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Abstract

The aim of this paper is to introduce a new numerical algorithm for
solving the continuous time non-linear filtering problem. In particular,
we present a particle filter that combines the Kusuoka-Lyons-Victoir cu-
bature method on Wiener space (KLV) [13], [18] to approximate the law
of the signal with a minimal variance ”thining” method, called the tree
based branching algorithm (TBBA) to keep the size of the cubature tree
constant in time. The novelty of our approach resides in the adaptation of
the TBBA algorithm to simultaneously control the computational effort
and incorporate the observation data into the system. We provide the rate
of convergence of the approximating particle filter in terms of the com-
putational effort (number of particles) and the discretization grid mesh.
Finally, we test the performance of the new algorithm on a benchmark
problem (the Beneš filter).
Keywords: Cubature on Wiener space; particle filters; TBBA

1 Introduction

The main goal of stochastic filtering is to estimate the state of a dynamical sys-
tem based on partial observation. We model the dynamical system by a stochas-
tic processX = {Xt}t≥0, called the signal. We do not observe the signal directly.
Instead, we make use of the information provided by observing another process
Y = {Yt}t≥0, called the observation process. The information process is at each
instant of time a functional of the signal until that time and some measurement
noise , that is, Yt = Γ ({Xs}s≤t,Wt) , where {Wt}t≥0 is another stochastic pro-
cess modelling the noise. In mathematical terms the problem reduces to compute
the following conditional expectation, E[ϕ (Xt) |Yt] =

∫
ϕ (x)πt (dx) , ϕ ∈ H,

where H is a suitable space of test functions and Yt , σ{Ys, s ∈ [0, t]} is the fil-
tration generated by the observation process. In other words, we are interested
in computing the conditional distribution of the signal Xt given Yt, which can
be viewed as a probability measure valued process π = {πt}t≥0. With notable
exceptions (such as the Kalman-Bucy filter and the Beneš filter), π is an infinite-
dimensional process. One can not find an analytical computable expression for
π and has to rely on numerical approximations for inference purposes. In the
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numerical experiments below we will make use of the explicit solution for the
Beneš filter to test the accuracy of our algorithm.

A number of different numerical methods for solving the filtering problem,
ranging from the solution of partial differential equation to Wiener chaos expan-
sions, see for example Chapter 8 in [1]. One of the most successful approaches,
which is widely used in practice, is the class of the particle approximations. In
this approach, the conditional distribution πt is approximated by the empirical
distribution of a system of random weighted particles. The classical particle
filter, first introduced by Gordon et al. [10] use a correction mechanism that
eliminates, at particular times, the particles with small weights and multiply
the ones with bigger weights, maintaining the total number of particles in the
system constant. However, this procedure adds some randomness to the sys-
tem, diminishing the accuracy of the approximation. Hence, it is desirable to
use a technique that minimizes this undesired effect. In [6], Crisan and Lyons
introduced the tree based branching algorithm (TBBA). This algorithm satis-
fies a minimal variance property which allow to perform, in a sense optimally,
the correction in the particle system. Another aspect of these branching parti-
cle filters is the choice of the resampling times. Most of the theoretical results
assume fixed deterministic times of resampling and this is the approach that
we will follow. Nevertheless, in practice these times are randomly selected in
terms of some overall characteristics of the particle systems, see [9] and [8] for
a theoretical study of this problem.

In the standard particle filter, the component particles follow the law of the
signal. Usually, we model the signal by means of a stochastic differential equa-
tion (SDE) driven by a Brownian motion. A classical result, tells us that πt(ϕ)
can be expressed as the expected value of a functional of the signal parametrised
by the given observation path. Naturally, an efficient approximation of the law
of the signal would give a good approximation of πt(ϕ). In recent years, Kusuoka
[13],[14] and Lyons and Victoir [18] among others, have introduced high order
schemes for solving SDEs, known as cubature on Wiener space or KLV meth-
ods. Surprisingly, these methods are essentially deterministic. They involve the
construction of a discrete (deterministic) measure with support given by leaves
of an n-ary tree, with the nodes being obtained by solving ordinary differential
equations (ODEs). Unfortunately, this tree-like structure makes the number of
ODEs to be solved increase exponentially. In order to counter this feature, the
KLV cubature methods can be combined with a partial sampling procedure,
particularly useful when the dimension of the SDE to solve is high or the final
time is large. The use of cubature methods for solving the stochastic filtering
problem has been suggested in [5] and [17], and the area of application of these
methods is expanding continuously, see for instance [7], where they are used to
solve backward SDEs.

In this paper we present a new numerical algorithm to solve the nonlinear
stochastic filtering problem. This algorithm is based on a combination of the
Kusuoka-Lyons-Victoir (KLV) method and the tree based branching algorithm
(TBBA). The KLV method is used to compute a high order approximation of the
law of the signal X, whilst the TBBA is used to partially prune the KLV tree in a
coherent manner. In our approach the weights of the TBBA are computed taken
into account both, the cubature weights (the weights of the discrete measure)
and the likelihood weights. In this way, we can simultaneously control the
computational effort at each time step and mitigate the sample degeneracy.
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The paper is organised as follows. In the next section we introduce some ba-
sic notation on multi-indices and vector fields necessary to present the cubature
on Wiener space. In Section 3, we introduce the basic results on cubature, in
particular we give the main bound on the local and global error of the method.
Section 4 is devoted to the detailed description of the filtering problem. In addi-
tion, we also introduce the Crisan-Ghazali approach to apply cubature methods
on filtering. In Section 5, we recall the TBBA algorithm, recall the basic prop-
erties of the random variables generated by the method and describe in detail
the construction of the associated trees. In Section 6 we introduce the new
algorithm and prove the convergence of the particle approximation. A variation
of the algorithm where the likelihood weights are not taking into account when
pruning the KLV-tree is also introduced. Finally, in Section 7 we test the new
algorithm on the Beneš filter.

2 Basic notation and preliminaries

Here we introduce some basic notation on vector fields and multi-indices used
to present the Stratonovich Taylor expansion and the main results on cubature.

2.1 Multi-indices

Let p ∈ N, and let A be the set of all multi-indices with values in {0, ..., p}, that

is, A ,{∅}∪
∞⋃
k=1

{0, ..., p}k. For any (non-empty) multi-index α = (α1, ..., αk) ∈

A, define its length by |α| = k and its degree by ‖α‖ = k + card{j : αj = 0}.
We also define the subsets of A,A(j),{α ∈ A : ‖α‖ ≤ j} and A1(j),{α ∈
A\{∅, (0)} : ‖α‖ ≤ j}. We will write −α = (α2, ..., αk) and α− = (α1, ..., αk−1).
Given two multi-indices α = (α1, ..., αk) and β = (β1, ..., βl) we define their
concatenation as α ∗ β = (α1, ..., αk, β1, ..., βl). For any α = (α1, ..., αk) ∈ A, we
also define α[i], the truncated index of length i = 1, ..., k, by α[i] , (α1, ..., αi).

2.2 Vector fields

Let C∞b
(
Rd;Rd

)
denote the space of Rd-valued infinitely differentiable bounded

functions defined on Rd whose derivatives of any order are bounded. Recall that
V ∈ C∞b

(
Rd;Rd

)
can be viewed as a vector field (or a first order differential

operator) on Rd, i.e., V (f) =
∑d
j=1 V

j ∂
∂xj

f, where V j is the jth coordinate

function of V and f ∈ C∞b
(
Rd;R

)
. Given V,W ∈ C∞b

(
Rd;Rd

)
, the compo-

sition operator is defined by V ◦ W (f) =
∑d
j=1 V

j ∂
∂xj

(∑d
i=1W

i ∂
∂xi

f
)
, for

f ∈ C∞b
(
Rd;R

)
.We also define the Lie bracket of vector fields by [V,W ] (f) =

V ◦W (f)−W ◦ V (f).
Given a family of vector fields V = {V0, V1, ..., Vp} ∈ C∞b

(
Rd;Rd

)
, p ∈ N,

we define the vector field concatenation V[α], α ∈ A, as follows: V[∅] = 0, V[i] =
Vi, V[α∗i] = [Vα, Vi], i = 0, ..., p. Note that Vα will stand for the usual composition
of vector fields, that is, Vα = Vα1

◦ · · · ◦ Vαk .
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2.3 Stratonovich Taylor expansion

Consider the probability space (Ω,F , P ) = (C0([0, T ],Rp),B(C0([0, T ],Rp)),P),
where C0([0, T ],Rp) is the space of Rp-valued continuous functions starting at 0,
B(C0([0, T ],Rp)) its Borel σ-algebra and P the Wiener Measure. Also consider
the coordinate mapping process Bjt (ω) = ωj (t) , t ∈ [0, T ], ω ∈ Ω, which under
P is a Brownian motion starting at 0. For ω ∈ Ω, we make the convention
ω0 (t) = t and B0

t (ω) = t.
Let Xt,x be the unique solution of the following d-dimensional stochastic

differential equation

dXt,x = V0(Xt,x)dt+

p∑
j=1

Vj (Xt,x) ◦ dBjt , X0,x = x, (2.1)

where V = {V0, V1, ..., Vp} ∈ C∞b
(
Rd;Rd

)
, x ∈ Rd. This equation is written in

Stratonovich form and has an Itô equivalent form given by

dXt,x = Ṽ0(Xt,x)dt+

p∑
j=1

Vj (Xt,x) dBjt , X0,x = x,

where V i0 , Ṽ i0 − 1
2

∑p
j=1

∑d
k=1 V

k
j
∂V ij
∂xk

, i = 1, ..., d. Given a multi-index α ∈ A,
we define the Stratonovich iterated integrals as follows

Jα (f)0,t ,


f (s) if |α| = 1∫ t

0
Jα− (f)0,u du if k ≥ 1, αk = 0∫ t

0
Jα− (f)0,u ◦ dBαk if k ≥ 1, αk 6= 0

.

