assuming
an isotropic power law hardening behaviour, such that the flow stress ¢ and
the effective plastic strain P are related by,

Ber\ N
O'—O'y<1+—€> 9)
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where I is Young’s modulus, o, is the yield stress and N is the strain hard-
ening exponent (0 < N < 1).

Variable SVARS numbering

Axial stresses - o1 , 099 , 033 SVARS(1), SVARS(2), SVARS(3)
Shear stress - o019 SVARS(4)

Axial strains - €17 , €22 , €33 SVARS(5), SVARS(6), SVARS(7)
Shear strain - €19 SVARS(8)

Axial elastic strains - €5, , €55 , €53 SVARS(9), SVARS(10), SVARS(11)
Shear elastic strain - &9, SVARS(12)

Axial plastic strains - €7, , eb, | eks SVARS(13), SVARS(14), SVARS(15)
Shear plastic strain - &7, SVARS(16)

Equivalent plastic strain - &? SVARS(17)

Phase field - ¢ SVARS(18)

Interface kinetics coefficient - L SVARS(19)

Hydrostatic stress - oy, SVARS(20)

Equivalent plastic strain increment - Ag? SVARS(21)

Concentration - ¢ SVARS(22)

Time period within the FRDR cycle - ¢; SVARS(23)

Effective plastic strain within the FRDR cycle - €/ SVARS(24)

Table 1: List of solution dependent state variables for the UEL.



The use of user element subroutines has the drawback that integration
point variables cannot be visualized in Abaqus/Viewer. This limitation is
intrinsic to the fact that the only information that Abaqus requests from the
UEL subroutine are the stiffness matrix and the right-hand side nodal force
vector - the magnitude of the stresses and the strains, as well as the choice
of shape functions, is information that is not available as output. To over-
come this limitation, we make use of an auxiliary dummy mesh consisting of
standard Abaqus elements that resemble the user defined element in terms of
number of nodes and integration points (i.e., CPE4 or CPE8R). The mate-
rial response at each integration point in the auxiliary mesh is defined using
a user material subroutine (UMAT), which enables the user to define the
constitutive matrix and the stresses from the strain values. In this auxiliary
mesh, the stress components and the constitutive matrix are made equal to
zero (i.e., they have no influence in the solution of the global system). The
data from our UEL that we want to observe in Abaqus/Viewer is stored in a
Fortran module (kvisual), which allows transferring to the UMAT subrou-
tine. In the UMAT the information is passed to the built-in array STATEV
for each corresponding element and integration point. If SDV variables are
requested as Field Output we would be able to visualize the results. Table 2
shows the equivalence between model variables and SDVs. In this cases, all
the stress quantities correspond to the damaged stress tensor o.

2.1. Usage instructions

The first step is to create the model in Abaqus/CAE. The procedure is
the same as with standard Abaqus models with the following subtleties:

e The material has to be defined as a user material with 24 solution-
dependent variables. (General — Depvar: 24 & General — User Ma-
terial - Mechanical Constants: 0). Additionally, since we are using
the coupled mechanical-temperature step we need to define the density
(General — Density) and the specific heat (Thermal — Specific Heat);
both are irrelevant in our analysis and are therefore defined equal to 1.

e SDV, Solution dependent state variables, have to be requested as Field
Output (as well as displacement, reaction forces and other relevant
quantities). (Field Output Request - State/Field/User/Time: SDV,
Solution dependent state variables)



Variable SDVs numbering

Axial stresses - 011 , 092 , 033 SDV(1), SDV(2), SDV(3)
Shear stress - o2 SDV(4)

Axial strains - €11 , €92 , €33 SDV(5), SDV(6), SDV(7)
Shear strain - 9 SDV(8)

Axial elastic strains - €5, , €55 , €53 SDV(9), SDV(10), SDV(11)
Shear elastic strain - €9, SDV(12)

Axial plastic strains - €7, , eb, | eky SDV(13), SDV(14), SDV(15)
Shear plastic strain - &}, SDV(16)

Equivalent plastic strain - & SDV(17)

Phase field - ¢ SDV(18)

Interface kinetics coefficient - L SDV(19)

Hydrostatic stress - oy, SDV(20)

