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turbulence

open question: to understand the correlations of the 
disorder of the turbulent field
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statistics of turbulence

 challenge to know  - general n-scale statistics
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statistics of turbulence

 n-scale statistics
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statistics of turbulence -2-

 n-scale statistics   
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what are possible simplifications?

formula of Bayes

simplification if:
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statistics of turbulence -3-

simplification
(1)

(2)

experimental test

experimental result:

       p(u1|u2,u3) = p(u1|u2)

(1) holds 

(2) not
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statistics of turbulence -4-

  general n-scale statistics can be expressed by

and not

with cascades picture 

Cascade a Markov process
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stochastic cascade process
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 idea of a turbulent cascade: 
large vortices are generating small ones

=> stochastic cascade process evolving in r
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stochastic cascade process - 2 -
summary: characterization of the disorder by joint 
n-scale statistics by a stochastic process, 

1.  proof of Markov properties

2. estimation of the Kramers Moyal coefficients results in 
simplification:

3. obtain information for the n-scale statistics by process equation 
(Fokker-Planck or Kolomogorov equation)
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stochastic cascade process -3-

1. property of a  Markov process: 

- evidence by conditional  

probability densities

   p(u1|u2, ... ,uN) = p(u1|u2) 

- experimental result:

       p(u1|u2,u3) = p(u1|u2) 
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stochastic cascade process -4-

2. measured: D(1)(u,r)  and D(2)(u,r)

Phys. Rev. Lett.  89, (2002)

D(1)(u,r) ≅ γ(r) u(r)

D(2)(u,r) ≅ α(r) + δ(r) u(r) + β(r) u2(r)

with the definition of (after Kol. 1931)
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stochastic cascade process -5-

measured Fokker-Planck equation 

- closed equation for structure functions if

D(1)(u,r) ≅ γ(r) u(r)
D(2)(u,r) ≅ α(r) + δ(r) u(r) + β(r) u2(r)
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stochastic cascade process -6-

3. Verification of the measured Fokker-Planck equation

- numerical solution compared with experimental results 

- => n-scale statistics 
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reconstruction of time series
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stochastic of reconstructed time series
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clustering of volatility for financial data

the statistics for the next step changes, for 
„quite“ phase the variance is less than for 
„turbulent“ phases (similar for turbulence)
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 turbulent cascade: larger Re larger cascade range

turbulent length scales

L integral length scale

Re =

(

L

η

)3/4
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λ Taylor length scale

dissipation length scale
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turbulent length scales
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Einstein-Markov length

Einstein-Markov-length - a coherence length lmar
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Einstein-Markov length -2-

stochastic Wilcoxon test defines  lmar
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Einstein-Markov length -3-

Einstein-Markov length lmar   a new coherence length

• is about the Taylor length

• is like the maximal dissipation length proposed by Yakhot

• dissipation causes memory 

• degree of freedom L/lmar like Re1/2
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Einstein - Markov Length
A. Einstein Ann. Phys. 17, 549 (1905) 
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complexity of turbulence
thermodynamical (nonequilibrium) interpretation

- the Fokker- Planck or Kolmogov equation gives access

ideal gas 

state vector 

n- particle description
 p(q1, q2, …, qn)

single particle approximation

p(q1,…, qn)=p(q1)*…*p(qn)

Boltzmann equation

isotropic turbulence

state vector  ur, 

n- scale statistics
 p(ur0, ur1, ..., urn) 

Markov property
p(ur0,., urn) = p(ur0|ur1)*…..

*p(urn-1|urn) p(urn)

Fokker-Planck equation
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turbulence: new insights 

Einstein- Markov-length - a coherence length

statistics of longitudinal and transversal increments

universality of turbulence: 

role of transfered energy er:

fusion rules ri   => ri+1  (Davoudi, Tabar 2000; L’vov, Procaccia 1996)

passive scalar (Tutkun, Mydlarski 2004)
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END
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p!x" =
N!

