Broadband forcing of turbulence

Bernard J. Geurts, Arek K. Kuczaj

Multiscale Modeling and Simulation (Twente) Anisotropic Turbulence (Eindhoven)

IMS Turbulence Workshop London, February 18-19, 2008

Underwater canopies

Urban dispersion

DAPPLE: Dispersion of Air Pollution and its Penetration into the Local Environment

Urban canopy

Rural dispersion - water management

Compact heat- and mass-transfer

Nickel foam - heat-pump applications

Compact heat- and mass-transfer

Coating with Carbon Nano Fibers - catalyst applications

Fractal modeling of complex objects?

Controlling scales in flames

Effect of an upstream rod in flame

Swirl control of lean combustion

Adding swirl stabilizes flame but hinders mixing

Enhanced syngas combustion

Intensified combustion following upstream flow instability

• present broadband forcing methodology

-
-
-
-

- **•** present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
-
- investigate responsiveness to time-dependent forcing
-

GTI

- **•** present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
- o consider effects on mixing rate
-
- **•** present problem of relating forcing to actual (fractal) object

- **•** present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
- o consider effects on mixing rate
- investigate responsiveness to time-dependent forcing
- **•** present problem of relating forcing to actual (fractal) object

GTI

- **•** present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
- o consider effects on mixing rate
- investigate responsiveness to time-dependent forcing
- **•** present problem of relating forcing to actual (fractal) object

Outline

- **[Mixing in manipulated turbulence](#page-38-0)**
- **[Optimal forcing?](#page-45-0)**
- **[Connections to real objects](#page-64-0)**
- **[Concluding remarks](#page-72-0)**

Outline

- [Mixing in manipulated turbulence](#page-38-0)
- [Optimal forcing?](#page-45-0)
- [Connections to real objects](#page-64-0)
- [Concluding remarks](#page-72-0)

Forcing incompressible flow

Physical space: ∇ · **v** = 0

$$
\frac{\partial \mathbf{v}}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) \mathbf{v} = -\frac{1}{\rho} \nabla \rho + \nu \nabla^2 \mathbf{v} + \mathbf{f}
$$

Spectral space: put $\mathbf{F} = \mathcal{F}(\mathbf{f})$ and assume $\mathbf{k} \cdot \mathbf{F} = 0$. Then

$$
\mathbf{v}(\mathbf{x},t)=\sum_{\mathbf{k}}\mathbf{u}(\mathbf{k},t)e^{i\mathbf{k}\cdot\mathbf{x}}
$$

$$
\left(\frac{\partial}{\partial t} + \nu k^2\right) \mathbf{u}(\mathbf{k}, t) = \mathbf{D} \mathbf{W}(\mathbf{k}, t) + \mathbf{F}(\mathbf{k}, t)
$$

$$
D_{\alpha\beta} = \delta_{\alpha\beta} - \frac{k_{\alpha}k_{\beta}}{k^2} \quad ; \quad \mathbf{W}(\mathbf{k}, t) = \mathcal{F}\Big(\mathbf{v}(\mathbf{x}, t) \times \boldsymbol{\omega}(\mathbf{x}, t)\Big)
$$

Forcing incompressible flow

Physical space: ∇ · **v** = 0

$$
\frac{\partial \mathbf{v}}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) \mathbf{v} = -\frac{1}{\rho} \nabla \rho + \nu \nabla^2 \mathbf{v} + \mathbf{f}
$$

Spectral space: put $\mathbf{F} = \mathcal{F}(\mathbf{f})$ and assume $\mathbf{k} \cdot \mathbf{F} = 0$. Then

$$
\mathbf{v}(\mathbf{x},t)=\sum_{\mathbf{k}}\mathbf{u}(\mathbf{k},t)e^{i\mathbf{k}\cdot\mathbf{x}}
$$

with

$$
\left(\frac{\partial}{\partial t} + \nu k^2\right) \mathbf{u}(\mathbf{k}, t) = \mathbf{D} \mathbf{W}(\mathbf{k}, t) + \mathbf{F}(\mathbf{k}, t)
$$

where

$$
D_{\alpha\beta} = \delta_{\alpha\beta} - \frac{k_{\alpha}k_{\beta}}{k^2} \; ; \; \mathbf{W}(\mathbf{k}, t) = \mathcal{F}\Big(\mathbf{v}(\mathbf{x}, t) \times \omega(\mathbf{x}, t)\Big)
$$

