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Abstract

Generalized symmetry is a relatively new field of study that has coined new terms in the
century-old discussion of gauge theory. In this paper we will examine the interplay be-
tween Yang-Mills theory and generalized symmetry through various mathematical tools.
The paper loosely centers around the line spectrum of SU(N) and PSU(N) Yang-Mills
theories in 4d with theta term turned on. The basics of generalized symmetry and gauge
theory are introduced in the first two chapters including sections on gauging global sym-
metry and topological monopole. The remaining chapters examine the Yang-Mills duo
with Lie theory and discrete gauge background field.
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.

Palestine, Jerusalem, and the Temple severally and concurrently represent
the image of the universe and the Center of the World. This multiplicity of
centers and this reiteration of the image of the world on smaller and smaller
scales constitute one of the specific characteristics of traditional societies.

To us, it seems an inescapable conclusion that the religious man sought to live
as near as possible to the Center of the World.

— Mircea Eliade, The Sacred and the Profane
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Chapter 1

Introduction

According to [1], higher-form gauge theories were first discussed by [29] in the 70s. Since
then they have been a stable in physicists’ discourse. They showed up in various fields of
theoretical physics such as Chern-Simons theory, rational CFTs, lattice gauge theories,
supergravity and string theory. The list of literature goes on ([30], [31], etc.). Most of
the earlier studies focused on a local gauged version of the higher-form fields. A wave
of discussion started by the seminal work [1] shifted attention to the global symmetry of
higher-dimensional objects and its consequence. In recent literature, generalized symme-
try has further expanded the language of physics by bringing in concepts from category
theory and higher-group to explain non-invertible symmetries.

This dissertation will not go into the territory of non-invertible symmetries. Instead,
we will focus on the interplay of generalized symmetry and gauge theory, or more specif-
ically, Yang-Mills theory. The paper loosely centers around the line spectrum of SU(N)
and PSU(N) Yang-Mills theories in 4d with theta term turned on. We will derive some
of their properties through different mathematical frameworks.

In chapter 2, we will start with Noether’s theorem and ordinary (0-form) global
symmetry. From there we will re-envision the unitary action of global symmetry as
topological operator. We will use the topological nature of the operator to bend it into
shape that helps us understand its property, and we will extend the notion we have
developed with 0-form symmetry to p-form symmetry with arbitrary degree of p. We
will finish with a concrete example of 1-form symmetries rooted in Maxwell theory.

In chapter 3, we begins with a crash course on principal fibre bundle, the mathematical
construction behind gauge theory. We will derive the gauge transformation of connection
and explain what “gauge” means on a mathematical stand point. We will then use the
fibre bundle picture to construct various topologically non-trivial objects in gauge theory,
including Dirac monopole and SU(2) winding number. Alongside we will introduce the
role of theta term in Yang-Mills theory. The chapter finishes with a generalization of the
process of gauging global symmetry to local symmetry.

In chapter 4 we will mainly focus on the line operators of Yang-Mills theory. We
will start by deriving the Wilson Line operator with a fibre bundle setup, followed by
a discussion of line screening in 1-form symmetry. Seeking to extend the discussion to
magnetic lines, the remaining of the chapter focuses on two specific group: SU(N) and
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2 Chapter 1. Introduction

PSU(N). We will show that it is possible to obtain a classification for magnetic charges
and line spectrum in the two theories via abstract derivations with Lie theory. The
chapter finishes with a concrete example of SU(2) Yang-Mills and its centerless form
SO(3). An important result is the discretization of theta angle in PSU(N) theory.

Finally, in chapter 5 we seek to reproduce some of the results in chapter 4 by gauging
the center with discrete gauge fields. We will first need to introduce the mathematical
background for discrete gauge fields: algebraic topology. After constructing a discrete
gauge field from cohomology, we will discuss how it can be conveniently expressed in the
form of U(1) gauge field. The chapter finishes with an explicit calculation of PSU(N)
action and its theta term. The discretization of theta angle comes out as a result of the
discrete period of ZN field.



Chapter 2

Generalized Global Symmetry

In this chapter, we will develop a generalized formal language of global symmetry in
Quantum Field Theory (QFT) starting with a review on ordinary global symmetry.
We will then extend the formal language to include p-form symmetry and illustrate
the topological nature of its operators. It is followed by a physical example of dual 1-
form symmetries in Maxwell Theory. The chapter mostly traces the footstep of [1] that
formulated and introduced the framework. The detailed treatments are heavily inspired
by some of the recent lecture notes [10],[9] and [11] and two series of lecture videos
[33], [32]. It should be noted that for the purpose of this paper, we will only consider
group-like symmetries that are always invertible. The non-invertible side of the story is
a burgeoning topic in theoretical discussion and provides interesting link between QFT
and category theory. A good resource for this topic would be [8].

2.1 Continuous 0-Form Global Symmetry
We will start, in a typical fasion, with a review of ordinary symmetry we all know and love.
Consider a d-dimensional QFT with an action and a symmetry group G(0). The notation
(0) marks the degree of the symmetry. We will soon see what it means. Immediately
following from Noether’s theorem we can find the conservation of Noether current and
a conserved charge defined by integrating time component of the current over a spatial
slice:

∂µj
µa = 0 Qa(t) =

∫
dd−1x⃗ j0a(t, x⃗) (2.1)

where a running from 1 to dim(G(p)) is the group index. A classical result is that
Qa(t) are also generators of the symmetry group, a proof can be found in [6]. We will
now quantize the system so that the generator becomes an operator on the Hilbert space.
It acts on a local operator O(x) through a commutator bracket:

[θaQa(t),O(t, x⃗)] = δθO(t, x⃗)

In other words, it changes O by an infinitesimal amount δO. Such expression is
obviously problematic when we later discuss a discrete group action. In some sense we
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4 Chapter 2. Generalized Global Symmetry

can say that the charge is not the most fundamental object associated with a group
structure. Instead we should construct a unitary operator out of the generator:

Uθ(t) = exp (iθaQa) = exp
(
iθa

∫
dd−1x⃗ j0a(t, x⃗)

)
(2.2)

Here θa is the parameter marking an element of group G(0):

eiθaT a = g ∈ G(0)

so we can equivalently denote Uθ as Ug. Notice that Uθ(t) is manifestedly unitary and
therefore invertible. It acts on a local operator in the familiar form:

Uθ(t)O(t, x⃗)U †
θ (t) = O′(t, x⃗) (2.3)

We say that the operator O, which undergoes transformation of U , is charged under
the symmetry. Following from [10], we will call Uθ a Symmetry Defect Operator (SDO)
of the symmetry. An alternative view is that the operator Uθ(t) is essentially equivalent
to inserting Uθ every point on a spatial slice of the space-time at t, Σt (Fig.2.1). We can
see this more clearly by switching to a geometric notation using form technique. We can
rewrite 2.1, 2.2 as follow:

d ∗ Ja
1 = 0 Qa(Σt) =

∫
Σt

∗Ja
1 (2.4)

Uθ(Σt) = exp (iθaQa) = exp
(
iθa

∫
Σt

∗Ja
1

)
(2.5)

Figure 2.1: Symmetry actions as topological operators

Ja
1 is now the 1-form associated to the current and the subscript denotes the dimension

of the form. Differential Geometry has provided us with a natural way of integrating
(d-1)-form ∗Ja

1 on the (d-1)-dim submanifold Σt. We now rewrite 2.3 as:

Uθ(t)O(t, x⃗)U †
θ (t) = lim

∆t→ 0
Uθ(Σt+∆t)O(t, x⃗)U †

θ (Σt−∆t) (2.6)
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Some new insight would be gained if we see the above expression as operators within
a path integral, ⟨Uθ(t)O(t, x⃗)U †

θ (t)⟩, instead of acting on a Hilbert space. Since path
integrals are automatically time-ordered, it makes sense to insert Uθ on any (d-1)-dim
surface instead of a spatial slice restricted to time t. For the same reason, the order
of operators doesn’t matter anymore. The revelation comes when we try to find an
expression for Uθ on arbitrary surface. It follows that for a (d-1)-dim submanifold Σd−1

deformed infinitesimally to Σ′
d−1 by whipping through a d-dim submanifold Σ̃d:

Uθ(Σ′
d−1) = exp

(
iθ
∫

Σ′
d−1

∗Ja
1

)

= exp
(
iθ

(∫
Σd−1
∗Ja

1 +
∫

Σ′
d−1−Σd−1

∗Ja
1

))

= Uθ(Σd−1) exp
(
iθ
∫

∂Σ̃d

∗Ja
1

)
= Uθ(Σd−1) exp

(
iθ
∫

Σ̃d

d ∗ Ja
1

)
= Uθ(Σd−1)

We have used 2.4 and Stocke’s theorem in the derivation, and the notation ∂Σ̃d refers
to the boundary of Σ̃d. The equation illustrates the Topological Nature of the SDO.
Uθ(Σ) remains unchanged under a deformation of Σ that does not cross over any charged
object. Such deformations are called topological deformations.

2.1.1 Linking Picture and Fusion Rule

We can now rewrite 2.3 as

Uθ(Σd−1)O(x)U †
θ (Σ′

d−1) = O′ (2.7)

where O should be inserted at a point x between Σd−1 and Σ′
d−1. Also,

U †
θ (Σ′

d−1) = U−1
θ (Σ′

d−1) = Uθ(−Σ′
d−1)

and 2.7 can be reformulated as

Uθ(Σd−1)O(x)Uθ(−Σ′
d−1) = Uθ(Σd−1 − Σ′

d−1)O(x)

With a proper boundary condition at spatial infinity, the surface Σd−1−Σ′
d−1 can be

connected at infinity to form a close surface without affecting the path integral. We now
use the topological nature of the operator to shrink the surface to proximity of O and
for the sake of simplicity, make it a sphere. The final form of 2.7 follows:

Uθ(Sd−1)O(x) = O′(x) (2.8)

The action can be visualized by Fig.2.2, taken from [9]. We can equivalently think of
2.8 as passing Uθ(Sd−1) through O(x) leaving O′(x) and Uθ(S ′

d−1) on an empty sphere.
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Figure 2.2: Action of symmetry as linking

The sphere must then shrink to a trivial operator. It is possible to find O′(x) explicitly.
In group theory language, O is acted on by the group with left action (·) and therefore
“in representation” of the group. We can denote it as OR where R is some representation
R : G(0) → End(V ) and this action is formalized as:

g ·OR := R(g)OR

Recall that Ward identities can be presented as follow:

d ∗ Ja
p = 0 (2.9)

d ∗ Ja
pOR(M) = R(T a)δd−p+1(x ∈M)OR(M) (2.10)

d ∗ Ja
pOR(M1)...OR(Mn) = 0 (1 < n ∈ Z) (2.11)

where M,M1... are submanifolds that OR lives on. δd−p+1(x ∈ M) is the (d-p+1)-
form Poincaré dual of a delta function. These are a series of operator identities that
hold true inside a path integral. The first one is a direct correspondence to the classical
conservation of current and we have used it earlier without deliberation. For a derivation
of Ward identities, see [15]. It is now straight forward to write

Uθ(Sd−1)OR(x) = O′
R(x)

= exp
(
iθa

∫
Sd−1
∗Ja

1

)
OR(x)

= exp
(
iθa

∫
Dd

d ∗ Ja
1

)
OR(x)

= exp
(
iθa

∫
Dd

R(T a)δd(x)
)
OR(x)

= exp (iθaR(T a))OR(x) = R(g)OR

where Dd is the “inside” of the sphere Sd−1. We can see that an SDO linking to a
charged operator simply performs its associated group action on the charged operator.

The linking picture is useful because it naturally suggests the kind of operator that
can be charged under a certain symmetry. In precise mathematical vocabulary we say
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that the point x and the sphere Sd−1 are two linking submanifolds. We will discuss the
notion further when we go to higher-form symmetries later.

While SDO acts on charged operator via linking, there is also an algebra formed
between two SDOs. Notice that SDOs are marked by elements of the group and therefore
beg the existence of a map:

Ug1 ⊗ Ug2 = Ug1×g2 (2.12)

where g1 × g2 is the group multiplication. This map obviously obeys the group
structure and is called the fusion rule. Notice that the fusion rule is manifested by acting
Ug1 and Ug2 on a charged operator consecutively. See Fig.2.3 below, taken from [9].

Figure 2.3: Caption:Two ways of thinking about fusion rule

Ug2(S(g2)d−1)Ug1(S(g1)d−1)OR(x) = R(g1)Ug2(S(g2)d−1)OR(x)
= R(g1)R(g2)OR(x)
= R(g1 × g2)OR(x) = Ug1×g2(Sd−1)OR(x)

where in the last line we have used the homomorphic property of representation
R. We can visually understand the fusion rule as Uθ1 and Uθ2 fusing together before
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acting on the charged operator. There are a few subtle points in our description. The
charged operator is required to be in linear representation of SDO but the Hilbert Space
is not. We allow the symmetry to be realized projectively on the states (think about spin
representation). Also, SDOs are not required to act faithfully on the charged operator.
([32]).

The fusion rule seems like a harmless group action so far, but it is more general than
that. In cases where there is categorical or higher-group structure in the theory, the
fusion rule of two operator could involve non-invertible transformation, which clearly
violates the group axioms. See [8] for more information.

2.1.2 Special Case: U(1) Ordinary Symmetry

A specific and arguably more useful case of this generalized language is when G(0) ∼= U(1).
The representation theory of U(1) is relatively simple. We can denote an element of the
group as

eiα ∈ U(1) α ∈ [0, 2π)

and therefore SDO will be marked by a parameter α:

Uα(Σd−1) = exp (iαQ) = exp
(
iα
∫

Σd−1
∗J1

)
Also, the representation of U(1), denoted as ϕ(g), is marked by some integer. This is

a result following from Schur’s lemma. More explicitly:

ϕ(g) := ϕq(g) = eiαq, q ∈ Z

Thus the charged operators are now equivalently denoted by an integer q, known as
the ”charge” of the operator. The action of the symmetry now is

Uα(Sd−1)Oq(x) = eiαqOq(x)

i.e. it simply dresses the operator with a phase eiαq. There is a more elegant way to
classify these charge operators and it would benefit us later to introduce the mathematical
notation of it.

We define the set of all homomorphic maps:

Φ : G→ U(1)

These maps themselves form another Abelian group under the multiplication of U(1)
group. For two maps ϕ, ϕ′ ∈ Φ:

(ϕ×Φ ϕ
′)(g) := ϕ(g)×U(1) ϕ

′(g)

This group is called the Pontryagin dual group of the original group G and denoted
as Ĝ. When the group G is Abelian, we claim without proving that the Pontryagin dual
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of G marks the irreps of G. Therefore the charged operators under an Abelian
symmetry G is marked by elements of the Pontryagin dual group Ĝ.

For example, for G ∼= U(1) we know that Ĝ ∼= Z i.e. the group of integer under
addition. Therefore the charged operators of a U(1) symmetry are marked by an integer.

The Pontryagin dual further has a nice property that ̂̂
G ∼= G. The notion of Pon-

tryagin dual works not only for continuous group but also for discrete group. It helps
simplify the situation once we complicate the picture with Abelian or non-Abelian Gauge
Group. Notice that this method only works for Abelian group since the Pontryagin dual
of non-Abelian group does ont correspond to the irreps.

2.2 p-Form Global Symmetry

Generalization to p-form symmetry is simple with the formal language we just introduced.
Assuming G(p) ∼= U(1) instead of a 1-form current J1 we now have a (p+1)-form Jp+1.
Everything else follows exactly like the 0-form symmetry case we have studied. We have
the list of essential equations:

d ∗ Jp+1 = 0 Uα(Σd−p−1) = exp
(
iα
∫

Σd−p−1
∗Jp+1

)
Uα(Sd−p−1)Oq(Γp) = O′

q(Γp)

(2.13)
Notice that the charged operator is p-dimensional and hence the name p-form sym-

metry. More specifically, a p-dimensional operator is the lowest-dimensional object that
can be acted on by Uα(Sd−p−1). To see this heuristically, consider the case where d = 3,
p = d − p − 1 = 1. In this case, Uα(S1) acts trivially on a point operator because we
can always use the topological nature of SDO to move the S1 circle away some the point
so that it contracts to identity. The lowest-dimensional operator that can be charged
under Uα(S1) in 3d is a line. We haven’t discussed how operator with dim > p can be
charged under p-form symmetry. This is a topic related to higher-representation and
beyond the scope of this paper. A good introduction can be found in [8]. From now on
we will consider dim = p operator as the only relevant operator charged un-
der p-form symmetry. We have hinted on a more precise definition of this action via
linking number. To see this, let us write out the action of the symmetry more explicitly:

Uα(Sd−p−1)Oq(Γp) = O′
q(Γp) = exp (iαqLink(Sd−p−1,Γp))Oq(Γp) (2.14)

This is follows directly from 2.10 with a twist that a p-dimensional charge oper-
ator can wrap around the SDO for more than once, reflected as the linking number
Link(Sd−p−1,Γp).

The concept is based on a sense of direction on the d-dimensional oriented space-time
manifold Md. For two submanifolds Up and Vq to possess a linking number, it is required
that they intersect transversally, meaning that 1. it is possible to introduce a (p+1)-
dimensional submanifold Wp+1 for which Up = ∂Wp+1 is its boundary, 2. there are points
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of intersection pi of Wp+1 and Vq and 3. The tangent spaces of pi separately on Wp+1

and Vq give a subspace of the tangent space of Md with Tpi
Wp+1

⊕
Tpi
Vq ⊆ Tpi

Md, which
is to say that for each pi there is a well defined orientation on Md. The linking number is
given by summing up the signs of orientations of pi. In addition, the map is by definition
symmetric:

Link(Up, Vq) =
∑

i

sign(pi) Link(Up, Vq) = Link(Vq, Up)

and we claim without proving that it is independent of the choice of Wp+1 on Up.
sign(pi) is defined to be +1 if the induced orientation at pi goes along that of Md and
−1 if otherwise. This is not the most rigorous explanation of the concept but I hope it
is enough for graphical intuition. See Fig.2.4 (taken from [10]) for a picture of how it
works in 3d with p = q = 1.