Given f, a sufficiently smooth function, and Xt,x, the solution of (2.1) , we
can expand f (Xt,x) in terms of iterated Stratonovich integrals. The precise
statement is as follows.

Lemma 2.1 (Stratonovich-Taylor expansion) Let f ∈ C∞b
(
Rd;R

)
,m ∈

N. Then,

f (Xt,x) =
∑

α∈A(m)

Vαf (x) Jα (1)0,t +Rm (t, x, f) .

The remainder process Rm (t, x, f) satisfies

sup
x∈Rd

√
EP[(Rm (t, x, f))

2
] ≤ C

m+2∑
j=m+1

tj/2 sup
α∈A(j)\A(j−1)

‖Vαf‖∞ ,

where C = C (m) is a positive constant that only depends on m.

3 Cubature method on Wiener space

Cubature formulas are classical methods of numerical approximation of integrals
over finite dimensional spaces with respect to positive measures. Let µ be a
positive measure on Rd with finite moments up to order m ∈ N. A cubature
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approximation µm for µ of degree m is a finite sequence of points x1, ..., xn in
the support of µ and positive weights λ1, ..., λn such that

µ(p) ,
∫
Rd
p(x)µ(dx) =

n∑
i=1

λip(xi) , µm(p),

where p is any element of the space of polynomials in d variables and of degree
less than or equal to m. If f is a regular enough function, µm(f) will be a good
approximation of µ(f) as long as the approximation of f by polynomials is
good. In order to make precise the previous statement, one relies on the Taylor
expansion.

The cubature method on Wiener space is an infinite dimensional extension
of cubature methods on Rd. In this framework, the role of polynomials is played
by iterated Stratonovich integrals and the role of Taylor expansions is played
by Stratonovich-Taylor expansions.

3.1 One step cubature measure

Let Xt,x be the unique solution of equation (2.1) . We choose a version of Xt,x

that coincides on C0,bv([0, T ],Rp), the subspace of C0([0, T ],Rp) of functions of
bounded variation, with the pathwise solution.

Definition 3.1 A measure Qm1 assigning positive weights λ1, ..., λcd to paths
ω1, ..., ωcd ∈ C0,bv([0, 1],Rp+1) is a cubature measure of degree m ∈ N for the
Wiener measure, if for all α = (α1, ..., αk) ∈ A (m) ,

EP[Jα (1)0,1] = EQm1 [Jα (1)0,1] =

cd∑
j=1

λj

∫
0<t1<···<tk<1

◦dωα1
j (t1) · · · ◦ dωαkj (tk) .

The constant cd = cd(m, p) only depends on the degree and the dimension of the
Brownian motion.

Lyons and Victoir [18] proved that one can always find a cubature measure
supported on at most card(A (m)) continuous paths of bounded variation. They
also gave an explicit expression of degree-five cubature measure. In [11], the
authors have constructed cubature formulas of higher degrees and for various
dimensions of the driving Brownian motion.

Remark 3.2 Assume Qm1 =
∑cd
j=1 λjδωj is a cubature measure on [0, 1]. Then,

for any T > 0, as Jα(1)0,T
L
= T ‖α‖/2Jα(1)0,1, we have that QmT ,

∑cd
j=1 λjδ〈T,ω〉j

is a cubature measure for the Wiener measure restricted to in C0([0, T ],Rp),
where

〈T, ω〉ij (s) ,

{
Tωij (s/T ) if i = 0

T 1/2ωij (s/T ) if i = 1, ..., p
, s ∈ [0, T ], j = 1, ..., cd.

Definition 3.3 We define the cubature approximation of PT f(x) , EP[f(XT,x)]

by P̄T f(x) , EQmT [f (XT,x)].
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Remark 3.4 Let u(t, x) be the solution at time t of ∂u∂t (t, x) = Lu(t, x), u(0, x) =
f(x), where the operator L is defined by Lf = V0f+ 1

2

∑p
i=1 V

2
i f. Then, u(T, x) =

EP[f(XT,x)]. Hence, P̄T f(x) is an approximation of the semigroup PT f(x),
which has infinitesimal generator L. In other words, the cubature on Wiener
space can be used to produce a high order approximation method for solving
second order parabolic differential equations.

The main tool to bound the approximation error relies on the Stratonovich-
Taylor expansion and is stated in the following lemma, which is easy to prove.

Lemma 3.5 Let f ∈ C∞b
(
Rd;R

)
,m ∈ N. Then,

f (XT,x) =
∑

α∈A(m)

Vαf (x) Jα (1)0,T +Rm (T, x, f) .

The remainder process Rm (T, x, f) satisfies

sup
x∈Rd

EQmT [|Rm (T, x, f)|] ≤ C
m+2∑
j=m+1

T j/2 sup
α∈A(j)\A(j−1)

‖Vαf‖∞ ,

where C = C(p,m,Q1) is a positive constant that only depends on p,m and Q1.

Using the previous lemma, Lemma 2.1 and a triangular inequality argument
and one obtains a bound for the error of the one step cubature approximation.

Proposition 3.6 Let QmT be a degree m cubature measure then

sup
x∈Rd

∣∣PT f (x)− EQmT [f (XT,x)]
∣∣ ≤ C m+2∑

j=m+1

T j/2 sup
α∈A(j)\A(j−1)

‖Vαf‖∞ ,

where C = C(p,m,Q1) is a positive constant that only depends on p,m and Q1.

3.2 Iterated cubature measure

In general, the bound obtained in the previous proposition do not allow to
directly get a good approximation of PT f (x) when T is large. To overcome this
difficulty one iterates the cubature measure along a partition Πn,T,{0 = t0 <
t1 < · · · < tn = T} of [0, T ]. We will denote by Πj,T , {0 = t0 < t1 < · · · <
tj}, j = 1, ...n, the subpartitions of Πn,T and sj , tj − tj−1, j = 1, ..., n.

Definition 3.7 Let the measure Qm1 =
∑cd
j=1 λjδωj define a cubature formula

on [0, 1] and Πn,T be a partition of [0, T ]. The global cubature measure QmΠn,T is
defined by

QmΠn,T =
∑

(i1,...,in)

λi1 · · ·λinδ〈s1,ω〉i1⊗···⊗〈sk,ω〉in ,

where ω ◦ ω̂ denotes the concatenation of the paths ω and ω̂.

It is also useful to view the cubature formulas on Wiener space as Markov
operators acting on discrete measures on Rd. This interpretation justifies the
following definition introduced by Litterer and Lyons [17].
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Definition 3.8 Given a positive measure µ =
∑l
i=1 µiδxi on Rd and a cubature

measure Qm1 =
∑cd
j=1 λjδωj , we define the KLVm operation with respect to µ over

a time step s by

KLVm (µ, s) ,
l∑
i=1

cd∑
j=1

µiλjδXs,xi (〈s,ω〉j),

where Xs,xi(〈s, ω〉j) is the solution at time s of the following ODE

dXu,xi(〈s, ω〉j) =

p∑
k=0

VkXu,xi(〈s, ω〉j)d 〈s, ω〉
k
j (u) , 0 ≤ u ≤ s

X0,xi(〈s, ω〉j) = xi.

One can also iterate the KLVm operation along a partition Πn,T .

Definition 3.9 Let Qm1 =
∑cd
i=1 λiδωi be a cubature measure of degree m and

let Πn,T={0 = t0 < t1 < · · · < tn = T} be a partition of [0, T ]. The KLVm
operation along Πn,T , is defined recursively by

KLVm
(
Πj+1,T , x

)
, KLVm

(
KLVm(Πj,T , x), sj+1

)
, j = 1, ..., n− 1,

and KLVm
(
Π1, x

)
= KLVm (δx, s1) .

The following remark makes the connection between the two point of views.

Remark 3.10 Let B denote the set of multi-indices {∅} ∪
∞⋃
k=1

{1, ..., cd}k. For

any β = (β1, ..., βk) ∈ B define λβ = λβ1
· · ·λβk and points xβ ∈ Rd by setting

xβ = Xs1,x(〈s1, ω〉β1
), β ∈ {(1), ..., (cd)}, and xβ = Xsk,xβ−(〈sk, ω〉βk), β ∈

B, |β| > 1. Then, the global cubature measure along Πn,T can be written as the
following discrete measure on paths QmΠn,T =

∑
β∈B,|β|=n λβδ〈s1,ω〉β1

⊗···⊗〈sn,ω〉βn
,

while the KLVm operation along Πn,T can be written as the following discrete
measure on Rd, KLVm(Πn,T , x) =

∑
β∈B,|β|=n λβδxβ . Moreover, EQm

Πn,T
[f(Xt,x)]

= KLVm(Πn,T , x) (f) .

