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a b s t r a c t

In this numerical study, we are interested in the prediction of a mono-disperse dilute suspension
particle-laden flow in the typical lock-exchange configuration. The main originality of this work is that
the deposition of particles is taken into account for high Reynolds numbers up to 10 000, similar to the
experimental ones. Unprecedented two- and three-dimensional Direct Numerical Simulations (DNS) are
undertaken with the objective to investigate the main features of the flow such as the temporal evolution
of the front location, the sedimentation rate, the resulting streamwise deposit profiles, the wall shear
velocity as well as the complete energy budget calculated without any approximations for the first time.
It is found that the Reynolds number can influence the development of the current front. Comparisons
between the 2D and 3D simulations for various Reynolds numbers allow us to assess which quantities of
interest for the geoscientist could be evaluated quickly with a 2D simulation. We find that a 2D
simulation is not able to predict accurately the previously enumerated features obtained in a 3D
simulation, with maybe the exception of the sedimentation rate for which a qualitative agreement can
be found.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Gravity currents are very common in nature, either in atmo-
sphere due to sea-breeze fronts, in mountain avalanches of air-
borne snow or debris flows, or in the ocean due to turbidity
currents and river plumes (Simpson, 1982). It is clear that the
understanding of the physical mechanism associated with these
currents as well as the correct prediction of their main features is
of great importance for practical and theoretical purposes.

In this numerical study, we focus on particle-laden hyperpycnal
flows (with negative-buoyancy) where dynamics can play a central
role in the formation of hydrocarbon reservoirs (Meiburg and Kneller,
2009). Moreover, these particle-laden gravity currents are often
extremely dangerous for the stability of submarine structures placed
at the sea-floor like pipelines or submarines cables (Zakeri et al., 2008;
Nisbet and Piper, 1998). We focus on the prediction of a mono-
disperse dilute suspension particle-laden flow in the typical lock-
exchange configuration where the deposition of particles is taken into
account. We consider only flat surfaces using DNS (Direct Numerical
Simulation). Our approach takes into account the possibility of
particles deposition but ignores erosion and/or re-suspension. Note

that in dilute suspensions, the particle volume fraction is considered
relatively small, typically well below 1%.

Previous results for this kind of flows were obtained in
laboratory experiments (de Rooij and Dalziel, 2001; Gladstone
et al., 1998), using simplified theoretical models (Rottman and
Simpson, 1983; Bonnecaze et al., 1993), or by numerical simula-
tions (Necker et al., 2002, 2005; Nash-Azadani et al., 2011) for
relatively small Reynolds numbers. It was shown that deposition,
boundary conditions, initial conditions associated with the lock
configuration, and particle sizes can have a strong influence on the
main characteristics of such flows. Cantero et al. (2008) already
performed DNS of planar gravity current in the Boussinesq limit
for Reynolds number equal to 8950 and 15 000. However, the
simulations were performed for density-driven gravity currents
(no particle deposition) not for particle-laden gravity currents like
in the present work. The authors carried out a detailed investiga-
tion about the effect of three-dimensionality and turbulent struc-
tures and their influence on the flow dynamics but only for gravity
currents with no deposition.

One of the principal objectives of this numerical study is to
investigate the complete energy budget in particle-laden gravity
currents for various Reynolds numbers with a comparison between
two- and three-dimensional simulations. The main features of the
flow are related with the temporal evolution of the front location as
well as the suspended sediment mass, sedimentation rate, the
resulting streamwise deposit profiles.
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Concerning the complete energy budget of the flow, each term
is evaluated without simplification assumptions, with the poten-
tial energy and kinetic energy as well as the dissipation related to
the potential and kinetic energy variation. Within this framework,
an excellent estimation should be obtained for the potential
energy and kinetic energy and for the dissipation, with the
preservation of the total energy inside the computational domain.

The organisation of this paper is as follows. In Section 2, we
present the flow configuration and governing equation. The
energy budget is explained in Section 3 while the numerical
parameters and flow parameters of each simulation are detailed
in Section 4. Some suggestive flow visualisations are presented
and discussed in Section 5. Then, in order to better understand the
underlying properties of each flow, some temporal results are
presented in Section 6, followed by a conclusion in Section 7.