Figure 2.4: linking number: how it works

The most important takeaway is that for Tpi
Wp+1

⊕
Tpi
Vq ⊆ Tpi

Md to satisfy the
dimensions must match on two sides, p+1+q != d. We have now recovered the dimension
restriction of a charged operator. Using dual form, there is a more useful and nonetheleast
equivalent definition of the Linking number:

Link(Up, Vq) =
∫

Md

δd−p−1(x ∈ Wp+1) ∧ δd−q(x ∈ Vq)

=
∫

Wp+1
δd−q(x ∈ Vq) =

∫
Vq

δd−p−1(x ∈ Wp+1)
(2.15)

So far we have only considered the case where the symmetry is a continous Abelian
group U(1). One might be tempted to extend the discussion to non-Abelian symmetry.
However, as far as we are concerning about not-so-ordinary symmetry (p > 0) it won’t
be necessary. In fact, any symmetry with degree p > 0 must be Abelian.

To see this, consider the following situation in 3-dimension: for a 1-form symmetry,
the SDO Ug(S1) marks an element of the group, lives on a 1-sphere (circle), and is
topological. This is generally true even if we do not know what the group G(1) is. If we
acts on a charged operator O(Γ1) with two SDOs marked by two different element of the
group consecutively, we claim that there is no proper definition of order because we can
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Figure 2.5: Deformations to swap the order

always use the topological nature to perform a series of deformations to swap the order
(Fig.2.5 from [10]).

That implies that whatever the fusion rule may be, it must be Abelian, e.g.

Ug1 ⊗ Ug2 = Ug2 ⊗ Ug1

2.3 Dual 1-Form Symmetry in Maxwell Theory
We are now ready to look at some physical theory with what we have established. The
first example would be a pure gauge theory with gauge group G ∼= U(1): Maxwell. Let
us review what we knew about the theory. Without any interesting topology, its action
can be written as:

Sm = 1
2g2

∫
Md

F2 ∧ ∗F2 = 1
4g2

∫
d4xFµνF

µν (2.16)

F2 is the field strength 2-form and with Abelian field A1, F2 = dA1. We can extract
two equations known as the Maxwell equations:

d ∗ F2 = 0 dF2 = 0 (2.17)

The first one is the equation of motion while the second one is the Bianchi identity
following from the nilpotency of exterior derivative. They reassemble the format of
the conservation of a 2-form current and a (d-2)-form current. For reason soon to be
apparent, they are called electric and magnetic currents. What physical property are
they describing and what are the charged objects under them? We can find some clues
in the classical d=4 Maxwell theory on space-time M4 in which both F and ∗F are
2-form. Take a spatial slice, R3, at a constant time. It is now possible to relate these
currents with the physical Electric and Magnetic fields:

(∗4F )ij = ϵijkE
k Fij = ϵijkB

k (2.18)
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where i, j, k ∈ 1, 2, 3 are the spatial indices. The notation ∗4 reminds us that the
Hodge dual was taken in M4 instead of R3. It suffices to look at ∗4F as just another
2-form. We can package them back into forms in Euclidean space:

∗4F2 = ∗E1 F2 = ∗B1 (2.19)

Integrate the currents over a closed S2, we find:

∫
S2
∗4F =

∫
S2
∗E1 =

∫
S2
EidS

i

∫
S2
F =

∫
S2
∗B1 =

∫
S2
BidS

i

The first one is the famous Gauss’s Law or equivalently, the modified version of
Equation of Motion in 2.17 when an electric source is added into the action:

∫
S2
EidS

i = cQe (2.20)

Where Qe is the amount of electric charge enclosed by S2. c is a coupling constant. It
equals to g2 in our convention. We can renormalize the current to absorb this constant
and make it look nicer:

Je
2 = F2

g2

∫
∗Je

2 = Qe (2.21)

It is analogous that same procedures can be applied to the magnetic one:

Jm
2 = ∗F2

2π

∫
∗Jm

2 = Qm (2.22)

Qm would be the charge of a magnetic monopole (if it ever exists). This rather familiar
example gives out a few hints on what we should look for, that 1. the electric/magnetic 1-
form charges are the same as electric/magnetic charges under the gauge group G ∼= U(1).
Therefore both of the dual 1-form symmetries are U(1) as well. They are often denoted
as U(1)e × U(1)m. Also 2. The symmetries are non-trivial only when the existence of
electric/magnetic point source (a point in space, which is a line in the full space-time)
modify the equation.

2.3.1 Electric 1-Form Symmetry

We will now derive the symmetry action of U(1)e properly for d = 4. The main goal is
to find an operator identity analogous to 2.14 in the form

U e
α(S2) = exp

(
iα
∫

S2
∗Je

2

)
U e

α(S2)Wq(Γ1) = eiqαLink(S2,Γ1)Wq(Γ1) (2.23)

where Wq is a proper operator charged under U(1)e marked with an integer q. We
claim that Wq takes the following form
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Wq(Γ1) = exp
(
iq
∫

Γ1
A1

)
(2.24)

This is the Wilson line operator. We will discuss Wilson line in more details in the
next chapter. To reveal a few interesting insights and also as a good review of how QFT
works, here we provide two approaches to derive 2.23:

Approach 1:
Writing out the path integral explicitly:

⟨U e
α(S2)Wq(Γ1)⟩ =

∫
DA exp

(
i

2g2

∫
M4
F2 ∧ ∗F2 + iq

∫
Γ1
A1 + iα

∫
S2
∗Je

2

)
(2.25)

Using Poincaré dual, we can write
∫

Γ1
A1 =

∫
M4
δ3(x ∈ Γ1)A1

It’s possible to define a new action

S ′
M =

∫
M4

1
2g2F2 ∧ ∗F2 + δ3(x ∈ Γ1)A1

Varying the action with respect to A1 gives equation of motion

d ∗ F2 = qg2δ3(x ∈ Γ1)

Now 2.25 is

⟨U e
α(S2)Wq(Γ1)⟩ =

∫
DA exp

(
iS ′

M + iα
∫

S2
∗Je

2

)
= ⟨⟨U e

α(S2)⟩⟩

where ⟨⟨ ⟩⟩ is the new path integral under action S ′
M . By the merit of Schwinger-

Dyson equation, equation of motion is satisfied as operator identity within the path
integral (for a proof, see [5]). Thus

⟨⟨U e
α(S2)⟩⟩ = ⟨⟨exp

(
iα

g2

∫
S2
∗F2

)
⟩⟩

= ⟨⟨exp
(
iα

g2

∫
U3
d ∗ F2

)
⟩⟩

= ⟨⟨eiqαLink(S2,Γ1⟩⟩
= ⟨eiqαLink(S2,Γ1)Wq(Γ1)⟩

where U3 is a submanifold with S2 as its boundary and
∫

U3
δ3(x ∈ Γ1) = Link(S2,Γ1).

This approach is the closest to the 3d Gauss’s Law example. It also shows that Wilson
Line in the path integral is equivalent to adding an electric source to the action, like the
one we required for Gauss’s Law to work.
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Approach 2:
The second way to derive the identity requires us to notice that

Wq(Γ1) elec.→ eiqαLink(S2,Γ1)Wq(Γ1)

Under an infinitesimal shift of the dynamical gauge field

A1
elec.→ A′

1 = A1 + λ1 (2.26)

where λ1 is a U(1) parameter satisfying
∫

Γ1
λ1 = αLink(S2,Γ1). We can find an

expression for λ from definition of Linking number, that

λ1(α) = αδ1(x ∈ U3)

and we take α to be small. We can then rewrite

U e
α(S2) = exp

(
i
α

g2

∫
U3
d ∗ F2

)

= exp
(
i
α

g2

∫
M4
δ1(x ∈ U3) ∧ d ∗ F2

)

= exp
(
− i

g2

∫
M4
dλ1(α) ∧ ∗F2

)

We have used integral by part assuming that nothing special happens at the boundary
of M4. Then

U e
α(S2) elec.→ exp

(
− i

g2

(∫
M4
dλ1(α) ∧ ∗F2 −

∫
M4
dλ1(α) ∧ ∗dλ1(α)

))
(2.27)

in which the second term is a term at order α2 and does not contribute. Lastly, we
can find how the action shifts under the transformation:

SM = 1
2g2

∫
M4
F2∧∗F2

elec.→ SM + 1
g2

∫
M4
dλ1(α)∧∗F2 + 1

2g2

∫
M4
dλ1(α)∧∗dλ1(α) (2.28)

Again the last term is a higher order term. We have used the identity α∧∗β = β∧∗α
in the derivation. Now we can put everything together:

⟨U e
α(S2)Wq(Γ1)⟩ =

∫
DA exp

(
iSM [A]− i

g2

∫
M4
dλ1(α) ∧ ∗F2[A] + iα

∫
Γ1
∗Je

2 [A]
)

=
∫

DA′ exp
(
iSM [A′]− i

g2

∫
M4
dλ1(α) ∧ ∗F2[A′] + iα

∫
Γ1
∗Je

2 [A′]
)

=
∫

DA exp
(
iSM [A] + iqαLink(S2,Γ1) + iα

∫
Γ1
∗Je

2 [A] + O(α2)
)

= ⟨eiqαLink(S2,Γ1)Wq(Γ1)⟩
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where from line 1 to line 2 we simply relabeled A→ A′ and from line 2 to line 3 the
transformations are used to cancel a term. Notice that an important assumption was
made that DA = DA′ in order to proceed from line 2 to line 3. This assumption was
already made in Approach 1 during the derivation of S-D equation and therefore invisible
to us at first glance.

Another important comment is that SM is not invariant in 2.28. How is it still a global
symmetry? In general, it is required that λ1 is flat (dλ = 0) for the 1-form symmetry to
be global. Check that 2.28 is now invariant. It makes sense that

U e
α = exp

(
i

g2

∫
M4
λ1(α) ∧ d ∗ F2

)
= exp

(
− i

g2

∫
M4
dλ1(α) ∧ ∗F2

)
(2.29)

is now consistently trivial (either because of equation of motion or flatness of λ) for
any α until the presence of Wilson line alters the action. Also, λ is closed but not exact
because otherwise

λ = dϵ U e
α = exp

(
i

g2

∫
M4
dϵ(α) ∧ d ∗ F2

)
= exp

(
i

g2

∫
M4
d(ϵ(α) ∧ d ∗ F2)

)

is a boundary term and does not act on anything. In other words, λ are cohomology
classes. It makes sense considering that the form structure of λ follows from the Poincaré
dual of manifold U3 which is by definition cohomology class.

The third comment is that the presence of the SDO U e
α allows λ(α) of a particular α

to be not flat. Indeed we did not make the flatness assumption in the earlier derivation
and the SDO canceled out the change of action in 2.28. If we integrate all configuration
of SDO, any λ(α) is allowed to be non-flat without varying the path integral. This is
equivalent to gauging the global 1-form symmetry with a background field, more in the
next chapter.

2.3.2 Magnetic 1-Form Symmetry

We can now finish our discussion by extending everything we have studied to the magnetic
1-form symmetry U(1)m. The charged operator is now the ’t Hooft Line operator

Tm(Γ1) = exp
(
im

∫
Γ1
Ã1

)
(2.30)

which depends on the dual gauge field defined by

∗F2

g2 = ∗dA1

g2 ≡ dÃ1

2π = F̃2

2π (2.31)

The essential identities are:

Um
α (S2) = exp

(
iα
∫

S2
∗Jm

2

)
Um

α (S2)Tm(Γ1) = eimαLink(S2,Γ1)Tm(Γ1) (2.32)
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Explicitly

∗Jm
2 = ∗ ∗ F2

2π ∗ ∗F2 = −(−1)2(d−2)F2 = −F2

The electric 1-form symmetry was derived from looking at the transformations of
action in Approach 2. However, the magnetic 1-form symmetry is independent of
Maxwell action in its usual form. The identity 2.31 might lead to confusion that A1 and
Ã1 can be expressed in each other. In fact the relation is non-local. It is impossible
to specify A1 locally given Ã1. Analogous to electric 1-form symmetry, Ã1 is shifted to
Ã1 + λ̃1 under the magnetic symmetry. The parameter λ̃1 is required to be flat in the
global symmetry, thus it is invisible in the relation ∗dA1

g2 = dÃ1
2π

. For this reason both the
Maxwell action and the SDO remained invariant under the transformation:

SM
mag.→ SM Um

α

mag.→ Um
α Tm(Γ1)

mag.→ eimαLink(S2,Γ1)Tm(Γ1) (2.33)

This will still give us the desired result.
In Approach 1 of electric 1-form symmetry we proved the identity by looking at the

modified equation of motion. The magnetic 1-form symmetry has nothing to do with the
equation of motion. It follows from the Bianchi identity dF2 = 0 that exists separately
from the Maxwell action. The ’t Hooft Line modifies Bianchi identity by making the
topology non-trivial. Explicitly the identity is now

dF2 = 2πmδ3(x ∈ Γ1) (2.34)

where m is the charge of the magnetic monopole and 2π is a normalization factor due
to Dirac quantization. This also justifies the normalization in Jm

2 . More on this in the
next chapter. Under this identity we can also get the desired result.

One might ask why the magnetic 1-form symmetry is so different. Why would the
action prefers one of the dual symmetries to be in the action and exiles the other? Turns
out they can be swapped according to [33]. Instead of assuming dF2 = 0 is true, it can
be enforced by a Lagrange multiplier in the action:

S ′
M =

∫
M4

1
2g2F2 ∧ ∗F2 + 1

2πL1 ∧ dF2 =
∫

M4

1
2g2F2 ∧ ∗F2 −

1
2πF2 ∧ dL1 (2.35)

On the equation of motion of L1, the identity dF2 = 0 is enforced and we goes back
to the original Maxwell action. If we instead find the equation of motion of F2, it would
be

1
g2 ∗ F2 −

1
2πdL1 = 0 (2.36)

By 2.31 it is clear that on the equation of motion, L1 is exactly what we defined as
Ã1. Insert it back to the action yields:

S ′
M =

∫
M4

g2

8π2 F̃2 ∧ ∗F̃2 −
g2

4π2 F̃2 ∧ ∗F̃2 = − 1
2g̃2

∫
M4
F̃2 ∧ ∗F̃2 (2.37)
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where the new coupling is g̃ = 2π
g

. This reformulation flips the electric and magnetic
symmetry and is known as the “S-Duality” of Maxwell theory. One aside is that the
duality is between a strongly coupled theory and a weakly coupled one because the new
coupling is inversely proportional to the original one. For more information on this topic,
see [12].



Chapter 3

Continuous Gauge Theory

We have fully introduced the mechanism of generalized symmetry and looked at d=4
Maxwell theory as an example, and we found that the 1-form symmetries present in
the Maxwell theory inevitably mingle with gauge symmetry. Many argue that gauge
symmetry is poorly named for it’s not a physical symmetry but a redundancy we choose
to include in our theory for its various advantages. We need more vocabulary of gauge
theory to describe higher-form symmetries in them, and this chapter is devoted to this
purpose. We will start with an introduction of the mathematical construction behind
gauge theory. Then we will look at certain aspects of gauge theory, namely topological
soliton, background fields, and gauged symmetry. All gauge groups discussed in this
chapter will be continuous.

3.1 A Crash Course on Fibre Bundle

The Wu-Yang Dictionary was proposed in 1975 [17] as the Rosetta Stone to decode
Gauge Theory in the language of Principal Fibre Bundle. Since then it has been clear
that there is a coherent global picture behind the ambiguous local theory we used to
describe almost everything in nature. This section provides a stripped down explanation
of how gauge field is converted to mathematical language. We will be neglecting many
nuances that are not central to our concern. This section is a summary of the relevant
chapters in [2]. A complete and more rigorous treatment can be found in the book.

Definition 3.1. A Fibre Bundle (E, π,M, F,G), often denoted as E π→ M , has the
following elements:
(1) A differentiable manifold E called the total space.
(2) A differentiable manifold M called the base manifold.
(3) A differentiable manifold F called the typical fibre.
(4) A surjective map π : E →M called projection. The inverse map maps a point x ∈M
to the fibre at the point π−1(x) = Fx

∼= F .
(5) A Lie group G that acts on F with a left action called the structure group.
(6) For a open cover Ui exists a set of diffeomorphisms called local trivializations: ϕi :
Ui × F → π−1(Ui). If this maps can be chosen to be identity map everywhere, it means

18
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that the entire bundle is a cross product M × F . This is called a trivial bundle. The
existence of ϕi everywhere says that any fibre bundle is locally trivial. It is important
that the choice of local trivialization is not unique. This is a foreshadowing of our
physical theory.
(7) Consider diffeomorphism ϕx,i : F → Fx defined as ϕx,i = ϕi(x, u), u ∈ F . On
the overlap Ui

⋂
Uj ̸= ∅ there is a transition function tij(x) = ϕ−1

x,i ◦ ϕx,j. Transition
functions are required to be in group G and we define it to act with a left action:
ϕj(x, u) = ϕi(x, tij(x)u).

A way to imagine a fibre bundle is to paste a copy of F on every point of the base
manifold M . It is difficult to see how this space is different from a trivial bundle, i.e.
cross product M × F . Turned out it has to do with the topology of the base manifold.
To see this, we need to define pull-back of a bundle: Suppose there is a map f : N →M

between two differential manifold N and M . Given a fibre bundle E
π→ M defined

on top of M , we can pull back E onto N as f ∗E
π′
→ N . Specifically, for u ∈ E with

π(u) = f(x), x ∈ N , we have f ∗u = (x, u) ∈ N × E and π′(f ∗u) = x is the projection of
f ∗E. See the following Fig.3.1 taken from [2]:

Figure 3.1: Pull-back of Fibre Bundle

With this pull-back defined it is apparent that f ∗E and E shares the same typical
fibre, i.e. π−1(f(x)) ∼= π′−1(x) ∼= F . Notice that if f is the identity map, f ∗E = id∗E is
diffeomorphic, or equivalent, to E. We then state the following theorem without proof:

Definition 3.2. Two maps f, g : N → M are said to be Homotopic if ∃ smooth map
F : N × [0, 1]→M such that F (x, 0) = f(x), F (x, 1) = g(x).