 G TU/e

Forcing incompressible flow

Physical space: ∇ · **v** = 0

$$
\frac{\partial \mathbf{v}}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) \mathbf{v} = -\frac{1}{\rho} \nabla \rho + \nu \nabla^2 \mathbf{v} + \mathbf{f}
$$

Spectral space: put $\mathbf{F} = \mathcal{F}(\mathbf{f})$ and assume $\mathbf{k} \cdot \mathbf{F} = 0$. Then

$$
\mathbf{v}(\mathbf{x},t)=\sum_{\mathbf{k}}\mathbf{u}(\mathbf{k},t)e^{i\mathbf{k}\cdot\mathbf{x}}
$$

with

$$
\left(\frac{\partial}{\partial t} + \nu k^2\right) \mathbf{u}(\mathbf{k}, t) = \mathbf{D} \mathbf{W}(\mathbf{k}, t) + \mathbf{F}(\mathbf{k}, t)
$$

where

$$
D_{\alpha\beta} = \delta_{\alpha\beta} - \frac{k_{\alpha}k_{\beta}}{k^2} \quad ; \quad \mathbf{W}(\mathbf{k}, t) = \mathcal{F}\Big(\mathbf{v}(\mathbf{x}, t) \times \boldsymbol{\omega}(\mathbf{x}, t)\Big)
$$

Pseudo-spectral treatment, FFTW, de-aliased, ...

Convergence for decaying turbulence

Convergence for decaying turbulence

a: Two-band forcing in spectral space

b: Forcing in a slab in physical space - spectral convolution

Energy and forcing

> Evolution of Fourier coefficients

$$
\left(\frac{\partial}{\partial t} + \nu k^2\right)u_\alpha(\mathbf{k}, t) = \Psi_\alpha(\mathbf{k}, t) + F_\alpha(\mathbf{k}, t)
$$

where $\Psi_{\alpha}(\mathbf{k}, t) = D_{\alpha\beta}W_{\beta}(\mathbf{k}, t)$

 $>$ Energy evolution: $E(\mathbf{k}, t) = \frac{1}{2} |\mathbf{u}(\mathbf{k}, t)|^2$

$$
\frac{\partial E(\mathbf{k},t)}{\partial t} = -\varepsilon(\mathbf{k},t) + \mathcal{T}(\mathbf{k},t) + \mathcal{T}_F(\mathbf{k},t)
$$

dissipation $\varepsilon(\mathbf{k}, t) = 2\nu k^2 E(\mathbf{k}, t)$

- transfer $\mathcal{T}(\mathbf{k}, t) = u_{\alpha}^*(\mathbf{k}, t) \Psi_{\alpha}(\mathbf{k}, t)$
- forcing $T_F(\mathbf{k}, t) = u_\alpha^*(\mathbf{k}, t) F_\alpha(\mathbf{k}, t)$

Energy and forcing

> Evolution of Fourier coefficients

$$
\left(\frac{\partial}{\partial t} + \nu k^2\right)u_\alpha(\mathbf{k}, t) = \Psi_\alpha(\mathbf{k}, t) + F_\alpha(\mathbf{k}, t)
$$

where $\Psi_{\alpha}(\mathbf{k}, t) = D_{\alpha\beta}W_{\beta}(\mathbf{k}, t)$

 $>$ Energy evolution: $E(\mathbf{k}, t) = \frac{1}{2} |\mathbf{u}(\mathbf{k}, t)|^2$

$$
\frac{\partial E(\mathbf{k},t)}{\partial t} = -\varepsilon(\mathbf{k},t) + \mathcal{T}(\mathbf{k},t) + \mathcal{T}_F(\mathbf{k},t)
$$

- dissipation $\varepsilon(\mathbf{k}, t) = 2\nu k^2 E(\mathbf{k}, t)$
- transfer $T(\mathbf{k}, t) = u_{\alpha}^*(\mathbf{k}, t) \Psi_{\alpha}(\mathbf{k}, t)$
- forcing $T_F(\mathbf{k}, t) = u_\alpha^*(\mathbf{k}, t) F_\alpha(\mathbf{k}, t)$