Equivalent plastic strain increment - AcP SDV(21)

Concentration - ¢ SDV(22)

Time period within the FRDR cycle - ¢; SDV(23)

Effective plastic strain within the FRDR cycle - &7 SDV(24)

Table 2: List of solution dependent state variables.

e In the Step definition we select the coupled temperature-displacement
option, as discussed before. Note that the time has a physical meaning.
Also, note that, by default, the load is prescribed instantaneously with
this Step type. One has to define and make use of amplitude functions
accordingly to prescribe the boundary conditions; this is discussed be-
low.

e The mesh has to be very refined in the expected SCC area. We rec-
ommend that the characteristic element size should be at least 5 times
smaller than ¢ to resolve the SCC zone.

Once the model has been developed, we create a job and write the input
file (Right click on the Job name and click “Write Input”). A few modifi-
cations have to be done to the input file to define the user element, the use
of a code editor such as Notepad++ is recommended. First, we create the
dummy visualization mesh. For this purpose we use the Matlab script Vir-
tualMesh.m, which is part of the Abaqus2Matlab package (Papazafeiropoulos
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et al., 2017). Running VirtualMesh.m on the same folder as the input file
(Job-1.inp) will create a new file (VisualMesh.inp) with the element connec-
tivity of the visualization mesh.

The first step is to replace the element type,
*Element, type=CPESR
with the user element definition,

*User element, nodes=8, type=Ul, properties=12, coordinates=2, var=96
1,2

1,3

1,11

*ELEMENT, TYPE=U1, ELSET=SOLID

where we have defined the number of nodes, the number of properties that
will be defined in the input file, the number of coordinates (2D), and the
number of SVARS (24 per integration point). Thus, in a 4-node element, the
variable U contains the components: ul, u;, u?, ui, ul, ug, ul, u‘yl, ot @2,
o3, ¢t ct, 2, ¢ and ¢*. Accordingly, if one wishes to prescribe an initial
corrosion region through the phase field parameter, then ¢ = 0 and ¢ = 0
should be enforced, using DOFs 3 and 11, respectively.

After the element connectivity list one inserts,

*UEL PROPERTY, ELSET=SOLID

190000, 0.3, 520, 0.067, 8.5e-4, 1.e-3, 4.8e-5, 33.3,
53.5, 0.0002, 3.e-3, 10.

*Element, type=CPE8SR, elset=Visualization

and immediately afterwards the visualization connectivity list (i.e., the con-
tent of the file VisualMesh.inp created by the Matlab script). Here, we have
defined the user element properties following Table 3. Throughout our model
we employ SI (mm) units.
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UEL PROPERTY Description

PROPS(1) E - Young’s modulus [MPa]

PROPS(2) v - Poisson’s ratio

PROPS(3) o, - Yield stress [MPa] - see (9)

PROPS(4) N - Strain hardening exponent - see (9)

PROPS(5) D - Diffusion coefficient [mm?/s| - see (5)

PROPS(6) Lo - Initial interface kinetics coefficient [mm?/(N - s)] - see (A.28)
PROPS(7) « - gradient energy coefficient - see (A.23)

PROPS(8) w - Height of the double well potential - see (A.23)
PROPS(9) A - Free energy density curvature [N/mm?] - see (A.20)
PROPS(10) k - Exponential term in the FRDR formulation - see (A.28)
PROPS(11) £ - Strain required for film rupture - see (1)

PROPS(12) to - Time interval before new passive films formed [s] - see (1)

Table 3: List of user element properties.

Finally, note that, since we have defined our dummy connectivity list
within the element set “Visualization”, we need to modify the Section defi-
nition,

*Solid Section, elset=Set-1, material=Material-1
to change the name of the element set,
*Solid Section, elset=Visualization, material=Material-1

Additionally, one should note that a Fortran module has been defined in
the first lines of the subroutine for visualization purposes. One has to be
sure that the last dimension of the variable UserVar is larger than the total
number of elements.