Theorem 3.3. Given E
π→ M a bundle and f, g : N → M two homotopic maps , f ∗E

and g∗E are equivalent bundles on N .

For a proof see (quote). If M is contractible to a point, it means that there exists a
smooth map F : M × [0, 1]→M and F (·, 0) = id, F (·, 1) : M → x0 for some fixed point
x0. It follows from Theorem 3.3 that F (·, 0)∗E = id∗E is equivalent to a trivial bundle
F (·, 1)∗E (for a single point the only bundle x0 × F is trivial). In other words, any base
manifold contractible to a point can only obtain a trivial bundle. On the other hand,
manifolds not contractible can have non-trivial bundle. For example, a trivial bundle on
base manifold S1 with fibre F = [−1, 1] is a cylinder. A mobius strip is also a bundle on
S1 with the same typical fibre.
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Another way to see how fibre bundles can be non-trivial is to ask what necessary
information is needed to construct a fibre bundle. It turns out to uniquely define
(E, π,M, F,G) we need M , F , G, a set of cover Ui and their transitional functions
tij(x) ∈ G.
Step 1: Fetch the union of trivial bundles on all patch X = ⋃

i Ui × F .
Step 2: Define an equivalent relationship on the overlapped area where tij connect two
patches: For f ∈ F and (x, f) ∈ X, (x, f) ∼ (x, tij(x)f).
Step 3: Construct a bundle E = X/ ∼ the elements of which are equivalent classes
(x, [f ]). Find projection π(x, [f ]) = x and trivializations ϕi(x, f) = (x, [f ]).
In short we mod out the part where fibres overlap each other. Clearly that only happens
in non-trivial topology where more than one patch is necessary.

One additional concept that would be useful later is section. A section of E π→ M

is a smooth map s : M → E which satisfies π ◦ s = id, which is to say that s(x) is an
element in π−1(x) = Fx for every point x. We denote the sets of all sections on M as
Γ(M,F ). It can also be defined locally on a cover Ui as si : Ui → E.

Fibre bundle is a broad concept. It turns out that for gauge theory we only need a
very specific subset of fibre bundles called Principal Fibre Bundle:

Definition 3.4. A Principal Fibre Bundle, denoted as P (M,G) is a fibre bundle with
base manifold M and a typical fibre F identical to the structure group G. In physics, G
is called the gauge group

Now the local trivialization is ϕi : Ui × G → π−1(Ui). Since the typical fibre is the
structure group, there is not only a left action but naturally a right action of G on the
fibre. Then for u ∈ π−1(Ui), π(u) = x ∈ Ui, and ϕ−1

i (u) = (x, gi), we can define the right
action of a ∈ G on the total space P to be ua = ϕi(x, gia). This action has the following
interesting properties:
1. It is independent of the choice of local trivialization, i.e. for x ∈ Ui

⋂
Uj, ua =

ϕi(x, gia) = ϕi(x, tij(x)gja) = ϕj(x, gja).
2. It provides a mapping to the entire bundle Gx by exploiting the group structure. In
other words, take u ∈ π−1(x), Gx = π−1(x) = {ua|a ∈ G}.
3. Given a local section s′

i : Ui → P as reference, we can define a local trivialization by
ϕ′

i(x, e) := s′
i(x) where e is the identity element in G. Other elements of Gx is given by

a right action: ũ = ua = ϕ′
i(x, a) = s′

i(x)a. This is called the canonical trivialization.
4. We can choose a trivialization by choosing a section. We can also relate two choices
of sections on Ui, s′

i(x) and s′′
i (x), with a group element s′

i(x) = s′′
i (x)g(x), g(x) ∈ G.

This follows simply from the group property. This is the redundant ”gauge symmetry” in
physics. In this sense choosing a section(trivialization) is equivalent to choosing a gauge
in physics.
5. For x ∈ Ui

⋂
Uj,

s′
i(x) = ϕ′

i(x, e) = ϕ′
j(x, tji(x)e) = ϕ′

j(x, e)tji(x) = s′
j(x)tji(x)

Notice that this looks very much like the transformation in 4. This relation shows how
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gauge on different patches are stitched together. If the base manifold has non-contractible
topology, it also contains that information. We will discuss this in a later section.

3.1.1 Connection, Covariant Derivative, Curvature

Given a principal bundle P (M,G), it is possible to find a tangent space TuP of the total
space P at point u ∈ P . It is also possible to uniquely decompose TuP = VuP ⊕ HuP

as vertical subspace VuP and horizontal subspace HuP . This unique separation is called
a connection. The connection allows any smooth vector field on P to be decomposed
into two smooth vector fields: X = XH +XV . Let’s take a look at their properties.

Vertical subspace VuP contains vectors tangent to a curve within fibre Gu. Another
way to show that is to push forward a vector V ∈ VuP onto the base manifold and
find that it has no “shadow”: π∗V = 0 ∈ TxM . Furthermore, since VuP points inside
the fibre Gu, it is related to Lie algebra g ∼= TeG. In fact, there is an isomorphism
# : g → VuP : A 7→ A#. A#(u) is called the fundamental vector field. It is induced
by the right action of G on the fibre:

A#(u) ≡ d

dϵ
(u exp (ϵA))|ϵ=0 = uA (3.1)

The group element is written as exp(ϵA) without the coefficient of i as in chapter 2.
This is simply an issue of convention. See section 3.1.3 for more detail. Also, assume
from now on that the group G is a matrix group so that the multiplication in 3.1 makes
sense. We then have the following definition:

Definition 3.5. Given g ∼= Lie(G), the Connection 1-Form ω ∈ g ⊗ Ω1(P ) is a
projection of TuP onto VuP ∼= g with ω(A#) = A. The horizontal subspace is defined to
be the kernel: HuP ≡ {U ∈ TuP |ω(X) = 0}. Lastly, ω is under adjoint representation of
the pull back of right action on u ∈ P . i.e. with Rgu := ug, R∗

g(ω) ≡ Adg−1ω = g−1ωg.

Note that Ω1(P ) is the notation for the set of 1-forms on manifold P . Defining a
connection 1-form field on P is equivalent to choosing a unique connection, which tells
us how to fit the fibres together. So far there is no involvement of any local coordinates.
It is helpful to find a local form of ω for calculation in physics. That motivates us to pull
back ω on a cover Ui by choosing a section si:

Ai ≡ s∗
iω (3.2)

Notice a few things:
1. Ai is now an object in g⊗Ω1(Ui), same as 1-form gauge field in physics. Alternatively,
the local 1-form can be denoted as Ai ∈ Ω1

g(Ui), or “1-form on Ui valued in g”. It can
be proved that the identity 3.2 is two-way, which means that given any A′

i ∈ g⊗Ω1(Ui)
and a local section si it is possible to construct an ω globally with the information. A
full proof is in [2].
2. ω is actually a 1-form field. We can look at it at one point u ∈ P and it naturally
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takes the argument from tangent space U ∈ TuP via contraction. The argument returns
an element of g. Similarly, Ai also take argument from TxUi to g:

Ai : TxUi → g (3.3)

Ai also takes a curve Γ in Ui as argument. We can integrate out the 1-form on a
curve and also return a lie algebra element:

∫
Γ
Ai ∈ g Ai : C1(Ui)→ g (3.4)

where C1(Ui) is the set of 1-chain on Ui. We can understand it simply a curve for now.
One particularly interesting case is when the integral is over a loop. More discussions on
this follows in later chapters.
3. Recall identity < f ∗w, v >=< w, f∗v > for w ∈ Ω1(M), v ∈ TxM . We can then write
Ai = s∗

iω(X) = ω(si∗X).
We want to find how Ai and Aj on two patches Ui and Uj are related. Equivalently,

we can try to write si∗X in terms of sj = sitij. Work on a point x ∈ Ui
⋂
Uj and find a

curve γ : [0, 1]→M for which γ(0) = x and d
dt
γ(t)|t=0 = X ∈ TxM :

si∗X = d

dt
si(γ(t))|t=0

= d

dt
(sj(γ(t))tji(γ(t)))|t=0

=
(
d

dt
sj(γ(t)) · tji(γ(t))

)
|t=0 +

(
sj(γ(t)) · d

dt
tji(γ(t))

)
|t=0

= sj∗X · tji(x) + si(x)t−1
ji (x) · d

dt
tji(γ(t))|t=0

In the first term, assuming G is a matrix group we have sj∗X · tji = Rtji∗sj∗X. This
is because the push forward acting on U ∈ TuP is defined as

Rg∗U [f(Rgu)] = U [f ◦Rg](u) (3.5)

for some generic function f : u→ R. The LHS is

(Rg∗U)µ∂µf(Rgu) (3.6)

The RHS can be written as

Uµ∂µ(f ◦Rg)(u) = Uµ∂µf(Rgu)R′
g(u) (3.7)

For a matrix group, it makes sense to write

R′
g(u) = d

du
(ug) = g (3.8)

thus the RHS is now
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Uµ∂µf(Rgu)g = Uµg∂µf(Rgu) (3.9)

Identifying with LHS we find

Rg∗U = Ug (3.10)

Back to the main story, in the second term,

t−1
ji (x) · d

dt
tji(γ(t))|t=0 = d

dt
(t−1

ji (x)tji(γ(t)))|t=0 ∈ TeG ∼= g

because at t = 0, t−1
ji (x)tji(γ(t)) = e. Also, we have identity:

d

dt
tji(γ(t))|t=0 ≡ X[tij] ≡< dtij, X >= dtij(X)

Putting the information together, according to 3.1:

si(x)t−1
ji (x)· d

dt
tji(γ(t))|t=0 = (t−1

ji (x)· d
dt
tji(γ(t))|t=0)#([si(x)]) = (t−1

ji (x)dtij(X))#([si(x)])

Input si∗X to ω, we reach the conclusion

s∗
iω(X) = ω(si∗X) = ω(Rtij∗sj∗X) + t−1

ij (x)dtij(X)
= R∗

tij
ω(sj∗X) + t−1

ij (x)dtij(X)

= t−1
ij (x)Aj(X)tij(x) + t−1

ij (x)dtij(X)

This is true for all point. It reduces to the identity

Ai = t−1
ij Ajtij + t−1

ij dtij (3.11)

Following the same procedure, it is easy to show that choosing different sections
si(x) = s′

i(x)g(x) yields the same transformation on local connection:

A′
i = g−1Aig + g−1dg (3.12)

This is the gauge transformation. Recall that exterior derivative is defined to be the
map d : Ωr(M) → Ωr+1(M) on a manifold M . We denote dp : Ωr(P ) → Ωr+1(P ) as the
exterior derivative on P and generalize it to act on object ϕ ∈ g ⊗ Ωr(P ) by requiring
derivative to act on the r-form subspace. With the presence of a connection there exists
a covariant derivative:

Definition 3.6. For ϕ ∈ g ⊗ Ωr(P ) the Covariant Derivative D : g ⊗ Ωr(P ) →
g⊗ Ωr+1(P ) is defined as

Dϕ(X1, ..., Xr+1) ≡ dpϕ(XH
1 , ..., X

H
r+1)

Another definition follows:
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Definition 3.7. The Global Curvature 2-Form Ω is defined as:

Ω ≡ Dω ∈ g⊗ Ω2(P )

The curvature satisfies the Cartan Structure equation:

Ω = dpω + ω ∧ ω (3.13)

which has the local form:

Fi = dAi + Ai ∧Ai (3.14)

For a derivation of 3.13 from definition, see [2].
In the global picture, it is straight forward to recognize what Ω means geometrically.

Take X, Y ∈ HuP :

Ω(X, Y ) ≡ Dω(X, Y ) ≡ dpω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]) = −ω([X, Y ])

where [·, ·] is the lie bracket and we have used the coordinate-free definition of exterior
derivative. Define a basis of vectors on M as {∂x1 , ∂x2 , ..., ∂xd+1} and set π∗(X) = ϵ∂x1 ,
π∗(X) = δ∂x2 with infinitesimal parameters ϵ, δ. Recall identity f∗[X, Y ] = [f∗X, f∗Y ],
we find

π∗([X, Y ]) = [π∗X, π∗Y ] = ϵδ[∂x1 , ∂x2 ] = 0

which states that [X, Y ] ∈ VuP and Ω(X, Y ) = −ω([X, Y ]) = −A ∈ g where A# =
[X, Y ] is the infinitesimal discrepancy of the fibre after parallel transporting it around a
close parallelogram on M constructed with sides ϵ∂x1 and δ∂x2 .

3.1.2 Associated Vector Bundle

In physics we would like to consider a gauge theory along with ”matter particles” that
are charged under the gauge group. For example, in scalar QED there would be a quark
that is in a certain representation of the gauge group. To describe these particles it is
necessary to introduce the concept of an associated bundle:

Definition 3.8. Given a principal fibre bundle P (M,G) and a k-dimensional vector
space V acted upon by G on the left by a k-dimensional representation R of G, an
Associated Vector Bundle (E, π,M,G, V, P ) is the product E = P × V defined up
to an equivalent relation (u, v) ∼ (ug,R(g−1)v) (or equivalently (ug, v) ∼ (u,R(g)v)))
where u ∈ P , v ∈ V and g ∈ G.

The projection πE : E → M is defined as πE(u, v) = π(u) where π is the projection
in principal bundle P (M,G). We can check that the projection is compatible with the
equivalent condition: πE(ug,R(g−1)v) = π(ug) = π(u) = πE(u, v). The new local
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trivialization is ψi : Ui×V → π−1
E (Ui). Perhaps more important to us, the new transition

functions are in the representation of the vector space. It is simply R(tij).
Charged particles live in the associated vector bundle. Their phase is stored as their

position in fibre. The equivalent relation seems arbitrary and unintuitive at first sight.
It can be understood in two ways:
1. At every point x ∈ M the relation quotients out the information of G fibre in P by
identifying u with ug. It ensures that the fibre of E is diffeomorphic to the vector space
V .
2. There is an induced left action of u on v written as R(u)v. Of course we would like
R(ug)R(g−1)v = R(u)v, which is exactly the equivalence defined above.

3.1.3 Physical Notation of Gauge Field

This section is a heads-up on some rather annoying convention issue that might confuse
the more meticulous readers.

Though the discussion of fibre bundle works for general gauge group, the remaining of
this paper would focus almost exclusively on G = SU(N). In this case physicists usually
wants the generators (basis) of the Lie algebra to be Hermitian instead of anti-Hermitian.
The way to do that is to write Lie algebra element with a coefficient i.

For this reason the physical gauge field A1 is often defined as

A1 = iA1 (3.15)

The physical gauge field has transformation

A1 = −iA1 → −i(g−1A1g + g−1dg) = g−1A1g − ig−1dg = g−1A1g + idg−1g (3.16)

It is also custom to write the group element as

g = eiα (3.17)

where α is the Hermitian Lie algebra element. Transformation 3.16 can thus be
written as

A1 → e−iαA1e
iα + dα (3.18)

3.2 Aspects of Topology
The fact that local connection is not a well-defined 1-form on non-trivial topology allows
us to patch together seemingly impossible configuration of gauge field. There are various
solutions in gauge theory that are particle-like and unlike elementary particles, obtain
topological structure within them. They are usually called “Solitons”. This aspect of
gauge theory has been intensively studied since Polyakov’s paper in 1975 ([28]). Hereby
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a basic introduction of monopole and winding number is provided to give a heuristic
intuition for other parts of the paper. The majority of this section is based on [12], [2],
[15], and [14]. Interested readers should refer to these works as well as [7] for further
reading.

3.2.1 Dirac Monopole as Non-trivial Bundle

In Chapter 2 we constructed ’t Hooft Line as an analogy of Wilson Line with a dual
gauge field Ã1. There is an alternative construction from gauge field A1. In 4d the ’t
Hooft Line is equivalent to inserting a 2-sphere S2 with a Dirac monopole configuration
on it around every point of the specified line. The Dirac monopole configuration is a
principal bundle P (S2, U(1)) on a sphere. The 2-sphere can be covered by two patches,

UN = {(θ, ϕ)|0 ≤ θ <
π

2 + ϵ} US = {(θ, ϕ)|π2 − ϵ < θ ≤ π} (3.19)

This patching effectively divides the 2-sphere into the Northern and Southern halves
with a band of overlap around the equator with an infinitesimal width. Denote the global
connection 1-form on the bundle as ω, there are two local 1-forms:

AN
1 = s∗

Nω AS
1 = s∗

Sω (3.20)

obtained by choosing sections. We can skip this step and borrow the result from Wu
and Yang ([17],[2]):

AN
1 = 1

2m(1− cosθ)dϕ AS
1 = −1

2m(1 + cosθ)dϕ (3.21)

where m denotes the strength of the monopole. This configuration of gauge field will
give the field strength of a magnetic monopole outside of S2. There exists a transition
function between them and it is an element of the structure group U(1). The band of
overlap can be taken as just the equator and the transition function only depend on ϕ.
It can be written in the form:

tNS(ϕ) = exp (iσ(ϕ)) (3.22)

Since the group is Abelian, the gauge transformation 3.18 breaks down to

AN
1 = AS

1 + dσ dσ = AN
1 − AS

1 = mdϕ (3.23)

Integrate both side:

∆σ =
∫ 2π

0
mdϕ = 2πm (3.24)

Unlike the gauge field, transition function is required to be single-valued on each
point of the equator S1. This gives the condition that m ∈ Z, i.e. the magnetic charge
is quantized.
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In a physical setting where charged matter is included, the bundle is instead the
associated vector bundle of P (S2, U(1)) labeled by representation. In the case of U(1),
irreps are labeled by integer Ĝ ∼= Z. In this bundle, the transition function is an element
of the corresponding representation of the group. We write:

tNS(ϕ) = exp (iασ(ϕ)) (3.25)

where α marked the representation charged matter is in, also known as the electric
charge of the matter. Repeating all the calculation, quantization condition is now mα ∈
Z. This is the Dirac quantization condition.