Energy and forcing

> Evolution of Fourier coefficients

$$
\left(\frac{\partial}{\partial t} + \nu k^2\right)u_\alpha(\mathbf{k}, t) = \Psi_\alpha(\mathbf{k}, t) + F_\alpha(\mathbf{k}, t)
$$

where $\Psi_{\alpha}(\mathbf{k}, t) = D_{\alpha\beta}W_{\beta}(\mathbf{k}, t)$

 $>$ Energy evolution: $E(\mathbf{k}, t) = \frac{1}{2} |\mathbf{u}(\mathbf{k}, t)|^2$

$$
\frac{\partial E(\mathbf{k},t)}{\partial t} = -\varepsilon(\mathbf{k},t) + \mathcal{T}(\mathbf{k},t) + \mathcal{T}_F(\mathbf{k},t)
$$

- dissipation $\varepsilon(\mathbf{k}, t) = 2\nu k^2 E(\mathbf{k}, t)$
- transfer $T(\mathbf{k}, t) = u_{\alpha}^*(\mathbf{k}, t) \Psi_{\alpha}(\mathbf{k}, t)$
- forcing $T_F(\mathbf{k}, t) = u_\alpha^*(\mathbf{k}, t) F_\alpha(\mathbf{k}, t)$

Various forcing strategies possible - consider constant energy in (some) modes ('A') and constant energy input-rate ('B')

Choose to have $\partial_t u_\alpha = 0$, i.e., $\partial_t E(\mathbf{k}, t) = 0$ for forced modes

$$
A1: F_{\alpha}(\mathbf{k},t) = \nu k^2 u_{\alpha}(\mathbf{k},t) - \Psi_{\alpha}(\mathbf{k},t)
$$

Extensions keeping |**u**(**k**, t)| constant (Chasnov)

$$
F_{\alpha}(\mathbf{k},t)=(\varepsilon(\mathbf{k},t)-T(\mathbf{k},t))\frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

$$
A2: F_{\alpha}(\mathbf{k},t) = \frac{\widehat{\varepsilon}(t)}{P} \frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

Choose to have $\partial_t u_\alpha = 0$, i.e., $\partial_t E(\mathbf{k}, t) = 0$ for forced modes

Obtain forcing:

$$
A1: F_{\alpha}(\mathbf{k},t) = \nu k^2 u_{\alpha}(\mathbf{k},t) - \Psi_{\alpha}(\mathbf{k},t)
$$

Extensions keeping |**u**(**k**, t)| constant (Chasnov)

$$
F_{\alpha}(\mathbf{k},t)=(\varepsilon(\mathbf{k},t)-T(\mathbf{k},t))\frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

$$
A2: F_{\alpha}(\mathbf{k},t) = \frac{\widehat{\varepsilon}(t)}{P} \frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

Choose to have $\partial_t u_\alpha = 0$, i.e., $\partial_t E(\mathbf{k}, t) = 0$ for forced modes

Obtain forcing:

$$
A1: F_{\alpha}(\mathbf{k},t) = \nu k^2 u_{\alpha}(\mathbf{k},t) - \Psi_{\alpha}(\mathbf{k},t)
$$

Extensions keeping |**u**(**k**, t)| constant (Chasnov)

$$
F_{\alpha}(\mathbf{k},t)=(\varepsilon(\mathbf{k},t)-T(\mathbf{k},t))\frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

or shell-averaged version (Kerr)

$$
A2: F_{\alpha}(\mathbf{k},t) = \frac{\widehat{\varepsilon}(t)}{P} \frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

Choose to have $\partial_t u_\alpha = 0$, i.e., $\partial_t E(\mathbf{k}, t) = 0$ for forced modes

Obtain forcing:

$$
A1: F_{\alpha}(\mathbf{k},t) = \nu k^2 u_{\alpha}(\mathbf{k},t) - \Psi_{\alpha}(\mathbf{k},t)
$$

Extensions keeping |**u**(**k**, t)| constant (Chasnov)

$$
F_{\alpha}(\mathbf{k},t)=(\varepsilon(\mathbf{k},t)-T(\mathbf{k},t))\frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

or shell-averaged version (Kerr) Or average over all modes: (and assign to P forced modes)

$$
A2: F_{\alpha}(\mathbf{k},t) = \frac{\widehat{\varepsilon}(t)}{P} \frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

yielding constant energy for entire system

Constant energy input rate: 'B'