2.2. Example: SCC from a semi-ellipse pit

We implement a rectangular stainless steel plate with an initial semi-
ellipse shaped pit to showcase the impact of mechanical stress and the repas-
sivation effects on SCC process. The geometric setup, dimensions and bound-
ary conditions are given in Fig. 3. The corrosion parameters in this study are
listed in Table 4 and the mechanical parameters are defined as: F = 190 GPa,
v = 0.3, oy = 520 MPa and N = 0.067 according to Lu et al. (2016).

11



<+ A —>
-« —»
<« >
] ¢=0 M.M mm e
-« —>
-« —»>
00 +«| é > ,,00
u—- - al [ U
] Stainless steel = —>
-« >
= p(t=0)=1 —
S c(t=0)=1 —
« —»
-« —>
- = -
0.15 mm 0.15 mm

Figure 3: Geometric setup and initial/boundary conditions of the parametric study.

Parameter Value Unit
Interface energy ~ 0.01 N/mm
Phase field length scale [ (Appendix C.2) 0.005 mm
Diffusion coefficient D 8.5 x 1071 mm? /s
Interface kinetics coefficient Lo 0.001 mm?/(N - s)
Free energy density curvature A 53.5 N/mm?
Average concentration of metal cypiq 143 mol /L
Average saturation concentration cgu 5.1 mol /L

Table 4: Corrosion parameters used in this study.

We investigate the influence of repassivation and assign an initial dis-
placement of u = 0.1 um, which is held constant throughout the analysis.
The film rupture-dissolution-repassivation (FRDR) process is captured using
er =3x%x1073 to = 10s and three different value of the parameter character-
ising the corrosion sensitivity to the stability of the passive film: k£ = 0.0002,
k = 0.0005, and £ = 0.001. It should be emphasised that the boundary
conditions are implemented over four steps, using amplitudes. The goal is to
allow the solution to stabilise and facilitate convergence. Thus, in the first
step (Step-1) we initialise the system by prescribing ¢ = ¢ = 1 everywhere.
The second step (Step-2) removes the constraints over ¢ and c¢ to allow the
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solution to evolve freely according to the governing equations. We then pre-
scribe the remote displacement in Step-3, this is done instantaneously and
we then allow the solution to stabilise with a constant displacement. Finally,
in Step-4 we prescribe ¢ = ¢ = 0 at the interface. Rather than doing this
abruptly, we use an amplitude to enforce this condition over a short time
period (0.005 s), such that the nodes at the interface vary linearly from 1 to
0, and then hold the boundary condition fixed at ¢ = ¢ = 0, allowing the
corrosion process to evolve. There are likely to be simpler ways of prescribing
this set of boundary conditions, but we emphasise that doing so in a stag-
gered manner and with smooth transitions assists with convergence. Other
issues related to convergence and the numerical model are given in Appendix

C.

Fig. 4 shows the related SCC evolution laws when the corrosion time
= 900s. As can be seen, the impact of k in the SCC morphology is evident:
higher k values accelerate the SCC defect growth rate in the pit base relative
to corrosion rates at the pit mouth, sharpening the pit and triggering a pit-
to-crack transition. Note that, to capture precisely the SCC evolution shown
in Fig. 4c, the model should be edited to extend the size of the area where
the mesh has been refined. Corrosion rates at the tip of the SCC defect are
exacerbated as the defect sharpens and plasticity localises; the protective
film is weaker in areas of high mechanical straining - see Eq. (1). The length
of the SCC region is shown in Fig. 5 as a function of the film stability
parameter k, including the case where no film is present (k = 0). The results
reveal that by introducing the repassivation process, the length of the SCC
region drops slightly at an early stage, which is in accordance with the fact
that repassivation will restrain the SCC process by decreasing the value of
interface kinetics coefficient. After a certain time, the size of the SCC region
grows faster with increasing k as film rupture occurs and the magnitude of
the equivalent plastic strain increases as the defect sharpens, augmenting the
interface kinetics coefficient - see Eq. (7).
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Figure 4: SCC from a semi-elliptical pit. Contours of the phase field after ¢ = 900 s
for a remote displacement of 4> = 0.1 um and three selected values of the film stability
parameter: (a) k=2 x 107%, (b) k=5x10"%, and (c) k=1 x 1073.

