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Underwater canopies
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Urban dispersion

DAPPLE: Dispersion of Air Pollution and its Penetration into the
Local Environment
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Urban canopy
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Rural dispersion - water management
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Compact heat- and mass-transfer

Nickel foam - heat-pump applications
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Compact heat- and mass-transfer

Coating with Carbon Nano Fibers - catalyst applications
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Fractal modeling of complex objects?
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Controlling scales in flames

Effect of an upstream rod in flame
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Swirl control of lean combustion

Adding swirl stabilizes flame but hinders mixing
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Enhanced syngas combustion

Intensified combustion following upstream flow instability
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Will

present broadband forcing methodology

obtain controlled non-Kolmogorov turbulence

consider effects on mixing rate

investigate responsiveness to time-dependent forcing

present problem of relating forcing to actual (fractal) object
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Outline

1 Forcing at various scales

2 Mixing in manipulated turbulence

3 Optimal forcing?

4 Connections to real objects

5 Concluding remarks
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Multiscale Mixing Optimal? Reality? Conclusions

Forcing incompressible flow
Physical space: ∇ · v = 0

∂v
∂t

+
(

v · ∇
)

v = −
1
ρ
∇p + ν∇2v + f

Spectral space: put F = F(f) and assume k · F = 0. Then

v(x, t) =
∑

k

u(k, t)eık·x

with (
∂

∂t
+ νk2

)
u(k, t) = D W(k, t) + F(k, t)

where

Dαβ = δαβ −
kαkβ

k2 ; W(k, t) = F
(

v(x, t)× ω(x, t)
)

Pseudo-spectral treatment, FFTW, de-aliased, ...
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Multiscale Mixing Optimal? Reality? Conclusions

Convergence for decaying turbulence
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kmaxη at different N
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Forcing: spectral and physical localization
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a: Two-band forcing in spectral space

b: Forcing in a slab in physical space - spectral convolution
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Energy and forcing
> Evolution of Fourier coefficients

(
∂

∂t
+ νk2

)
uα(k, t) = Ψα(k, t) + Fα(k, t)

where Ψα(k, t) = DαβWβ(k, t)

> Energy evolution: E(k, t) = 1
2 |u(k, t)|2

∂E(k, t)
∂t

= −ε(k, t) + T (k, t) + TF (k, t)

dissipation ε(k, t) = 2νk2E(k, t)

transfer T (k, t) = u∗

α(k, t)Ψα(k, t)

forcing TF (k, t) = u∗

α(k, t)Fα(k, t)

Various forcing strategies possible - consider constant energy
in (some) modes (‘A’) and constant energy input-rate (‘B’)
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Multiscale Mixing Optimal? Reality? Conclusions

Basic forcing of type ‘A’
Choose to have ∂tuα = 0, i.e., ∂tE(k, t) = 0 for forced modes

Obtain forcing:

A1 : Fα(k, t) = νk2uα(k, t)−Ψα(k, t)

Extensions keeping |u(k, t)| constant (Chasnov)

Fα(k, t) = (ε(k, t)− T (k, t))
uα(k, t)
2E(k, t)

or shell-averaged version (Kerr)
Or average over all modes: (and assign to P forced modes)

A2 : Fα(k, t) =
ε̂(t)
P

uα(k, t)
2E(k, t)

yielding constant energy for entire system
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Constant energy input rate: ‘B’
Energy input rate εw fixed per forced mode:

B1 : Fα(k, t) =
εw

P
uα(k, t)
2E(k, t)

Multiscale stirrer: (Mazzi, Vassilicos)

B2 : Fα(k, t) =
εw kβ

∑
k∈K

√
2E(k, t)kβ

eα(k, t)

where K is set of forced modes and

e(k, t) =
u(k, t)
|u(k, t)|

+ ı
k × u(k, t)
|k||u(k, t)|

complexity of stirrer ‘contained’ in exponent β(= 3/5),
related to fractal dimension Df = β + 2
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Two-band forcing
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Two-band forcing: compensated spectra
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Peak where you want: B2
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Equal forcing per band: εw ,1 = εw ,2 = 0.15
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Peak with desired strength: B2
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Forcing removes energy from large scales - nonlocality
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Fractal stirring at various scales
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Controlled mixing in two-band forcing
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Scalar mixing: area and wrinkling

Geometric properties level-set: where c(x, t) = a

Ig(a, t) =

∫

S(a,t)
dA g(x, t)

g(x, t) = 1: area A
g(x, t) = |∇ · n(x, t)|: wrinkling W

Instantaneous and cumulative:

ϑA(a, t) = A(a, t)/A(a, 0) ; ϑW (a, t) = W (a, t)/W (a, 0)

ζA(a, t) =

∫ t

0
ϑA(a, τ)dτ ; ζW (a, t) =

∫ t

0
ϑW (a, τ)dτ

Distinguish: rate and maxima (ϑ) and total effect over time (ζ)
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Evolution of wrinkling ϑW and ζW
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Mixing: value for money
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Preferred frequency for turbulence agitation?