2. Flow configuration and governing equations

The well-known lock-exchange flow configuration is used in
this numerical work (see Fig. 1) where uniformly suspended
particle sediments are enclosed in a small portion of the dimen-
sion domain L1b � L2b � L3b separated by a gate with clear fluid.
When the gate is removed the particle–fluid mixture flows due to
gravity with a mutual inverse interaction between the “heavy”
particle-mixture flow and the “light” clear fluid. The motion is
understood as the transformation from potential energy to kinetic
energy. We assume a dilute suspension of single diameter particles
and we do not take into account the influence of particle inertia
and/or particle–particle interaction. It should be noted that the
concentration affect the mixture viscosity, however this effect is
neglected.

With the restriction imposed by the dilute suspension approach,
this flow can be evaluated numerically by solving the incompressible
Navier–Stokes and a scalar transport equation under the Boussinesq
approximation. Also, these assumptions allow to relate the particle
diameter with the settling velocity. To make these equations dimen-
sionless, half of the box height is chosen (Fig. 1) as the characteristic
length scale h and the buoyancy velocity ub is chosen as the velocity
scale. The buoyancy velocity is related to the reduced gravitational
acceleration ub ¼

ffiffiffiffiffiffiffi
g′h

p
where g′¼ gðρp�ρ0Þci=ρ0. The particle and

clear fluid densities are ρp and ρ0, respectively, with g being the
gravitational acceleration and ci the initial volume fraction of the
particles in the lock. When introducing the velocity and length scales
two dimensionless numbers appear in the equations: the Reynolds
number defined as Re¼ ubh=ν where ν is the kinematic viscosity of
the fluid, and the Schmidt number Sc¼ ν=k, where k is the mass
diffusivity of the particle–fluid mixture. All other parameters and
variables are made dimensionless using ci, h or/and ub. Thus, the
dimensionless form for the governing equation and scalar transport
equation are

∂u
∂t

þu �∇u ¼ 2
Re

divðs Þ�∇pþceg ð1aÞ

divðuÞ ¼ 0 ð1bÞ

∂c
∂t

þðuþusegÞ∇c¼ 1
Sc Re

∇2c ð1cÞ

where eg ¼ ð0; �1;0Þ is the unit vector in gravity direction and the
non-dimensional quantities u; p; c; s represent the fluid velocity,
pressure, particle concentration, and strain rate tensor fields, respec-
tively. The particle settling velocity us is related to the particle
diameter by the Stokes settling velocity law (Julien, 2010).

For the initial condition, a weak perturbation is imposed on the
velocity field at the lock-exchange interface in order to mimic the
disturbances introduced in the flow when the mixture is released.
Free-slip boundary conditions are imposed for the velocity field in
the streamwise and spanwise directions while no-slip boundary
conditions are used in the vertical direction. For the scalar field,
no-flux conditions are used in the streamwise and spanwise
directions and in the vertical direction at the top of the domain.
In order to take into account the particles deposition in the vertical
direction at the bottom of the domain, the following outflow
boundary condition is used:

∂c
∂t

þuse
g
2
∂c
x2

¼ 0 ð2Þ

It allows particles to leave the computational domain mimick-
ing a deposition process. It should be noticed that no re-
suspension is allowed, as well as no erosion.

3. Energy budget of the flow

Following previous studies (Winters et al., 1995; Necker et al.,
2005), we present in this section a framework for the analysis of
the energy budget. It is possible to better understand particle-
laden gravity currents by investigating the temporal evolution of
the potential energy and the kinetic energy. The main difference
between density-driven gravity currents and particle-laden gravity
currents is that dissipation occurs not only at the macroscopic
scale with the strain rate but also at the microscale scale around
each particles.

In order to accurately investigate the temporal evolution of the
different energy components, we consider the full budget equation
for the kinetic energy. A similar approach, with simplifying
assumptions, can be found in Necker et al. (2005). The main
difference between the present work and the work of Necker et al.
(2005) is that we compute the exact energy equation (8) without
any assumptions over the dissipation terms.

The energy budget for an incompressible flow with particle
concentration in the dilute suspension approach can be extracted
from the governing equations and scalar transport equation. The
total energy can be split into the kinetic energy and potential
energy, and distinguish the dissipation associated to the strain rate
in the macroscopic advective motion and the dissipation that
occurs in the microscopic Stokes flows around the particles.