Remark 3.11 The iterative procedure to generate QmΠn,T can be viewed as an
cd-ary tree, which we will call the cubature tree. Hence, the support of the mea-
sure QmΠn,T (and of KLVm(Πn,T , x)) grows exponentially with the number of

subintervals of the partition. In particular, we have to solve
cn+1
d −1

cd−1 ODEs to

obtain the points in the support of KLVm(Πn,T , x). When n is large the com-
putational cost associated to solving these ODEs can not be ignored and some
mechanism to control the size of the support of QmΠn,T is needed. The basic ap-
proach is to allow the size of the tree to grow only up to a constant decided by
the use and then to keep it constant by culling the branches with small weights.
The procedure can be random. For example, Ninomiya [20] proposed to use
the TBBA algorithm of Crisan and Lyons. Litterer and Lyons [17] have re-
cently introduced a deterministic recombination procedure that essentially allows
to change the original cubature measure with a measure with smaller support,
without increasing the error.
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4 Cubature applied to filtering

In this section we introduce the setup for the filtering problem. We also present
the approach by Crisan and Ghazali [5] to the application of cubature on Wiener
space to filtering.

4.1 Stochastic filtering setup

Let (Ω,F , P ) be the probability space defined on Section 2, assumed to ac-
commodate a k-dimensional Wiener process W independent of B. Let F =
{Ft}0≤t≤T be a filtration satisfying the usual conditions of completeness and
right continuity. In this probability space we consider a partially observed sys-
tem (X,Y ) = {(Xt, Yt)}0≤t≤T . The unobserved process X = {Xt}0≤t≤T , called
the signal, is the solution of the d-dimensional Stratonovich SDE (2.1) , that is,

dXt,x = V0(Xt,x)dt+

p∑
j=1

Vj (Xt,x) ◦ dBjt , X0,x = x, 0 ≤ t ≤ T,

where x ∈ Rd, Vi ∈ C∞b (Rd,Rd) and B = (Bj)pj=1 = {(Bjt )
p
j=1}0≤t≤T is a p-

dimensional F-Brownian motion. To simplify the notation, we will suppress the
dependence of Xt,x on x and write Xt. The observed component Y = {Yt}0≤t≤T ,
called the observation process, is given by the following k-dimensional process

Yt =

∫ t

0

h (Xs) ds+ dWs, 0 ≤ t ≤ T,

where h : Rd → Rk is a bounded measurable function and W = (W j)kj=1 =

{(W j
t )kj=1}0≤t≤T is a k-dimensional F-Brownian motion independent of B. Let

{Yt}0≤t≤T be the usual augmentation of the filtration generated by the pro-
cess Y, that is, Yt = σ({Ys}s≤t) ∨ N , 0 ≤ t ≤ T where N are the P -null
sets of (Ω,F , P ). The stochastic filtering problem consists of determining the
conditional distribution πT of the signal X at time T given the information
accumulated from observing Y in the time interval [0, T ]; that is, for ϕ bounded
Borel measurable, it consists of computing πT (ϕ) = EP[ϕ(XT )|YT ]. The process

Z̃t , exp

(
−

k∑
i=1

∫ t

0

hi (Xs) dW
i
s −

1

2

k∑
i=1

∫ t

0

hi(Xs)
2ds

)
, 0 ≤ t ≤ T,

is an F-martingale. For a fixed 0 ≤ t ≤ T, we can define a new probability

measure P̃t on Ft via dP̃t
dP |Ft , Z̃t. By the martingale properties of Z̃t, the

family of probability measures {P̃t}0≤t≤T is consistent and this property allows

us to define a new probability P̃ which is equivalent to P on
⋃

0≤t<∞
Ft. By means

of Girsanov’s theorem, Y becomes, under P̃, a Brownian motion independent
of the signal X. Note also that the law of X is invariant under this change of
probability measure. In order to construct numerical algorithms to approximate
πT one relies, crucially, in the Kallianpur-Striebel formula, see [12],

πT (ϕ) =
ρT (ϕ)

ρT (1)
,
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where ρt, called the unnormalised conditional distribution, is given by

ρT (ϕ) , EP̃

[
ϕ(XT ) exp

(
k∑
i=1

∫ T

0

hi (Xt) dY
i
t −

1

2

k∑
i=1

∫ T

0

hi(Xt)
2dt

)∣∣∣∣∣YT
]
.

Thanks to the Kallianpur-Striebel formula the problem is reduced to find an
approximation of the above functional.

Remark 4.1 ρT (ϕ) is the expected value of a functional of the signal X, which
is parametrized by the observation process Y. This representation shows the fact
that the signal X enters the problem only through the evolution of its law, whilst
its path properties are not relevant. On the other hand, the observed path of Y
determines the functional to be integrated and the distribution of Y only plays a
secondary role. In practice, we will only know the values of Y along the points
in a partition of [0, T ] and we may not know the law of X. Hence, we will
need to approximate the Y -dependent functional of X as well as the law of X.
Therefore, the filtering problem can be viewed as a particular case within the
theory of weak approximations of SDEs.

It follows from the previous remark that the design of an approximating
scheme for ρT (ϕ) should contain the following three components:

1. The discretization the Y -dependent functional of X.

2. The approximation of the law of the signal X.

3. The control of the computational effort.

An important ingredient to establish a weak approximation result is the
space of test functions for which the result holds. As pointed out before, this
space of test functions depends on Y. Moreover, its elements have to integrate
not only with respect to the law of X but also with respect to the law of
the approximating processes under consideration. The suitable candidate when
using cubature formulas is the following (see Crisan and Ghazali [5]). In the
following ‖·‖p denotes the L(P̃) norm.

Definition 4.2 Let CRk [0, T ] be the space of continuous functions y : [0, T ] →
Rk and CY,∞b

(
Rd
)

the set of measurable functions f : Rd × CRk [0, T ] → R
satisfying the following properties:

1. For any y ∈ CRk [0, T ] the function x→ f(x, y) belongs to C∞b (Rd).

2. For any multi-index α ∈ D , ∪∞k=1{1, ..., d}k∪{∅}, any x ∈ Rd and p ≥ 1,
the partial derivative Dαf(x, Y ) in the first variable satisfies ‖Dαf(x, Y )‖p
<∞.

3. For any multi-index α ∈ D and p ≥ 1, we have |||Dαf(x, Y )|||p,∞ ,
supx∈Rd ‖Dαf(x, Y )‖p <∞.

Definition 4.3 For any function f ∈ CY,∞b
(
Rd
)
, j ∈ N, p ≥ 1 we define the

norms |||Dαf(x, Y )|||p,j =
∑
α∈D(j) |||Dαf(x, Y )|||p,∞, where D(j) , {α ∈ D :

‖α‖ ≤ j}.
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4.2 Picard’s filter

In this section we introduce the discretization of the Y -dependent functional of
X to be integrated. This discretization was first introduced by Picard [22] and
we shall call it Picard’s filter, see also [3] and [23]. Assume that we have an
uniform partition Πn,T , {ti = iT

n }i=0,...,n of the interval [0, T ] and that we
know {Yti}i=0,...,n, the values of the observation process Y on Πn,T . For any
ϕ ∈ C∞b , we can define

Θn,ϕ :
(
Rd
)n+1 −→ R

(z0, ..., zn) 7→ ϕ (zn) exp

(
n∑
r=0

hr (zr)

)
, (4.1)

where hr : Rd −→ R, r = 0, ..., n, are the following functions

hr (z) ,
k∑
i=1

{hi (z) ∆Y ir −
T

2n

(
hi (z)

)2},
hn(z) , 0, and ∆Y ir , (Y itr+1

− Y itr ), r = 0, ..., n − 1. Next, define ρnT (ϕ) ,

EP̃[Θn,ϕ (Xt0,x, ..., Xtn,x) |YT ].Note that ϕ and hr, r = 0, ..., n belong to CY,∞b (Rd)
and as Θn,ϕ is a product of these functions it also belongs to CY,∞b (Rd). The
following result was proved by Picard [22] :

Theorem 4.4 Let ϕ be a bounded and Lipschitz continuous function.Then,
there exists a constant C = C(T, ‖ϕ‖∞) independent of n such that

‖ρT (ϕ)− ρnT (ϕ)‖2 ≤
C

n
.

See [4] for an updated account on the discretization of the continuous time
filtering problem.

Remark 4.5 The previous theorem shows that, for uniform partitions, ρnT is
a first-order approximation of ρT . As the algorithms we are going to develop
will be based on the Picard discretization, the error of these algorithms when
approximating ρT will not be better than C/n.

4.3 The cubature approximation

The second step is to approximate the law of the signal X. In this paper we
will use the cubature on Wiener space to do this. We define the cubature
approximation to ρnT of Picard’s filter by

ρ̄nT (ϕ) , EQm
Πn,T

[Θn,ϕ (Xt0,x, ..., Xtn,x) |YT ].

In order to analyse the error when approximating ρnT (ϕ) by ρ̄nT (ϕ) it is con-
venient to introduce an alternative representations for Picard’s filter and its
approximation. We define operators {Rit}ni=1 and {R̄it}ni=1 for ϕ ∈ C∞b

(
Rd
)
,

x ∈ Rd and t ∈ (0, T ] by

Ritϕ(x) , EP̃[ϕ(Xt,x) exp(hi(Xt,x))|Yt], R̄itϕ(x) , EQmt [ϕ(Xt,x) exp(hi(Xt,x))|Yt].
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To simplify the notation we also define Ri,jt ϕ(x) , Rit · · ·R
j
tϕ(x) and R̄i,jt ϕ(x) ,

R̄it · · · R̄
j
tϕ(x) for 1 ≤ i < j ≤ n. Then, we have that

ρnT (ϕ) = exp(h0(x))R1
T
n
· · ·RnT

n
ϕ (x) = exp(h0(x))R1,n

T
n

ϕ (x) ,

and
ρ̄nT (ϕ) = exp(h0(x))R̄1

T
n
· · · R̄nT

n
ϕ (x) = exp(h0(x))R̄1,n

T
n

ϕ (x) .

