
TURBULENCE GENERATED
BY FRACTAL GRIDS

D. Hurst, R.E. Seoud & J.C. Vassilicos

Department of Aeronautics and

Institute for Mathematical Sciences

Imperial College London, U.K.

. – p.1/45



MOTIVATIONS

1. Many applications in environmental and geophysical
flows as well as in industry

of fractal-forced or fractal-generated turbulence,

e.g. polydisperse droplets/particles in turbulent carrier fluid
that are large enough to force the turbulence over a wide
range of scales corresponding to a wide range of particle
wake sizes (combustion applications, ocean wind-wave
sprays); turbulent flows through trees, over plant canopies,
over multi-sized breaking ocean waves, etc; various novel
mixing devices for the process, oil and other industries as
wel as novel ventilation systems (recent patents by Imperial
College London) which can impact on the environment by
requiring less power to mix...

AT THE VERY LEAST, A REFERENCE LABORATORY
EXPERIMENT IS REQUIRED . – p.2/45



MOTIVATIONS

2. How to create ideal turbulence experiments with
(i) a very wide range of outer-to-inner scales
(ii) fully controlled conditions in the laboratory

(iii) the possibility to accurately measure down to the
smallest scales

3. Better: how to tamper with the turbulence in the
laboratory?

Various theories exist where the exponents p, q in
E(k) ∼ k−p, εL/u′3 ∼ Req are determined by

to one or many fractal dimensions of a fractal/multifractal,
spiral/multispiral field:

is it possible to modify E(k) ∼ k−p and/or εL/u′3 ∼ Req away
from p = 5/3 and q = 0 by tampering with the fractal/spiral

field and changing these dimensions?
. – p.3/45



MOTIVATIONS

4. Effects on drag properties?

5. How does a turbulence decay when it is generated by
creating many eddies of many different sizes at once?

6. How does a turbulent flow scale when it is generated by
a fractal which has its own intrinsic scaling?

7. Multiscale flow control? in the present case, passive.
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Wind tunnels

0.912m2 width; test section 4.8m; max speed 45m/s;
background turbulence ≈ 0.25%.

0.462m2 width; test section ≈ 4.0m; max speed 33m/s;
background turbulence ≈ 0.4%.
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FRACTAL CROSS GRIDS
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FRACTAL I GRIDS
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FRACTAL SQUARE GRIDS
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Three families of fractal grids

Three fractal-generating patterns

The fractal grids are totally characterised by
(i) the number of fractal iterations N

(ii)the lengths Lj = Rj
LL0 and thicknesses tj = Rj

t t0,
j = 0, ..., N − 1

(iii) the number Bj of patterns at iteration j: always here,
B = 4 and RL ≤ 1/2, Rt ≤ 1
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Important parameters

Fractal dimension of fractal perimeter: Df = logB
log(1/RL) .

1 ≤ Df ≤ 2.
WE FIND THAT BEST MEAN FLOW HOMOGENEITY IS
ACHIEVED FOR MAXIMUM Df i.e. Df = 2:
Thickness ratio tr ≡ t0/tN−1 ≡ tmax/tmin. (Note tr = R1−N

t .)
WE FIND THAT THE TURBULENCE INTENSITY
INCREASES WITH BOTH PRESSURE DROP (WHEN
INCREASING BLOCKADGE RATIO) AND THICKNESS
RATIO tr (KEEPING BLOCKADGE RATIO CONSTANT).
Effective mesh size Meff = 4T 2

P

√
1 − σ where T = tunnel

width, P = fractal perimeter, σ = blockadge ratio.
WE FIND THAT THE TURBULENCE SCALES WITH Meff

IN THE CASE OF CROSS AND I GRIDS. Statistical
homogeneity can be as good as for classical grids, but
further dowstream in multiples of Meff . . – p.10/45



Minimal complete description of grids

Cross grids require 4 parameters: e.g. T,N, tmax, Rt.
(T = Lmax, RL = 1/2 hence Df = 2.)

I and Square grids require 5 parameters: e.g.

T,N,Lmax, tmax, tmin. (T ≈ Lmax
1−RN

L

1−RL
.)