The time derivative of the kinetic energy equation is derived
from the inner product between the momentum equation (1a)
with u and is expressed as

D
1
2
u � u

� �

Dt
¼ �divðpuÞþ 2

Re
divðs � uÞ� 2

Re
s : s�u2c ð3Þ

where Dð�Þ=Dt is the material derivative. Integrating Eq. (3) over
the entire domain Ω gives

dk
dt

¼ �
Z
Ω

2
Re

s : s dΩ�
Z
Ω
u2c dΩ ð4Þ

where Ω represents the entire computational domain and
kðtÞ ¼ R

Ω
1
2u � u dΩ. Note that any integral of a divergence field

over the domain is zero because there is no transport across the
boundaries.

Fig. 1. Schematic view of the initial configuration of the lock-exchange flow
problem.
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For the potential energy, that can be expressed as

EpðtÞ ¼
Z
Ω
cx2 dΩ ð5Þ

we can define its variation in time by using the multiplication of
the transport equation of the particle concentration (1c) by x2:

Dc
Dt

x2 ¼
1

Sc Re
x2∇2cþx2us

∂c
∂x2

ð6Þ

By integrating over the domain computational domain Ω and
using the chain rule, we obtain

dEp
dt

¼
Z
Ω

Dðcx2Þ
Dt

dΩ¼
Z
Ω

1
Sc Re

x2∇2cþx2us
∂c
∂x2

� �
dΩþ

Z
Ω
u2c dΩ

ð7Þ
From Eqs. (4) and (7) the exact dissipation terms can be defined

as

dðkþEpÞ
dt

¼ �
Z
Ω

2
Re

s : s dΩþ
Z
Ω

1
Sc Re

x2∇2cþx2us
∂c
∂x2

� �
dΩ

¼ �ε�εs ð8Þ
where ε is associated to the turbulent dissipation while εs is the
dissipation associated with loss of energy due to suspended
particles.

In order to study the temporal evolution of ε and εs, we can
define Ed and Es as the time integrals of the dissipation compo-
nents ε and εs with

EdðtÞ ¼
Z t

0
εðτÞ dτ ð9Þ

EsðtÞ ¼
Z t

0
εsðτÞ dτ ð10Þ

It is worth noticing that Necker et al. (2002, 2005) estimated Es as

EsðtÞ ¼ us

Z t

0

Z
Ω
c dΩ dτ ð11Þ

meaning that this dissipation term is defined as a function of the
suspended material.

4. Numerical method and parameters

In order to solve numerically the incompressible Navier–Stokes
equations and the transport scalar equation (1c), the in-house
code Incompact3d1 is used. It is based on compact sixth-order
finite difference schemes for spatial differentiation and a third-
order Adams–Bashforth scheme for time integration. To treat the
incompressibility condition, a fractional step method requires to
solve a Poisson equation. This equation is fully solved in spectral
space via the use of relevant 3D Fast Fourier Transforms. More
information about the code can be found in Laizet and Lamballais
(2009). For the 3D simulations, the parallel version of Incom-

pact3d based on a powerful 2D domain decomposition is used.
More details about this 2D domain decomposition can be found in
Laizet and Li (2011).

The number of mesh nodes and the size of the simulations have
been carefully chosen in order to solve the smallest scales of the
flow and are presented in Table 1. We consider a subdomain of
ðL1b; L2b; L3bÞ ¼ ð1;2;2Þ to define the box containing the particle–
fluid mixture. The settling velocity is set to us¼0.02, corresponding
to a middle silt, while the Schmidt number is fixed to Sc¼1. These
values were used in Necker et al. (2002), allowing direct compar-
isons. All the simulations were run for a non-dimensional time of

t¼60 except for the Re¼10 000 which was stopped at t¼32 in
order to limit the computational effort. The perturbation added to
the initial velocity field is adjusted in order to get an initial kinetic
energy equal to � 1% of the initial potential energy.

The Reynolds number 2236 case is similar to the numerical
work of Necker et al. (2002) in order to undertake comparisons.
The only difference lies in the way the weak perturbation is added
in the initial condition for the velocity field. Finally, the Re¼10 000
case is very close to the experimental configuration of de Rooij and
Dalziel (2001) and was never attempted before by DNS in 3D.