There are a few useful comments:
1. Notice that the local connection on the northern hemisphere has a singularity on the
south pole and vice versa. This construction does not work on R3 but instead requires
R3\{0}, which is homotopic to S2. In other words, there is a singularity on the exact
point of the monopole.
2. The existence of Dirac monopole on a principal bundle demands the structure group
to be compact. In other words, it proves to us that the gauge group is indeed U(1)
instead of R, which is indistinguishable from U(1) locally. Dirac quantization condition
also relies on the assumption of a compact group, thus any observation of a magnetic
monopole gives us an explanation for quantization of electric charge. Unfortunately that
has not happened yet.
3. The monopole exists in the gauge theory without the need for any charged matter.
As we will see in the next section, Wilson Lines also exist in the pure gauge theory as a
basic feature.

There is a more elegant way to classify magnetic monopole and for that purpose we
need to introduce the concept of Homotopy group as taken from [3]:

Definition 3.9. In Definition 3.2 we have defined what it means for two maps to be ho-
motopic. Equivalent classes can be constructed from it by denoting [f ] = {g|g homotopic to f}.
They are called homotopy classes. We can then define Homotopy Group Πn(X) as the
set of all homotopy classes [f ] in continuous maps f : Sn → X with X some topological
space and Sn the n-sphere parameterized by [0, 1]n. We claim that for n ≥ 1 the set
Πn(X) forms a group under multiplication [f ]× [g] = [f ∗ g] where ∗ is the composition
defined by gluing the maps together. For example, if n = 1:

f ∗ g(s) =

f(2s) 0 ≤ s ≤ 1
2

g(2s− 1) 1
2 ≤ s ≤ 1

Notice that the quantization condition requires transition function tNS(ϕ) to be a
map tNS : S1 → U(1) ∼= S1 and therefore any possible tNS belongs to an element in
homotopy group Π1(S1). We claim without proof that Π1(S1) ∼= Z. This is to say that
one configuration of tNS is in some homotopy class marked by an integer and can not
be continuously deformed into configurations in other homotopy classes. This integer is
just the number m we have seen above. This number is called the “winding number”
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or “topological charge” in various contexts. In ours, it is simply the magnetic charge of
the monopole. It is called a “winding” number because it describes how many times the
parameter ϕ is wrapped around U(1). In the case where n > 1, the gauge transformation
of A1 associated with the transition function is called a Large Gauge Transformation.

3.2.2 The Theta Term

In Yang-Mills Theory (and Maxwell alike), there is a famous term that can be added
to the action. Classically, it is a boundary term and has no influence on the classical
equation of motion. In quantized Maxwell theory, the term also does not contribute to
the partition function unless there are interesting boundary condition created by material
or otherwise. In quantized non-Abelian Yang-Mills Theory, the term plays a different
role and alters the ground state of the Hilbert space. It marks inequivalent quantizations
of the classical theory. (See [15]). This is the so-called theta term. On action level in 4d
Yang-Mills, the term writes us:

Sθ = θ

8π2

∫
M4
tr(F2 ∧ F2) (3.26)

where tr() is the trace over the gauge group indices. The term is often described as
“topological” because unlike the original Maxwell action, there is no Hodge dual involved
and therefore it is independent of the metric on M4. Note that in Maxwell, the coupling
is instead θ

4π2 because of a normalization chosen for the trace of generators. It can be
shown that the theta term is a total derivative: define the Chern-Simons form as

κ3 = tr(A1 ∧ dA1 + 2
3A1 ∧ A1 ∧ A1) (3.27)

we find that:

dκ3 = tr(dA1 ∧ dA1 + 2dA1 ∧ A1 ∧ A1)
= tr(dA1 ∧ dA1 + dA1 ∧ A1 ∧ A1 + A1 ∧ A1 ∧ dA1 + A1 ∧ A1 ∧ A1 ∧ A1)
= tr(F2 ∧ F2)

Notice that we have used the cyclic property of the trace and the anti-commutating
property of 1-form to add a trivial term:

tr(A1 ∧ A1 ∧ A1 ∧ A1) = Aa
1 ∧ Ab

1 ∧ Ac
1 ∧ Ad

1 ⊗ tr(TaTbTcTd)
= −Ad

1 ∧ Aa
1 ∧ Ab

1 ∧ Ac
1 ⊗ tr(TdTaTbTc)

relabel= −Aa
1 ∧ Ab

1 ∧ Ac
1 ∧ Ad

1 ⊗ tr(TaTbTcTd)
= 0

Despite being a boundary term, the theta term has interesting physical implication
even in Maxwell Theory. One example is the topological insulator, which refers to mate-
rial that has a different value of θ in its interior. A good introduction could be found in
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[15]. We will not be talking about theta term in Maxwell. Instead, we will examine how
the theta term contributes to quantum Yang-Mills in the specific case of G ∼= SU(2) in
4d.

Winding Number in SU(2) Yang-Mills Theory

In this section, we will work in Euclidean space-time R4. Recall the theta term is

Sθ = θ

8π2

∫
R4
dκ3 = θ

8π2

∫
∂R4

κ3 (3.28)

There need to be some boundary of the space-time ∂R4 for this term to contribute.
It can be chosen as the 3-sphere at spatial infinity: ∂R4 ∼= S∞

3 . The canonical procedures
as in [15] follows that for the action to be finite,

A1(x)→ idg(X)−1g(x) as x→∞ (3.29)

There is an alternative construction given by [2] that is closer to the Dirac monopole
discussion. Suppose that the space-time is allowed to be compactified by including the
infinity and it takes the form of a 4-sphere S4. Choose one pole on the sphere to be the
origin and the opposite pole to be the point of infinity. The manifold can be covered by
two patches:

U0 = {x|0 ≤ ∥x| < L+ ϵ} U∞ = {x|L− ϵ < |x| ≤ ∞} (3.30)

where L is some 4-distance that characterizes the long distance behaviour of the
theory. There are two local connections A0

1 and A∞
1 . If we make the choice that A∞

1 = 0
then according to 3.16 the gauge transformation at the overlap reads

A0
1 = g−1A∞

1 g + idg−1g = idg−1g = −ig−1dg (3.31)

where g now maps the equator of S4, which is a 3-sphere, into the group SU(2):

g : S3 → SU(2) ∼= S3 [g] ∈ Π3(S3) (3.32)

We claim without prove that Π3(S3) ∼= Z. Thus the gauge transformation is marked
by the winding number of S3 over S3. In fact, this statement is true for any simple,
compact Lie group G since it has been proven mathematically that Π3(G) ∼= Z. What is
the consequence of this classification? Plugging the expression 3.31 back into the theta
term yields

Sθ = iθ

12π2

∫
S3
tr(g−1dg ∧ g−1dg ∧ g−1dg) = iθn (3.33)

where n ∈ Z. We claim that the triple wedge term gives an integer because it is in
the form of Haar Measure for S3. The contribution of this term in the Euclidean path
integral is eiθn. The fact that n is an integer states that θ is 2π periodic in the eyes of
the quantum theory.
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Theta Term under Time Reversal

We can consider the what symmetries the theta term obeys. Like the Maxwell action, the
theta term is gauge invariant and Lorentz invariant. Unlike the Maxwell action, theta
term breaks the discrete time reversal symmetry with two exceptions. More explicitly,
time reversal is the following transformation:

Tµ
ν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.34)

The theta term dressed with full indices is

Sθ = θ

16π2

∫
d4x ϵµνστF

µνaF στa (3.35)

On flat metric ϵµνστ is not a proper tensor. It is designed to have the same components
in all frames. Here it does not transform. Also, it only admits non-zero value when it has
three space and one time indices. The field strength is a proper tensor and transforms
as one:

F µνa → Tµ
αTν

βF
αβa =

F
µνa µ, ν = 0 or µ, ν ∈ {1, 2, 3}
−F µνa otherwise

(3.36)

According to the property of ϵ, all non-zero terms has one F with two spatial indices
and one F with one spatial and one time indices, which means that we always get a
minus sign for transforming the product of them:

Sθ → −Sθ (3.37)

We can absorb the negative into the constant term and equally say that under time
reversal,

θ → −θ (3.38)

This is clearly stating that the theta term is breaking time reversal symmetry. There
are, however, two special values of θ. When θ = 0, the symmetry is preserved because
0 = −0. This is rather trivial because it is equivalent to erasing the theta term. Another
special case arises from the periodic property of θ. Since θ ∼ θ + 2π, obviously π ∼ −π
and the term preserves time reversal symmetry in a quantum theory when θ = π. The
periodic property is not exact. In the next chapter we will see how this condition can be
broken.

3.2.3 Witten Effect

As Witten discovered in [25], a magnetic monopole automatically gains an electric charge
due to a non-zero theta term. There are multiple ways to show this. Tong coins a version
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based on a thought experiment of covering the magnetic monopole with topological in-
sulator in [15]. As summarized in [12] Coleman has also given an explanation of Witten
Effect in Maxwell Theory with electric and magnetic fields. We will reproduce Coleman’s
explanation below.

Recall the classical electric magnetic fields are

Ei = ∂iA0 (3.39)

Bi = ϵijk∂jAk + m

2|r|2 r
i (3.40)

In a situation where there is a magnetic monopole of charge m sitting at r = 0 but
no electric source. Written in the same language is the theta term

Sθ = θ

4π2

∫
d3r EiBi (3.41)

Up and down indices don’t really matter in Euclidean space. Substitute the expression
of electric field and magnetic field, we get

Sθ = θ

4π2

∫
d3r EiBi

= θ

4π2

∫
d3r ∂iA0(ϵijk∂

jAk + m

2|r|2 ri)

= θ

4π2

∫
d3r − ϵijkA0∂

i∂jAk − m

2 A0
1
|r|2

∂iri

= mθ

8π2

∫
d3r A0∂

i 1
ri

We find that

−∂i 1
ri

= ∇ · r⃗

|r|2
= 1
|r|2

∂

∂r
(r

2

r2 ) = 0 (3.42)

with an asterisk that r ̸= 0. The derivative tends to infinity at r = 0 and it is actually
a delta function

∇ · r⃗

|r|2
= 4πδ(|r| = 0) (3.43)

with the value coming from
∫

V ∇ · r⃗
|r|2 =

∫
∂V

r⃗
|r|2 = 4π. Thus the theta term returns

Sθ = −mθ2π

∫
d3r A0δ(|r| = 0) = −mθ2π A0(|r| = 0) (3.44)

which is an electric source at the origin with magnitude mθ
2π

. Admittedly, this only
works in Maxwell theory. We will see a derivation for more general situation next chapter.



32 Chapter 3. Continuous Gauge Theory

3.3 Background Fields and Gauged Symmetry
In Chapter 2, we have hinted on the insertion of SDOs as a way to “gauge” global
symmetry of the theory, but what is “gauging” exactly? Let’s return to a familiar story.
In the Standard Model, gauge theory is necessary when a global 0-form symmetry wants
to become a local symmetry. Recall that massless complex Higgs field in 4d has action:

Sϕ =
∫
d4x (∂µϕ)∗∂µϕ (3.45)

This action is equiped with a global symmetry

ϕ→ eiθϕ ≈ ϕ+ iθϕ

By an infinitesimal transformation, the symmetry has a Noether current

jµ = ϕ∂µϕ
∗ − ϕ∗∂µϕ

This is a U(1) 0-form symmetry. We can rewrite everything in form language for
clarity:

Sϕ =
∫

M4
dϕ∗ ∧ ∗dϕ J1 = i(ϕdϕ∗ − ϕ∗dϕ) d ∗ J1 = 0 (3.46)

When the global symmetry becomes local, Or in other words, when the parameter
θ(x) becomes a function on M4, the original action is no longer conserved under the
symmetry. Instead, we have

δS =
∫
d4x i∂µθ(x)((∂µϕ)∗ϕ− ϕ∗∂µϕ) = i

∫
M4
dθ ∧ ∗J1 (3.47)

We claim that a new action invariant under the local symmetry can be constructed
by coupling the current to a background field. Explicitly, the action is modified by a
term:

SA = ie
∫

M4
A1 ∧ ∗J1 = ie

∫
d4x Aµ((∂µϕ)∗ϕ− ϕ∗∂µϕ) (3.48)

The background field is non-dynamical and not summed over in path integral. It
can be promoted to a dynamical field by adding a dynamical term to the action. The
background field is required to have a gauge symmetry accompanying the local symmetry
of ϕ:

A1 → A1 −
1
e
dθ(x) ϕ→ eiθ(x)ϕ ≈ ϕ+ iθ(x)ϕ (3.49)

The action is still not invariant under the transformation. We need to add a third
term that only depends on the background field. We are allowed to add this as a counter
term:

Sc.t. = e2
∫

M4
|ϕ|2A1 ∧ ∗A1 (3.50)
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The action is now

S[A] =
∫

M4
dϕ∗ ∧ ∗dϕ+ ieA1 ∧ ∗J1 + e2|ϕ|2A1 ∧ ∗A1

= dϕ∗ ∧ ∗dϕ+ ieϕA1 ∧ ∗dϕ∗ − ieϕ∗A1 ∧ ∗dϕ+ e2|ϕ|2A1 ∧ ∗A1

= (dϕ∗ − ieϕ∗A1) ∧ ∗(dϕ+ ieϕA1)
≡ (Dϕ)∗ ∧ ∗(Dϕ)

We have recovered the covariant derivative in particle physics notation. This action
is gauge invariant as we know it. The parameter e is a coupling we can choose. It is
convenient for the purpose of our discussion to set it to 1. We can also normalize |ϕ| = 1,
under which ϕ ∈ C takes the form ϕ = eiΦ and ϕ∗ = e−iΦ. Φ is cyclic, valued in [0, 2π).
The symmetry transformation is rewritten as

Φ→ Φ + θ (3.51)

where θ is also valued in U(1). Take Φ as the fundamental field and we find a sleek
reformulation of massless scalar field that is closer to the generalized language in chapter
2:

SΦ =
∫
d4x ∂µe

−iΦ∂µeiΦ =
∫
d4x ∂µΦ∂µΦ =

∫
M4
dΦ ∧ ∗dΦ (3.52)

The symmetry is global when the parameter θ is flat/closed, which makes it a con-
stant. We can find the global current J1 by varying the action as if θ is not flat and look
at the linear part:

δθSΦ = δ
∫

M4
d(Φ + θ) ∧ ∗d(Φ + θ)

=
∫

M4
dδθ ∧ ∗dΦ + dΦ ∧ ∗dδθ + O(θ2)

=
∫

M4
2δθ ∧ d ∗ dΦ + O(θ2)

!= −i
∫

M4
δθ ∧ d ∗ J1

We recognize that

J1 = 2idΦ (3.53)

When θ is not flat, the action is not invariant under the local/gauged symmetry. We
need to couple it to a gauge field to find a new action that is invariant. The coupled
action is then, following from 3.48 and 3.50:

S[A] =
∫

M4
dΦ ∧ ∗dΦ− 2A1 ∧ ∗dΦ + A1 ∧ ∗A1 =

∫
M4

(dΦ− A1) ∧ ∗(dΦ− A1) (3.54)
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where A1 is the background field that follows the transformation rule:

A1 → A1 + dθ(x) (3.55)

Canonically this is not the end of the story. The background field is usually promoted
to a dynamical field by adding the Maxwell term 2.16. In light of path integral, all
configurations of A1 are summed over to produce a partition function.

3.3.1 Generalized to p-Form Symmetry

We are now using a language that is suitable for higher form symmetry. The generaliza-
tion is straight forward. Assuming the p-form symmetry group is

G(p) ∼= U(1)

without loss of generality. Recall that we are allowed to do so because symmetry
with p ≥ 1 is always Abelian. The global symmetry can be gauged by a (p+1)-form
background field with a transformation

Bp+1 → Bp+1 + dΛp (3.56)

The background field couple to the action via a term

SB = i
∫

Md

Bp+1 ∧ ∗Jp+1 (3.57)

as well as other local counter terms dependent on the background field only. Jp+1

here is of course the Noether current for the global p-form symmetry.
The formal definition of gauging given by [10] requires us to also promote the back-

ground field to a dynamical field by path integrating all gauge-inequivalent classes. The
Gauged Theory of an original theory T is denoted as T /G(p) where G(p) is the gauged
global symmetry. It is defined by the partition function

ZT /G(p) ∝
∫

DBp+1ZT [Bp+1] (3.58)

This only makes sense when ZT [Bp+1] is invariant under gauge transformation 3.56.
We will find out in the next section that this is not always true.

3.3.2 Maxwell Theory Revisited

Let’s see how this new tool can be used on the 1-form symmetries of 4d Maxwell The-
ory. Before we gauge the theory, recall that the electric 1-form symmetry acts on the
dynamical gauge field by shifting

A1 = A1 + λ1 (3.59)
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where λ1 is required to be flat in order to preserve the action. The analogy to the
Higgs model should be obvious by now. Also recall from 2.29 that the SDO of electric
1-form symmetry can be written as

U e
α = exp

(
− i

g2

∫
M4
dλ1(α) ∧ ∗F2

)
= exp

(
−i
∫

M4
dλ1(α) ∧ ∗Je

2

)
where λ1(α) is a specific parameter

λ1(α) = αδ1(x ∈ U3)

that lives in U3 which is the 3-dim submanifold the SDO is positioned. Immediately
the form of the SDO looks like the coupling term 3.57 but instead of background field
B2 the current is coupled to dλ1. This is actually a gauge transformation of the 3.57
term! As discussed earlier, inserting every possible SDO into the path integral allows λ
to be non-flat in general. This is equivalent to summing over all possible configurations
of B2 and by gauge transformation 3.56 of the fields, spawning all the possible SDO into
existence.

