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Abstract

Documentation that accompanies the file UEL3.f - a user element subroutine
(UEL) with a general implementation of cohesive zone models. If using this
code for research or industrial purposes, please cite:
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1. Introduction

Cohesive zone models are a very popular computational tool to model
fracture in engineering materials. The concept is simple: a cohesive force
exists ahead of the crack that prevents the crack from propagating; this can
be seen as a traction-separation law for the decohesion of atomic lattices.
Material degradation and separation are thus assumed to take place in a dis-
crete plane, represented by cohesive elements that are embedded in potential
crack propagation paths. The micromechanisms of material degradation and
failure are thus embedded into the constitutive law that relates the cohesive
traction with the local separation.
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The present code, employed for the first time in (del Busto et al., 2017),
enables the modeling of crack initiation and growth under both monotonic
and cyclic loading conditions. The code is distributed as a user element
(UEL) subroutine for Abaqus under a BSD license (see accompanying text
file). The present document accompanies the subroutine file and provides
details about the (i) the constitutive traction-separation law (Section 2), (ii)
the numerical implementation in the context of the finite element method
(Section 3), and (iii) the very simple instructions required to run ABAQUS
with the aforementioned subroutine (Section 4).

2. Cohesive zone formulation

Cohesive zone models are based on the pioneering works of Dugdale (1960)
and Barenblatt (1962). The central point of all cohesive zone models is the
function that describes the interaction force between the two interfaces (crack
faces) (Kuna, 2013). This law represents a local material property that is
independent of the external load. The so-called cohesive law or traction-
separation law is usually a relation between the boundary tractions o and the
separation ¢ = u,;” —u of the interfaces, i. e. the distance between the crack
faces. Initially, the stress increases with growing distance up to a maximum,
which is called the cohesive strength o,,,, of the material. If the separation
has reached a critical decohesion length ¢., then the material is completely
separated and no stress can be transmitted. Integrating the separation law up
to failure 0. yields the area under the curve that corresponds to the dissipated
work during a materials separation - the specific fracture energy per surface
area G. = 27 as introduced by Griffith,

G — /056 o (8)ds (1)

i.e., the energy of separation. A wide range of traction-separation laws have
been proposed, and their ability to properly deal with mixed-mode conditions
is not exempt of controversy (McGarry et al., 2014; Park and Paulino, 2013).
We here adopt Xu and Needleman (1993) cohesive law, one of the most popu-
lar traction-separation laws for metals. Other constitutive cohesive relations
can be very easily incorporated into the code.

2.1. Xu-Needleman cohesive law
In (Xu and Needleman, 1993) a cohesive surface is defined ahead of the
crack whose properties are characterized by relations between the normal



(T,,) and tangential (T}) tractions across this surface and the corresponding
displacement jumps (A, and A, respectively). This relations are derived
from a potential ¢ as
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where ¢,, and ¢; respectively denote the normal and tangential work of sep-
aration, which are given by

T =

with,
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Here, 0,4 and 7,4, indicate, respectively, the interface normal and tan-
gential strengths, while §,, and ¢; refer to the characteristic opening lengths
for normal and tangential directions, respectively. The coupling between
the latter is governed by ¢ = ¢;/¢, and r = Af/J,, where A’ is the value
attained by the normal displacement jump after complete shear separation
when T, = 0. Accordingly, the expressions for the normal,
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and tangential tractions,
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are readily obtained. Consequently, the cohesive response in the normal
direction is shown in Fig. 1. As a rule of thumb, since T,, is never equal to

zero, it is generally assumed that the element has cracked completely when
A, = 50,.
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Figure 1: Traction-separation law characterizing Xu and Needleman (1993) cohesive zone
model.