5. Instantaneous visualisations

The sudden release of the particle–fluid mixture along the left
wall leads to the streamwise evolution of the gravity current into the
clear fluid. Due to the small amount of kinetic energy at t¼0, this
motion is initially two dimensional for Re¼2236 then further
downstream three-dimensional structures can be observed at the
head and at the tail of the current as shown in Fig. 2 (left). For the
Re¼10 000 presented in Fig. 2 (right), the two-dimensional beha-
viour is not present at t¼2 suggesting that there is a strong effect of
the Reynolds number on the flow evolution. For both cases, it can be
seen that for t¼14 the gravity current develops a high 3D turbulence
with intense streamwise vortices. It is confirmed by the Q-criterion
visualisations in Fig. 3 for the three Reynolds numbers at t¼20. We
can clearly see the higher level of turbulence with smaller and very
intense structures for the Re¼10 000 simulation by comparison with
the lower Re simulations, confirming the influence of the Reynolds
number in such flows.

At the bottomwall of the channel, increasing spanwise motions
are responsible for the well known lobe-and-cleft structures that
are developing at the current front location. In Fig. 4, the velocity

gradient at the wall, computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂u1=∂x2Þ2þð∂u3=∂x2Þ2

q
jx2 ¼ 0, is

shown for the 3D cases for t¼8. It can be seen that the front
structure looks like a “dental radiography”, corresponding to zones
of high shear velocity, the lobes, alternating with regions of low
shear velocity, the clefts. The influence of the Reynolds number on
the wall shear velocity is quite important with thinner and longer
structures at the front of the current and more complex patterns in
the middle and at the tail of the current when the Reynolds
number is increased.

The origin of the lobe-and-cleft patterns has been identified
experimentally (Simpson, 1972, 1999; Britter and Simpson, 1978):
they are created by the fast velocity of the front overstepping the
clear fluid at the lower wall of the domain. Those complex
structures were observed in many experiments (Simpson, 1982)
and more recently in the density-driven current simulations (with-
out suspended particles) of Härtel et al. (2000a) and Cantero et al.
(2008) and the particle-laden simulations of Necker et al. (2002).
At t¼8 the structure of the gravity current front can be seen in
detail through the visualisation of the concentration field as shown
on the left side of Fig. 5. The isovalue chosen is c¼0.25. A cross

Table 1
Summary of numerical parameters.

Re L1 ; L2 ; L3 n1;n2 ;n3 Δt

2236
2D 18, 2 1441, 221 1�10�3

3D 18, 2, 2 1441, 221, 201 6.024�10�4

5000
2D 18, 2 1537, 257 5�10�4

3D 18, 2, 2 1537, 257, 257 5�10�4

10 000
2D 18, 2 2305, 513 3�10�4

3D 18, 2, 2 2305, 513, 385 3�10�4

1 This open source code is now available at http://code.google.com/p/incom
pact3d/.
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section of the Q-criterion for the selected vertical planes at a
distance 0.33 h just behind the location of the front is shown at
the right side of the same picture. The lobe-and-cleft patterns can
be well identified with regions with a high strain rate (indicated in
blue, negative Q-criterion), the clefts, along with the regions
between two streamwise vortices (positive values of Q- criterion
corresponding to a high rotation rate, indicated in red), the lobes.
The figure also shows how the streamwise vortices become thinner
and thinner and more intense when the Reynolds number is
increased. Fig. 5 suggests that the situation is far more complex
for the Re¼10 000 case where the lobe-and-cleft patterns have a
more complex structure, with regions of high strain rate and of high
rotation rate on top of each other.

In Fig. 6 snapshots of the concentration field are shown at t¼20
for the 2D cases (left) and for the x3¼0 middle-plane for 3D (right)
simulations for the three Re numbers considered. Some important
discrepancies between the 2D and 3D simulations concerning
mainly the front location, the development of the Kelvin–Helm-
holtz instability and the resulting vorticity structures can be seen.
Furthermore, due to particle settling, high levels of particle
concentration are located near the wall for the 3D case whereas
for the 2D cases it can be seen that high levels of concentration are
trapped by the vorticity located at the middle and tail of the
current. This result denotes that the particle mass should remain
suspended for longer time for the 2D case. The particle concentra-
tion fields for the 3D simulations also show that when the
Reynolds number is increased, the suspended mass is decreased.
This point will be addressed in the following section.