~
[e)

N
(e
T

k = 0.0005

9]
[e)
T

N
(e
T

(98]
[e)
T

[\
(e
T

k =0.0002

Length of the SCC region (um)
=

0 100 200 300 400 500 600 700 800 900
t(s)

Figure 5: SCC from a semi-elliptical pit. Length of the SCC region as a function of time
for a remote displacement of ©*>° = 0.1 um and four selected values of the film stability
parameter.
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3. Concluding remarks

We have provided a finite element implementation of the phase field model
for corrosion damage developed by (Cui et al., 2021). The present document
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provides extensive details of the accompanying code (PhaseFieldSCC.for),
which can be downloaded from www.empaneda.com/codes. Do not hesitate
to contact us if questions that have not been clarified here arise.
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Appendix A. Theory

Appendiz A.1. Principle of virtual work and balance equations

Our theory deals with the coupled behaviour of two systems, one me-
chanical and one electrochemical one, see Fig. 2. These two systems are
coupled by the following physical phenomena: (i) the pit evolution process is
accelerated by mechanics, as presented in Egs. (2) and (3); and (ii) the disso-
lution of metals leads to a redistribution of mechanical stress. With respect
to the mechanical contributions, the outer surface of the body is decomposed
into a part 0€2,, where the displacement can be prescribed by Dirichlet-type
boundary conditions, and a part €07, where a traction T' can be prescribed
by Neumann-type boundary conditions. As for the electrochemical part,
the external surface consists on two parts: 01, where the flux J is known
(Neumman-type boundary conditions), and 9f., where the concentration is
prescribed (Dirichlet-type boundary conditions). Accordingly, a concentra-
tion flux entering the body across d€), can be defined as ¢ = J - n. Solute
diffusion is driven by the chemical potential i, as constitutively characterised
below. We follow Duda et al. (2018) in defining a scalar field n to determine
the kinematics of composition changes, such that

n=p and n(x,t)= /Ot,u(x, t)dt (A.1)

Thus, from a kinematic viewpoint, the domain €2 can be described by the
displacement u, phase parameter ¢ and chemical displacement 7. We denote
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the set of virtual fields as (du, d¢, 0n) and proceed to introduce the principle
of virtual work for the coupled systems as,

1d d
/ o e+ ——¢5¢—|—w6¢+(§ Voo — —Ccsohd om+J-Vonp dV
Q L dt dt (A.2)

= | {fo¢+qén+T-bu}dS
o

where € is the strain tensor, which is computed from the displacement field
in the usual manner € = symVw and additively decomposes into an elastic
part €° and a plastic part €P. Also, we use L to denote the interface kinetics
coefficient, f is the phase field microtraction and w and ¢ are the microstress
quantities work conjugate to the phase field ¢ and the phase field gradient
V¢, respectively. Operating, and making use of Gauss’ divergence theorem:

1d d
/Q{<V-a>-6u+(vc—w—zd—f> 6¢+(V-J+d—jcsond) 5n} av

= | Alon—T) bu+ (¢ n=f)oo+(J -n—q)dn} ds
(A.3)

Finally, considering that the left-hand side of Eq. (A.3) must vanish
for arbitrary variations, the equilibrium equations in 2 for each primary
kinematic variable are obtained as

V-o=0
1dé
(V-¢-w)= 7 =0 (A.4)
%Csolid-i-V'J:O

with the right-hand side of Eq. (A.3) providing the corresponding set of
boundary conditions on 0f2,

I
CUI NN |

S 3 3

(A.5)

T
f
q

Appendiz A.2. Energy imbalance

The first two laws of thermodynamics for a continuum body within a
dynamical process of specific internal energy & and specific entropy A read

16



(Gurtin et al., 2010),

& ew—i@- [ @nis+ [qa
dt Jg o0 Q

d Q Q
dt/ﬂ/ldv > /asz ndS—l—/Q dV

where W, is the power of external work, Q is the heat flux and Q is the heat
absorption. The resulting Clausius-Duhem inequality must be fulfilled by
the free energies associated with both systems, mechanical ) and electro-
chemical ¥*. Thus, the energy imbalances associated with the mechanical
and electrochemical systems can be obtained by assuming an isothermal pro-
cess (T = Tpy) and replacing the virtual fields (du, d¢, dn) by the realizable

velocity fields (u, &, p,> in Eq. (A.2),

(A.6)

i/z/szvg T -udS (A7)
dt Jo o0

%/ﬂ@bEdV < /m (f¢5+qu) ds (A.8)