VARIOUS WIND TUNNEL TESTS WERE CARRIED OUT
WITH A NUMBER OF GRIDS FROM EACH FAMILY.
GROUPS OF GRIDS FROM GIVEN FAMILIES WERE
CHOSEN SO AS TO HAVE THE SAME VALUES OF
PARAMETERS BUT ONE, IN ORDER TO DETERMINE
THIS ONE PARAMETER’S EFFECT WHEN EVERYTHING
ELSE IS KEPT CONSTANT:
E.G. KEEPING BLOCKADGE RATIO, AND/OR NUMBER
OF ITERATIONS AND/OR Meff AND/OR tmin CONSTANT,
ETC, ETC, ETC...
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I grids: N = 6 and Df = 1.98, 1.87, 1.79, 1.68

Equal σ = 25 %, tmin = 1mm, T = 0.91m tunnel.
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I grid: N = 5 and Df = 2.0

σ = 31%, tmin = 4mm, T = 0.91m tunnel.
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Df = 2 fractal I grids; T = 0.46m tunnel

Equal N = 4, σ = 25%, Meff between 36mm and 37mm.
tr = 2.5, 5.0, 8.5, 13.0, 17.0
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Results: turbulence decay

Many possible ways to collapse the I grid data have been
tried. It is found that

(u′/U)2 = trC∆P (T/Lmax)2fct(x/Meff )

collapses the turbulence decay data generated by all fractal
I grids in both wind tunnels.
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Df = 2, σ = 25% fractal square grids

and equal Meff ≈ 2.6cm, Lmax ≈ 24cm, Lmin ≈ 3cm, N = 4,
T = 0.46m.

BUT tr = 2.5, 5.0, 8.5, 13.0, 17.0
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Profiles at x = 3.25m in T = 0.46m tunnel
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Results: turbulence intensity
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Isotropy collapse using xpeak

xpeak helps collapse u′/v′ as fct of x
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Results: power-law turbulence decay?

How does the Taylor microscale evolve?
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Results: integral length-scales
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Exponential turbulence decay at x � xpeak

u′2 = u′2
peakexp[−(x − xpeak)/lturb]

where
xpeak = 75 tminT

Lmin
and lturb = 0.1λ0

Uλ0

ν
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Comparison with classical grid turbulence

(measurements taken by N. Mazellier)
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Dissipation during exponential u′2 decay

u′2 = u′2
peakexp[−(x − xpeak)/lturb]

and

Lu, Lv independent of x

ARE INCOMPATIBLE WITH

−3
2U d

dxu′2 = ε = Cεu
′3/Lu

with Cε a universal constant.
All the results presented in what follows have been obtained
in the decay region (x > xpeak) of the turbulence generated
by fractal square grids in the T = 0.46cm tunnel.
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In fact, Lu, Lv, λ, Lu/λ and Lv/λ

are independent of x, tr and U∞ during decay.
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εLu/u
′3 ∼ Re−1

λ
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Statistical homogeneity at x > xpeak
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Statistical homogeneity at x > xpeak
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Statistical isotropy at x > xpeak
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Statistical local isotropy at x > xpeak

150 200 250 300 350 400 450
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

 K1   v   Re
λ
 

 U
inf

 = 10.5 m/s and 16.2 m/s

 Grid = tr17, 280 ≤  x / cm ≤ 370 
 K

1 

 Reλ 

 0 cm 10.5 m/s
3 cm 10.5 m/s
6 cm 10.5 m/s 
 0 cm 16.2 m/s
3 cm 16.2 m/s
6 cm 16.2 m/s 

Derivative ratio K1 ≡ 2 < (∂u
∂x)2 > / < (∂v

∂x)2 > as function of
Reλ at locations (x, y) downstream from the tr = 17 fractal
grid where x is larger than 2xpeak and y = 0, 3, 6cm.

Local isotropy implies K1 = 1. . – p.30/45



εLu/u
′3 ∼ Re−1

λ at x > xpeak and |y| < Lmax/2
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Does Kolmogorov scaling hold here?

We still get a power-law range where E11(k1) ∼ k
−5/3
1 at

high enough Reλ even though ε is Reλ-dependent!
But we can collapse spectra E11(k1) at different x with only
one length-scale: e.g. E11(k1) = u′2Luf(k1Lu).
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or E11(k1) = u′2λf (k1λ)
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Non-Kolmogorov -5/3

The energy spectrum of decaying turbulence generated by
space-filling fractal square grids scales with only one
length-scale l(x), i.e. E11(k1) = u′2lf(k11l).

This implies that Lu ∼ l and λ ∼ l, hence L ∼ λ as
observed.

This also implies that ε ∼ Re−1
λ u′3/Lu as also observed.

And it also implies that in the power-law range, if a -5/3

spectrum exists, then E11(k1) ∼ (u′3

Lu
)2/3k

−5/3
1 instead of

E11(k1) ∼ ε2/3k
−5/3
1 .

There exist fractal, i.e. multiscale, generators of turbulence
which lock the turbulence into a single length-scale! Yet, the
-5/3 is present even though the dissipation anomaly is not.
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Vortex Stretching?