##ẋ2$x%%
exp&'

x

##ẍ$u%%
##ẋ2$u%%

du( , !8"

where the dot denotes temporal derivative and the notation

## %% stresses the fact that the interpretation of the conditional
averages is different from those of Eqs. !4" and !5". In fact,
the averages in Eq. !8" refer to an infinitesimal window be-
tween x and x+dx, rather than to a fixed temporal interval.

Hence, each contribution in the averages of Eq. !8" needs to
be weighted by the time spent in the window of width dx.

This is clear if one considers that, for stationary signals,

##ẋ $x%% is zero, in contrast to #!x% /!t. In Langevin equations,
the latter is equal to A!x" )see Eq. !4"* and, in general, is
different from zero in signals that are not symmetric in time

)19*. Similar observations were made by Sokolov )20*, who
also reported explicit formulas for the conditional averages

in Eq. !8".
Pope and Ching derived Eq. !8" under the hypothesis of

twice differentiable signals. However, as shown in )21*, the
previous expression is also valid for signals that are only

differentiable once. Along these lines, one can expect that the

same equation also applies, in a generalized sense, to Lange-

vin equations with Gaussian noise !that are nondifferen-
tiable". The starting point to find a link between the two
approaches is already partly contained in the analysis of

Stolovistky and Ching )21*, who derived the conditional av-
erages for the second-order process

ẋ = v ,

v̇ = f!x" ! "v + +"g!x"#!t" , !9"

as ##v̇ $x%%= ##ẍ $x%%= f!x" for any ", and 2##v2 $x%%=2##ẋ2 $x%%
=g!x" for the limiting case of "→$.
Since it is also known that, for "→$, the system !9"

can be reduced to the first-order Langevin equation

)15,16,21,22*,

ẋ =
f!x"
"
++g!x"

"
#!t" , !10"

one also has

f!x"
"
=

##ẍ$x%%
"

=
#!x%
!t

= A!x" !11"

and

g!x"
"
= 2

##ẋ2$x%%
"

=
#!x2%

!t
= B!x" . !12"

Thus, apart from a constant and provided the conditional

averages are interpreted correctly, the terms in Eqs. !3" and
!8" for one-dimensional Langevin equations give the same
behavior as a function of x.

The analysis of the second-order difference of x com-

pletes the link between the two approaches. For the system

!9" it is possible to show that !)16*, p. 215"

#!x% = v!t !13"

and

#!2x% = #!v% = )f!x" ! "v*!t , !14"

with !t→0. From the previous expressions it is clear that,

for "→$ , #!2x%=")A!x"!A!x"*!t=0. Thus, similarly to

Eqs. !4" and !5", the application of Eq. !14" also corresponds
to a forward !or causal" estimate of the second-order differ-
ence. In fact, writing explicitly the expression

#!2x% = $#x!t + 2!t" ! x!t + !t"%$x!t+!t" ! $#x!t + !t" ! x!t"%$x!t",

!15"

we see that it tends to zero for !t→0 as both averages tend

to A!x". Note that the same thing is obtained with a backward
estimate. However, a totally different result is obtained when

using a centered estimate for the second-order difference.

This approach was pursued by Tang )14*, who actually em-
ployed it to estimate ##ẍ $x%%, instead of the correct interpre-
tation. Interestingly, however, in the case of Langevin equa-

tions, we have, using Eq. !7",

$#x!t + !t" ! x!t"%$x!t" ! $#x!t" ! x!t ! !t"%$x!t"
= $2#!x%$x!t" = 2A!x"!t , !16"

that, apart from a multiplicative constant, agrees with ##ẍ $x%%
)see Eq. !11"*.
We tested the previous results using numerical simula-

tions of the stochastic pitchfork bifurcation process, ẋ!t"
=%x!t"!x3!t"+g#!t", with %=0.1,g=0.05, and integration

time step !t=0.5. Figure 1 shows the estimate of the drift
term using Eq. !4" along with the difference between the
causal and acausal estimates of Eq. !7". The estimates of the
second-order difference computed using Eqs. !15" and !16"
are shown in Fig. 2. As expected, the forward estimate is