Employing the divergence theorem and recalling the local balance equa-
tions (A.4)-(A.5), we find the equivalent point-wise version of Eqgs. (A.7)-
(A.8) as,

M — e <0 (A.9)

: 1. . :
l/JE—Z¢—w¢—C'V¢+MéCsolid_J'vﬂ<0 (A.10)

Appendiz A.3. Constitutive theory

We proceed to define the functional form of free energy of each system
and subsequently derive a set of thermodynamically consistent relations.

Appendiz A.3.1. Constitutive prescriptions for the mechanical problem
The mechanical behaviour of the solid is characterised by von Mises
J2 plasticity theory. The extension to strain gradient plasticity (Martinez-
Paneda and Fleck, 2019; Martinez-Paneda et al., 2019), of particular impor-
tance when dealing with sharp pits and cracks, will be addressed in future
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works. Accordingly, the mechanical free energy is decomposed into elastic )¢
and plastic ¥P components, both of which are degraded by the phase field,

UM = h(e) (V7 +¥P) (A.11)

Here, h(¢) is the degradation function characterising the transition from the
undissolved solid (¢ = 1) to the electrolyte phase (¢ = 0). The definition of
h(¢) must satisfy the conditions h(¢ = 0) = 0 and h(¢ = 1) = 1; here,

h(¢) = —2¢° + 3¢ (A.12)

Consistent with (A.9), the Cauchy stress tensor is defined as o = 9.
and we denote o as the Cauchy stress tensor for the undissolved solid. Thus,
accounting for the influence of the phase field and using o, the mechanical
force balance (A.4a) can be reformulated as,

V- [(h(¢) +K)oo] =0 (A.13)

where k is a small positive parameter introduced to circumvent the complete
degradation of the energy and ensure that the algebraic conditioning number
remains well-posed. We adopt x = 1 x 10~7 throughout this work.

The elastic strain energy density is defined as a function of the elastic
strains €° and the linear elastic stiffness matrix Cy in the usual manner,

()" :Cy: e (A.14)

While the plastic strain energy density is incrementally computed from the
plastic strain tensor €? and the Cauchy stress tensor for the undissolved solid
oy as,

t
W-/ay#& (A.15)
0

Appendixz A.3.2. Constitutive prescriptions for the electrochemical problem

In the localised corrosion system described in Section 1, the electrochemi-
cal free energy density ¥ can be decomposed into its chemical and interface
counterparts,

PP = g (A.16)
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The chemical free energy density ¥ can be further decomposed into
the energy associated with material composition and a double-well potential
energy (Mai et al., 2016), such that

V=N () U5 + (1= h(9)) v + wg (¢) (A.17)

where the parameter w is the height of the double well potential g (¢) =
#*(1 — ¢)2, and ¥&" and " denote the chemical free energy density terms
associated with the solid and liquid phases, respectively. These latter two
terms are defined following the KKS model (Kim et al., 1999), which as-
sumes that each material point is a mixture of both solid and liquid phases
with different concentrations but similar chemical potentials. Following this
assumption, one reaches the following balances

c=h(@)cs+[1—h(d)]cL (A.18)
g (cs) O (cr)
?)CS S5/ o (A.19)

where cg and c¢p, are the normalized concentrations of the co-existing solid
and liquid phases, respectively. Defining a free energy density curvature
A, assumed to be similar for the solid and liquid phases, and restricting
our attention to dilute solutions, we reach the following definitions for each
component of the chemical free energy density,

gh = A(CS - CSe)2 and ¢Eh = A(CL - CLe>2 (A2O)

where ¢ge = Csolid/Csolid = 1 and ¢re = Csat/Csolia are the normalised equilibrium
concentrations for the solid and liquid phases. Combining Eqs. (A.17)-(A.20)
renders,
Y = Ale — h(p)(cge — cre) — cre]” + we? (1 — ¢)° (A.21)
On the other hand, the interface free energy density v); is defined as a
function of the gradient of the phase field variable as:

v = SIVeP (A.22)

where « is the gradient energy coefficient. In the free energy density defini-
tions (A.21)-(A.22), the parameters o and w govern the interface energy =y
and its thickness [ as:

vaw Y (A.23)



where a* = 2.94 is a constant parameter corresponding to the definition of
the interface region 0.05 < ¢ < 0.95 (Abubakar et al., 2015).