The nonlinear rate of change of the enstrophy results from
vortex stretching and equals < ω · sω >.

In isotropic homogeneous turbulence,

< (∂u
∂x)3 >= − 2

35 < ω · sω >

and
< (∂u

∂x)2 >= 1
15 < ω2 >.

Hence, the derivative skewness
S ≡< (∂u

∂x)3 > / < (∂u
∂x)2 >3/2

is a normalised dimensionless measure of the average
vortex stretching rate and can be obtained from a single hot
wire if use is made of Taylor’s frozen flow hypothesis.
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Vortex stretching in single-scale turbulence

The scale-by-scale energy balance
∂
∂tE(k, t) = T (k, t) − 2νk2E(k, t)

implies that
∫
∞

0 k2T (k)dk is the rate of change of the
average enstrophy

∫
∞

0 k2E(k)dk as a result of nonlinear
interactions.

Hence, in isotropic homogeneous turbulence,

S = − 2
35(15

2 )3/2
R

∞

0
k2T (k)dk

(
R

∞

0
k2E(k)dk)3/2

= −(135/98)1/2
R

∞

0
k2T (k)dk

(
R

∞

0
k2E(k)dk)3/2

which can be evaluated from the scale-by-scale energy
budget and the single-scale spectrum property
E(k, t) = u′2λf(kλ) to give:

S = ARe−1
λ + B

u′

d
dtλ

in terms of two dimensionless constants A and B. . – p.36/45



Mean vortex stretching drops as Reλ grows.
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but as S ∼ Re−0.15
λ rather than S ∼ Re−1

λ

This apparent -0.15 scaling is caused by the small
time-dependence of λ. Indeed

S = ARe−1
λ + B

u′

d
dtλ

which can be recast as
SReλ = A + B Ulocal

ν
d
dxλ2

if use is made of Taylor’s frozen flow hypothesis
Ulocaldt = dx.

This slow increase of λ with x, if fitted by λ ∼ (x − x0)
s with

0 < s < 1/2, implies a stretched exponential decay of u′2

instead of the exponential form mentioned earlier. We leave
this correction for future detailed measurements and
studies.
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SReλ = A + BUlocal
ν

d
dxλ

2 for grid tr = 17.0
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SReλ = A + BUlocal
ν

d
dxλ

2 for grid tr = 13.0
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SReλ = A + BUlocal
ν

d
dxλ

2 for grid tr = 8.5
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Can intermittency grow with L/λ constant?

F ≡< (∂u
∂x)4 > / < (∂u

∂x)2 >2
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CONCLUSIONS

Df , tr and Meff are important fractal grid parameters. Best
homogeneity is obtained for Df = 2. For space-filling fractal
I and square grids, homogeneity can be further improved by
increasing tr. In all cases of fractal grids, turbulence
intensity and Reynolds number can also be increased by
increasing tr.
Turbulence decay, fractal I grids:

(u′/U)2 = trC∆P (T/Lmax)2fct(x/Meff )

Turbulence decay, fractal square grids, at x � xpeak:

u′2 = u′2
peakexp[−(x − xpeak)/lturb]

where
xpeak = 75 tminT

Lmin
and lturb = 0.1λ0

Uλ0

ν

u′2
peak increases linearly with tr. The Taylor microscale

λ = λ0 and the integral length scales are independent of tr
and U∞ and remain approx constant during decay. . – p.43/45



CONCLUSIONS

In the decay region of space-filling fractal square grids the
turbulence is approximately homogeneous and locally
isotropic and such that (see W.K. George, PoF 1992):

E11(k1) = u′2Luf(k11Lu) = u′2λf(k11λ)

L/λ = Const independent of x, tr and U∞

ε ∼ Re−1
λ u′3/Lu

A -5/3 power-law range exists where E11(k1) ∼ (u′3

Lu
)2/3k

−5/3
1

instead of E11(k1) ∼ ε2/3k
−5/3
1 .

. – p.44/45



CONCLUSIONS

Furthermore, in this decay region of space-filling fractal
square grids where turbulence is approximately
homogeneous and locally isotropic, the turbulence is also
such that
(i) vortex stretching decreases in the mean as the Reynolds
number is increased
(ii) and “intermittency” does not grow but remains constant
with increasing Reynolds number.

It is possible to tamper with the deepest properties of
homogeneous isotropic turbulence: the dissipation
anomaly, vortex stretching and intermittency. This points at
new possibilities for turbulence control. Also, if you can
tamper with something, you can start understanding it.
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