practically zero, while the centered estimate follows very

well its theoretical behavior that is proportional to the drift

coefficient )see Eq. !16"*. Finally, we show a comparison

between the ratios #!x% / #!x2% and ##ẍ $x%% / ##ẋ2 $x%%. While

FIG. 1. Estimated values of the drift coefficient for the pitchfork

bifurcation process. The solid line represents the theoretical term,

the solid diamonds are the causal estimates, and the open circles are

the acausal ones.
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Langevin equations from time series
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We discuss the link between the approach to obtain the drift and diffusion of one-dimensional Langevin

equations from time series, and Pope and Ching’s relationship for stationary signals. The two approaches are

based on different interpretations of conditional averages of the time derivatives of the time series at given

levels. The analysis provides a useful indication for the correct application of Pope and Ching’s relationship to

obtain stochastic differential equations from time series and shows its validity, in a generalized sense, for

nondifferentiable processes originating from Langevin equations.
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Measured time series are often highly fluctuating, result-
ing from complex, high-dimensional systems whose dynam-
ics may not even be completely known. This justifies the
interest in obtaining simple models that are able to capture
the essential features of the series, such as the probability
density function !PDF" and the correlation structure, being at
the same time parsimonious and flexible enough to adapt to
possible nonlinearities in the underlying dynamics.
In many cases, if the measured series proves to be ap-

proximately Markovian, a first modeling assumption may be
represented by general one-dimensional Langevin equations.
For these equations, the functional forms of the drift and
diffusion terms can be easily determined directly from the
time series, employing the finite-difference form of their
definition together with suitable interpolations of the result-
ing trends. Such an approach was proposed by Friedrich et
al. #1–6$ and was already partly contained in the works of
Primak et al. #7–9$.
A different approach to model stationary time series re-

lates its PDF to the functional form of the temporal deriva-
tives at a given level. It is based on a relationship due to
Pope and Ching #10,11$ that is valid for any stationary and
sufficiently smooth signal, not necessarily Markovian. Re-
cently, the Pope and Ching formula was also used to derive
the one-dimensional Langevin equation from !financial" time
series, although the link with such equations and the different
interpretation of the corresponding conditional averages
were not rigorously assessed #12–14$. It is thus interesting to
discuss the link between the Pope and Ching formula and the
approach of Friedrich et al. and show that the Pope and
Ching formula also holds, in a generalized sense, for these
nondifferentiable stochastic processes.
Consider the following Langevin equation, according to

the Ito interpretation:

ẋ = A!x" + %B!x""!t" , !1"

where A!x" is the drift coefficient, B!x" is the diffusion term,
and "!t" is a Langevin force, i.e., white Gaussian noise with

zero mean. As is well known, the PDF of x ,p!x , t", is given
by the Fokker-Plank equation,

!p!x,t"
!t

= !
!

!x
#A!x"p!x,t"$ +

1

2

!2

!x2
#B!x"p!x,t"$ , !2"

from which the steady-state PDF of x is obtained as

p!x" =
N

B!x"
exp&2'

x

A!u"
B!u"

du( , !3"

where N is a normalization constant.
Considering a fixed temporal interval, #t, it is possible to

show #15,16$ that

)#x* = A!x"#t , !4"

)#x2* = B!x"#t , !5"

for #t→0. The fixed #t ensures that all the increments #x
have the same weight. It is important to stress that the dif-
ference #x must be computed in a “causal” or “forward”
way, i.e.,

)#x* = +)x!t + #t" ! x!t"*+x!t". !6"

Moreover, as noticed by Just et al. #17$, if the probability
current vanishes, as is always the case for stationary signals
!#15$, p. 124", it is possible to show that

+)x!t + #t" ! x!t"*+x!t" = ! +)x!t" ! x!t ! #t"*+x!t". !7"