The main result concerning the cubature approximation of Picard’s filter is
the following theorem proved by Crisan and Ghazali in [5]. The result basically
says that ρ̄nT is an approximation of order (m−1)/2 of ρnT , where m is the degree
of the cubature measure.

Theorem 4.6 There is a positive constant C = C (T,m, p) such that for all
ϕ ∈ Cm+2

b

(
Rd;R

)
, p ≥ 1, we have ‖ρ̄nT (ϕ)− ρnT (ϕ)‖p ≤ Cn

−(m−1)/2 ‖ϕ‖∞,m+2

where

‖ϕ‖∞,m+2 , ‖ϕ‖∞ +

m+2∑
k=1

max
j1,...,jk∈{1,...,d}

∥∥∥∥ ∂kϕ

∂xj1 · · · ∂xjk

∥∥∥∥
∞
.

A sketch of the proof of Theorem 4.6 is as follows. From a variation of
Lemmas 2.1 and 3.5 applied to functions f ∈ CY,∞b (Rd) one obtains that

sup
x∈Rd

∣∣EQmt [f(Xt,x)]− EP̃[f(Xt,x)]
∣∣ ≤ C m+2∑

i=m+1

ti/2|||f |||p,i.

This error bound is used to prove that

|||Rj−1
T/nR

j,n
T/nϕ(x)− R̄j−1

T/nR
j,n
T/nϕ(x)|||p,∞ ≤ Cn−(m+1)/2||ϕ||∞,m+2.

The previous bound is combined with a telescopic expansion of

exp(h0(x))R1,n
T
n

ϕ (x)− exp(h0(x))R̄1,n
T
n

ϕ (x)

to prove that

||| exp(h0(x))R1,n
T
n

ϕ (x)− exp(h0(x))R̄1,n
T
n

ϕ (x) |||p,∞ ≤ Cn−(m−1)/2 ‖ϕ‖∞,m+2

from which the result follows easily.

Corollary 4.7 There is a positive constant C = C(T,m, ‖ϕ‖∞,m+2) such that

for all ϕ ∈ Cm+2
b

(
Rd;R

)
, we have EP̃[|π̄nT (ϕ)− πT (ϕ) |] ≤ C

n .

Proof. Using the triangle inequality and the estimates in Theorems 4.4 and
4.6 we have that ‖ρT (ϕ)− ρ̄nT (ϕ)‖2 ≤

C
n . The result follows from using the

Cauchy-Schwarz inequality to the following inequality

|π̄nT (ϕ)− πT (ϕ)| ≤
‖ϕ‖∞
ρT (1)

|ρ̄nT (1)− ρT (1)|+ 1

ρT (1)
|ρ̄nT (ϕ)− ρT (ϕ)| ,

and the fact that
∥∥ρT (1)−1

∥∥
p

is finite for any p ≥ 1.

We will also need the following lemmas regarding the cubature approxima-
tion of Picard’s filter.
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Lemma 4.8 Assuming the notation in Remark 3.10, we have that

ρ̄nt (ϕ) =
∑

β∈B,|β|=n

λβw0(xβ[0]) · · ·wn−1(xβ[n−1])ϕ (xβ) ,

where wr(xβ[r]) , exp
(
hr
(
xβ[r]

))
, r = 0, ..., n−1, are called the filtering weights

and by convention xβ[0] = x.

Proof. Note that, R̄nt ϕ (x) =
∑cd
βn=1 λβnϕ(Xt,x(〈t, ω〉βn)) and

R̄itϕ (x) =

cd∑
βi=1

λβiϕ(Xt,x(〈t, ω〉βi))wi(hi(Xt,x(〈t, ω〉βi))), i = 0, ..., n− 1.

Set δ = T/n. We have that

R̄nδϕ (x) =

cd∑
βn=1

λβnϕ(Xδ,x(〈δ, ω〉βn)) =

cd∑
βn=1

λβnϕ(x(βn)(x)),

where we have used the notation x(βn)(x) , Xδ,x 〈δ, ω〉βn . Applying R̄n−1
δ to

R̄nδϕ (x) we get

R̄n−1
δ

(
R̄nδϕ (x)

)
= R̄n−1

δ

 cd∑
βn=1

λβnϕ(x(βn)(x))


=

cd∑
βn−1,βn=1

λβn−1
λβnϕ(Xδ,x(βn)(x)(〈δ, ω〉βn))wn−1(hn−1(Xδ,x(〈δ, ω〉βn−1

)))

=

cd∑
βn−1,βn=1

λβn−1λβnϕ(x(βn−1,βn)(x))wn−1(hn−1(x(βn−1) (x))),

where we have used the notation

x(βn−1,βn)(x) , Xδ,x(βn)(x)(〈δ, ω〉βn) = X2δ,x(〈δ, ω〉βn−1
⊗ 〈δ, ω〉βn).

Iterating this procedure it is clear that we get the result.

Remark 4.9 From the previous lemma it follows that the computation of the
cubature approximation of Picard’s filter requires knowledge of all intermediate
nodes in the cubature tree, contrasting to the typical use of cubature methods
where the knowledge of the leafs is sufficient to compute the approximation.
Obviously, this is due to the particular form of the functional to be integrated
that depends explicitly on the values of Xt along the points of the partition and
not just on the terminal value.

Lemma 4.10 For any p ≥ 1, we have that
∥∥ρ̄nT (1)−1

∥∥
p
<∞.

Proof. Lemma 4.8 and Jensen inequality yield that

ρ̄nT (1)−p ≤
∑

β∈B,|β|=n

λβ
(
w0(xβ[0]) · · ·wn−1(xβ[n−1])

)−p
.
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By the definition of the exponential weights we can write(
w0(xβ[0]) · · ·wn−1(xβ[n−1])

)−p
= exp

{
−p

n−1∑
r=0

hr
(
xβ[r]

)}

= exp

{
n−1∑
r=0

k∑
i=1

{−phi
(
xβ[r]

)
∆Y ir +

pT

2n

(
hi
(
xβ[r]

))2}}

As Y is a k-dimensional standard Brownian motion under P̃ we have that

E[
(
w0(xβ[0]) · · ·wn−1(xβ[n−1])

)−p
] = exp

{
n−1∑
r=0

k∑
i=1

(p2 + p)T

2n

(
hi
(
xβ[r]

))2}

≤ exp

{
(p2 + p)kT

2
‖h‖2∞

}
.

Hence,∥∥ρ̄nT (1)−1
∥∥p
p

= EP̃[ρ̄nT (1)−p] ≤
∑

β∈B,|β|=n

λβEP̃[
(
w0(xβ[0]) · · ·wn−1(xβ[n−1])

)−p
]

≤ exp

{
(p2 + p)kT

2
‖h‖2∞

} ∑
β∈B,|β|=n

λβ︸ ︷︷ ︸
=1

<∞

5 The control of the computational effort

The tree based branching algorithm is a method that assigns a number of parti-
cles to different sites, according to a probability distribution with finite support
on the sites. The computational effort is controlled as it is proportional to the
number of particles. This is equivalent to generate rational valued random dis-
tributions which are unbiased estimators of the original probability distribution.
The interesting feature of the method is that the assignment is done satisfying a
certain minimum variance property. The results presented here can be extended
to probability distributions with infinite support.

Let X = {xi}ki=1 be a given set and Γ = {γi}ki=1 a probability distribution

with support X . The problem is to generate a family of random variables Γ̂ =
{γ̂i}ki=1, defined on some probability space (Ω∗,F∗,P∗), with values in {0, ..., N}
and such that

E[γ̂i] = Nγi, i = 1, ..., k, (5.1)

k∑
i=1

γi = N, (5.2)

Var[γ̂i] = min
δ∈P(γi)

Var[δ], i = 1, ..., k, (5.3)
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where P(γi), i = 1, ..., k, denote the set of all random variables with values in
{0, ..., N} and satisfying (5.1) . Let [x] denote the integer part of x ∈ R and
{x} = x − [x] denote the fractional part of x ∈ R. It is immediate that any
family Γ̂ of random variable with marginal distributions given by

γi ,

{
[Nγi] with probability 1− {Nγi}
[Nγi] + 1 with probability {Nγi}

, i = 1, ..., k

satisfies the minimal variance property (5.3) and the unbiasedness condition
(5.1). It can be helpful to use a ”particle” picture to describe the random
variables in the set Γ̂. Essentially, one can think that Γ is the empirical measure
associated to a set of N particles that are allocated to the sites X . Hence, γ̂i
represents the number of particles allocated to site xi. This number is random
and its mean is given by Nγi (which is not necessarily integer) However, its
generation is not straightforward as condition (5.2) makes the random variables
corresponding to different sites xi to be correlated. The TBBA precisely allows
to construct a family of random variables satisfying (5.1),(5.3) and the additional
condition (5.2). The name of the algorithm comes from the fact that it can be
described using a binary tree structure. The description is as follows.