Energy input rate ε_w fixed per forced mode:

$$
B1: F_{\alpha}(\mathbf{k},t) = \frac{\varepsilon_{\mathsf{W}}}{P} \frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

B2:
$$
F_{\alpha}(\mathbf{k}, t) = \frac{\varepsilon_{w} k^{\beta}}{\sum_{\mathbf{k} \in \mathbb{K}} \sqrt{2E(\mathbf{k}, t)} k^{\beta}} e_{\alpha}(\mathbf{k}, t)
$$

$$
\mathbf{e}(\mathbf{k},t) = \frac{\mathbf{u}(\mathbf{k},t)}{|\mathbf{u}(\mathbf{k},t)|} + i \frac{\mathbf{k} \times \mathbf{u}(\mathbf{k},t)}{|\mathbf{k}||\mathbf{u}(\mathbf{k},t)|}
$$

• complexity of stirrer 'contained' in exponent $\beta(=3/5)$,

Constant energy input rate: 'B'

Energy input rate ε_w fixed per forced mode:

$$
B1: F_{\alpha}(\mathbf{k},t) = \frac{\varepsilon_{w}}{P} \frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

Multiscale stirrer: (Mazzi, Vassilicos)

B2:
$$
F_{\alpha}(\mathbf{k}, t) = \frac{\varepsilon_{w} k^{\beta}}{\sum_{\mathbf{k} \in \mathbb{K}} \sqrt{2E(\mathbf{k}, t)} k^{\beta}} e_{\alpha}(\mathbf{k}, t)
$$

where $\mathbb K$ is set of forced modes and

$$
\mathbf{e}(\mathbf{k},t)=\frac{\mathbf{u}(\mathbf{k},t)}{|\mathbf{u}(\mathbf{k},t)|}+\imath\frac{\mathbf{k}\times\mathbf{u}(\mathbf{k},t)}{|\mathbf{k}||\mathbf{u}(\mathbf{k},t)|}
$$

• complexity of stirrer 'contained' in exponent $\beta(=3/5)$,

Constant energy input rate: 'B'

Energy input rate ε_w fixed per forced mode:

$$
B1: F_{\alpha}(\mathbf{k},t) = \frac{\varepsilon_{w}}{P} \frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}
$$

Multiscale stirrer: (Mazzi, Vassilicos)

B2:
$$
F_{\alpha}(\mathbf{k}, t) = \frac{\varepsilon_{w} k^{\beta}}{\sum_{\mathbf{k} \in \mathbb{K}} \sqrt{2E(\mathbf{k}, t)} k^{\beta}} e_{\alpha}(\mathbf{k}, t)
$$

where $\mathbb K$ is set of forced modes and

$$
\mathbf{e}(\mathbf{k},t)=\frac{\mathbf{u}(\mathbf{k},t)}{|\mathbf{u}(\mathbf{k},t)|}+\imath\frac{\mathbf{k}\times\mathbf{u}(\mathbf{k},t)}{|\mathbf{k}||\mathbf{u}(\mathbf{k},t)|}
$$

• complexity of stirrer 'contained' in exponent $\beta(=3/5)$, related to fractal dimension $D_f = \beta + 2$

 G TU/e

Two-band forcing

Kinetic energy \widehat{E} (a) and energy-dissipation-rate $\widehat{\varepsilon}$ (b) A1 (dashed), A2 (dotted), B1 (dash-dotted), B2 (solid)

Two-band forcing: compensated spectra

two-band forced turbulence: $k \leq 3\pi$ and $33\pi < k \leq 41\pi$ **(a)** A1 (dashed), A2 (dotted), B1 (dash-dotted), B2 (solid) **(b)** Co-spectra E_{11} , E_{22} , E_{33} for A1 (dashed) and B2 (solid)

Peak where you want: B2

Equal forcing per band: $\varepsilon_{w,1} = \varepsilon_{w,2} = 0.15$

 \bigtriangleup TU/e

Peak with desired strength: B2

(a) large-scale forcing $\varepsilon_{w,1} = 0.15$ in $k \leq 3\pi$: second band $33\pi < k \leq 41\pi$: $\varepsilon_{w,2} = 0.075, 0.15, 0.30, \ldots, 0.90$ **(b)** Corresponding time-averaged total kinetic energy Forcing removes energy from large scales - nonlocality