Equations !4" and !5" have been used to estimate drift and
diffusion from time series #1–6$, assuming that they are gen-
erated by Langevin processes; other authors proposed correc-
tions to reduce the errors due to finite #t #18$.
The approach of Pope and Ching #10,11$ also relates, in a

more general way, the steady-state PDF of stationary pro-
cesses to its temporal increments at given levels, as*Electronic address: amilcare@duke.edu
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ing from complex, high-dimensional systems whose dynam-
ics may not even be completely known. This justifies the
interest in obtaining simple models that are able to capture
the essential features of the series, such as the probability
density function !PDF" and the correlation structure, being at
the same time parsimonious and flexible enough to adapt to
possible nonlinearities in the underlying dynamics.
In many cases, if the measured series proves to be ap-

proximately Markovian, a first modeling assumption may be
represented by general one-dimensional Langevin equations.
For these equations, the functional forms of the drift and
diffusion terms can be easily determined directly from the
time series, employing the finite-difference form of their
definition together with suitable interpolations of the result-
ing trends. Such an approach was proposed by Friedrich et
al. #1–6$ and was already partly contained in the works of
Primak et al. #7–9$.
A different approach to model stationary time series re-

lates its PDF to the functional form of the temporal deriva-
tives at a given level. It is based on a relationship due to
Pope and Ching #10,11$ that is valid for any stationary and
sufficiently smooth signal, not necessarily Markovian. Re-
cently, the Pope and Ching formula was also used to derive
the one-dimensional Langevin equation from !financial" time
series, although the link with such equations and the different
interpretation of the corresponding conditional averages
were not rigorously assessed #12–14$. It is thus interesting to
discuss the link between the Pope and Ching formula and the
approach of Friedrich et al. and show that the Pope and
Ching formula also holds, in a generalized sense, for these
nondifferentiable stochastic processes.
Consider the following Langevin equation, according to

the Ito interpretation:

ẋ = A!x" + %B!x""!t" , !1"

where A!x" is the drift coefficient, B!x" is the diffusion term,
and "!t" is a Langevin force, i.e., white Gaussian noise with

zero mean. As is well known, the PDF of x ,p!x , t", is given
by the Fokker-Plank equation,
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where N is a normalization constant.
Considering a fixed temporal interval, #t, it is possible to

show #15,16$ that
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for #t→0. The fixed #t ensures that all the increments #x
have the same weight. It is important to stress that the dif-
ference #x must be computed in a “causal” or “forward”
way, i.e.,

)#x* = +)x!t + #t" ! x!t"*+x!t". !6"

Moreover, as noticed by Just et al. #17$, if the probability
current vanishes, as is always the case for stationary signals
!#15$, p. 124", it is possible to show that

+)x!t + #t" ! x!t"*+x!t" = ! +)x!t" ! x!t ! #t"*+x!t". !7"

Equations !4" and !5" have been used to estimate drift and
diffusion from time series #1–6$, assuming that they are gen-
erated by Langevin processes; other authors proposed correc-
tions to reduce the errors due to finite #t #18$.
The approach of Pope and Ching #10,11$ also relates, in a

more general way, the steady-state PDF of stationary pro-
cesses to its temporal increments at given levels, as*Electronic address: amilcare@duke.edu
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!#15$, p. 124", it is possible to show that

+)x!t + #t" ! x!t"*+x!t" = ! +)x!t" ! x!t ! #t"*+x!t". !7"

Equations !4" and !5" have been used to estimate drift and
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erated by Langevin processes; other authors proposed correc-
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the behavior is similar in both cases and in agreement with

their theoretical value, A!x" /B!x", it is clear that the estimate
of the conditional averages in Eq. !8" using Sokolov’s for-
mulas is statistically less efficient than the direct use of Eqs.

!4" and !5" !see Fig. 3".
In summary, we showed the link between the approach to

obtain drift and diffusion of Langevin equations from time

series and the Pope and Ching formula for stationary pro-

cesses. We stressed the importance of the correct interpreta-

tion of the estimators used and proved the validity !in a
generalized sense" of the Pope and Ching formula also for
nondifferentiable one-dimensional Langevin processes.
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