6. Temporal results

In this section, the temporal evolution for the front location,
suspended particles mass, sedimentation rate, deposit profiles at
the bottom of the computational domain and energy budget of the
flow are compared with the numerical predictions obtained by
Necker et al. (2002) for Re¼2236 and with the experimental data
of de Rooij and Dalziel (2001) for Re¼10 000.

Fig. 7 shows the time evolution of the front location, xf ,
corresponding to the first streamwise location where the streamwise
component of the concentration gradient (after an average in the
spanwise direction) is non-zero when starting from the end of the
computational domain. The figure also shows the suspended mass
normalized by the initial suspended mass mp=mp0 with

mpðtÞ ¼
Z
Ω
c dV ð12Þ

It can be observed that the particle-laden gravity current has a
constant front velocity until time t � 10, similar to density-driven

Fig. 2. Interface evolution between clear fluid and particle-fluid (t¼0, 2, 8, 14 from top to bottom) for a concentration c¼0.25 (Left for Re¼2236 and right for Re¼10 000).

Fig. 3. Turbulent structure of the gravity currents by isosurfaces of Q-criterion (for
the isovalue Q¼1) for Re¼2236, 5000, 10 000 (from top to bottom) at t¼20.
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current without particles as shown in Härtel et al. (2000b). After
t � 10 the front velocity deviates from the straight line with a
substantial decrease due to particles settling. It seems that the
suspended particles mass mp is deviating earlier when the Reynolds
number is decreased for the 2D and 3D cases. Our data compare well
with the numerical data of Necker et al. (2002) for Re¼2236. The
small differences can be related to the perturbations added as initial
condition on the velocity field. At the early state of a simulation, the
gravity current in the lock-exchange configuration is transitioning
from a laminar state inside the lock to a fully turbulent state.
Therefore, it is strongly dependent on initial conditions and Reynolds
number as pointed out by Necker et al. (2002). Nevertheless, there is
a clear tendency for an increasing front velocity when the Reynolds
number is increased. This trend is more pronounced for the 3D cases,
as already observed in Fig. 6. Concerning the suspended mass, the
value obtained at the end of the simulation is quite different between
the 2D cases and 3D cases with values lower than 5% obtained for the
3D cases and values higher than 10% for the 2D cases. Furthermore, a
faster decrease for the suspended mass for the 3D simulations can be
noticed between t � 10 and t � 40 for high Reynolds numbers.

Fig. 8 shows the sedimentation rate _msðtÞ as a function of time
for the 2D and 3D configurations with

_ms ¼
1

L1L3

Z L1

0

Z L3

0
cwðx1; x3; tÞus dx3 dx1; ð13Þ

where cw is the concentration at the wall.
The initial value for _msðtÞ is 0.02, corresponding to the settling

velocity. In this figure, it can be seen that _msðtÞ is slowly increasing

for all cases up to t � 10 at a slow rate of about t0:5, in agreement
with Necker et al. (2002). It means that in the early stage of the
simulations, there is very little mixing for the suspended particles
with the clear fluid with limited turbulence motions occurring at
the head of the front, in agreement with the visualisations in Fig. 2
at t¼14. This was also observed by Ungarish and Huppert (1998)
with the concept of “laminar settling process”. The figure shows a
peak value around t � 15 independent of the Reynolds number.
When this happens, � 50% of the suspended particles are already
settled, as shown in Fig. 7. After t � 15, the sedimentation rate is
suddenly decreasing at a rate of about t�2:5 when the front
velocity is slowing down, with a fully turbulent head of the front.
It seems that there is only a limited effect of the Reynolds number
on the sedimentation rate in 2D whereas in 3D the sedimentation
rate is lower for Re¼5000 and Re¼10 000 by comparison with
Re¼2236.