Outline

[Mixing in manipulated turbulence](#page-38-0)

[Optimal forcing?](#page-45-0)

- [Connections to real objects](#page-64-0)
- [Concluding remarks](#page-72-0)

Fractal stirring at various scales

Controlled mixing in two-band forcing

Scalar mixing: area and wrinkling

Geometric properties level-set: where $c(\mathbf{x}, t) = a$

$$
I_g(a,t) = \int_{S(a,t)} dA \ g(\mathbf{x},t)
$$

• $g(\mathbf{x}, t) = 1$: area A \bullet $g(\mathbf{x}, t) = |\nabla \cdot \mathbf{n}(\mathbf{x}, t)|$: wrinkling W

 $\vartheta_A(a, t) = A(a, t)/A(a, 0)$; $\vartheta_W(a, t) = W(a, t)/W(a, 0)$

 $\zeta_\mathcal{A}(a,t) = \int_0^t \vartheta_\mathcal{A}(a,\tau) \mathsf{d} \tau \hspace{3mm};\hspace{3mm} \zeta_W(a,t) = \int_0^t \vartheta_W(a,\tau) \mathsf{d} \tau$

Scalar mixing: area and wrinkling

Geometric properties level-set: where $c(\mathbf{x}, t) = a$

$$
I_g(a,t) = \int_{S(a,t)} dA \ g(\mathbf{x},t)
$$

• $g(\mathbf{x}, t) = 1$: area A **○** $g(\mathbf{x}, t) = |\nabla \cdot \mathbf{n}(\mathbf{x}, t)|$: wrinkling W

Instantaneous and cumulative:

$$
\vartheta_A(a,t) = A(a,t)/A(a,0) \quad ; \quad \vartheta_W(a,t) = W(a,t)/W(a,0)
$$

$$
\zeta_A(a,t) = \int_0^t \vartheta_A(a,\tau)d\tau \quad ; \quad \zeta_W(a,t) = \int_0^t \vartheta_W(a,\tau)d\tau
$$

Distinguish: rate and maxima (ϑ) and total effect over time (ζ) **Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence**

Evolution of wrinkling ϑ_W and ζ_W

Comparing: forcing

- $\bullet \mathbb{K}_{1,1}$ at $\varepsilon_w = 0.60$ (solid)
- \bullet K_{1,1} at $\varepsilon_w = 0.15$ and K_{5,8} at $\varepsilon_{w,2} = 0.45$ (dashed)
- \bullet K_{1,1} at $\varepsilon_w = 0.15$ and K_{13,16} at $\varepsilon_{w,2} = 0.45$ (dash-dotted)

Mixing: value for money

 \bullet Forcing $\mathbb{K}_{1,1}$ – $\mathbb{K}_{13,16}$ at (0.60 – 0.00) (○), $(0.45 - 0.15)$ (solid), $(0.30 - 0.30)$ (dash), $(0.15 - 0.45)$ (dot-dash), $(0.05 - 0.55)$ (dot)

surface-area (a) and wrinkling ζ_W^\star at $t=$ 2 (b)

[Mixing in manipulated turbulence](#page-38-0)

[Optimal forcing?](#page-45-0)

- [Connections to real objects](#page-64-0)
- [Concluding remarks](#page-72-0)

Preferred frequency for turbulence agitation?

So far: forcing at various spatial scales

What about time-modulation of forcing?

Consider forcing at:

- **(1)** large-scales only
- **(2)** various scales simultaneously

Modulated Forcing

Time-modulation of forcing (B1):

$$
F_{\alpha}(\mathbf{k},t) = \left[\frac{\varepsilon_{w}}{P} \frac{u_{\alpha}(\mathbf{k},t)}{2E(\mathbf{k},t)}\right] \left(1 + A \sin(\omega t)\right)
$$

Expect:

- $\bullet \omega \gg 1$: modulation too rapid: no/small effect
- $\bullet \omega \ll 1$: modulation quasi-stationary: no/small effect
- **Q1:** optimal modulation frequency/frequencies?
- **Q2:** increased turbulence/transport/mixing?