4d Maxwell Theory has a dual U(1)e × U(1)m 1-form symmetry. Let’s try to couple
the theory to both background fields Be

2 and Bm
4−2. For the electric 1-form symmetry,

the terms to add are

Se = i
∫

M4
Be

2 ∧ ∗Je
2 = − 1

g2

∫
M4
Be

2 ∧ ∗F2 Sc.t. = 1
2g2

∫
M4
Be

2 ∧ ∗Be
2 (3.60)

with appropriate coupling parameters. For the magnetic 1-form symmetry, the cou-
pling term is

Sm = i
∫

M4
Bm

2 ∧ ∗Jm
2 = i

2π

∫
M4
Bm

2 ∧ F2 (3.61)

There is no counter term because the magnetic symmetry does not act on the dy-
namical field A1 and there is no need to compensate for that. The final action looks
like

S[Be, Bm] =
∫

M4

1
2g2 (F2 −Be

2) ∧ ∗(F2 −Be
2) + i

2πB
m
2 ∧ F2 (3.62)

with two sets of gauge transformations:

Be
2 → Be

2 + dΛe
1 A1 → A1 + Λe

1 (3.63)

Bm
2 → Bm

2 + dΛm
1 (3.64)

Assuming we have gauged both of the 1-form symmetries successfully, the action is
expected to be invariant under these transformations. Putting 3.63 into action 3.62:
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S →
∫

M4

1
2g2 (F2 −Be

2) ∧ ∗(F2 −Be
2) + i

2πB
m
2 ∧ (F2 + dΛe

1)

= S + i

2π

∫
M4
Bm

2 ∧ dΛe
1

shows that gauging of U(1)e is not successful. For completeness, check 3.64 as well:

S →
∫

M4

1
2g2 (F2 −Be

2) ∧ ∗(F2 −Be
2) + i

2π (Bm
2 + dΛm

1 ) ∧ F2

= S − i

2π

∫
M4

Λm
1 ∧ dF2 = S

following from Bianchi Identity. The gauging of magnetic 1-form symmetry seems
successful. It is possible to force 3.63 to be a symmetry by adding counter term, i.e.

Sc.t. = − i

2π

∫
M4
Bm

2 ∧Be
2 S ′ =

∫
M4

1
2g2 (F2 −Be

2) ∧ ∗(F2 −Be
2) + i

2πB
m
2 ∧ (F2 −Be

2)
(3.65)

If we go back and check 3.64, we find

S ′ →
∫

M4

1
2g2 (F2 −Be

2) ∧ ∗(F2 −Be
2) + i

2π (Bm
2 + dΛm

1 ) ∧ (F2 −Be
2)

= S ′ − i

2π

∫
M4
dλm

1 ∧Be
2

The main takeaway is that gauging both of the 1-form symmetries simultaneously is
impossible. The action and subsequently, the partition function is not invariant under
gauge transformation. This is usually addressed as a mixed ’t Hooft anomaly of the the-
ory. ’t Hooft anomaly is an RG-flow invariant quantity that can tell us about behaviour
of the theory in strongly coupled region. The concept has abundant applications albeit
we are not going to use it extensively in this paper. Interested reader should check [13]
and [15] for more details



Chapter 4

Wilson Lines and ’t Hooft Lines in Four Dimensions

Wilson Lines and ’t Hooft Lines are introduced in chapter 2 as the charged objects under
1-form symmetries. At the same time they are also basic objects in gauge theory. They
are probes that reveal the different spectrum of otherwise indistinguishable gauge groups.
In some way they serve as connections between gauge theory and the language of higher-
form symmetries. In this chapter, we will continue to follow mathematical rendition of
gauge theory to derive some properties of line operators under different gauge groups.
Then we will discuss the line spectrum of SU(N) and PSU(N) Yang-Mills through group
theory. Note that the setting is in 4d for this chapter.

4.1 What is Wilson Line?

Where does Wilson Line come from? Experimentally, Wilson Line (or rather, loop)
comes out naturally in a phenomenon called Aharonov–Bohm effect. An introduction
can be found in [15] and [2]. [2] also provides an explanation emerging from fibre bundle
picture. It is reproduced as follow. Let’s return to the Principal Fibre Bundle P (M,G).
When a path is given on base manifold M , we can ask for the movement of fibre along
the path. First define:

Definition 4.1. On a principal bundle P (M,G) given a path γ : [0, 1]→ M , the curve
γ̃ : [0, 1] → P is the Horizontal Lift of γ if π ◦ γ̃ = γ and the tangent vector of γ̃(t)
belongs to Hγ̃(t)P .

Given a curve on M , the choice of horizontal lift is far from unique. However, we can
fix a horizontal lift by fixing its initial point. This is a result granted by the fundamental
theorem of ordinary differential equation. We claim without proof that:

Theorem 4.2. Given γ : [0, 1]→M and u0 ∈ π−1(γ(0)), there exists a unique horizontal
lift γ̃ such that γ̃(0) = u0.

Define a reference section si on a patch Ui that contains γ. Without loss of generality,
assume si(γ(0)) = u0. We can then express γ̃ with respect to the reference section by
writing γ̃(t) = si(γ(t))gi(γ(t)) with gi(t) ∈ G. Denote X as the tangent vector to γ at

37
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γ(t). Then X̃ = γ̃(t)∗X is the tangent vector to γ̃ at γ̃(t). It follows, similar to the
derivation of 3.11, that:

X̃ = γ̃(t)∗X

= d

dt
(si(γ(t))gi(γ(t)))

= g−1
i (t)si∗Xgi(t) + (g−1

i (t)dgi(X))#

Then using the property that X̃ ∈ Hγ̃(t)P :

0 = ω(X̃)
= g−1

i (t)ω(si∗X)gi(t) + g−1
i (t)dgi(X)

= g−1
i (t)Ai(X)gi(t) + g−1

i (t)dgi(X)

A differential equation is recovered:

dgi(t)
dt

= −Ai(X)gi(t) = −Aiµ
dxµ

dt
gi(t) (4.1)

This equation describes how the horizontal lift γ̃ moves in the fibre with respect to
the reference section si, which is really just a reference because it is trivialized to identity
(γ(t), e) ∈ Ui ×G if canonical trivialization is chosen. Attempting to solve this equation
in a general (non-Abelian) case yields an infinite series:

gi(γ(t)) = −1−
∫ t

0
dt′Aiµ

dxµ

dt′
−
∫ t

0
dt′
∫ t′

0
dt′′Aiµ

dxµ

dt′
Aiν

dxν

dt′′
...

= −
∞∑

n=0

∫ t

0
dt′
∫ t′

0
dt′′...

∫ t(n−1)

0
dt(n)Aiµ1

dxµ1

dt′
Aiµ2

dxµ2

dt′′
...Aiµn

dxµn

dt(n)

≡ P exp
(
−
∫ t

0
dtAiµ

dxµ

dt

)

= P exp
(
−
∫ γ(t)

γ(0)
dxµAiµ(γ(t))

)

The infinite series took the form of an exponential. The connection is however not
commutative in general so we need to define a path order operator P to take care of the
order. The operator is similar to the time order operator seen in conventional treatment
of QFT. It puts the connection at smaller t in front of connection at larger t in every
term of the expansion. Taking the physical convention 3.15, we have

gi(t) = P exp
(
−i
∫

γ
A1

)
(4.2)

the non-Abelian Wilson Line operator. If the group is Abelian, P can be safely
removed. Notice that we first introduced Wilson Line in Chapter 2 as the world line of
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an infinitely heavy electric source particle. We have derived the Wilson Line here without
including any charged matter in the picture. It is simply the parallel transportation along
a curve in the principal fibre bundle and exists as a basic feature. It is also clear that
Wilson Line is an element of the group because from 3.4 we saw that

∫
γ Ai is an element

of the Lie algebra. We can alternatively denote a Wilson Line along Γ1 parameterized
by t ∈ [0, 1] that starts at point xi and ends at point x as

W (xi, x(t); Γ) = P exp
(
i
∫ Γ(t)=x(t)

Γ(0)=xi

A1

)
(4.3)

It has property:

W (xi, xi; Γ) = P exp (0) = 1 (4.4)

A slight remark: the solution to the ODE (4.2) translates to the new notation as

gi(t) = P exp
(
−i
∫

γ
A1

)
= P exp

(
i
∫

−γ
A1

)
= W (x(t), xi; Γ) (4.5)

The swapping of order has no particularly deep reason. It only has to do with how the
ODE was set up in the first place. We would like to know how Wilson Line transforms.
Under the component form of 3.16:

Aµ(x)→ A′
µ(x) = g−1(x)Aµ(x)g(x) + i∂µg

−1(x)g(x) (4.6)

We claim that the Wilson Line transforms as:

W (xi, x; Γ)→ W ′(xi, x; Γ) = g−1(xi)W (xi, x; Γ)g(x) (4.7)

Here is a proof: Recall the ODE of parallel transport 4.1, rewritten here as

dxµ

dt
∂µW (x, xi; Γ) = −iAµ

dxµ

dt
W (x, xi; Γ)

dxµ

dt
(∂µ + iAµ)W (x, xi; Γ) = 0

where ∂µ is a notation for ∂
∂xµ . We need the gauge transformed W ′ and A′ to still

satisfy the ODE. Inserting 4.7 and 4.6:
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dxµ

dt
(∂µ + iA′

µ)W ′(x, xi; Γ)

= dxµ

dt
(∂µ + ig−1(x)Aµ(x)g(x)− ∂µg

−1(x)g(x))g−1(x)W (x, xi; Γ)g(xi)

= dxµ

dt
{∂µg

−1(x)W (x, xi; Γ)g(xi) + g−1(x)∂µW (x, xi; Γ)g(xi) + ig−1(x)Aµ(x)W (x, xi; Γ)g(xi)

− ∂µg
−1(x)W (x, xi; Γ)g(xi)}

= dxµ

dt
(g−1(x)∂µW (x, xi; Γ)g(xi) + ig−1(x)Aµ(x)W (x, xi; Γ)g(xi))

= g−1(x)dx
µ

dt
(∂µ + iAµ(x))W (x, xi; Γ)g(xi)

= 0

Also the solution of W ′ obeys a unique boundary condition

W ′(x, xi; Γ)|t=0 = W ′(xi, xi; Γ) = 1 (4.8)

Check from 4.4 that

W ′(xi, xi; Γ) = g−1(xi)W (xi, xi; Γ)g(xi) = g−1(xi)g(xi) = 1 (4.9)

for arbitrary g. Thus from the fundamental theorem of Ordinary Differential Equa-
tion, our solution for W ′ must be unique. So far, we write Wilson Lines in term of
connection valued in an abstract Lie algebra element. In physics, we need to find for it a
representation. In a more formal language, A1 is not the connection on principal bundle
but the induced connection on associated bundle. Explicitly,

WR(xi, xf ; Γ) = P exp
(
i
∫ Γ(1)=xf

Γ(0)=xi

ρ(A1)
)

(4.10)

WR(xi, xf ; Γ)→ R(g(xi))−1WR(xi, xf ; Γ)R(g(xf )) (4.11)

where ρ denotes the corresponding Lie algebra representation to R.

4.1.1 Wilson Line and Screening

The Wilson Line is a non-genuine operator because it is not gauge invariant. As all
physical properties are gauge invariant, we want to construct a genuine operator out of
Wilson Line. One way to do that is to connect Wilson Lines with a local operator in the
same representation. The action of connecting two Wilson Lines with a local operator is
called Screening. Screening provides a shortcut to finding the 1-form symmetry of the
theory. We will illustrate this with a few examples taken from [9].
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Screening in Abelian Higgs Model

Recall that Abelian Higgs model with a charge q Higgs has gauge transformations

A1 → A1 + dθ ϕq → eiqθϕq (4.12)

Consider a Wilson Line in “q” representation that only has one ending point x (∂Γ =
−x) but extends infinitely on the other end. It transforms as

Wq(x,∞; Γ) = exp
(
iq
∫ x

∞
A1

)
→ exp

(
iq
∫ x

∞
(A1 + dθ)

)
= e−iqθ(x)Wq(x,∞; Γ)

Inserting ϕq at point x cancels the additional term under gauge transformation. In
other words, the combination

ϕq(x)Wq(x,∞; Γ) (4.13)

is a genuine operator. In the language of screening, this combination can be under-
stood as ϕq connecting Wq to a trivial Wilson Line. We say that Wq is completely
screened. We can define the screening as an equivalent relation

Wq ∼ 1 (4.14)

Similarly by adding the n-th order local field

ϕn
q (x)→ einqθ(x)ϕn

q (x) (4.15)

we can construct

Wp(−∞, x; Γ′)ϕn
q (x)Wr(x,∞; Γ)→ ei(p+nq−r)θ(x)Wp(−∞, x; Γ′)ϕn

q (x)Wr(x,∞; Γ) (4.16)

connecting two Wilson Lines. The screening in Abelian Higgs Model is, in general,
given by the condition r = p+ nq:

Wp+nq ∼ Wp p, n, q ∈ Z (4.17)

Screening in SU(2) Yang-Mills

The Maxwell field strength is gauge invariant. For that reason it can not screen any
Wilson Line. The field strength of Yang-Mills Theory, however, transforms in the adjoint
representation:

F2 → g−1F2g = ad(g)F2 (4.18)



42 Chapter 4. Wilson Lines and ’t Hooft Lines in Four Dimensions

That means the field strength provides complete screening for Wilson Line in the
adjoint representation. Recall that for SU(2), representations are marked by integers
and half-integers. We can assign each representation a spin number

j ∈ Z
2 (4.19)

By adding order of F2 it is possible to screen any integer value of spin. The screening
is described by

Wj+n ∼ Wj n ∈ Z (4.20)

There are only two equivalent classes [0] and [1
2 ].

Consequence of Screening: in the Language of Generalized Symmetry

Recall in Chapter 2 we have established that the representations of Abelian group G is
labeled by the Pontryagin dual group Ĝ. The Pontryagin dual group of finite Abelian
group is easy to find. Taken from [9],

Theorem 4.3. For any finite Abelian Group G(p), Ĝ(p) ∼= G(p)

Along with property ̂̂
G ∼= G, the mechanism of screening allows us to immediately

find the group of 1-form electric symmetry once we know the complete set of Wilson
lines and screening relations. First we claim: If two line operators are equivalent
via screening, they have the same 1-form charge.

The proof is mostly visual. 1-form charge of a line is given by an SDO wrapping
around it. If the line is screened to another line by a local operator, we can use the
topological nature of the SDO to move it to the other line and contracts there instead.
The resulting statement is that both of the lines must give the same charge after the
symmetry action, otherwise the action is no longer topological. The best way to see this
is through a picture Fig.4.1 taken from [9]:

It is then clear that the correct elements in the Pontryagin Dual group are equivalent
classes of Wilson Lines. Let’s take the last two examples and evaluate their 1-form group:

In the Abelian Higgs case, the original group of representation is Û(1) ∼= Z. The
existence of charge q Higgs field results in a quotient group

Ĝ(1) ∼=
Z
qZ
∼= Zq (4.21)

Immediately the 1-form symmetry group is

G(1) ∼= Ẑq
∼= Zq (4.22)

In SU(2) Yang-Mills, the Wilson Line spectrum is Z
2 quotient Z, it follows that

G(1) ∼=
(̂

Z
2Z

)
∼= Ẑ2 ∼= Z2 (4.23)
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Figure 4.1: Screened lines have the same charge

Beyond Wilson Line

So far we have looked at Wilson Lines in higged U(1) and SU(2). They are simple
because U(1) and SU(2) have simple sets of representations. Is there a more general
method that applies to SU(N) with N > 2?

Wilson Lines, when seen as the world line of a charged particle, is clearly labeled by
(the particle’s) representation of the gauge group. It is less clear how ’t Hooft Lines are
labeled. A slight spoiler: ’t Hooft Lines are also in representation of a group but not the
original one. To properly explain these questions, a reasonable starting point would be
a review on representation theory of Lie groups.

4.2 A Review on Lie Theory

This section assumes the readers have some amount of knowledge on Lie Theory and
runs relatively quickly. We refer the readers to [4] and [16] for the full mathematical
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construction.
We start with a complex, semi-simple Lie algebra g. Recall that it admits a Cartan

subalgebra h ⊂ g that is maximal and Abelian. The Cartan provides a decomposition
of the module. Pick a representation ρ : g→ End(V ) where V is a vector space. Denote
h∗ as the dual space of the Cartan subalgebra: h∗ : h → C. Recall that w ∈ h∗ is a
weight of g if ∃v ∈ V such that

ρ(H)(v) = w(H)v ∀H ∈ h (4.24)

If V is the Lie algebra itself, the corresponding representation is the adjoint repre-
sentation Ad : g→ End(g). The weights are called roots: α ∈ h∗ and for G ∈ g,

Ad(H)(G) = α(H)G ∀H ∈ h (4.25)

If the Lie algebra is expressed in matrices, these are essentially eigenvalue equations.
The weight and root equations provides complete decompositions of the corresponding
vector spaces V and g.

V =
⊕
w
Vw (4.26)

g = h⊕
⊕

α

gα (4.27)

where Vw and gα are subspaces with eigenvalues w and α. h has zero eigenvalue.
Denote the set of all roots as ∆α and the set of all weights as ∆w, we can define the root
lattice and the weight lattice:

Λα(g) = Span(∆α) = {
∑

α(i)∈∆α

niα(i)|ni ∈ Z} (4.28)

Λw(g) = Span(∆w) = {
∑

w(i)∈∆w

niw(i)|ni ∈ Z} (4.29)

They are also addition groups by construction. Moreover, any representation of g can
be generated by subtracting roots from the a highest weight wρ of the representation. But
if we ask what elements of the weight lattice uniquely define a representation, the answer
is in fact an element of the weight lattice modulo the Weyl group λρ ∈ Λw(g)/W (g). In
other words, the label λρ is a equivalent class λρ = [wρ] defined by the equivalent relation
w ∼ sα(w) where sα is the Weyl group action.