1. We start with a k-ary tree. This tree has a root node initially storing N
particles and k leaves that represent the sites where the particles have to
be allocated.

2. We embed the k-ary tree into a binary tree satisfying the following rules.

(a) The set of all leaves of the tree is X .
(b) Each node z of the tree has a positive weight γz.

(c) If two different nodes share the same parent their weights add up to
the weight of the parent.

(d) The weights of all leaves which are descendants of a particular node
add up to the weight of that node.

3. We move the N particles down along the tree until they get to the leaves
using the following TBBA rules:

(a) We start by allocating all N particles to the root node (the corre-

sponding weight of the root is
∑k
i=1 γi = 1).

(b) We then proceed recursively as follows: let z be a node with γ̂z
particles and weight γz. If z has two child nodes z1 and z2, then
γz = γz1 + γz2 and we will split the γ̂z particles associated to z into
γ̂z1 particles associated to z1 and γ̂z2 particles associated to z2, i.e.,
γ̂z = γ̂z1 + γ̂z2 , according to the following two possible cases.

• Case 1: [Nγz] = [Nγz1 ] + [Nγz2 ]

– γ̂z1 , [Nγz1 ] + (γ̂z − [Nγz])um,

– γ̂z2 , [Nγz2 ] + (γ̂z − [Nγz])(1− um), where

um ,

{
0 with prob {Nγz2}/{Nγz}
1 with prob {Nγz1}/{Nγz}

.
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• Case 2: [Nγz] = [Nγz1 ] + [Nγz2 ] + 1

– γ̂z1 , [Nγz1 ] + 1 + (γ̂z − ([Nγz] + 1))um,

– γ̂z2 , [Nγz2 ] + 1 + (γ̂z − ([Nγz] + 1))(1− um), where

um ,

{
0 with prob (1− {Nγz2})/(1− {Nγz})
1 with prob (1− {Nγz1})/(1− {Nγz})

.

Note that for each intermediate node in the tree we need to generate a
random variable um. These random variables are independent of each other.
The best way to understand how the algorithm works is to see some examples.

Example 5.1 Assume that we have X = {x1, x2, x3, x4} and Γ = {γ1, γ2, γ3, γ4}.
We start with the following 4-ary tree.

In order to construct the embedded binary tree we start by adding N particles
to the root node. Then we assign the site x1 and the probability γ1 to the left
child node of the root. On the right child node we assign the auxiliary site
x2:4 , {xi}4i=2 with weight γ2:4 ,

∑4
i=2 γi. Now we apply the TBBA rules and

get γ̂1 particles for the site x1 and γ̂2:4 particles for the site x2:4. Next we take
the site x2:4 as it were the root node and repeat the procedure. That is, on the left
child node of the node x2:4 we assign the site x2 with probability γ2 and on the
right child node we assign the auxiliary node x3:4 , {xi}4i=3 with weight γ3:4 ,∑4
i=3 γi. We apply the TBBA rules to the nodes x2:4, x3 and x3:4 and obtain γ̂2

particles for x2 and γ̂3:4 particles for x3:4. Iterating this procedure until the set
of leaves coincides with X (in this case one more time) we end up with a set of
random variables Γ̂ = {γ̂i}4i=1 satisfying the desired properties. The embedded
binary tree is the following:
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Note, that the way to embed the 4-ary tree into a binary one is by no means
unique, as we well may have chosen another way of grouping the sites. This
degree of freedom can be exploited in practice.

Example 5.2 Assume that we have the following ternary tree of depth 2

where the Γ1 , {γi}3i=1 is a probability distribution on X 1 , {xi}3i=1 and,
obviously, Γ2 , {γiγj}3i,j=1 is a probability distribution on X 2 , {xij}3i,j=1.

If we were just interested in sampling from Γ2, we could repeat the procedure
of the previous example with Γ = Γ2 and X = X 2. However, we usually also
need to sample from Γ1. Moreover, it is more efficient to first apply the TBBA
algorithm to Γ1 and then apply the TBBA algorithm again to each of the sites in
X 1 (taking into account that now the weight of root node is not 1). This method
is more efficient because for the sites in X 1 that are assigned zero particles we do
not need to apply the TBBA again, we just set zero particles to its descendants.
The generated tree is as follows.

16



Assume we have an n-times iterated k-ary tree such that at the first level
of the tree we have a probability distribution Γ1 = {γi}ki=1. Moreover, assume
that the probability distributions in the next levels are generated by iterating
the distribution in the first level, that is Γl = {λi1 · · ·λil}ki1,...il=1. The previous
example shows, that the TBBA will provide an approximation of the probability
distribution not just at the final level, but also at all intermediate levels. Let z
be a node in the iterated k-ary tree with γ̂z particles assigned and γz weight.
The algorithm that allocates the γ̂z particles in z to its k direct descendants
according to the probability law {γi}ki=1 is as follows:
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Algorithm TBBA(N, γ̂z, γz, {γi}ki=1)

κ1 := Nγz, κ2 := γ̂z
for i = 1 to k − 1

draw ui ∼ Unif [0, 1]
if {Nγzγi}+ {κ1 −Nγzγi} < 1 then

if ui < 1− ({Nγzγi}/{κ1}) then
γ̂i := [Nγzγi]

else
γ̂i := [Nγzγi] + (κ2 − [κ1])

end if
else

if ui < 1− (1− {Nγzγi})/(1− {κ1}) then
γ̂i := [Nγzγi] + 1

else
γ̂i := [Nγzγi] + (κ2 − [κ1])

end if
end if
κ1 := κ1 −Nγzγi
κ2 := κ2 − γ̂i

end for
γ̂k := κ2

return {γ̂i}ki=1

Using this notation, the approximation to the probability measure Γ with
support X is given by TBBA(N,N, 1, {γi}ki=1). The algorithm generates a (ran-
dom) measure with a support that is an at most N sites of the original k as it
is the empirical distribution of N particles. Some of the properties satisfied by
the random variables {γ̂i}ki=1 generated by TBBA(N,N, 1, {γi}ki=1) are stated
in the following proposition:

Proposition 5.3 The random variables {γ̂i}ki=1 = TBBA(N,N, 1, {γi}ki=1) have
the following properties.

1.
∑k
i=1 γ̂i = N.

2. For any i = 1, ..., k, we have EP∗ [γ̂i] = Nγi.

3. For any i = 1, ..., k,γi has minimal variance, specifically EP∗ [(γ̂i−Nγi)2] =
{Nγi}(1− {Nγi}).

4. For any 1 ≤ i < j ≤ k, the random variables γi and γj are negatively
correlated. That is, EP∗ [(γ̂i −Nγi)(γ̂j −Nγj)] ≤ 0.

Proof. See for example Proposition 9.3. in [1].
Note that, for any bounded function ϕ : X → R, we have

EP∗ [

(
k∑
i=1

ϕ(xi)
γ̂i
N
−

k∑
i=1

ϕ(xi)γi

)2

]
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≤
‖ϕ‖2∞
N2

EP∗ [

(
k∑
i=1

(γ̂i −Nγi)

)2

] ≤
4.

‖ϕ‖2∞
N2

k∑
i=1

EP∗ [(γ̂i −Nγi)2
]

=
3.

‖ϕ‖2∞
N2

k∑
i=1

{Nγi}(1− {Nγi} ≤
‖ϕ‖2∞
N2

k∑
i=1

Nγi =
‖ϕ‖2∞
N

,

where we have used properties 3. and 4. in Proposition 5.3. This entails that
γ̂i/N is an unbiased approximation, in L2(P∗), to γi.

6 Convergence results for the KLV particle filter

In this section we present the main results of the paper. Let Qm1 =
∑cd
i=1 λiδωi

be a cubature measure of degree m ∈ N. Assume that Πn,T is the uniform
partition of the interval [0, T ] with n+ 1 points, i.e., Πn,T = {tj = jT

n }
n
j=0 and

that we know the values of the observation process Y in Πn,T . Let B be the
total set of multi-indices with values in {1, ..., cd}, where cd is the number of
paths in the support of Qm1 . For j = 1, ...n, define Bj = {β ∈ B : |b| = j}.
Let X j = {xβ : β ∈ Bj}, j = 1, .., n be the support of KLVm(Πj,T , x), the
discrete measure obtained by the j-iteration of the KLV operation or cubature
measure along the partition Πn,T . According to Remark 3.10, we can see the
global cubature measure along the partition Πn,T as discrete measure on Rd
with points indexed by Bn. By Lemma 4.8 we have the following expression for
ρ̄nT , the cubature approximation of Picard’s filter,

ρ̄nT =
∑
β∈Bn

λβw0(xβ[0]) · · ·wn−1(xβ[n−1])δxβ . (6.1)

In the following two sections we are going to introduce two different approxi-
mation procedures for (6.1). Both procedures will be based on the TBBA. The

first approximation, denoted by ρ̃n,NT will only use the cubature weights to al-
locate the particles along the cubature tree while the second one will combine
both the cubature and the filtering weights. Hence, the second approximation
denoted by ρ̂n,NT incorporates a correction mechanism similar to the one in the
classical particle filters where law of the signal is approximated using the Euler
scheme. We will assume that the probability space (Ω,F , P̃) is rich enough to
carry the auxiliary random variables needed to apply the TBBA. As Y is also
defined on (Ω,F , P̃), in what follows EP̃[·|YT ] will denote the expectation with
respect to the TBBA random variables.