Ensemble of forced simulations

Registration total kinetic energy:

- \bullet start: *j*-th initial condition, N_r realizations
- forced no modulation: $E_i^{(0)}$ $j^{(0)}(t)$
- \bullet forced modulation: $E_i(t, \omega)$

Extract Amplitude and Phase

Averaging over N_r realizations:

Response maxima: energy

 \bullet $R_{\lambda} = 50: \circ$, and $R_{\lambda} = 100: \triangle$

- Phase-shift: $\omega \gg 1$ then $\rightarrow 90$ -degrees
- Compensated spectrum: ω^{-1} decay

 \bigcirc TU/e

Response maxima: dissipation

• Phase-shift: $\omega \gg 1$ then \rightarrow 180-degrees

Effect of amplitude of modulation

 \bigcirc TU/e

Modulation depth: $A = 1/5$ (◦), $A = 1/2$ (□), $A = 1$ (△)

 \bigcirc TU/e

Response maxima and correlations?

Maximal correlation at ω at which response maximum Here: $t^* = 0.3$

Experimental 'similarities': washing machine

Cadot-Titon-Bonn (JFM 485, 2003)

Experimental 'similarities': washing machine

 \bigcirc TU/e

Velocity fluctuations (left) and power-input (right)

Possible Connections with Experiments?

Periodic active grid mode: Tipton - van de Water

Grid can be cycled at different frequencies

Dissipation rate in modulated turbulence

Grid solidity and dissipation rate:

 \bigcirc TU/e

Frequency dependence

Resonant dissipation - phase shift of 180 degrees

Mean field and GOY?

Heydt-Grossman-Lohse

- Dashed: mean-field, Dots: GOY simulation
- GOY and REWA simulations show only small effect
- **o** dissimilar to numerical NS experiments

 \bigcirc TU/e

Two point closure

Bos-Rubinstein

Energy (a) and dissipation (b): two-point closure approach compares closely to DNS

Multiscale forcing

Response maxima pronounced when large scales forced More pronounced as Re lower

 \bigcirc TU/e

Complex forcing strategies

Response to saw-tooth forcing

- [Mixing in manipulated turbulence](#page-38-0)
- [Optimal forcing?](#page-45-0)
- **[Connections to real objects](#page-64-0)**
	- [Concluding remarks](#page-72-0)

Fractal modeling of complex objects?

IBM - basics

Peskin, c.s.

Compute on simple grid - cut out object fast solvers - complex geometries

IBM - basics

Peskin, c.s.

- Compute on simple grid cut out object
- o fast solvers complex geometries

IBM in life-sciences

Famous application: flow in realistic heart

IBM - volume penalization

$$
\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p - \frac{1}{Re} \Delta \mathbf{u} + \frac{1}{\epsilon} H \mathbf{u} = 0
$$

Indicator function:

$$
H = \left\{ \begin{array}{ll} 1 \quad & \mathbf{x} \in \Omega_{\mathbf{s}} \\ 0 \quad & \mathbf{x} \in \Omega_{\mathbf{f}} \end{array} \right.
$$

How to relate forcing to IBM?

Case studies:

- bottom-up: optimize forcing to comply with simulated flow?
- top-down: relate 'objects' to 'local fractal dimension'?
- ...
- **•** can lack of detailed resolution be 'modeled away' at all?
- how much geometric detail is needed?
- can two-point closure provide quidance?
- \bullet

How to relate forcing to IBM?

Case studies:

- bottom-up: optimize forcing to comply with simulated flow?
- top-down: relate 'objects' to 'local fractal dimension'?
- \bullet ...
- can lack of detailed resolution be 'modeled away' at all?
- how much geometric detail is needed?
- can two-point closure provide quidance?
- \bullet ...

- [Mixing in manipulated turbulence](#page-38-0)
- [Optimal forcing?](#page-45-0)
- [Connections to real objects](#page-64-0)

● considered effect of broadband forcing on turbulent flow

-
-
-
-
-

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
-
-
-
-

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing 'completeness'
-
-
-

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing 'completeness'
- 'receptivity' to agitation probed with time-modulated forcing
-
- **connect complex geometry to specific forcing?**

Thanks: NCF

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing 'completeness'
- 'receptivity' to agitation probed with time-modulated forcing
- response maxima, correlations
- **connect complex geometry to specific forcing?**

Thanks: NCF

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing 'completeness'
- 'receptivity' to agitation probed with time-modulated forcing
- response maxima, correlations
- connect complex geometry to specific forcing?

Thanks: NCF