Another global quantity of extremely importance for practical
implications is the streamwise deposit of sediment particles
computed as

Dtðx1; tÞ ¼
Z t

0
ocwðx1; τÞ4x3us dτ; ð14Þ

where 〈 � 〉x3 indicated a mean value in the x3 direction (only valid
for the 3D cases). Fig. 9 shows this quantity in function of the
streamwise coordinate x1. The deposit is normalized with the
deposit for the final time t¼60. For the 2D (left of Fig. 9) and the
3D cases (right of Fig. 9), the selected times are t¼7.3, 11, 60. Note
that the 3D DNS for Re¼10 000 was stopped at t¼32 to limit the
computational effort so data are not available for this case.
However, the present results may be compared both with the
numerical data of Necker et al. (2002) and the experimental data
of de Rooij and Dalziel (2001). Despite the difference in terms of
Reynolds number, a global agreement between experimental data
and numerical results can be seen in this figure, even if 2D
simulations seem to overestimate the deposit at the end of the
simulation. The left picture of Fig. 9 shows that 2D simulations are
giving incorrect prediction for high values of the deposit regard-
less of the Reynolds number. On the other hand, the 3D results for
the Reynolds number 5000 case are very close to the experimental
data of de Rooij and Dalziel (2001) both at initial and final times of
the simulation. The differences could be attributed to different
initial conditions between laboratory experiments and numerical
simulations.

As already stated, the temporal evolution of the potential energy
and kinetic energy is of fundamental importance for particle-laden
gravity currents. Fig. 10 presents the energy budget, with compar-
isons with the predictions obtained by Necker et al. (2002), for the
2D and 3D cases. The data presented are normalized with ET0 which
is defined as the total energy at t¼0.

Fig. 4. Velocity gradient at the wall for the 3D simulations at t¼8 for Re¼2236,
5000, 10 000 (from top to bottom). Same colour distribution for all pictures (blue
corresponds to 0 and red to 15). (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of this paper.)

Fig. 5. Structure of the front by isosurface for c¼0.25 (left) and Q-criterion with an isovalue ranging from �25oQo25 (right) for Re¼2236, 5000, 10 000 (from top to
bottom) at t¼8.
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The overall agreement for the Reynolds number 2236 case with
the data of Necker et al. (2002) is reasonably good. As already
mentioned before, it is important to notice that difference observed
between our predictions with those obtained by Necker et al. (2002)
can be related not only to the initial condition but also to the

formulation of the energy budget. Concerning the initial condition, a
parametric study was carried out by Necker et al. (2002) with the
observation that the flow is highly dependent of the initial condition,
especially for Es. For the energy budget, the evaluation of micro-
dissipation carried out by Necker et al. (2002) was done with

Fig. 6. Particle concentration fields at t¼20 for Re¼2236, 5000, 10 000 (from top to bottom) for the 2D (left) and the x3¼0 middle plane for the 3D (right) configurations.
Snapshots taken for 0oco0:3.
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Fig. 7. Front location xf and suspended particles mass mp=mp0 as a function of time for the 2D (left) and the 3D (right) configurations with comparisons with the numerical
data of Necker et al. (2002).

Fig. 8. Sedimentation rate _msðtÞ as function of time for the 2D (left) and the 3D (right) configurations, with comparisons with the numerical data of Necker et al. (2002).
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simplifying assumptions, and if we compare this micro-dissipation
with the exact evaluation, we can observe that the simplified
dissipation is giving an over-estimated value by comparison with
the full dissipation. The approach with simplifying assumptions
yields to an error of 15%ð2DÞ=18%ð3DÞ for the micro-dissipation
term for the Re¼2236 case. This error represents a difference of
about 5%ð2DÞ=6%ð3DÞ for the total energy. Concerning the contribu-
tion of each term for the computation of the micro-dissipation, the
Laplacian term in Eq. (8) only contributes for 5.4% while the gradient
term contributes for about 94.6% in the 2D case. For the 3D case, the
Laplacian term contributes for about 6.1% while the gradient term
contributes for about 93.9%. These results clearly show the important
contribution of the gradient term for the total micro-dissipation. The
approach with simplifying assumptions yields to an error of
5%ð2DÞ=7%ð3DÞ in the dissipation term for the Re¼10 000 case
corresponding to a relatively small error of 2%ð2DÞ=2%ð3DÞ for the
total energy. This approach can lead to a good approximation for high
Reynolds numbers because of the minor contribution from the
Laplacian term in Eq. (8) when compared to the gradient term.
It should be noted that the conservation of energy of the system can
only be verified with the complete approach without simplifying
assumptions.