4.3 Line Spectrum of SU(N)
Most of the content in the following sections owes to brilliant explanation of the matter in
[15] as well as [19] and [20]. Recall that in Chapter 3 we constructed a Dirac monopole for
U(1) gauge theory that provides a Dirac quantization condition. The key is a transition
function
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tNS(ϕ) = exp (iασ(ϕ)) (4.30)

Similar treatment can be done on G ∼= SU(N). In a vector bundle associated to prin-
cipal bundle P (m,G), the transition function is an element of a specified representation
R of SU(N). It can be written as

tNS(ϕ) = exp (iρ(s(ϕ))) (4.31)

where s is an element of the abstract Lie algebra g = Lie(G) and ρ the correspond-
ing Lie algebra representation. Note that this correspondence only works here because
SU(N) is simply-connected and has same representations as its algebra. This will come
back to haunt us later. The gauge fields configuration is also similar but m is now Lie
algebra valued and also in representation ρ:

AN
1 = 1

2ρ(m)(1− cosθ)dϕ AS
1 = −1

2ρ(m)(1 + cosθ)dϕ (4.32)

We claim that a gauge transformation can choose m to be in the Cartan subalgebra of
g. For this reason s would also be in h. Following from 3.18, the compatibility condition
reads

AN
1 = t−1

NSA
S
1 tNS + ρ(ds) (4.33)

Expand, we have

1
2ρ(m)(1− cosθ)dϕ = −1

2(1 + cosθ)dϕ e−iρ(s)ρ(m)eiρ(s) + ρ(ds)

ρ(m)(1− cosθ)dϕ = −(1 + cosθ)dϕ ( ρ(m) + [ρ(m), ρ(s)] ) + 2ρ(ds)
ρ(m)dϕ = ρ(ds)

where we have use the homomorphic identity and that both m and s are in the
Abelian Cartan subalgebra:

[ρ(m), ρ(s)] = ρ([m, s]) = 0 (4.34)

Integrate both sides:
∫
ρ(ds) = ρ(∆s) =

∫ 2π

0
ρ(m)dϕ = 2πρ(m) (4.35)

The resulting single-valued condition is

ei2πρ(m)v = v (4.36)

here v ∈ V is a vector in the representation ρ. Since m ∈ h, from 4.24:

ei2πρ(m)v = ei2πw(m)v (4.37)
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and

w(m) = wimi = w ·m
!
∈ Z (4.38)

This is familiar because there is a similar relation between root and weight:

2α ·w
α2 ∈ Z (4.39)

This follows from the Cartan-Weyl basis which states that the algebra can be decom-
posed into smaller SU(2) algebra. On top of that we can define co-root to be

α∨ := 2α
α2 (4.40)

and this is the quantity that labels magnetic charge in SU(N) theory. Like root and
weight, co-root also spans a lattice

Λα∨(g) = {
∑

α∨
i ∈∆α∨

niα
∨
i |ni ∈ Z} (4.41)

The condition 4.38 looks like Dirac quantization condition. It is named GNO quan-
tization after the paper [26] of Goddard, Nuyts, and Olive. They also found that there
exists a Lie algebra g∨ such that

Λα∨(g) = Λα(g∨) (4.42)

This algebra is called the GNO dual of the original algebra. To interpret the GNO
dual graphically, the root lattice of g and g∨ can be interchanged by swapping long and
short roots (Fig.4.2). The Weyl group of GNO dual algebra is the same as the Weyl
group of original algebra

Figure 4.2: GNO dualization swaps long and short roots

W (g∨) = W (g) (4.43)

This is not difficult to spot out because swapping long and short roots does not
change the symmetry of the lattice. For g = su(N), all roots have the same length. This
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feature is called “simply-laced”. Since the algebra of SU(N) is simply-laced, g∨ = g and
Λα∨(g) = Λα(g)

We have found that all charged line operators in SU(N) lies in the group 1

Λw(g)
W (g) ×

Λα(g∨)
W (g∨) (4.44)

The element of the space looks like

[(λe, λm)] (λe, λm) ∼ (sλe, sλm) (4.45)

There are further restriction on the spectrum. Recall that in SU(2) the existence of
the field strength completely screen the adjoint Wilson Line. Analogically, the adjoint
local operators always exist for both electric and magnetic group in SU(N). They can
be represented by Λα(g)/W (g) and Λα(g∨)/W (g∨). They should be quotient out from
the main group, thus

Λw(g)/W (g)
Λα(g)/W (g) ×

Λα(g∨)/W (g∨)
Λα(g∨)/W (g∨) = Λw(g)

Λα(g) × 1 (4.46)

We claim without proof that Λw(g)/Λα(g) ∼= C(SU(N)) ∼= ZN where C(·) means the
center of the group. The resulting set of lines are

(ze, 0) ∈ Ze
N × 1 ze ∈ {0, 1, 2, ..., N − 1} (4.47)

There is an additional constraint due to the requirement for two different lines to be
mutually local. It states that for two line operators (n,m) and (n′,m′),

nm′ −mn′ = 0 mod N (4.48)

This is a generalized version of a condition on two dyons (particles with both electric
and magnetic charges) called Dirac-Zwanziger-Schwinger quantization. It is not very
relevant here because the magnetic charge group is trivial in SU(N) and the condition
is always satisfied.

4.4 SU(N) versus PSU(N)
We would like to generalize what we have done on SU(N) in the last section to a related
group PSU(N) ∼= SU(N)/ZN . The choice of PSU(N) has a historic reason. In older
material it is sometimes stated that the correct group of Yang-Mills theory is actually
PSU(N) instead of SU(N). The two gauge groups share the same Lie algebra su(N) and
thus the same action (if discrete gauge field is out of the picture). The gauge boson is also
blind to the difference because it is in the adjoint representation, which is again shared by

1More accurately, the group is actually Λw(g)×Λα(g∨)
W (g) . i.e. the final group of lines are not just simple

product of pure electric and magnetic lines. We will not specify the distinction here. Interested readers
can find an explanation in [20].
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the two groups. In fact, all correlation functions of local operators are the same for two
theory, as stated in [15]. That doesn’t mean the two theories are completely identical.
When put onto topologically non-trivial manifold, the two have distinct behaviours. We
will not go into this topic. Instead, we will see how line operators can be used as tools to
probe the difference between them. SU(N)/ZN is not the only group of this kind. It is
possible to discuss line spectrum of SU(N)/Zk with k a divisor of N . It is also possible
to go beyond SU(N) into SO(N) and Sp(N) gauge theories. These are all studied in
[19].

A defining characteristic of PSU(N) is that it only admits a portion of the representa-
tions of su(N). Going back to 4.31, we claimed that ρ is the corresponding representation
to the group representation R. In the case of SU(N)/ZN , only a part of the representa-
tions of su(N) is allowed to be selected, resulting in a modification of 4.37 to

ei2πρ(m)v = ei2πα(m)v (4.49)

where α is the root. Why? Recall that we claim the following statement is true

Λw(g)/Λα(g) ∼= C(SU(N)) ∼= ZN (4.50)

Conversely,

Λw(g)/ZN
∼= Λα(g) (4.51)

which is stating that the weight lattice of SU(N)/ZN is simply the root lattice of
SU(N). In the associated bundle of PSU(N), only adjoint representation is present,
thus

ρ(m)v = ad(m)v = α(m)v (4.52)

The resulting GNO quantization condition is α ·m ∈ Z, which identifies the magnetic
charge as a “co-weight.” This is usually named magnetic weight of g. Equivalently, it is
also the weight of g∨.

Λmw(g) = Λw(g∨) (4.53)

Repeating what we have done in the last section, we find that the line operators of
PSU(N) are in group

Λα(g)
W (g) ×

Λw(g∨)
W (g∨) (4.54)

After screening, they are elements

(0, zm) ∈ 1× Zm
N zm ∈ {0, 1, 2, ..., N − 1} (4.55)

We can put the two sets of different line spectrum in the same group
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Ze
N × Zm

N (4.56)

The lines in SU(N) occupy (ze, 0) and the lines in PSU(N)+ occupy (0, zm). We
are adding a subscript + on PSU(N)+ because this is just one solution to the locality
constraint of PSU(N). There is another theory PSU(N)− with a different spectrum still
hidden from us. We will explore it in the next section.

We see that the two gauge groups are the opposite of each other in the sense that
SU(N) has the most electric charges while PSU(N)+ flipped the spectrum to obtain
the most magnetic charges. The GNO quantization condition set a balance in which
more electric charges (irreps) leads to more restriction on magnetic charges. If the group
of interest is SU(N)/Zk where k is some divisor of N , we will find a spectrum that is
somewhere inbetween SU(N) and PSU(N)+.

4.4.1 ’t Hooft Magnetic Flux

Recall that in chapter 3 we classified Dirac magnetic monopole with the fundamental
group Π1(U(1)). In [20], this is referred to as a classification of ’t Hooft operators
by its ’t Hooft Magnetic Flux. An explanation is provided in [20] to bridge the two
classifications. For a simple, compact Lie Group G with Lie algebra g, we define G̃ to
be the universal cover of G and G0 to be the centerless group with algebra g:

G0 ∼= G̃/C(G̃) (4.57)

In the case of g = su(N), for example, G̃ is SU(N) and G0 is PSU(N). We define
the exponential map:

exp : g→ G X 7→ exp(iX) (4.58)

The Dirac/GNO quantization condition states that the magnetic charge m ∈ g is in
the kernel of this map. The kernel is actually a lattice in g, we denote it as

Λker(G) ∈ g (4.59)

Also, we know that

Λker(G) ⊆ Λmw(g) Λα∨(g) ⊆ Λker(G) (4.60)

from our previous analysis. Additionally, [20] clarifies that

C(G) ∼= Λmw(g)/Λker(G) Π1(G) ∼= Λker(G)/Λα∨(g) ∼= Λker(G)/Λα(g∨) (4.61)

If we think of Λker(G) as the weight lattice of some Group G∨ that has Lie algebra
g∨, the fundamental group is actually representing the center of it

Π1(G) = C(G∨) (4.62)
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This is called the GNO Dual Group. Notice that the choice of GNO dual group
for a particular g∨ is not unique. We can now check the two special cases. If G has a
trivial center,

Λker(G) = Λmw(g) Π1(G) ∼= Λmw(g)/Λα∨(g) ∼= C(G̃∨) (4.63)

On the other hand, if G ∼= G̃,

C(G̃) ∼= Λmw(g)/Λker(G̃) Λker(G̃) = Λmw(g)/C(G̃) (4.64)

and we can find the fundamental group to be

Π1(G̃) ∼=
Λmw(g)/C(G̃)

Λα∨(g)
∼=
C(G̃∨)
C(G̃)

(4.65)

In our special case of g = su(N), we have

G̃∨ ∼= G̃ ∼= SU(N) (4.66)

We will recover

Π1(SU(N)) ∼= 1 Π1(PSU(N)) ∼= ZN (4.67)

This is exactly what we found in the previous analysis. We have thus shown that we
can recover the fundamental group classification via group theory manipulation.

4.5 Witten Effect and Discrete Theta Angle
In the last chapter, we have introduced Witten Effect and how it affects Maxwell Theory.
Witten Effect extends to SU(N) and PSU(N) Yang-Mills, and it has interesting interplay
with the line spectrum of these theories that leads to profound result. Before a deeper
dive, we would like to present a proof for Witten Effect for a general simple, compact
gauge group G in four dimensions. Recall that the theta term is

Sθ = θ

8π2

∫
M4
tr(F2 ∧ F2) = θ

8π2

∫
∂M4

κ3 (4.68)

where κ3 is the Chern-Simons form

κ3 = tr(A1 ∧ dA1 + 2
3A1 ∧ A1 ∧ A1). (4.69)

In general, A1 is valued in Lie algebra g and is non-commutative. However, if we
only consider a magnetic monopole configuration where A1 is valued in m ∈ g, we have
argued before that it is possible to choose m to be in the Cartan subalgebra such that
A1 commute. We can therefore simplify the expression to

Sθ = θ

8π2

∫
∂M4

tr(dA1 ∧ A1) (4.70)
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We would like to evaluate this term on the “boundary” of a ’t Hooft Line. To do
that, chose the t’Hooft Line to wrap on a curve Γ1. Choose M3 to be the 3-dimensional
cut of M4, transverse to Γ1. We can then write ∂M4 = ∂M3 × Γ1. Also, we can write
F2 = dA1 with commutative A1, now the theta term is

Sθ = θ

8π2 tr
(∫

∂M3

∫
Γ1
F2 ∧ A1

)
(4.71)

Recall that the magnetic monopole is defined with the identity

dF2 = 2πmδ3(x ∈ Γ1)∫
M3
dF2 = 2πm

∫
M3
δ3(x ∈ Γ1)∫

∂M3
F2 = 2πm Link(∂M3,Γ1)

Without loss of generality, we can take the boundary ∂M3 to be a sphere S2 and the
linking number to be 1. Thus

Sθ = θ

8π2 tr
(∫

S2
F2 ∧

∫
Γ1
A1

)
= tr

(
θm
4π

∫
Γ1
A1

)

= θ

2π

∫
Γ1

m(A1)

Which is in the form of a Wilson Line with charge θm
2π

! Adding this term to the action
is equivalent to adding an electric source to the system. This is indeed the conclusion of
Witten Effect.

Aside: ’t Hooft-Polyakov Monopole

The above explanation gives a proper intuition to Witten Effect. It is however not the
most rigorous proof available. We have been using Dirac Monopole setting and Wu-Yang
forms as our main language to describe soliton in this paper. The major flaw of this
language is that the gauge field configuration necessarily admits a singularity at a point
in space-time. That means we don’t really know what is happening at Γ1 even though
we propose that there is a Wilson Line wrapping on it.

Also, the explicit form of the gauge field 1-form A1 is unclear. The Wu-Yang forms
have basis dϕ, which is not well-defined outside of the 3-dimensional cut M3 and it is
unclear what it means to integrate them on the curve Γ1.

A better formulation of magnetic monopole is the ’t Hooft-Polyakov monopole. ’t
Hooft and Polyakov ([27],[28]) found that there is a monopole solution for a U(1) orbit
embedded in an SU(2) gauge group. By using a Higgs field to break SU(2) down to
U(1), it is possible to pick out the infinitesimal gauge transformations related to the
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U(1) orbit and write them in terms of the Higgs field. Other useful information can be
deduced with Noether’s theorem on top of that.

For a complete construction of ’t Hooft-Polyakov Monopole and how it can be used
to prove Witten Effect, see [12].

4.5.1 Discrete Theta and A Tale of Two SO(3) Spectrum

In this section we will look at how Witten Effect affects spectrum of a theory. The major
inspirations of this section is again [15] and [19]. Let’s look at a simple example of SU(2)
and PSU(2) ∼= SO(3). The center of SU(2) is Z2. Thus we can immediately write out
the spectrum of the two groups:

Z2 × Z2 ∋ (ze, zm) =

 (0, 0), (1, 0) G ∼= SU(2)
(0, 0), (0, 1) G ∼= SO(3)

(4.72)

Assuming the action of the theory already has a theta term. If we try to use the
cyclicity of the theta angle with Witten Effect in place, we find that upon the cyclic
transformation:

θ → θ + 2π θm
2π →

θm
2π + m (ze, zm)→ (ze + zm, zm) (4.73)

If G ∼= SU(2), we find that

(0, 0)→ (0, 0) (1, 0)→ (1, 0) (4.74)

i.e. the cyclicity of the theta parameter is still a symmetry of the system. However,
if we use it on the SO(3) theory:

(0, 0)→ (0, 0) (0, 1)→ (1, 1) (4.75)

which means by dialing the θ parameter by 2π, we have arrived at a new theory that
is still an SO(3) Yang-Mills theory but has different lines. In [19] this is summarized as:

 SO(3)+ : (0, 0), (0, 1)
SO(3)− : (0, 0), (1, 1)

(4.76)

What’s special about SO(3)− is that neither fundamental Wilson Line (1,0) nor fun-
damental ’t Hooft Line (0,1) exist. Instead there is an allowed dyon line (1,1). There is
a nice way to show this graphically, presented in Fig.4.3 taken from [19].

We can further label the two theories with their theta angles. They are related as
following

SO(3)θ
+ = SO(3)θ+2π

− (4.77)

More generally, PSU(N) theory can be related by a shift of the θ parameter
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Figure 4.3: Spectrum of theory with g=su(n)

PSU(N)θ
+ = PSU(N)θ+Nπ

− (4.78)

The corresponding between PSU(2) and SO(3), famously, is a happy accident. It
was stated in [19] that the shifting rule is not true in general for SO(N) gauge theories.
In fact, SO(N)+ and SO(N)− are not related by a shift of theta angle when N ≥ 5.

Going back to the SO(3) example, it is clear that even though the theta angle is not
2π periodic, it is 4π periodic:

(0, 1) 2π→ (1, 1) 2π→ (2, 1) = (0, 1) (4.79)

In general, PSU(N) theories have a theta angle that is 2πN periodic. We can redefine
the theta angle

θ := 2πp (4.80)

Now p takes values in

p = {0, 1, ..., N − 1} (4.81)

p is N-periodic. This is called discrete theta angle. By dialing the angle we can reach
different phases of PSU(N) theory.

We have shown in the last chapter that the periodic property of θ leads to time-
reversal symmetry of the theta term at θ = π. How does the new discrete theta angle
change the picture? We have arrived at the discrete theta angle in a very formal way.
In the next chapter, we will try to show it explicitly. In fact, there is a mixed ’t Hooft
anomaly between the center symmetry and the time-reversal symmetry. To see how this
statement unrolls, we will need to find a way to gauge the center with a background
gauge field. This time, it needs to be discrete.



Chapter 5

Discrete Gauge Theory

In the final chapter, we would like to discuss how a gauge field with discrete gauge group
can be formulated. Hopefully the previous chapters have provided enough motivations
for a discrete gauge field: higher-form symmetries are always Abelian. So they must be
discrete unless they are just a simple U(1) group. Center symmetry of SU(N) is discrete,
so we need a discrete background field to gauge it. Gauging with background fields gives
us direct access to the language of ’t Hooft anomaly and allow us to track the anomaly
along RG-flow... There is one thing left—find it.

5.1 A Crash Course on Algebraic Topology
The language of connection 1-form is not quite compatible with a discrete gauge group.
The continuous gauge field is valued in Lie algebra, while for discrete group it is not
clear what an algebra is. In a pioneering paper [24] now canonized as the reference for
discrete gauge theory, Dijkgraaf and Witten found that the only degree of freedom for a
gauge theory with discrete (finite) group G is the topology of the G-bundle over the base
manifold. The language to describe it is, naturally, algebraic topology. This section aims
to introduce the intuition and mathematical language necessary to understand discrete
gauge theory. It will not provide a rigorous mathematical construction of algebraic
topology, nor is it possible in the matter of a few pages. For a complete treatment, we
recommend the readers to check on the major sources of this section [2], [3] and [24].