6.1 Computational control of the KLV particle filter based
on the cubature weights only

We define a collection {Γ̃j}nj=1 of random variables according to the follow-

ing recursion. Let Γ1 , {γβ}β∈B1 = {λi}cdi=1 be the cubature weights. De-

fine Γ̃1 , {γ̃β}β∈B1 = TBBA(N,N, 1,Γ1). For any j ∈ {2, ..., n}, define Γ̃j ,⋃
β∈B̃jTBBA(N, γ̃β−, λβ−,Γ

1), where, for β ∈ Bj , λβ− , λβ1 · · ·λβj−1 . Note

that TBBA(N, 0, λβ−,Γ
1) returns all the random variables equal to zero. More-

over, Γ̃j has the same distribution of TBBA(N,N, 1,Γj), where Γj , {λβ}β∈Bj .
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In particular, if γ̃β , γ̃α ∈ Γ̃n, α 6= β, then γ̃β and γ̃α satisfy

EP̃[γ̃β |YT ] = Nλβ ,

EP̃[(γ̃β −Nλβ)
2 |YT ] = {Nλβ}(1− {Nλβ}) ≤ Nλβ ,

EP̃[(γ̃β −Nλβ) (γ̃α −Nλα)|YT ] ≤ 0

and
∑
β∈Bn γ̃β = N. We define ρ̃n,NT , 1

N

∑
β∈B̃n

γ̃βw0(x) · · ·wn−1(xβ[n−1])δxβ .

Theorem 6.1 There exists a positive random variable C̃ = C̃ (m,T, ϕ, Y ) such
that

EP̃[(ρ̄nT (ϕ)− ρ̃n,NT (ϕ))2|YT ] ≤ C̃

N
,

for all ϕ ∈ Cm+2
b

(
Rd
)
. Moreover, C̃ (m,T, ϕ, Y ) is integrable with respect to P̃.

Proof. We have that

EP̃[(ρ̄nT (ϕ)− ρ̃n,NT (ϕ))2|YT ]

=
1

N2
EP̃[

∑
β∈Bn

(γ̃β −Nλβ)w0(x) · · ·wn−1(xβ[n−1])ϕ (xβ)

2

|YT ]

≤ 1

N2

∑
β∈Bn

EP̃[(γ̃β −Nλβ)2|YT ]w2
0(x) · · ·w2

n−1(xβ[n−1])ϕ
2 (xβ)

=
1

N2

∑
β∈Bn

{Nλβ}(1− {Nλβ})w2
0(x) · · ·w2

n−1(xβ[n−1])ϕ
2 (xβ)

≤
‖ϕ‖2∞
N

∑
β∈Bn

λβw
2
0(x) · · ·w2

n−1(xβ[n−1])

=
‖ϕ‖2∞
N

EQm
Πn,T

[
(
Θn,1 (Xt0,x, ..., Xtn,x)

)2 |YT ]

where we have used the TBBA properties of Γ̃n. Then,

C̃ (m,T, ϕ, Y ) = ‖ϕ‖2∞
∑
β∈Bn

λβw
2
0(x) · · ·w2

n−1(xβ[n−1]).

The integrability of C̃ (m,T, ϕ, Y ) is deduced using similar arguments as in
Lemma 4.10.

Definition 6.2 We define π̃n,NT by

π̃n,NT ,
ρ̃n,NT

ρ̃n,NT (1)
=

∑
β∈B̃n

γ̃βw0(x) · · ·wn−1(xβ[n−1])δxβ∑
α∈B̃n

γ̃αw0(x) · · ·wn−1(xα[n−1])
. (6.2)

Corollary 6.3 There exists a positive random variable K̃ = K̃ (m,T, ϕ, Y )
such that

EP̃[|π̄nT (ϕ)− π̃n,NT (ϕ) ||YT ] ≤ K̃

N1/2
,

for all ϕ ∈ Cm+2
b

(
Rd
)
. Moreover, K̃ (m,T, ϕ, Y ) is integrable with respect to P̃.

20



Proof. We have that

|π̄nT (ϕ)− π̃n,NT (ϕ) | ≤

∣∣∣∣∣ π̃n,NT (ϕ)

ρ̄nT (1)
(ρ̄nT (1)− ρ̃n,NT (1))

∣∣∣∣∣+

∣∣∣∣ 1

ρ̄nT (1)
(ρ̃n,NT (ϕ)− ρ̄nT (ϕ))

∣∣∣∣
≤
‖ϕ‖∞
ρ̄nT (1)

|ρ̄nT (1)− ρ̃nT (1)|+ 1

ρ̄nT (1)
|ρ̄nT (ϕ)− ρ̃nT (ϕ)| .

By Theorem 6.1, we get

EP̃[|π̄nT (ϕ)− π̃n,NT (ϕ) ||YT ]

≤ 1

N1/2

1

ρ̄nT (1)

(
‖ϕ‖∞ C̃ (m,T,1, Y )

1/2
+ C̃ (m,T, ϕ, Y )

1/2
)
.

Hence,

K̃ (m,T, ϕ, Y ) =
1

ρ̄nT (1)

(
‖ϕ‖∞ C̃ (m,T,1, Y )

1/2
+ C̃ (m,T, ϕ, Y )

1/2
)
.

Finally, that EP̃[|K̃ (m,T, ϕ, Y ) |] <∞ follows, using Cauchy-Schwarz inequal-

ity, from the integrability of C̃ (m,T, ϕ, Y ) and Lemma 4.10.

6.2 Computational control of the KLV particle filter based
on the cubature and filtering weights

We define a collection {Γ̂j}nj=1 of random variables according to the following

recursion. Let B̄1 = B1 and {γβ}β∈B̄1 be defined by

{γβ}β∈B̄1 , {
λβw0(xβ[0])∑

α∈B1

λαw0(xα[0])
}β∈B̄1 = { λβw0(x)∑

α∈B1

λαw0(x)
}β∈B̄1 = {λβ}β∈B̄1 .

Next, define Γ̂1 , TBBA(N,N, 1, {γβ}β∈B̄1), B̂1 , {β ∈ B̄1 : γ̂β > 0}. For any

j ∈ {2, ..., n}, let B̄j , {β ∈ Bj : β− ∈ B̂j−1} and

{γβ}β∈B̄j , {
γ̂β−λβjwj−1(xβ[j−1])∑

α∈B̄j
γ̂α−λαjwj−1(xα[j−1])

}β∈B̄j .

Finally, define Γ̂j , TBBA(N,N, 1, {γβ}β∈B̄j ), B̂j , {β ∈ B̄j : γ̂β > 0}.
Note that, by construction,

∑
β∈B̂j γ̂β = N and the TBBA weights are

recursively defined and random. Set Gj , σ({Γ̂r}jr=1), j = 1, ..., n. Conditionally

to YT ∨ Gj−1, the family of random variables Γ̂j satisfies the minimal variance

properties of the TBBA generated random variables. In particular γ̂β ∈ Γ̂j
satisfies EP̃[γ̂β |YT ∨ Gj−1] = Nγβ , and

EP̃[(γ̂β −Nγβ)
2 |YT ∨ Gj−1] = {Nγβ}(1− {Nγβ}) ≤ Nγβ ,

where

γβ =
γ̂β−λβjwj−1(xβ[j−1])∑

a∈B̄j
γ̂α−λαjwj−1(xα[j−1])

.
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We define

ρ̂n,NT ,

(
n∏
l=1

σl

) ∑
β∈B̄n

γ̂βϕ (xβ) δxβ ,

where σ1 , 1
N

∑
β∈B1 λβw0(x) and σl , 1

N

∑
β∈B̄l

γ̂β−λβlwl−1(xβ[l−1]), l = 2, ..., n.

Theorem 6.4 There exists a positive random variable Ĉ = Ĉ (m,T, ϕ, Y ) such
that

EP̃[(ρ̄nT (ϕ)− ρ̂n,NT (ϕ))2|YT ] ≤ Ĉ

N
,

for all ϕ ∈ Cm+2
b

(
Rd
)
. Moreover, Ĉ (m,T, ϕ, Y ) is integrable with respect to P̃.

Proof. Define

Ψ̄j
T (ϕ) ,

∑
β∈Bj

λβw0(xβ[0]) · · ·wj−1(xβ[j−1])ϕ (xβ) , j = 1, ..., n,

Ψ̂j
T (ϕ) ,

(
j∏
l=1

σl

) ∑
β∈B̄j

γ̂βϕ (xβ) , j = 1, ..., n,

and note that Ψ̄n
T (ϕ) = ρ̄nT (ϕ) and Ψ̂n

T (ϕ) = ρ̂n,NT (ϕ) . We shall proceed by
induction.

• Case j = 1. By the TBBA properties of {γ̂β}β∈B̄1 , we get

EP̃[(Ψ̂1
T (ϕ)− Ψ̄1

T (ϕ))2|YT ]

= EP̃[σ2
1

∑
β∈B̄1

(
λβw0

(
xβ[0]

)
σ1

− γ̂β)ϕ (xβ)

2

|YT ]

≤ σ2
1

∑
β∈B̄1

EP̃[(Nγβ − γ̂β)2ϕ2 (xβ) |YT ]

= σ2
1

∑
β∈B̄1

{Nγβ}(1− {Nγβ})ϕ2 (xβ)

≤

(∑
β∈B1 λβw0(xβ[0])

)2

N

∑
β∈B̄1

γβϕ
2 (xβ)

≤
Ψ̄1
T (1) Ψ̄1

T

(
ϕ2
)

N
.