2.2. Cyclic damage

Focus has been placed on pure mode I fatigue problems and consequently,
the constitutive equations related to the tangential separation are omitted for
the sake of brevity. Cyclic damage is incorporated by means of the irreversible
cohesive zone model proposed by Roe and Siegmund (2003). The model
incorporates (i) loading-unloading conditions, (ii) accumulation of damage
during subcritical cyclic loading, and (iii) crack surface contact. A damage
mechanics approach is adopted to capture the cohesive properties degrada-
tion as a function of the number of cycles. A damage variable D is defined
so that it represents the effective surface density of micro defects in the in-
terface. Consequently, an effective cohesive zone traction can be formulated:
T = T/(1 — D). Subsequently, the current or effective cohesive strength



Omagz 18 Telated to the initial cohesive strength 0,440 as,

Omazx = Umax,[)(l - D) (8>

A 0 is added to the subscript of the critical cohesive traction to emphasize
that 0,420 denotes the initial normal strengths, as 0,,,, can be reduced due
to, e.g., fatigue damage and/or hydrogen embrittlement (see del Busto et al.,
2017). A damage evolution law is defined so that it incorporates the relevant
features of continuum damage approaches, namely: (i) damage accumulation
starts if a deformation measure is greater than a critical magnitude, (ii) the
increment of damage is related to the increment of deformation, and (iii)
an endurance limit exists, bellow which cyclic loading can proceed infinitely
without failure. From these considerations, cyclic damage evolution is defined
as,

D, = ’An’ [ I, oy

Ox;

with A, = [|A,|dt and H denoting the Heaviside function. Two new pa-
rameters have been introduced: oy, the cohesive endurance limit and dy;, the
accumulated cohesive length - used to scale the normalized increment of the
effective material separation. The modeling framework must also incorpo-
rate damage due to monotonic loading; as a consequence, the damage state
is defined as the maximum of the cyclic and monotonic contributions,

D= /max (DC, Dm> dt (10)
being the latter characterized as:
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and updated only when the largest stored value of A, is greater than .

Here, t;,_; denotes the previous time increment and ¢; the current one. In

addition to damage evolution, the cohesive response must be defined for the

cases of unloading/reloading, compression, and contact between the crack

faces. Unloading is defined based on the analogy with an elastic-plastic ma-

terial undergoing damage. Thereby, unloading takes place with the stiffness
of the cohesive zone at zero separation, such that

(8, -0 0
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where A,,,; is the maximum separation value that has been attained and
Tonae its associated traction quantity. Compression behavior applies when
the unloading path reaches A, = 0 at T,, < 0. In such circumstances, the
cohesive response is given by,
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being « a penalty factor that is taken to be equal to 10, following (Roe and
Siegmund, 2003). Contact conditions are enforced if A,, is negative and the
cohesive element has failed completely (D = 1). At this instance the cohesive

law renders,
An> A,

T, = QO pmaz0exp(l) exp (—5— 5 (14)

where friction effects have been neglected. Fig. 2 shows a representative re-
sponse obtained by applying a stress-controlled cyclic loading Ao /0000 = 1
with a zero stress ratio. The accumulated separation increases with the num-
ber of loading cycles, so that it becomes larger than d,, and damage starts to
play a role, lowering the stiffness and the cohesive strength.



0.2 ]

T

O 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Ay /on

Figure 2: Cohesive response under stress-controlled cyclic loading conditions.

3. Finite element implementation

Damage is restricted to evolve along the predefined cohesive interface, and
consequently, the numerical implementation is generally conducted by insert-
ing cohesive finite elements in potential crack propagation paths. Hence, in
the absence of body forces, the weak form of the equilibrium equations for a
body of volume V' and external surface S renders,

/a:ést+/T-5AdS:/t-5udS (15)
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Here, T' are the cohesive tractions and S, is the surface across which
these tractions operate. The standard part of the mechanical equilibrium
statement is characterized by the Cauchy stress tensor o, the work-conjugate
strain tensor €, the external tractions t and the displacement vector w; the
latter being obtained by interpolating the global nodal displacement u =



INU. We focus here on the most general case: large strains and rotations,

including both normal and tangential separations (mixed mode). Such that,

for (e.g.) a4-node cohesive element, the nodal global displacements are given
by,

U: (ﬁ17(}27U3ag47ﬁ57067g77ﬁ8> (16>

If large rotations occur we should change our global coordinate system

to a local coordinate system, where the local Lagrangian coordinate system
rotates with the element, as outlined in the figure below.
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Figure 3: Nodal displacements in (a) global and (b) local coordinate systems.