5.1.1 Motivation: de Rham’s Theorem

Recall that in 3.4, we wrote the connection 1-form as a map
∫

Γ
Ai ∈ g Ai : C1(Ui)→ g (5.1)

where C1(Ui) is a 1-chain. We can still think of it as a curve for now. This provides us
with an opening to approach a discrete gauge theory. Connection 1-form is a space-time
1-form valued in Lie algebra g:

Ai ∈ Ω1
g(Ui) (5.2)

54
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Let’s look at a simpler object: a normal space-time r-form (valued in R):

ωr ∈ Ωr(M) (5.3)

where we assume M is a compact manifold without loss of generality. For a r-chain
Cr(M) (think of it as an r-dim sub-manifold for now), we can define an inner product

(·, ·) : Cr(M)× Ωr(M)→ R (5.4)

c, ω 7→
∫

c
ω (5.5)

Check that the inner product is bi-linear:

(c1 + c2, ω) =
∫

c1+c2
ω =

∫
c1
ω +

∫
c2
ω = (c1, ω) + (c2, ω) (5.6)

(c, ω1 + ω2) =
∫

c
ω1 + ω2 =

∫
c
ω1 +

∫
c
ω2 = (c, ω1) + (c, ω2) (5.7)

Take d as the exterior derivative operator on ω and ∂ as the boundary operator on c,
the Stoke’s Theorem can be written as

(c, dω) = (∂c, ω) (5.8)

In this sense the boundary operator is the adjoint operator to exterior derivative.
Recall that we can construct a de Rham Cohomology structure on top of forms. The
following chain of maps is called a de Rham Complex Ω∗(M)

→ Ωr−1(M) dr→ Ωr(M) dr+1→ Ωr+1(M)→ (5.9)

Recall that we define the set of close r-forms Zr(M) and the set of exact r-forms
Br(M) to be

Zr(M) = ker(dr+1) (5.10)

Br(M) = im(dr) (5.11)

It is easy to check that they are also groups under form addition. Since Br(M) ⊆
Zr(M), a de Rham Cohomology group can be defined to capture this relationship. Define
that

Hr(M) = Zr(M)/Br(M) (5.12)

this can be understood as the group of equivalent classes of forms that are closed but
not exact. The elements of Hr(M) are

Hr(M) = {[ω]|ω ∈ Zr(M), ω′ ∈ Br(M), ω ∼ ω + ω′} (5.13)
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The above construction can be repeated on r-chains. There is a similar Chain Com-
plex C(M):

← Cr−1(M) ∂r← Cr(M) ∂r+1← Cr+1(M)← (5.14)

The r-chains that has no boundary are called “cycles”. They are the kernel of ∂r and
form a group

Zr(M) = ker(∂r) (5.15)

The r-chains that are boundaries of (r+1)-chain are the image of ∂r+1. They also
form a group

Br(M) = im(∂r+1) (5.16)

Similarly, a boundary has no boundary and Br(M) ⊆ Zr(M). Thus homology group
can be constructed as

Hr(M) = Zr(M)/Br(M) (5.17)

Notice that the inner product defined earlier extends to an inner product between
cohomology and homology groups. For c ∈ Zr(M), ω ∈ Zr(M):

Λ : Hr(M)×Hr(M)→ R [c], [ω] 7→ (c, ω) =
∫

c
ω (5.18)

We can check that this is well-defined and compatible with the equivalent classes. For
c′ ∈ Cr+1(M) and ω′ ∈ Ωr−1(M):

(c+ ∂c′, ω) = (c, ω) + (c′, dω) = (c, ω) (5.19)

(c, ω + dω′) = (c, ω) + (∂c, ω′) = (c, ω) (5.20)

This paved the way to de Rham’s Theorem

Theorem 5.1. If M is compact, Hr(M) and Hr(M) are finite-dimensional. Also, the
map

Λ : Hr(M)×Hr(M)→ R

is bilinear and non-degenerate, thus Hr(M) is the dual vector space of Hr(M)

To summarize, we have found that an r-form ω ∈ Ωr(M) together with the inner
product provides a map

Hom(Cr(M),R) ∋ (·, ω) : Cr(M)→ R (5.21)

This is called a cochain. We have also found that the group of closed but not exact
forms is dual to the group of chains that are cycles but not boundaries. This is why the
name “cohomology” is given to the form structure at the first place. Now we would like
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to find a discrete version of differential form to describe a discrete gauge theory. The
first step requires us to look closer to how the chains are defined.

The notation we have been using for chain is actually an abbreviation:

Cr(M) = Cr(M ;R) (5.22)

which means r-chains with coefficient in R. This motivates us to find chains with
coefficient in discrete groups such as Z or ZN such that the corresponding cochains

Hom(Cr(M,Z);Z) : Cr(M ;Z)→ Z (5.23)

is possibly what we are looking for.

5.1.2 Simplicial Homology

There are a few ways to construct homology theory. Among them Simplicial Homology
is more straight forward and serves our purpose of understanding. To motivate the
seemingly bizarre concept of a chain group, let’s look at an example similar to the one
given by [3]. Consider a space shown here

Figure 5.1: Example of a space

The space consists of four endpoints x, y, z, w and five oriented edges a, b, c, d, e. Sup-
pose we want to calculate the homotopy group of this space, we need to pin down a
base point and find a loop that starts and ends at it. For example, a loop with base
point x that goes through the upper triangle counter-clockwise can be expressed as abc.
The order of the multiplication matters because if the order is changed to bca, the base
point is changed to y. Take a look at an even more complicated loop ae−1d−1c where
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the inverse signals orientation. The loop starts and ends at x. By permuting the order
cyclically to e−1d−1ca, the loop now bases on y.

It is possible to construct a new theory that does not care about base point by
Abelianizing the loop. The loop ae−1d−1c is now noted by a− e−d+ c utilizing addition
instead of multiplication to stress the Abelian quality. The order does not matter any-
more. The loop is now called a cycle. To continue, a− e− d+ c can be seen as a chain
of addition with coefficients 1 and −1. We can further generalize this object by allowing
it to have arbitrary integer coefficients

ka+ lb+mc+ nd+ oe k, l,m, n, o ∈ Z (5.24)

Denote the space in fig.5.1 as ∆, we have just defined the set of all 1-chains of ∆:

C1(∆;Z) = {
ai∈l1∑

i

kiai|ki ∈ Z} (5.25)

where l1 is the set of all edges in ∆. The set is obviously a group under the Abelianized
addition, and the edges act like basis. What is the condition for a 1-chain to be a 1-cycle?
We can define a boundary operator ∂1 on the edges:

∂a = y − x
∂b = z − y
∂c = x− z
∂d = w − z
∂e = y − w

by looking at end points connected by the edges. Acting the operator on a 1-chain
gets

∂(ka+ lb+mc+ nd+ oe) = (m− k)x+ (k + o− l)y + (l −m− n)z + (n− o)w (5.26)

A cycle has no boundary, thus the condition for a 1-chain ka + lb + mc + nd + oe

to be 1-cycle is (m − k) = (k + o − l) = (l − m − n) = (n − o) = 0. Check that the
previous example a+ c− d− e indeed satisfies the condition. The boundary map maps
our arbitrary 1-chain to the group of 0-chains, which is defined as

C0(∆;Z) = {
xi∈l0∑

i

kixi|ki ∈ Z} (5.27)

where l0 is the set of end points x, y, z, w. Since there is no object in ∆ with dimension
higher than 1, all of the higher dimensional chain groups are trivial. Not surprisingly, all
negative dimensional chain groups are also set to be trivial.

We can increase the available dimension by filling up the triangles. The surfaces is
now a two-dimensional object named A and B (fig. 5.2).
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Figure 5.2: Second example of a space

The 2-chain group is

C2(∆;Z) = {
Ai∈l2∑

i

kiAi|ki ∈ Z} (5.28)

A generic element of the group looks like αA+βB, α, β ∈ Z. The boundary operator
∂2 can be defined with the orientation of A,B. i.e., if both of them are facing up, we can
set the boundary to obey “right-hand rule”

∂A = a+ b+ c

∂B = −b− d− e

Acting it on a 2-chain gives

∂(αA+ βB) = αa+ (α− β)b+ αc− βd− βe (5.29)

There is no non-trivial solution for a 2-cycle, which makes sense given the shape of
the graph.

Formal Definitions

The two sets of space in fig.5.1, 5.2 are called simplicial complexes in a more appropriate
language. They are made of oriented r-simplexes. A formal definition:

Definition 5.2. An Oriented r-Simplex can be labeled by an ordered set of r+1 points
σr = (p0, p1, ..., pr) where the points are geometrically independent. In other words, there
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is no (r-1)-dimensional hyperplane that contains all r+1 points. r-Simplex is the space
enclosed by the r+1 vertices. It can be expressed as a subset of Rm, m ≥ r:

σr = {x ∈ Rm|x =
r∑

i=0
cipi, ci ≥ 0,

r∑
i=0

ci = 1} (5.30)

To illustrate the point, take fig.5.2 as an example. The 0-simplexes are (x),(y),(z),(w).
The 1-simplexes are a = (xy), b = (yz), etc. The 2-simplexes are A = (xyz), B = (yzw).
If there is a 3-simplex, it would be in the shape of tetrahedron. Within an r-simplex we
can define a face:

Definition 5.3. For q ∈ Z, 0 ≤ q ≤ r, choose q + 1 points pi0 , ..., piq out of the r + 1
vertices and they define a q-simplex σq = (pi0 , ..., piq). This is called a q-Face of σr

For example, edge a is a 1-face of 2-simplex A. A simplicial complex is constructed
by assembling a set of simplexes. There is a manual on what to do and what not to do:

Definition 5.4. Let ∆ be a set of finite number of simplexes in Rm. ∆ is a Simplicial
Complex if
1. An arbitrary face of a simplex in ∆ belongs in ∆
2. If σ, σ′ are two simplexes in ∆, their intersection is either empty or a commong face.
If ∆ is a simplicial complex, it can be assembled into a Polyhedron |∆| in Rm by pasting
the shared faces of the simplexes. |∆| is a subset of Rm with the same dimension as ∆.

The rules prevent situation where two edges overlap in the middle or a surface missing
an edge. It should be an easy exercise to check that both fig.5.1 and fig.5.2 are simplicial
complexes. With all the basic notion in place we can build up chain groups and chain
complex in the way we demonstrated earlier. Another piece of useful information is a
formal definition of the boundary operator:

Definition 5.5. The Boundary Operator is a map

∂r : Cr(∆)→ Cr−1(∆) (5.31)

algebraically, it is defined as

∂rσr =
r∑

i=0
(−1)i(p0, p1, ..., p̂i, ..., pr) (5.32)

where p̂i means to omit the point.

Notice that this is very similar to the coordinate free definition of exterior derivative
and rightfully so. We have reviewed the process of assembling simplexes into complex
and finding chains and homology of the complex. The homology can then be carried into
spaces that are not complexes by the notion of triangulation:

Definition 5.6. For a topological space X. If there exists a simplicial complex ∆ and a
homeomorphism f : |∆| → X, X is said to be Triangulable and the pair (∆, f) is the
Triangulation of X.
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The choice of triangulation is not unique, but the Homology groups are independent
of triangulations. Even better, they are topological invariant.

Theorem 5.7. Homological groups are topological invariant. For two spaces X and
Y homeomorphic to each other, take (∆, f) and (Θ, g) to be triangulations of X, Y
correspondingly,

Hr(∆) ∼= Hr(Θ) (5.33)

In the particular case where (∆, f) and (Θ, g) are two triangulations of X, the property
still holds. Thus it makes sense to simply denote

Hr(X) ≡ Hr(∆) (5.34)

where (∆, f) is an arbitrary triangulation of X.

There are spaces that are not triangulable. Singular homology is the correct tool to
work with them. It is more general but less calculable than simplicial homology. We
will not delve deeper into other constructions of homology such as singular homology or
group homology. Interested readers can read about them in [3] and [24]. For now let’s
be satisfied with the promise that all differentiable manifolds are triangulable.

5.2 A Discrete Gauge Field

For a Z gauge theory on manifold M , a discrete r-form gauge fields is an r-cochain

ωr ∈ Cr(M ;Z) (5.35)

ωr(·) := (·, ωr) ∈ Hom(Cr(M ;Z),Z) : Cr(M ;Z)→ Z (5.36)

where (·, ·) is the inner product of the dual structure. Hopefully we have provided
enough intuition to understand what Cr(M ;Z) represents. The r-cochain maps assign an
element of Z to every r-simplex in M . We can exploit the analogy of de Rham’s Theorem
and think of them as r-forms with integer value:

ωr ∈ Ωr
Z(M) (5.37)

In this section we will explore some of the features of discrete gauge field. In order
to do calculation with discrete gauge fields, we need a language that is less abstract and
closer to what we are familiar with. The main sources of this section are [3], [15], [10],
[9], and [24]. We will start with a brief introduction of the operations equipped by the
cochain groups.
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5.2.1 Coboundary, Cup Product, Integration

A coboundary operator δr : Cr−1(M)→ Cr(M) is defined as the adjoint operator to the
boundary operator with respect to the inner product. For cr ∈ Cr(M):

(cr, δr+1ωr) = (∂rcr, ωr) (5.38)

Writing cr as an ordered set of points (p0, ..., pr), we can define the operator as

δr+1ωr(p0, ..., pr+1) =
r∑

i=0
(−1)iωr(cr(p0, p1, ..., p̂i, ..., pr+1)) (5.39)

where p̂i again means omitting the point. This is the discrete version of exterior
derivative. Like exterior derivative, it is nilpotent

δr+1δr = 0 (5.40)

We can define cocycle Zr(M) and coboundary Br(M) from the operator:

Zr(M) = ker(δr+1) (5.41)

Br(M) = im(δr) (5.42)

There is also a discrete version of wedge product. It is a map called cup product:

∪η : Cr(M ;G)× Cq(M ;H)→ Cr+q(M ;K) (5.43)

defined upon a bi-homomorphism

η : G×H → K (5.44)

For ωr ∈ Cr(M ;G) and ζq ∈ Cq(M ;H), the cup product of them acting on a (r+q)-
chain (p0, ..., pr+q) is defined as

ωr ∪η ζq(p0, ..., pr+q) = η(ωr(p0, ..., pr), ζq(pr, ..., pr+q)) ∈ K (5.45)

In a special case where G ∼= H ∼= Z, there is a natural bi-homomorphism Z× Z→ Z
which is the multiplication of integers (decending from the ring structure of Z, one might
say). In this case the cup product is just

ωr ∪η ζq(p0, ..., pr+q) = ωr(p0, ..., pr) · ζq(pr, ..., pr+q) (5.46)

where · is the integer multiplication. The cup product is quite special because chain
groups does not have a cup product. It comes from cochains’ property as maps to the
coefficient and is defined by a multiplication of the coefficients. Like exterior derivative
and wedge product, coboundary operator and cup product has the same graded product
rule
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δr+q+1(ωr ∪ ζq) = δr+1ωr ∪ ζq + (−1)rωr ∪ δq+1b1 (5.47)

Differential forms have a natural notion of integration. We can similarly define a
discrete version of integration

∫
Mr

ωr =
∏

cr∈∆
ωr(cr) ∈ G (5.48)

where (∆, f) is a triangulation of Mr and cr are r-simplexes in ∆. It is in this sense
that ωr can be thought of as an r-form. We can use the integration as a short-hand
notation for the discrete product.

5.2.2 Local Flatness and Integral Lift

Suppose we have a discrete gauge field on a contractible manfold

ωr ∈ Cr(M ;G) (5.49)

where G is an unspecified discrete group. We can utilize the integration defined above
to find the holonomy of ω on the boundary of a disk one dimension higher

∮
∂Dr+1

ωr =
∫

Dr+1
δωr ∈ G (5.50)

Since M is contractible, we can continuously shrink ∂Dr+1 until it is a point p0∮
∂Dr+1

ωr
continuous−→

∫
p0
ωr (5.51)

A point does not contain any r-chain. The integration is therefore zero
∫

p0
ωr = 0 (5.52)

We have arrived at a dilemma

0 continuous−→
∮

∂Dr+1
ωr

0 discrete−→ G

The only solution is to set the holonomy of ωr to be constantly zero
∫

Dr+1
δωr =

∮
∂Dr+1

ωr = 0 (5.53)

for any Dr+1, which equivalently states that δωr = 0. Notice that this statement is
not always true globally, namely that there could be non-contractible loops on topolog-
ically non-trivial manifolds. Locally, a discrete gauge field is always flat. Additionally,
holonomy of the field is invariant upon adding a coboundary
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∮
ωr + δσr+1 =

∮
ωr (5.54)

Thus locally discrete gauge fields are not just cochains but cohomology
classes

ωr ∈ Hr(M,G) (5.55)

As a consequence, they are topological invariant and all of their information is stored
in the holonomy, which is sometimes called “period”.

The above derivation works for general discrete group, but for the remaining of the
chapter we will look at a particularly useful example G ∼= ZN . In this case the gauge
field is usually normalized:

ar = 2π
N
ωr ar ∈ Hr(M,

2π
N

ZN) (5.56)

With the specific grounp ZN there is a clever way to write the discrete gauge field in
the form of U(1) gauge field because ZN can be embedded into U(1). We start with the
holonomy as a defining character of the field. We have

∮
Γ
ar ∈

2π
N

ZN (5.57)

We can pick an Integra Lift of ar, which is a U(1) gauge field âr ∈ Ωr(M) such that
the following condition is met

exp
(
i
∮

Γ
ar

)
= exp

(
i
∮

Γ
âr

)
(5.58)

This condition ensures that the integral lift can be used to replace the original discrete
field in calculation. Notice that the choice of integral lift is not unique. Due to the
cyclicity of exponential, integral lift is defined up to modulo:

∮
Γ
ar =

∮
Γ
âr mod(2π) (5.59)

What this is really doing is matching the period of
∮

Γ
ar ∈

2π
N

ZN = 2π
N

(Z mod(N)) = 2π
N

Z mod(2π) (5.60)

with the period of exponential ei
∮

â (U(1)). We will see another example when we
talk about the Pontryagin Squuare. Two choices of integral lift âr and â′

r are related by
a gauge transformation

âr ⇝ â′
r = âr + λr

∮
λr ∈ 2πZ (5.61)

We recognize it to be the large gauge transformation defined in 3.24. Following the
same logic from 5.50 to 5.56, locally λr are also cohomology classes.