Note that, Ψ̄1
T

(
ϕ2
)
≤ ‖ϕ‖2∞

(
Ψ̄1
T (1)

)
. Moreover,

(
Ψ̄1
T (1)

)2
= w0(x)2 = exp(

k∑
j=1

2{hj(x)(Y jt1 − Y
j
t0)− T

2n
(hj(x))2}).

Hence,

EP̃[
(
Ψ̄1
T (1)

)2
] = EP̃[exp(

k∑
j=1

2{hj(x)(Y jt1 − Y
j
t0)− T

2n
(hj(x))2})]
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=

k∏
j=1

EP̃[exp{2hj(x)(Y jt1 − Y
j
t0)− T

n
(hj(x))2}]

= exp

T
n

k∑
j=1

(hj(x))2

 ≤ exp(kT ‖h‖2∞)

• Case j = n. We can write

Ψ̄n
T (ϕ)

=
∑
β∈Bn

λβw0(xβ[0]) · · ·wn−1(xβ[n−1])ϕ (xβ)

= w0

(
xβ[0]

)
R̄1,n
T/nϕ = w

(
xβ[0]

)
R̄1,n−1
T/n (wn−1R̄

n
T/nϕ) = Ψ̄n−1

T (wn−1R̄
n
T/nϕ)

and Ψ̂n
T (ϕ) = (

∏n
l=1 σl)

∑
β∈B̄n γ̂βϕ(xβ). Consider the auxiliary random

measure

αnT (ϕ) , EP̃[Ψ̂n
T (ϕ)|YT ∨ Gn−1]

=

(
n−1∏
l=1

σl

) ∑
β∈B̄n

γ̂β−λβnwn−1(xβ[n−1])ϕ(xβ)

= Ψ̂n−1
T (wn−1

∑
α∈B̄1

λαϕ
(
xβ[n−1]∗α

)
) = Ψ̂n−1

T (wn−1R̄
n
T/nϕ).

Then,

EP̃[(Ψ̄n
T (ϕ)− Ψ̂n

T (ϕ))2|YT ]

= EP̃[(Ψ̄n
T (ϕ)− αnT (ϕ))2|YT ] + EP̃[(αnT (ϕ)− Ψ̂n

T (ϕ))2|YT ]

, A1 +A2.

because

EP̃[(Ψ̄n
T (ϕ)− αnT (ϕ))(αnT (ϕ)− Ψ̂n

T (ϕ))|YT ]

= EP̃[(Ψ̄n
T (ϕ)− αnT (ϕ))EP̃[(αnT (ϕ)− Ψ̂n

T (ϕ))|YT ∨ Gn−1]]

= 0,

by the definition of αnT (ϕ). Note that

A1 = EP̃[(Ψ̄n−1
T (wn−1R̄

n
T/nϕ)− Ψ̂n−1

T (wn−1R̄
n
T/nϕ))2|YT ],

and by the induction hypothesis we get

EP̃[(Ψ̄n−1
T (ϕ)− Ψ̂n−1

T (ϕ))2|YT ] ≤
Ψ̄n−1
T (1) Ψ̄n−1

T

(
ϕ2
)

N
.

Hence,

A1 ≤
Ψ̄n−1
T (1) Ψ̄n−1

T ((wn−1R̄
n
T/nϕ)2)

N
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≤
‖ϕ‖2∞ Ψ̄n−1

T (1) Ψ̄n−1
T ((wn−1R̄

n
T/n1)

2
)

N

=
‖ϕ‖2∞ Ψ̄n−1

T (1) Ψ̄n−1
T (w2

n−1)

N
,

because R̄nT/n1 = 1. For the term A2, we can write

A2 = EP̃[

(
n∏
l=1

σ2
l

)

× EP̃[

∑
β∈B̄n

(
γ̂β−λβnwn−1(xβ[n−1])

σn
− γ̂β)ϕ (xβ)

2

|YT ∨ Gn−1]|YT ]

≤ EP̃[

(
n∏
l=1

σ2
l

) ∑
β∈B̄n

EP̃[(Nγβ − γ̂β)2|YT ∨ Gn−1]ϕ2 (xβ)],

where we have used the Gn−1 measurability of {σl}nl=1 and that the random

variables Γ̂n conditionally to Gn−1 are negatively correlated. Using now
the TBBA properties of Γ̂n we have that

A2 ≤ EP̃[

(
n∏
l=1

σ2
l

) ∑
β∈B̄n

{Nγβ}(1− {Nγβ})ϕ2 (xβ) |YT ]

≤ EP̃[

(
n−1∏
l=1

σ2
l

)
σ2
nN

∑
β∈B̄n

γβϕ
2 (xβ) |YT ]

≤
‖ϕ‖2∞
N

EP̃[

(
n−1∏
l=1

σ2
l

)∑
β∈B̄n

γ̂β−λβnwn−1(xβ[n−1])

2

|YT ].

Note that(
n−1∏
l=1

σl

) ∑
β∈B̄n

γ̂β−λβnw(xβ[n−1]) = Ψ̂n−1
T (wn−1R̄

n
T/n (1)) = Ψ̂n−1

T (wn−1),

because R̄nT/n (1) = 1. By taking iteratively conditional expectations with

respect to YT ∨ Gj , j = 1, n − 2, it is easy to see that EP̃[Ψ̂n−1
T (wn−1)] =

Ψ̄n−1
T (wn−1). Hence, using again the induction hypothesis we get that

EP̃[(Ψ̂n−1
T (wn−1))2|YT ] ≤ (Ψ̄n−1

T (wn−1))2 +
Ψ̄n−1
T (1) Ψ̄n−1

T

(
w2
n−1

)
N

,

which yields

A2 ≤
‖ϕ‖2∞ (Ψ̄n−1

T (wn−1))2

N
+
‖ϕ‖2∞ Ψ̄n−1

T (1) Ψ̄n−1
T

(
w2
n−1

)
N2

≤ ‖ϕ‖2∞

(
Ψ̄n
T (1

)
)2 + Ψ̄n−1

T (1) Ψ̄n−1
T

(
w2
n−1

)
N

.
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Combining the bounds for A1 and A2 we get that

EP̃[(Ψ̄n
T (ϕ)−Ψ̂n

T (ϕ))2|YT ] ≤
‖ϕ‖2∞
N

{
2Ψ̄n−1

T (1) Ψ̄n−1
T (w2

n−1) +
(
Ψ̄n
T (1

)
)2
}
,

and, therefore,

Ĉ (m,T, ϕ, Y ) = ‖ϕ‖2∞
{

2Ψ̄n−1
T (1) Ψ̄n−1

T (w2
n−1) +

(
Ψ̄n
T (1

)
)2
}

The integrability of Ĉ (m,T, ϕ, Y ) follows by using similar arguments as
in the proof of Lemma 4.10.

Definition 6.5 We define π̂n,NT by

π̂n,NT ,
ρ̂n,NT (ϕ)

ρ̂n,NT (1)
=

1

N

∑
β∈B̄n

γ̂βϕ (xβ) . (6.3)

Theorem 6.4 yields the following result.

Corollary 6.6 There exists a positive random variable K̂ = K̂ (m,T, ϕ) such

that EP̃[|π̄nT (ϕ)−π̂n,NT (ϕ) ||YT ] ≤ K̂(m,T,ϕ,Y )
N1/2 , for all ϕ ∈ Cm+2

b

(
Rd
)
. Moreover,

K̂ (m,T, ϕ, Y ) is integrable with respect to P̃.

Proof. The proof is the same as the one for Corollary 6.3, making the obvious
changes and using Theorem 6.4.

6.3 Main result for the KLV particle filter

The main result of the paper is the following:

Theorem 6.7 There exists a positive constants c̃ = c̃ (m,T, ϕ) and ĉ = ĉ (m,T, ϕ)
such that, for all ϕ ∈ Cm+2

b

(
Rd
)
, we have

EP̃[|πT (ϕ)− π̃n,NT (ϕ) |] ≤ c̃( 1

N1/2
+

1

n
),

and

EP̃[|πT (ϕ)− π̂n,NT (ϕ) |] ≤ ĉ( 1

N1/2
+

1

n
),

where π̃n,NT and π̂n,NT are defined in (6.2) and (6.3), respectively.

Proof. Using the triangular inequality we have that

EP̃[|πT (ϕ)− π̃n,NT (ϕ) |] ≤ EP̃[|πT (ϕ)− π̄nT (ϕ)|] + EP̃[|π̄nT (ϕ)− π̃n,NT (ϕ) |].

By Corollary 4.7, it follows that

EP̃[|πT (ϕ)− π̄nT (ϕ)|] ≤ C

n

and, by Corollary 6.3, we have that

EP̃[|π̄nT (ϕ)− π̃n,NT (ϕ) |] ≤ EP̃[EP̃[|π̄nT (ϕ)− π̃n,NT (ϕ) ||YT ]]

≤ 1

N1/2
EP̃[K̃ (m,T, ϕ, Y )] =

c̃(m,T, ϕ)

N1/2
,

which yields the result. The proof for π̂n,NT is analogous.
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7 Numerical simulations

In this section we present some numerical experiments to test the performance
of the algorithms we have introduced. The model chosen is a particular case
of the Beneš problem. This is a stochastic filtering problem with a nonlinear
dynamics for the signal and a linear dynamics for the observation process. This
problem has an analytical finite dimensional solution, known as the Beneš filter.
In particular the conditional distribution of the signal, given the observation
process, is equal to a Gaussian mixture. Although the model do not satisfy
some of the conditions for which our theory holds (the function h and the
derivatives of f are not bounded) we believe that is good benchmark to test the
new algorithms as it allows for sufficient rich (non-linear) behaviour while still
having a closed form expression for its solution.