In such scheme, the local nodal displacements are given by:
w; = (T, Uy, Us, U, Us, Us, U, Ug) (17)

The local axis is identified by computing the midside points of the ele-
ment, with the tangential axis (z) being the line connecting those midside
points, as outlined below.



Figure 4: Midpoints and local axis

A rotational matrix is employed to change between the local and global
displacements. Thus, the local £ and global = coordinates are related,

E="_E (18)
through Y, a coordinate transformation matrix: (see Fig. 4)
cosf) sinf
Y= {— sin @ cos@} (19)

and accordingly, local and global displacements are related through the ro-
tational matrix,

@ = Ru (20)



that, for a 4-node cohesive element, equals:

Y 0 0 O
0O Y 0 O

k= 0 0 Y O (21)
0O 0 0 XY

The procedure is therefore as follows:

(i) Computation the nodal coordinates in the deformed configuration (x;, y;)
from the nodal coordinates in the undeformed configuration (X;, ¥;) and the

global nodal displacements (U;):

(z1,91) = (X1 + U, Y1 + T) (22)
(w2, 42) = (Xo + Us, Yo+ Us) (23)
(mlayl) = (X3+U5a}/z’)+ﬁ6) (24)
(xla yl) = (X4 + U’?a }/;1 + US) (25)

(ii) Computation of the mid-point coordinates:

(MWMI%@Hﬂmm+m) (26)
(o) = 52+ 20,2+ 1) (27)
(iii) Computation the horizontal and vertical length of the mid segment:
dr =xp — x4 (28)
dy =yp —ya (29)

(iv) Computation of the cohesive element length:

(= +/dx? + dy? (30)

(v) Computation of the components of the rotational matrix through trigono-
metric relations:

cosf = d% (31)
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dy
v

One can now compute the local nodal displacements @ through (20). The
local separation A is related to w by means of a local displacement-separation
relation matrix L,

sinf =

(32)

A=La (33)

Figure 5: Local separation

For the case of the 4-node element that is being considered, the compo-
nents of L can be easily determined by the existing relation between normal
and tangential components of the local separation at the mid-points and the
local nodal displacements (see Fig. 5),

A, = iy — iy (34)

Ay = g — iy (35)



A4 = Ug — QNL4 (37)
implying that,
-1 0 0 0 0010
0O -1 0 0 0001
L= 0O 0 -1 0 1000 (38)
O 0 0 —-10100

The local normal and tangential separation at the mid-points are inter-
polated through the element as we rely on numerical integration to solve the
cohesive element constitutive matrix. The separation along a cohesive sur-
face element is interpolated from the nodal separation by means of standard

shape functions, )
A=NA (39)

The relationship between the local separation and the global nodal dis-
placement can be then obtained by combining the previous equations,

A =BU (40)

where B, is a global displacement-separation relation matrix: B, = NLR.
Thus, accounting for the classic finite element discretization in (15) and re-
quiring the variational statement to hold for any admissible field, it renders

/ BT ZedV + / B'Tds = / NTtds (41)
\%4 e S

where .Z is the elastoplastic constitutive matrix and B the standard strain-
displacement matrix. Considering the dependence of e and T on U,

U / BT ¢BdV + / B T B a5 / NTtds (42)
1% oA S

and the components of the classic finite element global system of equations
can be readily identified. The stiffness matrix of the cohesive elements is
therefore given by,

K. = BT—B ds 43
| BIox (43)
which corresponds to the gradient of the internal cohesive force vector,
f.= | B'TdS (44)
So
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4. Usage instructions