λr ∈ Hr(M, 2πZ) (5.62)
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Conveniently, dâr is not zero in general. The ambiguity in choosing integral lift has
saved it from flatness. This allow us to find a field strength for the integral lift

f̂r+1 = dâr ∈ Ω2(M) (5.63)

This field strength is locally independent of the choice of integral lift because the
gauge shift λ is flat and therefore invisible to f̂ . Globally this is again not necessarily
true. The discrete field strength is defined to be the integral lift field strength mod(2π)

fr+1 = f̂r+1 mod(2π) ∈ Hr+1(M,
2π
N

ZN) (5.64)

It is possible to derive f directly from the discrete gauge field a using Bockstein
homomorphism. We will not introduce it here since it involves a lot of setup in Group
Cohomology. Interested reader can find a comprehensive introduction in [3]. We have
now finished introducing all the necessary tools. It is time to look at the physics once
again.

5.3 Gauging the Center

In the grand finale, we will revisit SU(N) and PSU(N) Yang-Mills Theories with theta
term turned on. Discrete gauge theory allows us to gauge the center ZN 1-form symmetry
directly and derive some of the familiar results from the last chapter. We will be using
the integral lift convention for the most time. A lot of work presented in this section are
first realized in [21]. This section is written with the help of [21], [1], [15], [10], [22], and
[18].

5.3.1 A PSU(N) Action

We will start by looking at the center symmetry ZN of SU(N) gauge theory. Recall the
action for SU(N) Yang-Mills is

SSU(N) = 1
g2

∫
M
tr(F2 ∧ ∗F2) (5.65)

We have omitted the theta term. It will be discussed separately in a later section.
The action of the ZN center symmetry shifts the dynamical gauge field by a discrete
gauge field a1. It is indeed a 1-form symmetry because it acts on the dynamical field
and thus the Wilson Line. The discrete gauge field can be replaced by its integral lift
â1 which is a U(1) gauge field. There remains one problem: U(1) is not a subgroup
of SU(N) and it is not quite clear how the shifting happen. The way around it is to
relax the dynamical field to be a U(N) gauge field and impose the trace condition with
a Lagrange multiplier in the action:

SSU(N) =
∫

M

1
g2 tr(F̃2 ∧ ∗F̃2) + i

2πZ2 ∧ tr(F̃2) (5.66)
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where F̃2 = DÃ1 is a U(N) field strength and Z2 is a 2-form Lagrange multiplier.
Now it makes more sense to shift the U(N) gauge field Ã1 with a U(1) integral lift â1

because U(1) ⊂ U(N). The shift is

Ã1 → Ã1 + â11N F̃2 → F̃2 + f̂21N (5.67)

where 1N is the N-dimensional identity matrix. Locally, f̂2 is invariant under different
choices of integral lift. Explicitly, we denote the freedom of this choice by a curly arrow:

f̂2 = dâ1 ⇝ d(â1 + λ1) = dâ1 (5.68)

since the large gauge transformations are cohomology classes. An anology can be
found in the electric 1-form symmetry of Maxwell theory 2.26, where A1 is also shifted
by cohomology classes. Globally on the manifold, the large gauge transformation is not
flat. f̂2 is allowed to transform

f̂2 ⇝ f̂2 + dλ1 F̃2 + f̂2 ⇝ F̃2 + f̂2 + dλ11N (5.69)

This is analogous to gauging a global symmetry by making the gauge parameter
non-flat, though the physical reason for the non-flatness might be different. Another
interesting aspect is that the freedom of choice for integral lift acts like a “gauge freedom
of a gauge freedom”. Nonetheless the way to keep the symmetry is to couple the theory
to a background field that transforms as

b̂2 → b̂2 + dλ1 (5.70)

The way to couple it is similar to when we were gauging the electric 1-form symmetry.
The end result is

SP SU(N) =
∫

M

1
g2 tr

(
(F̃2 − b̂21N) ∧ ∗(F̃2 − b̂21N)

)
+ i

2πZ2 ∧ tr(F̃2 − b̂21N) (5.71)

This is now a PSU(N) action since we have successfully gauged the center symmetry.
We have explained how the gauging works in an approach credited from [10], which is
relatively straight-forward. There is another approach that is arguably more interesting
but a bit obscure. It was used in [21], [1] and [15]. Let’s take a look at it.

A Different View

The key to our second interpretation is the Lagrange multiplier term

SZ = i

2π

∫
M
Z2 ∧ tr(F̃2 − b̂21N) (5.72)

The trick is to recover F̃2 as an SU(N) gauge field F2 and do the shift

A1 → A1 + â11N F2 → F2 + dâ11N (5.73)
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without worrying about what the action A1 + â11N means for now. Now the term
5.72 is reduced to

SZ = i

2π

∫
M
Z2 ∧ tr(F2 + dâ11N − b̂21N)

= i

2π

∫
M
Z2 ∧ (tr(F2) +Ndâ1 −Nb̂2)

= iN

2π

∫
M
Z2 ∧ (dâ1 − b̂2)

because the SU(N) gauge field strength is traceless, the U(1) fields are not traced
over, and the identity matrix has trace N . This action is one format of a Topological
Quantum Field Theory (TQFT) called BF Theory. We will not be able to give a proper
introduction to BF Theory in this paper. In brief, BF Theory is a pure ZN discrete gauge
theory that also has a ZN 1-form symmetry. For more information on BF Theory, check
[10]. A specific instruction on how this format of BF Theory is derived can be found in
[15]. In this picture the dynamical field is

Ã1 = A1 + â11N (5.74)

We have reused the notation Ã1 because it is secretly a U(N) field after gauging.
This is realized by the relationship

U(N) ∼=
U(1)× SU(N)

ZN

(5.75)

Sometimes this is written as a semi-direct product

U(N) ∼= U(1) ⋊ SU(N) (5.76)

This is a structure known as Higher Group. A good source for material related
to higher symmetry would be [8]. An explanation à la Tong in [15] states that the
obstruction for the SU(N) gauge field A1 to become an PSU(N) gauge field cancels
with the obstruction for a ZN gauge field a1 to become a U(1) gauge field. We are
therefore left with a well-defined U(N) gauge field. The final action is thus

S ′
P SU(N) =

∫
M

1
g2 tr(F̃2 − b̂21N) ∧ ∗(F̃2 − b̂21N) + iN

2π

∫
M
Z2 ∧ (dâ1 − b̂2) (5.77)

In a more general language, this is an example of stacking a QFT with a TQFT
and gauging the diagonal (in this case the ZN) simultaneously. A higher group structure
comes out naturally, and the result is a new theory with a different spectrum of operators.
This is exactly the conclusion in [21].
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5.3.2 The Theta Term of PSU(N) Action

We are now ready to look at the theta term. In this section, we will assume that manifold
M is compactified so that the theta term is non-trivial. In the above PSU(N) action, a
theta term would look like

Sθ = θ

8π2

∫
M
tr
(
(F̃2 − b̂21N) ∧ (F̃2 − b̂21N)

)
= θ

8π2

∫
M
tr(F̃2 ∧ F̃2) +Nb̂2 ∧ b̂2 − 2tr(F̃2) ∧ b̂2

= θ

8π2

∫
M
tr(F̃2 ∧ F̃2)−Nb̂2 ∧ b̂2 − 2tr(F̃2) ∧ b̂2 + 2tr(b̂21N) ∧ b̂2

= θ

8π2

∫
M
tr(F̃2 ∧ F̃2)−Nb̂2 ∧ b̂2 − 2tr(F̃2 − b̂21N) ∧ b̂2

Using the trace condition

tr(F̃2 − b̂21N) = 0 (5.78)

The last term vanishes and we are left with

Sθ =
∫

M

θ

8π2 tr(F̃2 ∧ F̃2)−
θN

8π2 b̂2 ∧ b̂2 (5.79)

The first term is the winding number of the U(N) theory. Following the same train
of thought as in subsection 3.2.2, it can be written as an integer n ∈ Z

Sθ = θn− θN

8π2

∫
M
b̂2 ∧ b̂2 (5.80)

If we try to take θ → θ + 2π, we find that the exponential of the theta term is no
longer conserved

δSθ = −N4π

∫
M
b̂2 ∧ b̂2 + 2πn (5.81)

eiSθ → eiSθ exp
(
−iN4π

∫
M
b̂2 ∧ b̂2

)
(5.82)

Notice that iN
4π

∫
M b̂2 ∧ b̂2 is a counter term only depending on the background field.

We have the freedom to add p copies of the term to the action and modifying the theta
term to be

Sθ = θ

8π2

∫
M
tr
(
(F̃2 − b̂21N) ∧ (F̃2 − b̂21N)

)
+ pN

4π

∫
M
b̂2 ∧ b̂2 (5.83)

Now taking θ → θ + 2π is equivalent to

p→ p− 1 (5.84)
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Pontryagin Square and Quantized Discrete Angle

To understand what the b̂2 ∧ b̂2 term means, let’s unlift the field back to cohomology
classes:

b2 ∈ H2(M ; 2π
N

ZN) (5.85)

It’s often more convenient to undo the physical normalization as well and consider

N

2πb2 = ω2 ∈ H2(M ;ZN) (5.86)

A naive guess is that the term would look like a simple cup product b2 ∪ b2. This is
not the right answer. The term is in fact a Pontryagin Square

∫
M
b̂2 ∧ b̂2 = 4π2

N2

∫
M4
ω̂2 ∧ ω̂2

unlift−→ 4π2

N2

∫
M

P(ω2) (5.87)

where the Pontryagin Square is defined to be

P(ω2 ∈ H2(M ;ZN))

 ∈ H4(M ;ZN) if N odd

∈ H4(M ;Z2N) if N even
(5.88)

Heuristically, this comes from the freedom in choosing integral lift. Here is a proof
for even N : Take the transformation

ω̂2 = N

2π b̂2 ⇝ ω̂2 + Ndλ1

2π
:= ω̂2 +Ndλ′

1 (5.89)

where we have defined λ′
1 = λ1/2π. We can find that dλ′ is

dλ′
1 ∈ H2(M,Z) (5.90)

Under this shift:

ω̂2 ∧ ω̂2 ⇝ ω̂2 ∧ ω̂2 + 2Ndλ′
1 ∧ ω̂2 +N2dλ′

1 ∧ dλ′
1 (5.91)

We know that both dλ′
1 and ω̂2 have integer periods. If N is even, N

2 ∈ Z and we can
write the transformation inside a loop integral as

∮
ω̂2 ∧ ω̂2 ⇝

∮
ω̂2 ∧ ω̂2 + 2N(dλ′

1 ∧ ω̂2 + N

2 dλ
′
1 ∧ dλ′

1) =
∮
ω̂2 ∧ ω̂2 + 2NZ (5.92)

Thus
∮

P(ω2) =
∮
ω̂2 ∧ ω̂2 + 2NZ ∈ Z mod(2N) ∼= Z2N (5.93)

Additionally, in a path integral we can get rid of the mod(2N) and take

∫
M

P(ω2)
2 ∈ Z (5.94)
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because the period of P(ω2)
2 and the period of eiS (U(1)) matches. Recall that this is

how the integral lift works. The factor 1
2 comes from the 2N cyclicity.

We would also want the entire theta term 5.83 to be invariant under the⇝ shift. The
first term in 5.83 is manifestly invariant with the canceling between F̃ and b̂. Let’s focus
on the second term:

exp
(
ipN

4π

∫
M
b̂2 ∧ b̂2

)
= exp

(
ipN

4π
4π2

N2

∫
M
ω̂2 ∧ ω̂2

)
= exp

(
i2πp
2N

∫
M
ω̂2 ∧ ω̂2

)
⇝ exp

(
i2πp
2N

∫
M
ω̂2 ∧ ω̂2 + i2πpZ

)
!= exp

(
i2πp
2N

∫
M
ω̂2 ∧ ω̂2

)

This simply limits p to be integer as well. We have prove the Pontryagin square
for even N . There is also a work around for odd N that requires a spin manifold.
Additionally, one can even construct Pontryagin square without using integral lift. For
a more detailed exposition on Pontryagin Square, see [23].

In summary, we can write the theta term as

Sθ[p] = θ

8π2

∫
M
tr
(
(F̃2 − b̂21N) ∧ (F̃2 − b̂21N)

)
+ 2πp

N

∫
M

P(ω2)
2 (5.95)

p is an integer. The factor of N in denominator makes it periodic in N. It takes values

p = {0, 1, ..., N − 1} (5.96)

When we dial θ → θ + 2π, Sθ[p] → Sθ[p − 1]. We have recovered the result from
chapter 4. Moreover, we can connect the partition function of SU(N) and PSU(N) in a
way similar to 3.58:

ZP SU(N) =
∑

b2∈H2(M ;ZN )
ZSU(N)[b2, θ] (5.97)

ZSU(N)[b2, θ + 2πn] = ZSU(N)[b2, θ] exp
(
−2πn
N

∫
M

P(ω2)
2

)
(5.98)

Dialing θ adds a phase to the partition function. By dialing in different θ, we will
arrive at different theories after gauging. This reproduces the Witten Effect and SO(3)±

example. Notice that in SU(N) this phase is the only possible phase (i.e. possible counter
term) to add. In other gauge theories, there are possible phases that can not be reached
by changing θ.

Mixed ’t Hooft Anomaly

In PSU(N), the theory has a new θ term. Plug 5.80 into 5.83 yields
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Sθ = θn− θN

8π2

∫
M
b̂2 ∧ b̂2 + pN

4π

∫
M
b̂2 ∧ b̂2

= θn+ (2πp− θ)N
8π2

∫
M
b̂2 ∧ b̂2

= θn+ 2πp− θ
N

∫
M

P(ω2)
2

We denote the old θ as θSU(N) and find the new θ to be:

θP SU(N) = −θSU(N) + 2πp (5.99)

We find that the new θ is 2πN periodic:

θP SU(N) + 2πN = −θSU(N) + 2π(p+N) ∼ −θSU(N) + 2πp = θP SU(N) (5.100)

Using the N-periodic property of p. Set θSU(N) = π, the theta angle that preserves
time reversal symmetry in SU(N) theory.

θP SU(N) = (2p− 1)π (5.101)

The action of Time reversal is

θP SU(N)
T→ −θP SU(N) (5.102)

If N is odd, we find that for the specific value of p,

p = N + 1
2 θP SU(N) = Nπ ∼ −Nπ = −θP SU(N) (5.103)

At even N , (N+1)/2 /∈ Z and is not an available value for p. Time reversal symmetry
is completely broken. We can find explicitly the anomaly polynomial

δTSP SU(N)[p] = exp
(
−(2p− 1)N

4π2 i
∫

M
b̂2 ∧ b̂2

)
= exp

(
−2p− 1

N
i
∫

M
P(ω2)

)
(5.104)



Chapter 6

Conclusion and Further Works

This dissertation is an attempt to scratch the surface of gauge theory in modern literature
in light of recently flourishing study of generalized symmetry. The main goal has been
to approach the subject matter in a constructive, bottom-up manner so as to connect a
natural flow from beginning graduate level courses in QFT to formalism used in frontier
of theoretical physics.

In summary, in the first chapter we starts from the ordinary Noether’s theorem and
develops an abstract framework of generalized symmetry. The second chapter is based
on fibre bundle picture through which we have introduced behaviour of gauge theory on
non-trivial topology. We had also spent a few pages on gauging higher form symmetry
with background field. Looking back retrospectively, this part would have fitted better
in the first chapter. In the third chapter, line spectrum of SU(N) and PSU(N) becomes
the central focus. We have illustrated more clearly what the lines stand for and how they
were studied in terms of representation theory. In the last chapter, we turned to discrete
gauge fields and relate the two gauge groups with ZN 1-form symmetry.

Admittedly, much was sacrificed for variety. A lot of effort has been made during this
project to incorporate and motivate three distinctive lines of mathematical theory: fibre
bundle, Lie theory, and algebraic topology. They were all intensively used in modern
literature of gauge theory. While they were very enjoyable to study, it was also painstak-
ing to track the discrepancy in notations between different authors, especially between
mathematicians and physicists. Care was taken during the writing process to keep a
consistent, unambiguous system of notation throughout the paper.

Time has always been the biggest difficulty and limitation in this project. A few
sections were relatively rushed and not polished to the level of desire. There were many
important aspects of gauge theory that did not make their way into this paper. Here is
a list of material I would try to include if there is more time to work with:

1. A proper introduction to BF theory. BF theory emerges naturally from the discus-
sion of center symmetry in non-Abelian Yang-Mills as well as Abelian Higgs model.
A section on BF theory would contribute to the understanding of the nature of dis-
crete gauge field.

2. A proper introduction to ’t Hooft Anomaly, Anomaly inflow and SPT phases. These

72
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are concepts closely related to applications in physics. In particular we can discuss
the low energy behavior of SU(N) and PSU(N) Yang-Mills.

3. A section on classifying space. Classifying space is heavily featured in [24]. Accord-
ing to [11], it provides a third picture for gauging of global symmetry apart from
insertion of SDOs and coupling of background field, both of which were discussed
in this paper.

4. Wilson loop and confinement. This is another topic with a lot of applications.
Wilson loop is an important indicator of physical properties. [15] includes a very
good exposition on the topic.

5. Appendixes. Originally there was a plan to include an appendix for differential form
convention used in the paper. I would also like to include an appendix explaining
the concept of Poincaré dual form. Unfortunately there isn’t enough time to finish
them.

Last of all, non-invertible symmetries remain an unexplored topic in this dissertation
and in my current study. It would be great to include categorical symmetry and higher-
group as a part of this paper and complete it as a set of note. Many advancements are
happening in the non-invertible side of generalized symmetry, and more than half of the
pages in [8] and [9] are dedicated to non-invertible symmetries. I would recommend any
interested readers to check out these notes and my colleague’s dissertation on 2-group
structure.
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