7.1 The model and its exact solution

The dynamics of the signal is given by the following one-dimensional SDE

Xt = x0 +

∫ t

0

f(Xs)ds+ σVt, 0 ≤ t ≤ T, (7.1)

where f (x) = µσ tanh(µσx), and the observation process is given by the one-

dimensional process Yt =
∫ t

0
h(Xs)ds + Wt, where h(x) = h1x + h2, Vt and Wt

are two independent, one-dimensional Brownian motions, x0, µ, h1 and h2 ∈ R
and σ > 0. The conditional law of Xt given Yt in the previous problemhas
an exact expression. It is a weighted mixture of two normal distributions, see
Chapter 6 in [1]. That is, given a realization Y = {Ys}0≤s≤t of the observation
process, we have the following equality in law for Xt given Yt,

πt = w+
t N (A+

t /(2Bt), 1/(2Bt)) + w−t N (A−t /(2Bt), 1/(2Bt)),

where

w±t , exp
(
(A±t )2/(4Bt)

)
/(exp

(
(A+

t )2/(4Bt)
)

+ exp
(
(A−t )2/(4Bt)

)
)

A±t , ±µ
σ

+ h1Ψt +
h2 + h1x0

σ sinh (h1σt)
− h2

σ
coth (h1σt) ,

Bt ,
h1

2σ
coth (h1σt) , Ψt ,

∫ t

0

sinh(h1σs)

sinh(h1σt)
dYs,

and N
(
µ, σ2

)
denotes a normal distribution with mean µ and variance σ2.

Recall that in practice we only observe Y at a finite partition Πn,T = {0 =
t0 < t1 < · · · < tn−2 < tn−1 = T} of the interval [0, T ]. Hence, we have to
approximate the integral in the definition of Ψt using a Riemann-Stieltjes sum.

In particular, we will use Ψti '
∑i−1
k=0

sinh(h1σtk+1)
sinh(h1σti)

(Ytk+1
−Ytk), for all ti ∈ Πn,T .

From the expression for the density of the posterior distribution πt, one can
compute hXt the density of the signal Xt, which we will call the prior. Setting
h2 = 0 and taking limits when h1 tends to zero one has that

Law(Xt) = w+
t N (Ā+

t /(2B̄t), 1/(2B̄t)) + w−t N (Ā−t /(2B̄t), 1/(2B̄t)),

where

w̄±t , exp
(
(Ā±t )2/(4B̄t)

)
/(exp

(
(Ā+

t )2/(4B̄t)
)

+ exp
(
(Ā−t )2/(4B̄t)

)
)
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Ā±t ,
x0 ± µσt
σ2t

, B̄t ,
1

2σ2t
.

7.2 Numerical experiments

In the numerical experiments we set certain values for the parameters µ, σ, h1, h2, x0

and T, and we compute a realisation of Xt and Yt using the Euler scheme and
an equidistant partition Πm,T = {ti = i

mT}i=0,...,m with m = 106. We will call
the realisation of Xt the seed particle. All the other simulations will be done
assuming that we are given the fixed path Yt, computed from the seed particle
path. Usually we will consider partitions Πn,T , with n < m and the values of
Yt in these partitions will be obtained using linear interpolation of the values of
Yt in Πm,T .

Using the previously simulated discrete path of Y, we can approximate the
integral Ψt and compute the values of w±t , A

±
t , Bt w̄

±
t , Ā

±
t and B̄t for t ∈ Πm,T ,

obtaining the parameters of the normal mixtures for the prior and the posterior
at each t ∈ Πm,T . Hence, we can plot the exact densities of the prior and the
posterior and compute any expectation with respect to them, at each t ∈ Πm,T .

7.2.1 Visualising the approximation

A first experiment to actually visualize the approximation mechanism is the
following. We use the following set of parameter values

µ = 2.2, h1 = 0.15, h2 = 0.0, σ = 2.2, x0 = 0.0 T = 10.0.

In Figure 1, we plot the density of the prior at time t = 8.3. We also plot
an histogram of the position of the particles as well as its actual positions,
represented by small vertical bars below the horizontal axis. In addition, we
draw a triangle which represents the position of the seed particle. To compute
the law of the signal is equivalent to solve the stochastic filtering problem with
the sensor function h being equal to zero, that is, making all the filtering weights
equal to 1. Hence, the prior and posterior densities coincide in this case. Figure
1 points out the main issue that any particle filter without resampling is going to
face when solving this problem. Note that the law of the signal is a symmetric
bimodal distribution with the distance between the two modes increasing as
time increases. Eventually, the distribution of the signal consists in two non-
overlapping peaks. This means that the seed particle will be in any of these two
peaks with equal probability and will remain there forever. As no observation
data is available, the prior distribution itself offers a bad approximation to the
signal as half of the mass and, hence, half of the particles will always be placed
in the wrong peak, that is, in the one that does not contain the signal.

In Figure 2, we plot the prior and posterior densities at time t = 8.3. We
also plot the histogram of the particle approximation of the posterior density.
We use the first version of the KLV-filter where the TBBA is only applied to the
cubature weights (the data is not taken into account). Here half of the particles
are still situated in the wrong place and are assigned small weights. Hence,
half of the computational effort is wasted in maintaining alive particles that are
contributing zero to the approximation.

In Figure 3, we plot the same elements of Figure 2 but using the second
version of the KLV-filter with resampling. As a result, now all the particles
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Figure 1: Plot of the exact density of the signal Xt and the histogram of its
particle approximation, both at t = 8.3.

are placed on the correct peak, the one with the signal, and contribute with a
non-null weights to the approximation.

7.2.2 Convergence of the KLV particle filter

In this section we investigate numerically the convergence of the KLV filter in
terms of the number or time steps in the partition and the number of particles.
We use the following set of parameter values

µ = 0.5, h1 = 0.4, h2 = 0.0, σ = 0.8, x0 = 1.0 T = 10.0.

We will estimate πT (ϕ) where ϕ(x) = x, that is, the conditional expectation of
the signal at time T given the observation process up to time T. We take as the
exact value for πT (ϕ) the value given by the Beneš filter E[Xt|Yt] = πT (ϕ) =

(w+
TA

+
T + w−T A

−
T )/(2BT ). First, we estimate πT (ϕ) using π̂n,NT (ϕ), where the

number of particles N = 105 and we choose various values for n, the number
of steps in the discretization partition. We compute π̂n,NT (ϕ) using cubature
formulas of degree 3 and 5. In Figure 4, we plot the logarithm of the absolute
error in the estimation of πT (ϕ) by π̂n,NT (ϕ) against the logarithm of the number
of time steps. Both, the cubature formula of degree 5 and degree 3 give a rate
of convergence of one. Hence, it is clear that the discretisation error of Picard’s
filter is a lower bound for the discretisation error of the method, even when
one uses a degree 5 (order 2 for approximating the law of the signal) cubature
formula.

In Fig 5, we plot the absolute error obtained using π̂n,NT (ϕ) with n = 150
fixed and varying the number of particles N .

The number of particles used in the simulation ranges from 2 to 220 '
1048576. Apparently, with 215 = 32768 particles we already obtain a good
partial sampling of the cubature tree (we get close to the discretization error)
and there is no significant improvement in using a larger number of particles.
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Figure 2: Plot of the exact density of Xt, the exact density of Xt|Yt and the
histogram of its particle approximation, both at t = 8.3.
First version of the KLV particle filter.

7.2.3 Comparison with the classical particle filter based on Euler
approximation

In this section we compare the performance of our algorithm against the classical
particle filter implemented using the Euler scheme to approximate the signal
and the TBBA to perform the resampling at each time step. We will denote
by π̊n,NT (ϕ) the classical particle filter. In what follows, we add a subindex r
indicating the result of the r-th independent launch of both algorithms, r =
1, ...,M. Hence, our approximations will be

π̂n,N,MT (ϕ) =
1

M

M∑
r=1

π̂n,NT,r (ϕ), π̊n,N,MT (ϕ) =
1

M

M∑
r=1

π̊n,NT,r (ϕ).

We set the same number of launches M = 10 and the same number of steps in
the partition for both estimators. However, the number of particles used in our
algorithm will be just N = 100 while we set N = 10000 for the classical particle
filter. We use the following set of parameter values

µ = 0.05, h1 = 0.8, h2 = 0.0, σ = 1.0, x0 = 0.0 T = 20.0.

The following graph, Figure 6, plots the absolute error of the estimates obtained
using the classical particle filter (Euler) and the new algorithm with cubature
formulas of degree 3 and 5 against the CPU time used in each computation.

One can see from Figure 6, that the KLV particle filter obtains better errors
with less computational time. In addition, it seems that the KLV particle filter
is more robust to the resampling procedure than the classical particle filter, in
the sense that the additional randomness added by resampling does not increase
the error when using a large number of time steps.
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Figure 3: Plot of the exact density of Xt, the exact density of Xt|Yt and the
histogram of its particle approximation, both at t = 8.3.
Second version of the KLV particle filter.
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