We now particularize the previously described numerical implementation
by focusing on the specific setup of the attached code: 2D problems, Mode-I
symmetric models and quadratic cohesive elements. The use of quadratic co-
hesive elements is particularly convenient to reduce computational time, and
it is necessary when dealing with non-local theories of plasticity (Martinez-
Paneda and Betegén, 2015; Martinez-Paneda and Niordson, 2016) or hydro-
gen assisted cracking (del Busto et al., 2017; Martinez-Paneda et al., 2016).
Moreover, we take advantage of adopt what is sometimes referred to a co-
hesive forces scheme, favored by Needleman and co-workers, so as to avoid
defining new degrees of freedom - no new elements are defined and the co-
hesive contributions relate to the conventional nodes ahead of the crack tip.
Some comments regarding the specific framework provided follow.

4.1. Mode I and symmetric models

Mode I fracture is the most pernicious mode of cracking and has therefore
attracted a great deal of attention from academics and practitioners. Under
such circumstances only the normal terms of the cohesive traction are non-
zZero.

Moreover, it is quite common to take advantage of symmetry conditions to
model cracking in the specimen under consideration. In such circumstances,
a frequent procedure is to constraint the vertical displacement of the bottom
nodes of the cohesive element, as depicted in Fig. 6.
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Figure 6: Cohesive element in a symmetric configuration.

However, one should note that if a cohesive element is placed at a line
of symmetry, it will undergo an unsymmetric deformation if simply the dis-
placements of the bottom nodes are constrained. The midsegment will rotate
and the horizontal displacement of the bottom and top nodes will be differ-
ent, resulting in shear separation A;. This can be prevented by using the
coordinate system of the undeformed configuration and imposing A; = 0 (a
flag variable has been defined in the present code). It is important to note
as well that in a symmetric model the cohesive energy to overcome is half of
the cohesive energy of the full model. Or, in other words, the contribution
of the cohesive element is divided by two, i.e.

1
/a:éedV%—— T-5AdS:/t-(5udS (45)
1% 2 Js, s
A simple way of proceeding relies in keeping the same value of the maxi-
mum cohesive stress but making half the magnitude of the critical separation
parameter(s).

As it can be readily inferred from Fig. 6, if the response is symmetric the
model can be further simplified by avoiding to define additional DOFs; the
displacement of the nodes at the top suffices to compute the local separation.

4.2. Convergence problems
Cohesive zone models may suffer of convergence problems due to the oc-
currence of an elastic snap-back instability. In order to facilitate numerical
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convergence the present code includes the viscous regularization technique
proposed by Gao and Bower Gao and Bower (2004). Such scheme leads to
accurate results if the viscosity coefficient, £, is sufficiently small. A sensi-
tivity study must been conducted in all cases where viscous regularization is
needed. As described in (Gao and Bower, 2004), a small additional viscous
dissipation is added to the traction-separation relation,

_ On A, A, A? 1—gq A? A,
T, = 5 exp ( 5 > { 5 exp 52 + p— 1 —exp 52 r 5
d (A,
— | = 4
vel ( - ) (46)

where £ is the viscosity-like parameter, which has no physical meaning and
is only used to regularize instabilities. Making & = 0 suppresses the viscosity
contribution.

4.8. Abaqus peculiarities and example

A very simple example is provided to ease the use of the subroutine.
Hence, a square plate of dimensions 0.1 x 0.1 mm is subjected to uniaxial
loading in the vertical direction by prescribing the displacement of the nodes
in the upper edge. The specimen is modeled by means of only one continuum
quadratic plane stress element with 8 nodes and 4 integration points. Linear
elastic behavior is assumed in the bulk, with Young’s modulus £ = 200 GPa
and Poisson’s ratio v = 0.3. The traction-separation response is given by (Xu
and Needleman, 1993) cohesive law, with ;4,0 = 600 MPa and 4,, = 0.0002
mm. We adopt the cohesive forces approach, and consequently no additional
degrees of freedom are defined. Thus, the cohesive element has three nodes
(as denoted in Fig. 7) and 12 integration points. The number of integration
points can be defined in the input file by the user. One should however note
that our numerical tests clearly indicate that using 12 integration points is
certainly beneficial in terms of convergence and computational cost. The use
of cohesive zone models requires a very refined mesh ahead of the crack, and
a mesh sensitivity study is therefore essential.