So far: forcing at various spatial scales

What about time-modulation of forcing?

Consider forcing at:

(1) large-scales only

(2) various scales simultaneously
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Modulated Forcing

Time-modulation of forcing (B1):

Fα(k, t) =

[
εw

P
uα(k, t)
2E(k, t)

] (
1 + A sin(ωt)

)

Expect:

ω ≫ 1: modulation too rapid: no/small effect

ω ≪ 1: modulation quasi-stationary: no/small effect

Q1: optimal modulation frequency/frequencies?

Q2: increased turbulence/transport/mixing?
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Ensemble of forced simulations

Registration total kinetic energy:

start: j-th initial condition, Nr realizations

forced - no modulation: E (0)
j (t)

forced - modulation: Ej(t , ω)
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Extract Amplitude and Phase
Averaging over Nr realizations:

〈E(t , ω)〉 =
1
Nr

Nr∑

j=1

Ej(t , ω) = a(ω) + A(ω) sin
(
ω̂(t + Φ(ω))

)

Amplitude response and phase-shift
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Response maxima: energy

Rλ = 50: ◦, and Rλ = 100: △

Phase-shift: ω ≫ 1 then→ 90-degrees

Compensated spectrum: ω−1 decay
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Response maxima: dissipation

Phase-shift: ω ≫ 1 then→ 180-degrees
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Effect of amplitude of modulation

Modulation depth: A = 1/5 (◦), A = 1/2 (�), A = 1 (△)
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Response maxima and correlations?

CE(0),E(t)(ω) =
〈E(0)E(t)〉

〈E(0)2〉1/2〈E(t)2〉1/2
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Response maxima and correlations?

Maximal correlation at ω at which response maximum
Here: t∗ = 0.3
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Experimental ‘similarities’: washing machine

Cadot-Titon-Bonn (JFM 485, 2003)
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Experimental ‘similarities’: washing machine

Velocity fluctuations (left) and power-input (right)
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Possible Connections with Experiments?

Periodic active grid mode: Tipton - van de Water

Grid can be cycled at different frequencies
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Dissipation rate in modulated turbulence

Grid solidity and dissipation rate:

Low-pass filtering of the dissipation-rate
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Frequency dependence

Resonant dissipation - phase shift of 180 degrees
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Mean field and GOY?
Heydt-Grossman-Lohse

Dashed: mean-field, Dots: GOY simulation
GOY and REWA simulations show only small effect
dissimilar to numerical NS experiments
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Two point closure

Bos-Rubinstein

(a) (b)
Energy (a) and dissipation (b): two-point closure approach
compares closely to DNS
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Multiscale forcing

Response maxima pronounced when large scales forced
More pronounced as Re lower
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Complex forcing strategies

Response to saw-tooth forcing
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Outline

1 Forcing at various scales

2 Mixing in manipulated turbulence

3 Optimal forcing?

4 Connections to real objects

5 Concluding remarks
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Fractal modeling of complex objects?
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IBM - basics

Peskin, c.s.

Compute on simple grid - cut out object
fast solvers - complex geometries
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IBM in life-sciences

Famous application: flow in realistic heart

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turb ulence



Multiscale Mixing Optimal? Reality? Conclusions

IBM - volume penalization

∂tu + (u · ∇)u +∇p −
1

Re
∆u +

1
ǫ

Hu = 0

Indicator function:

H =

{
1 x ∈ Ωs

0 x ∈ Ωf
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How to relate forcing to IBM?

Case studies:

bottom-up: optimize forcing to comply with simulated flow?

top-down: relate ‘objects’ to ‘local fractal dimension’?

...

can lack of detailed resolution be ‘modeled away’ at all?

how much geometric detail is needed?

can two-point closure provide guidance?

...
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Summary

considered effect of broadband forcing on turbulent flow

quantitative and qualitative changes of cascading possible

controlling mixing rate and mixing ‘completeness’

‘receptivity’ to agitation probed with time-modulated forcing

response maxima, correlations

connect complex geometry to specific forcing?

Thanks: NCF
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