Finally, the constitutive relations for the associated stress quantities can
be readily obtained by fulfilling the free energy imbalance (A.10), which
implies

1. opF . opF i oYr )
—z¢+(7%——w>¢+<5§5—<)-V¢+(7%—+u%m0c—Jﬂvu<0
(A.24)

Thus, the scalar microstress w, work conjugate to the phase field ¢, is
given by

_ 0"

B a_¢ =24 [C - h(¢) (CSe - CLe) - CLe] (CSe - CLe)h/(¢) +w9/(¢) (A25>

while the vector microstress ¢, work conjugate to the phase field gradient,
reads
_F
¢= oV
Inserting these constitutive relations (A.25)-(A.26) into the phase field
balance (A.4b) renders the so-called Allen-Cahn equation:

do E

aVo (A.26)

—av%)zo (A.27)

Eq. (A.27) shows that material dissolution is governed by the interface ki-
netics coefficient L. The magnitude of L can be considered to be a con-
stant positive number (see, e.g., Mai et al., 2016). Here, we assume a time-
dependent L instead, enriching the modelling capabilities by establishing a
relation with our FRDR mechanistic interpretation and our definition of a
mechanochemically-enhanced corrosion current density i,(¢;). Thus, from
Egs. (2)-(3) and assuming a linear relationship between L and 4,, the inter-
face kinetics coeflicient over a time interval ¢; is defined as

koo (7. 00) Lo, if 0 <, <1
(e, 0m) Lo, <0 (A.28)

L =
{km (€p, O'h) L(] exp (—k (tz - tO))a if tog < t; to + tf
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The material dissolution process (pitting and cracking) can be either
activation-controlled or diffusion-controlled and the constitutive choices for
the mass transport process are obtained as follows. First, the chemical po-
tential is given by,

1 ¥ 2A
== = ((c = h(9)(cse — cLe) — cre)) (A.29)

Csolid aC Csolid

Secondly, the flux J can be determined following a Fick law-type relation as,

D
J=—": Csolid * Csolid * v,u = —Csolid * DV ((C - h(¢>(CSe - CLe) - CLe)) (A30>

2A
Substituting Eqgs. (A.29)-(A.30) into the mass transport balance Eq.
(A.4c), the following field equation is obtained
de
a —V-DV ((C - h(¢)<CSe - CLe) - CLe)) =0 (A‘?’l)
which is an extension of Fick’s second law such that diffusion of metal ions
only takes place along the interface and in the electrolyte.

Appendix B. Numerical implementation

The finite element method is used to discretise and solve the coupled
electro-chemo-mechanical problem. First, we formulate the weak form of
the governing equations for the displacement (A.13), phase field (A.27), and
concentration (A.31) problems, respectively. Thus,

/(h(gzﬁ)—k/i)aoésd‘/— T -udS=0 (B.1)
Q )

¢ opF

—dpd L[| —d¢pd dpdV = B.
QatgbV—l— Qa¢¢V+L/QaV¢V¢V 0 (B.2)
/a—céch—i-D/V[c—h(¢)(cse—cLe)—cLe]-V&ch:O (B.3)
o Ot Q

Using Voigt notation, the nodal variables for the displacement field 4,
the phase field ¢ and the normalised concentration ¢ are interpolated as:

i=1 =1 =1
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where N; denotes the shape function associated with node 7, for a total num-
ber of nodes m. Here, N is a diagonal interpolation matrix with the nodal
shape functions N; as components. Similarly, using the standard strain-
displacement B matrices, the associated gradient quantities are discretised
as:

Z Bla, Vo= Z B¢, V= Z B¢, (B.5)
=1
Then, the weak form balances (B.1)-(B.3) are discretised in time and
space, such that the resulting discrete equations of the balances for the dis-
placement, phase field and concentration can be expressed as the following
residuals:

it = / (h(¢"™™) + k) (BM)TondV — / (NHITdS (B.6)
Q 15)9)
n+1 n E
n+l _ u]\f L/ a¢ — N, L/ B'T n+1
Tié /Q T, ;dV + 3o dV + Qa ;s Vo dv
(B.7)
vl en
riet = / — NidV+ D/ B," [V = 1(¢"") (cse — c1e) V"] AV
Q Q
(B.8)

where ()"*! denotes the (n + 1) time step and dt is the time increment.
Subsequently, the tangent stiffness matrices are calculated as:

Kt = /Q (h(¢"™™) + k) (BY)T CepBY AV (B.9)
gret = [ N4 dV + L %ENN dV+L/ B/ B,;dV (B.10)
ij,¢ o dt q 002 0 abi Dy )

N;N;
K = / Ldv + D/ B,/ B;dV (B.11)

where C¢p, is the elastic-plastic consistent material Jacobian.
Finally, the linearized finite element system can be expressed as:

K, 0 O u Tu
0 K¢ 0 ¢ = ’f'¢ (B . 12)
O 0 Kc Cc 'r.C
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Appendix C. Formulation details

In the input file attached, dealing with a plane strain problem, each ele-
ment contains four degree of freedoms: w(u,,u,), ¢, and c. As discussed in
Appendix A, these DOFs are controlled by three governing equations, we
write their strong forms again to clarify some details in our formulation.

V- [(h(¢) + K)oo] =0 (C.1)

%% —24 [C o h(d)) (CSe - CLe) - CLe] (CSe - CLe)h/<¢) + wg/(¢) - Oév2¢ =0
(C.2)

X VDY (e~ h(6)(ese — ene) — 1) = 0 (C3)

Appendixz C.1. Activation-controlled versus diffusion-controlled corrosion

As we discussed in Section 1, pitting corrosion can be either activation-
controlled or diffusion-controlled. As indicated in (C.2) and (C.3), activation
is mainly governed by the interface kinetics coefficient L while diffusion is
mainly governed by the coefficient D. Obviously, increasing L increases the
metal dissolution speed. However, if L is sufficiently high, corrosion process
would be diffusion-controlled and limited by the value of diffusion coefficient
D. We depicted this competition relation in our paper (Cui et al., 2021)
through the well-known pencil electrode test, see Section 4.1 in the journal
article.

In this regard, it is worth emphasising that we incorporate the mechanochem-
ical interactions and the FRDR process through a time-dependent interface
kinetics coefficient L = L(t), as presented in (7). Thus, these process can trig-
ger a transition from activation-controlled corrosion to diffusion-controlled
corrosion, and this is a natural byproduct of our model.

Appendixz C.2. Interface thickness |

The interface thickness, as characterised by the parameter [, is not given
explicitly in the governing equations. Instead, the magnitude of [ is governed
by the height of double-well potential w and the gradient of the phase field
variable «, as formulated in (A.23). One can readily see that larger values of
[ would translate in a smaller value of w (for a fixed «) and a larger value of
a (for a fixed w). Thus, results are sensitive to the choice of ¢; the interface
thickness is a material parameter that should be determined experimentally.
At least 4-5 elements should be used to resolve the interface thickness.
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Appendiz C.3. Convergence condition

Some notes on convergence follow. First, note convergence might be fa-
cilitated if a Forward Euler approach is used for the couplings, as opposed
to a Backward Euler-type approach. Thus, convergence could be facilitated
if the hydrostatic stress oj, and the effective plastic strain P values used in
the phase field corrosion evolution law, see (3), are taken from the previous
increment. However, this comes at the cost of losing the unconditionally sta-
bility property; for results to be accurate, the time increment should be kept
small. Also, in our experience differences are small in terms of convergence;
thus, We have computed o, using a backward Euler approach.

Finally, we emphasise that using a larger value of L requires a smaller
time increment to achieve convergence. Given the impact of mechanical fields
on L in our model, we suggest giving flexibility to the solution system using
an automatic time incrementation scheme (as it is the case in the input file
provided).
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