15



EERRERE

O O O

Figure 7: Configuration of the 1-element example. Cohesive nodes are marked in red.

The cohesive element is defined in the input file by means of the following
lines,

*USER ELEMENT, TYPE=U1, NODES=3, COORDINATES=2, PROPERTIES=9, VARIABLES=60
1,2

*ELEMENT, TYPE=U1, ELSET=0NE

2, 1,5, 2

*UEL PROPERTY, ELSET=0NE

600., 0.0002, 0.0002, 1, O, 1, 0.25, 12, O.

In that way, the vast majority of the variables of the analysis are defined
without modifying the Fortran code. As seen above, 9 user-defined properties
are employed in the UEL subroutine; they are described in Table 1.
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Table 1: Equivalence between the properties and the corresponding variables.

PROPS Variable

1 Omaz,0 - Initial cohesive strength in the normal direction

0, - Characteristic cohesive length in the normal direction
0; - Characteristic cohesive length in the tangential direction
q - Coupling parameter in Xu and Needleman (1993) law
r - Coupling parameter in Xu and Needleman (1993) law
Flag variable
Ct = 0f/0maz0 - Endurance coefficient

Number of integration points (it can be 3, 6 or 12)

© 0 N O Ut e W N

& - Viscosity coefficient

The flag variable should be assigned the value 0 when modeling the en-
tire specimen under the finite strain assumption, the value 1 when taking
advantage of symmetry in a small strains problem and the value of 2 if we
have symmetric conditions and large deformations. In addition, 5 solution-
dependent state variables (SVARS) are defined per integration point to store
information that must be transferred between increments (12 integration
points, a total of 80 SVARS). Table 2 shows the specific allocation of these
set of 5 variables at each integration point.

Table 2: Equivalence between the SVARS in the UEL and the corresponding variables.

SVARS Variable
D - Damage variable

A ez - Maximum separation value that has been attained
Trnae - Traction associated with A4

|Ayl,,_, - Normal separation in the previous increment
.

Tt = W NN

Largest stored value of A,

The input file of the simple benchmark example provided is also included
with the code. To run the calculation type in the command line:

abaqus job=Job-1 user=UEL3.f

17



where Job-1 is the name of the input file (Job-1l.inp). Depending on the
Fortran compiler version, some Windows users may have to use the UEL3.for
file instead, such that the command line would look like,

abaqus job=Job-1 user=UEL3.for

The results obtained by prescribing a remote displacement of 0.001 mm
are shown in Fig. 8. Results show the opening stress versus the separation
of the crack face. The figure can be easily obtained by creating XY Data
from the History Output information; namely, the stress in the vertical di-
rection and the displacement of the node in the lower left corner. A python
script is also provided to obtain the results - other options include the use of
Abaqus2Matlab, a novel tool to postprocess Abaqus’ results in Matlab (see
Papazafeiropoulos et al., 2017).
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Figure 8: Stress versus separation response predicted in the simple 1-element example.

As it can be easily observed, the opening stresses in the bulk increase until
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a critical point is reached, at which the opening stress equals the cohesive
strength and A,, = J,,. Damage then initiates and softening takes place.

4.4. Limitations

The present cohesive zone model can be easily extended to: (i) mixed-
mode problems, (ii) three dimensions, (iii) other traction-separation rela-
tions, and (iv) accounting for hydrogen degradation, among many other pos-
sibilities. Some of these extensions have already been conducted and the
associated part of the code can be provided on request.

5. Conclusions

If the code and the documentation provided here are useful please cite:

S. del Busto, C. Betegon, E. Martinez-Panieda. A cohesive zone framework
for environmentally assisted fatigue. Engineering Fracture Mechanics 185,
pp. 210-226 (2017)

Do not hesitate to contact for further clarifications.
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