The first important result here is that ET ¼ EpþkþEdþEs is
constant in our simulations, meaning that the energy is well
conserved. Then, it can be seen that at the very early stage of
the simulation, there is a very fast drop of the potential energy Ep
by about 80% before t � 10 whereas the kinetic energy is increasing
very quickly with a peak for t � 4 followed by a steady decay, due to
the increasing influence of the dissipation that is playing a key role
in the flow temporal evolution. At the end of the simulation, the
kinetic energy and the potential energy are slowly evolving to zero.
As expected, the peak of kinetic energy is increased when the
Reynolds number is increased.

For the two dissipation components Ed and Es we can observe a
strong difference between the 2D and 3D cases: The dissipation Es

related to particle-settling is dominating the dissipation Ed related
to the turbulence only in the early stages of the simulation for up
to t � 4 for the 3D cases while for the 2D cases, the dissipation Es is
always more important than the dissipation Ed. The values
obtained at the end of the simulation indicate how much of the
initial potential energy has been dissipated due to the particles
settling and how much has been dissipated due to the turbulence
via the strain rate. It should be noticed that there is a strong effect
of the Reynolds number on the two dissipation for the 2D and 3D
cases. In 3D, there is more dissipation due to the turbulence when
the Reynolds number is increased with more small scales struc-
tures present in the flow. However, the effect on the dissipation
due to particle-settling dissipation is relatively limited for the 3D
cases where � 30% of the energy loss is due to Es. For the 2D cases,
the particle-settling dissipation is always dominating the turbu-
lence dissipation as 2D turbulence is obviously quite poor in small
structures. Interestingly, there is a strong effect of the Reynolds
number on Es. For Re¼10 000, at the end of the simulation, Es is
responsible for � 30% of the energy loss whereas it is responsible
for more than 40% for Re¼2236. It means that for the lower
Reynolds number, there is less energy available for the transport
and mixing of particle.

7. Conclusion

The main features of a particle-laden gravity current for a dilute
suspension in a lock-exchange configuration were examined using
the 2D and 3D DNS for various Reynolds numbers. These simula-
tions were performed in order to gain more information of the
influence of the Reynolds number on the wall shear velocity,
the front structures, the temporal evolution of the front location,
the sedimentation rate and the resulting streamwise deposit
profiles. The full energy budget was also calculated for the first
time with no approximations. Direct comparisons with previous

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Time

Neckeretal.,2002
2236 Re=
5000 Re=

10000 Re=

Neckeretal.,2002
2236 Re=
5000 Re=

10000 Re=

Neckeretal.,2002
2236 Re=
5000 Re=

10000 Re=

Neckeretal.,2002
2236 Re=
5000 Re=

10000 Re=

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Time

0

0.2

0.4

0 10 20 30 40 50 60
Time

0

0.2

0.4

0.6

0 10 20 30 40 50 60

Time

Fig. 10. Time history of the kinetic and potential energy (top figures), turbulent and particle-settling dissipation (bottom figures) for the 2D cases (left figures) and 3D cases
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experimental and numerical works were also performed in order
to validate the approach. Good agreements were found with those
previous studies.

One of the main finding is that 2D simulations are unable to
reproduce the main features of the flow observed in the 3D cases for
the Reynolds numbers considered in this study. For instance, 2D
simulations are unable to produce the switch for the dissipation
related to the turbulence and the one related to the particle-settling,
observed at t � 8 in the 3D simulations. The 2D simulations are also
exhibiting a non-realistic particle concentration with very intense
patches of concentration along the front, due to strong vortices.
Because of this phenomenon, the deposition profiles cannot be
correctly predicted in 2D. It seems that the only quantity that can
be qualitatively well evaluated in 2D is the sedimentation rate.

The next step is to investigate the turbulence characteristics of
the flow, and to focus on the destabilisation mechanisms of the
head of the front. In particular, we would like to investigate in
great details the streamwise evolution of the lobe-and-cleft
patterns. These structures have been reported in several studies,
nevertheless, the transitory signature of the lobe-and-cleft
patterns has not been yet investigated. Very little is known about
the transition from a front with well defined lobe-and-cleft
patterns to a turbulent front and about the interaction with the
Kelvin–Helmholtz vortices.
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